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Information for readers

The demand for ever more flexible solutions in the field of mechanical engineering 
is also changing the methods by which the control systems themselves are pro-
grammed. Since we have already decided that mechatronic systems are the right way 
to go, the need to develop highly modular software and the programming techniques 
suitable for software of this kind is posing tough challenges. As the trend in favor of 
creating modular functional units within machines increases, it is inevitable that this 
modularity will be reflected in the software. The extensions defined in IEC 61131-3 
ED3 relating to object-oriented programming go a long way to support the ongo-
ing efforts to achieve modularized software. Designers of automation engineering 
software will thus have to deal with changes similar to those experienced by the 
programmers of PC software from the mid-1980s onwards.

If we want to create application software for automation systems that is far superior 
in design and structure, easier to modify and, above all, modular, then there will 
be no alternative to object-oriented programming. With software version 4.5 of 
the SIMOTION system, it will become possible to use object-oriented programming 
mechanisms as defined in IEC 61131-3 ED3. The purpose of this book is to help pro-
grammers get to grips with this new way of thinking and programming. Illustrative 
examples have been provided for each separate topic to make the learning process 
easier. Each example is based on and relates to previous examples that have been 
provided to explain individual topics. At the end of the book, the reader will find a 
reusable machine module that is fully implemented in OOP.

This book will be useful for anyone who wants to learn about object-oriented pro-
gramming for automation engineering applications. The first part of the book 
focuses on explaining the basic principles of object-oriented programming and is 
based on the implementation of OOP in SIMOTION according to IEC 61131-3 ED3 
(chapters 1 to 6). The second part is a general introduction to the SIMOTION system 
itself (chapters 7 and 8).

We would advise readers who are not yet familiar with SIMOTION to start by reading 
the second part “Introduction to SIMOTION”. This explains the basic principles of 
the SIMOTION control system and its engineering system SIMOTION SCOUT.

For readers to fully understand and learn the content relating to object-oriented 
programming, they must already be familiar with high-level programming lan-
guages such as Structured Text or Pascal. They must also have a basic knowledge of 
programmable logic controllers and their system behavior.

Readers will also notice that descriptions of certain issues are repeated in different 
chapters. This approach was motivated by our desire to manage with as few cross 
references between chapters as possible. We have therefore made it possible for our 
readers to jump between chapters without losing track of the discussion.

The examples we have included were specially developed for the book and they all 
build on one another. We deliberately kept them simple because we wanted them to 
clearly demonstrate the potential uses of object-oriented mechanisms. While all our 
examples are based on this idea, some of them still managed to grow to a significant 
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size. We obviously realize that nobody wants to go to the trouble of typing out all the 
program code printed in this book. We have therefore made the examples from this 
book available to our readers as an Internet download. You will find corresponding 
links to them at www.siemens.com/simotion. Please note the conditions for use of 
the examples.

Personal comments by the authors

Michael Braun

I have thought a very great deal about this chapter and was determined for a long 
time that I wouldn’t write it at all. Perhaps because I myself am someone who often 
skips this kind of chapter in books. But life is a learning process and after giving the 
matter some thought, I decided that this chapter would give me the opportunity to 
tell our readers something about myself and my motivation for writing this book.

From the very beginning of my career, I have followed developments in the field of 
automation engineering and found them to be extraordinarily exciting. My atten-
tion was primarily focused on the design and development of software. To develop 
programs that will ultimately allow a production plant to do its job properly was, 
and still is, an occupation that I find thoroughly exhilarating, but it is also an activity 
that keeps the programmer on a continual learning curve. The ability to write good 
software is not something that falls out the sky into your lap (it didn’t fall into mine 
either!). In my experience, you go through three distinct phases as a programmer.

During the first phase, you focus your attention on learning the basics of a new 
system or programming language. Certain relationships are not quite clear and it 
is simply a question of taking the first tentative steps. You are learning the basics 
and writing your first programs. As a general rule, you will later throw these into 
the waste bin because you have implemented them ineffectively or perhaps in an 
overcomplicated manner. But because you have got them to work, you make the 
transition into the second phase.

During this phase, you are reaching the point where you are familiar with all the 
elements of the language and can use “clever” tricks to formulate solutions. The fact 
that nobody can actually understand the solution is something that you deliberately 
ignore, such is your pride in the ingenuity and brilliance that have flowed into the 
creation of this software. Any pangs of conscience sink without trace in this mood 
of euphoria! This is the most dangerous time in your life as a programmer because 
you are writing unreadable code. It is now time for a helpful colleague to come along 
and tell you in no uncertain terms that your programs are rubbish (happened to 
me as well). You’ll get another chance to see the error of your ways if you find you 
cannot get rid of this “brilliant” code and are obliged to take on the responsibility of 
maintaining it (this is also a great opportunity to prove that you are “indispensable”). 
These shocks will help you get through the second phase.

If you have reached the third phase, you will be over the worst and finally capable 
of writing comprehensible program code that is easy to maintain – in other words, 
you are creating reusable software. Every programmer should endeavor to reach 
this phase as quickly as possible.
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Creating software for modern mechanical engineering applications is a team task. 
The times when a developer hatched software in a quiet little room behind closed 
doors are long gone. The creation process is driven by a continuous exchange of 
information between different members of the team, but also communication 
between different engineering disciplines. The more efficient the communication 
between all the participants, the more effectively individual developers can com-
plete the tasks specifically assigned to them. Software development is an iterative 
process that undergoes repeated rounds of improvement. With each improvement, 
the development team gets closer to some imaginary optimum. I say “imaginary” 
because the definition of “optimum” also changes over time.

It is thus a fact that the software never actually gets finished. As development work 
progresses, it is inevitable that a deliverable version of the software will sooner or 
later emerge, but this delivery state is actually the basis for the next development 
stage.

Like the user software, the development system is itself also a kind of software that 
undergoes changes. Object-oriented programming is an extension of the develop-
ment system for automation engineering software which can, and should, make life 
much easier for developers of application software than the conventional develop-
ment environments in which they have previously worked. But for this to succeed, 
it is essential that programmers become familiar with and thoroughly understand 
the mechanisms of this programming method.

It was for this purpose that a description and explanation of object-oriented pro-
gramming mechanisms was added to the SIMOTION documentation. The volume of 
this documentation ultimately became so extensive that it led to the idea of writing 
a book about OOP. You are now holding this book in your hands and I sincerely wish 
that it will help you to think up many new ideas for improving your own software. 
Learning and implementing what you have learned is something you have to do 
yourself, but please don’t forget to have fun as well!
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Wolfgang Horn

When Michael Braun first came to me with the idea of writing a book about object-ori-
ented programming, my initial reaction was: Why do we need to write yet another 
book on this subject? After all, countless publications about this topic from the 
viewpoint of a myriad of different programming languages and applications already 
exist. But when I had given more thought to the matter, I quickly realized that there 
is not much literature available that specifically relates to automation engineering 
or gives adequate support to those who wish to learn object-oriented programming 
techniques for control systems. 

Based on my own professional practice, I am well aware of the opportunities and 
potential that can be exploited when OOP is used. This is true, of course, only if OOP 
is directly supported by the programming environment and by the programming 
language used. With the implementation of the 3rd Edition of the IEC in SIMOTION, 
we have now given our users direct access to the world of OOP. But this alone is not 
enough. 

In the course of many discussions with Michael Braun and other colleagues who 
are pursuing this development with enthusiasm, it became clear to me that sim-
ply learning the new language constructs is not sufficient. In order to achieve a 
sustained effect, it is also important to understand why one can or should use a 
particular language element or technology. Listening to the questions posed by my 
colleagues, it became apparent that simple examples of programming constructs 
would not be enough and we would also need to give guidance as to which new solu-
tions for automation engineering tasks could be developed by using object-oriented 
programming. 

We have discussed many of these aspects in this book. We have aimed to help readers 
get to grips with the subject of object orientation using examples from the field 
of control engineering. To those readers who already have experience with other 
object-oriented programming languages we will try to explain the specific require-
ments of control engineering. Control-specific languages are specially formulated to 
ensure that control system software can be programmed in such a way that program 
runtimes do not exceed certain limits, in other words, to ensure that the number of 
runtime errors during program execution are minimized. As a result, readers of this 
book will search in vain for any reference to constructs for dynamic object generation 
and destruction. The reason that constructs of this kind are not offered in the control 
programming environment is a simple one: they could have a significantly negative 
impact on the real-time capability of the application. 

When I set out on my professional career path, the programming language Struc-
tured Text (ST) was still one of the rank outsiders in the field of control technology. 
The increasing complexity of programs of the kind we are now encountering in 
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the field of motion control in particular is literally forcing us to adopt high-level 
programming languages like ST. A logical continuation of this approach can be seen 
in the support for object orientation afforded by control systems. It is my opinion 
that this method of control system programming will have become the standard for 
automation solutions in just a few years time. 

By writing this book, we hope to contribute in some way to helping object-oriented 
programming find broader acceptance in control engineering applications. With 
respect to the modularity and combinability of software modules, the potential ben-
efits of object-oriented programming, particularly for more complex applications, 
are enormous. In the meantime, I would like to join my colleague Michael Braun 
in wishing our readers much enjoyment and patience in learning and trying out 
their new skills.
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1   Developments in the Field of Control 
 Engineering 1

One of the most important extensions to IEC 61131-3 ED3 describes the mechanisms 
for the object-oriented programming of control systems in automation applications. 
This development has provided a solid basis for standardizing programs used in 
automation systems and offers a solution for overcoming the limitations associated 
with procedural programming methods.

As a result of the increasing trend to make mechanically engineered systems as 
flexible as possible, it has become essential to change existing programs in such a 
way that modular machine concepts are also reflected in the software. As a result, 
modularization is becoming the guiding principle for designing the programs of 
the future. Modularized software comprises modules that are fully functional and 
tested as independent entities, but they can be combined to create a single functional 
unit within different machines.

Anyone wishing to attain, and then retain, a competitive position on the interna-
tional market must be capable of minimizing commissioning times. This can be 
achieved only if standardized program modules function reliably when combined 
with other modules so that any corrective work during the commissioning phase is 
either unnecessary or reduced to an absolute minimum.

The requirements to be fulfilled by the application software architecture and the 
automation systems are therefore as follows:

 ◼ The software must have a modular structure. The modules are totally 
encapsulated with the ability to function fully independently.

 ◼ The independent design of the modules means that even data belong to a 
module, i.e. are an integral part of that module. In other words, it must be 
possible to link data to the module and to prevent any changes from being 
made to the data outside the module.

 ◼ The ability to test modules as independent entities is crucial if they are to 
be combined and assembled to create a functional unit. The modules must 
therefore be designed in such a way that they can be individually tested in a 
test environment.

 ◼ Combining different modules in an environment must involve only mini-
mal software modification, or none at all. To achieve this goal, interaction 
between modules is implemented on the basis of neutral interfaces. 

 ◼ Since the machinery as a whole including all its individual components 
will undergo modernization over its service life, it is absolutely imperative 
that the machine software can be adapted accordingly. However, any mod-
ernization process should, wherever possible, preclude the need to modify 
tried-and-tested, functionally reliable modules.

 ◼ It must be possible for the machine manufacturer’s software module devel-
opers to work as independently of one another as possible. To this end, it 
is necessary to use programming languages with appropriate mechanisms 
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to reduce interdependencies between software modules. Agreement on 
the interfaces provided to allow data exchange between different software 
modules shall therefore be capable of being defined.

To satisfy all the requirements described above, we need to find a better program-
ming model than the procedural methods presently used to write control engineer-
ing programs. 

Modern automation systems have been evolving through a process of development 
for many years. During this time, the methods used to program them have also 
changed in various ways. It was advances in the field of automation engineering that 
necessitated these changes, and these in turn influenced users. Any forced change 
was met with a degree of resistance by some, and it was this attitude that blocked the 
acceptance of new approaches to programming. Programmers were only prepared to 
accept new methods if their concerns or misgivings were addressed and alleviated.

The advent of object-oriented programming hails another paradigm shift in auto-
mation engineering. As programmers experienced the advances made in the field of 
automation engineering, they developed a specific programming methodology for 
individual applications. These methods now need to be examined, changed where 
necessary, or even rejected altogether. But this could again engender misgivings or 
reservations, and if it is not possible to alleviate these, they will be an obstacle to the 
introduction of new methods. Programmers may well have adopted this mindset, 
for example, as a result of their past experience of change.

For this reason, we are going to allow ourselves a brief tour through the history of 
automation technology and pay special attention to the consequences of automa-
tion advances on programming. While the development stages described below are 
certainly representative, they are not necessarily given in the correct chronological 
sequence. Nor does the description claim to be complete. Nevertheless, each of these 
advances actually resulted in changes to programming methods. We now need to 
think about these consequences and, where misgivings and reservations from the 
past still exist, find effective arguments to counter them.

1.1   The early days of programmable logic controllers 
(PLCs) 1.1

A notable feature of early programmable logic controller (PLC) applications was 
the fact that users of this new control generation knew virtually nothing about pro-
gramming. Before the days of the PLC, automation systems had been implemented 
using hard-wired relay controls, contactor controls or electronic components. 
Machine designers, commissioning engineers and service personnel were suddenly 
confronted with programming instead of wiring. For this reason, programming 
methods needed to be devised with a view to what users already knew.

At this time, users understood how to read circuit diagrams and use wiring in order 
to implement functions. It therefore made sense to design programming methods 
which supported these capabilities. Thus was born the “ladder logic” programming 
method (Figure 1) with resemblance to a circuit diagram, and the “function block 
diagram” system that is based on electronic diagrams.
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More complex function elements of the system such as timers or counters were 
represented as a box with corresponding inputs and outputs. To allow users to 
create their own complex function modules, the system provided them with a tool 
to program their own function blocks or functions and these were represented in 
turn as complex elements (boxes) with inputs and outputs in the ladder diagram or 
function block diagram.

More complex elements of this kind needed to be programmed in a different way 
to the functionally limited ladder or function block diagram elements. Users were 
therefore provided with two programming languages with syntax similar to assem-
bler language, i.e. Statement List (STL) (Figure 2) or Instruction List (IL).

These enabled users to create programs of significant complexity which supported 
the programming, for example, of computation functions and branches within the 
program. However, each control system manufacturer created their own set of com-
mands and there were wide variations between the command sets available. For this 
reason, it was extremely difficult to transfer programs from one control system to 

Figure 2 Example of SIEMENS STL

Figure 1 Example of a ladder logic program
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another and users were required to learn the different “dialects” and approaches of 
each individual control system manufacturer.

Another disadvantage of these assembler-like mnemonics (= a plain-text, 
human-readable abbreviation for an assembler instruction) was that the scope for 
program structuring was extremely limited and the structuring tools were very 
laborious to use. Furthermore, many users also felt compelled to teach themselves 
how to program. As a result, some programs were readable to a greater or lesser 
extent, while others contained sections of code that were impossible to maintain.

Despite all these problems, the ease with which programs could be changed and 
the flexibility this offered was an immense advantage over conventional wiring, 
and this was what eventually swept the programmable logic controller to triumph. 
Programming therefore became an established, and now indispensable, part of the 
mechanical engineering process.

Obstacles

The ease with which software programs could be changed also encouraged some pro-
grammers to work according to the “trial and error” principle. They were particularly 
susceptible to this temptation when working under time pressure to make a machine 
function ready for acceptance or delivery. This practice of putting the finishing touches to 
a program by testing it during commissioning resulted in an unacceptably large number 
of program variants and ultimately to software that had no structure. This problem had 
a lasting, negative impact when it came to reusing programs. 

It can often be observed in companies today that the time originally planned for writing 
software is continuously squeezed as a machine construction project progresses. The 
company has agreed a delivery deadline, but further technical changes to the machinery 
(including those requested by the customer) lead to unplanned additional expenditure 
or labor and exacerbate the scheduling situation. Changes to the system design can 
probably never be avoided because they are generally justified for technical or other 
reasons. Nonetheless, investment of substantially more labor in a project should logically 
lead to an extension of the delivery deadline.

The end customer will only accept a deadline extension if it can be proved incontrovertibly 
that the extra outlay was unavoidable due to requests for changes made by the customer. 
But this proof can be provided only in cases where the scope of supply was clearly and 
unambiguously formulated. If the scope of supply is not clearly defined when a system is 
sold, it is inevitable that the scope promised by the seller will be open to interpretation. 
In such cases, the end customer will generally demand delivery by the agreed deadline. 
As a result, the time scheduled for programming software is squeezed. “It’s so easy to 
change software and you can do it so quickly”. This attitude often leads to the problem 
that unfinished software is handed over to the commissioning team and has to be finished 
within whatever time remains. The software cannot be made to conform to the specified 
design guidelines and becomes less reusable.

Solutions

Precise software planning is the key to success. Software functions can be planned effi-
ciently only if the relevant requirements are identified in advance. On the basis of these 
requirements, it is possible to work out how the software must be implemented and 
structured. The time required to develop the software can be calculated and the relevant 
deadlines planned accordingly.
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Regular consultation with the customer prevents any unpleasant surprises for either party. 
For this purpose, the implementation schedule must be discussed with the customer and 
recorded in writing at an early stage.

A process for implementing development of the software must also be set out. The status 
and progress of the development task is then clearly identifiable and any deviations from 
the agreed process can be picked up early. When deviations are identified early enough, 
there is still time to take corrective action.

1.2  The PLC learns to communicate 1.2

The early PLCs had limited resources (e.g. memory capacity or processing perfor-
mance). Nor was fine scaling of the different performance classes of control systems 
possible as it is with modern systems. This lack of scalability meant that it was 
necessary to use multiple control systems in a single plant, and where several con-
trol systems were deployed, they needed to be synchronized with one another. One 
of the simplest methods, but also one with extremely limited possibilities, was to 
synchronize different controls via inputs and outputs. This option was not viable in 
cases where large volumes of data needed to be exchanged.

The problem was resolved by using special communication modules that could be 
inserted in the PLC. These “computer links” (e.g. RK512) utilized standardized pro-
tocol frames (e.g. 3964R) to exchange data and were operated by driver blocks in 
the PLC. Even though the links provided by these modules were essentially no more 
than point-to-point connections, their use increased the communication capability 
of PLCs. Figure 3 shows a compact control system dating from around 1980.

Figure 3 SIMATIC S5-150K
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Another advantage of these computer links was that they provided a master com-
puter interface. Using the same technology, therefore, it was possible to establish 
communication links between control system and master computer levels in order 
to record production data.

Since programmers were required to synchronize control systems by programming 
communication links between them, they were also forced to create programs that 
included the relevant communication mechanisms in addition to the implemented 
actual control task. This meant that they had to take the following aspects into 
account when designing the software:

 ◼ The link to individual devices/control systems needed to be connected and 
possibly disconnected. The system behavior when individual components 
were switched on or off also needed to be taken into account.

 ◼ Connections needed to be managed depending on the number of nodes. 
The data needed to be structured accordingly and transferred to / dis-
patched from the relevant communication module for the purpose of data 
exchange.

 ◼ Connection monitoring systems needed to be implemented and a suitable 
response programmed in the machine operating sequence.

 ◼ There was a risk of telegram loss under certain operating conditions. This 
could happen, for example, if a control system was unable to empty the tele-
gram buffer of a communication module because its cycle time had been 
extended temporarily. In this instance as well, it was necessary to engineer 
suitable program responses.

 ◼ Production-relevant data needed to be collected in the control system and 
prepared for transfer to master computers.

Obstacles

Control system programs increased in size due to the addition of communication mech-
anisms. These bigger programs needed to remain manageable. Suitable structuring of 
the software and the modular programming this involved were the logical consequences 
of the drive towards program manageability. Not only were programmers required to 
concentrate on programming machine operating sequences, they also needed to consider 
the data structures in the control system. It seemed meaningful, on the one hand, to 
separate the communication functions from the machine operating sequences. On the 
other, however, these sequences were naturally influenced by the communication data. 
A way needed to be found to effectively combine communication functions with machine 
operating sequences. But it was also important to ensure that software changes in one 
area (e.g. machine operating sequence) would not automatically entail software changes 
in another area (e.g. communication). 

Solutions

Without clear definitions and structures, software designs can become so idiosyncratic 
that they become difficult or even impossible to maintain and upgrade in the long term. 
Software design, modularization and standardization of software are still clearly defined 
objectives of the development process. By creating reusable software components and 
implementing a well-planned structure, it is possible to reduce the outlay for software 
development and plan deadlines with greater confidence.
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1.3  Development of fieldbus systems 1.3

The centralized structure of programmable logic controllers with central processing 
units (CPU) mounted in the same rack as I/O modules made it necessary to increase 
the volume of wiring between the control cabinet and actuators (such as valves) 
installed in the machine or control components (such as switches and buttons) that 
were needed to control the machinery. It was the expense of installing this wiring 
that provided the impetus for change. The elements (actuators and sensors) were 
installed in the machine rather than in the control cabinet and the goal was to find 
a way of connecting them to the PLC using less wiring.

With this objective in mind, the control system manufacturers developed new com-
munication modules that provided a serial bus link between the control system and 
field devices. By deploying these fieldbuses, it was possible to reduce the volume of 
wiring to actuators and sensors in the field.

Reducing the volume of cabling also had a further benefit. Since actuators and sen-
sors were now linked to the PLC via a bus system, it was no longer necessary to have 
such a large number of I/O modules in the PLC rack. The terminal strip converters 
were relocated directly into local control boxes, allowing use of significantly smaller 
control cabinets.

But this development objective of achieving a substantial reduction in wiring ulti-
mately increased the complexity of the software design process:

 ◼ It was necessary to provide systems to monitor proper booting when exter-
nal I/O devices connected to the bus were powered up.

 ◼ Failure of a component during operation needed to be detected by the 
software and modeled by a suitable response in the process.

 ◼ The software developer needed to work out a substitute value strategy for 
inputs and outputs that would no longer be available if external I/O devices 
failed. This substitute value strategy had to be integrated into the relevant 
programs.

Obstacles

As I/O devices were relocated to external, bus-coupled components, the complexity of 
the software design process increased yet again, but remained relatively easy to manage 
as long as the I/O devices were purely digital or analog. As the technology continued to 
advance, however, ever more complex I/O devices were coupled to buses and needed to 
become a particular focus of attention for software developers. Implementing successful 
interaction with I/O components is not easy, especially when some of them are complex 
and capable of independent operation. This task becomes even more difficult if the com-
ponents have their own independent operating sequence that needs to be synchronized 
with the machine process. If the link to a component of this kind fails, the stop response 
that may be required is relatively easy to manage. However, system restart after the stop 
command may well involve significantly more complex programs. To achieve a successful 
system restart, the main process requires more information and this needs to be acquired 
by an additionally programmed information exchange with the affected I/O component.
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Solutions

A well-planned software design is absolutely essential if these interrelationships are to be 
managed effectively. Without a suitable software design, many unique software versions 
are created over time as machines are delivered – an approach which makes software 
maintenance significantly more difficult and renders modularization and standardization 
completely impossible.

In conclusion, it is fair to say that fieldbus systems and their components had an enor-
mous impact on programming, as we will see later on (see Chapter 1.6 “Drives become 
fully-fledged bus system nodes 1.6”).

1.4  Integration of display systems in PLCs 1.4

As the complexity and size of installations increased, it became necessary to provide 
the machine operator with a clear overview of process events. This entailed a great 
deal more than just an indication of the machine status signaled via lamps and 
illuminated pushbuttons. Machine operating sequences were becoming ever more 
complex, necessitating a general improvement in the quality of display systems. 
Driven by this necessity and aided by continuous advances in computer technology, 
it became economical to deploy visualization systems in the form of plug-in modules 
in the programmable logic controller. Control system manufacturers developed 
single-board computers that could be plugged into the PLC and allowed screens to be 
connected as a Human Machine Interface (HMI). These mini-computers exchanged 
data with the PLC via the backplane bus and had their own driver blocks in the PLC 
CPU. Manufacturers developed configuring tools and supplied these to users so that 
they could configure their own displays. One of the first screen systems of this kind 
for SIMATIC controllers was the WS400 visualization system (comprising the WF470 
display module and various operator panels) developed by Siemens (Figure 4).

Using this visualization system, it was possible to display the plant as a block graphic 
and show the status of individual machine modules. Further configurable detail 
views provided the machine operator with more precise information about indi-
vidual modules. The visualization system was capable of displaying the machine 
operating sequences for executing processes and also featured a standardized fault 
diagnostics system that indicated any problems.

Programmers were therefore required to structure the software and data in such a 
way that information could be transferred to the visualization system:

 ◼ Data models had to be modularized for display purposes at least, and 
scalability for different plant sizes needed to be taken into account. It was 
only by structuring the software in this way that it could be reused across 
different plants.

 ◼ The operator needed to be supplied with detailed information if any faults 
developed in the plant. Programmers therefore needed to ensure that the 
relevant plant faults were transferred to the visualization system by means 
of flags in the control system and that the corresponding fault messages 
were assigned to the flags by text lists.
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 ◼ They also had to program status messages for transfer to the HMI system.

 ◼ Since it was necessary to shut down plant sections or even the entire plant 
when serious faults occurred, fault-signaling processes often resulted in the 
display of many other follow-on faults in addition to the actual fault cause. 
This flurry of fault messages did not help the operator or service engineer 
to resolve the problem. The consequence for the software design process 
was that programmers now also needed to consider a means of evaluating 
initial and follow-on faults and to integrate a suitable evaluation strategy 
into the plant software.

 ◼ The integration of visualization systems into PLCs forced programmers to 
implement additional modules in the plant software, modules that were 
absolutely essential to effective operation of the machine but had little to do 
with the actual control task. The size and complexity of programs continued 
to increase as a consequence. Modularization and clear structures had 
become even more important as efforts were made to create software that 
could be maintained and upgraded. System programming nevertheless 
continued in the LAD/FBD or STL languages. Sequential processes were 
programmed with the GRAPH-5 language that had been specially developed 
for the purpose.

Modern visualization systems are linked to the control system via Industrial Ether-
net. Configuring tools for HMI systems are a standard element of the engineering 
software and function as integral components of appropriate software suites. Achiev-
ing the required degree of software modularization and developing suitable data 
models in the control system still remain a key responsibility of software developers 
and designers.

Figure 4 WF470 with compact operator panel



27

1.5 Integration of motion control in PLCs

Obstacles

Modern visualization systems allow direct use of PLC tags in configured plant displays. This 
is one of the positive features that is often highlighted when HMI systems are marketed. 
It seems simple enough and implies that users can easily create any plant display of their 
choice. The drawback of this system is that it creates tightly coupled software components. 
This means that changes to the machine program then also entail changes to the tag 
management system and thus to changed tag addresses. As a consequence, the HMI 
displays must at least be recompiled and reloaded. Loose coupling between software 
components and independent software development are then no longer an option.

Solutions

A much better solution is to define a well-planned interface to the HMI. The machine 
program transfers the necessary data to the interface and fetches from the interface the 
data required for an operational sequence. Only interface tags are used in plant displays. 
This approach ensures that data are loosely coupled. The HMI and control system can be 
loaded independently of one another, and the control program and display configuring 
software can be developed independently. Another advantage of this solution is that data 
do not need to be collected across the entire program, but can be transferred in a block to 
the HMI system, a solution that guarantees significantly faster transfer rates.

1.5  Integration of motion control in PLCs 1.5

The call for machine manufacturers to build machines that could be retooled quickly 
for manufacturing new products made it necessary to achieve a greater flexibility 
of machine motion. This resulted in an increasing trend to equip motion axes with 
electric drives rather than with the conventional mechanical or hydraulic solutions. 
The deployment of electric drives made it necessary in turn to use systems that 
supported flexible positioning of the drive. As with HMI systems, positioning mod-
ules with special microcomputer systems that could be plugged into the PLC were 
developed and so made it possible to flexibly position drives in the machine. To 
enable positioning modules of this kind to be connected to the drive systems used in 
those days, they needed to be equipped with analog setpoint outputs and be capable 
of detecting the axis position via connectable encoder systems.

The WS600 system (Figure 5) was one of the first positioning systems developed 
for the SIMATIC PLC. This system comprised the WF625 positioning module and the 
WS600G display system.

Communication between the user program and the positioning modules was han-
dled by a standard software package. Data blocks with data content that needed to 
be administered by the user program acted as the interface to the user program.

The traversing programs were programmed via the WS600G operator panels and the 
programming methods were based on the semantics relating to numerical control of 
machines defined by DIN 66025/ISO 6983. It was thus possible to adapt the traversing 
movements more flexibly to the requirements of the production process.
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This trend towards integrating motion control functions into PLCs had a serious 
impact on the PLC control programs. The user program became responsible for 
managing the traversing movements in the form of CNC programs and the coordina-
tion of different modules. The fact that the positioning modules had their own cycle 
that was generally considerably shorter than the PLC cycle needed to be taken into 
account in the PLC program. Owing to these cycle time differences, synchronization 
routines had to be added to the PLC program.

If the traversing motion was executed faster than the time it took for the PLC to 
complete a scan cycle, then the signal changes of the positioning module could 
not be registered correctly in the PLC program. For the person programming the 
PLC, this made it difficult to determine whether or not the positioning process had 
actually taken place. When it came to fully automated processes, this lack of certainty 
was not acceptable. The PLC programmer therefore needed to take measures in the 
sequential program to ensure that positioning operations were clearly terminated. 
This could be done, for example, by implementing functions that compared the 
actual and target positions. Since it was possible to change the position values by 
entering programming commands at the WS600G operator panel, the programmer 
needed to ensure that the target positions required to perform the comparison were 
dynamically calculated so as not to impair the flexibility of the plant. The additional 
programming effort required to achieve this goal should not be underestimated.

These problems were solved by advances in the design of positioning modules which 
saw the implementation of handshake mechanisms at the interface. This develop-
ment helped make PLC programs slightly simpler again.

Figure 5 S5-150K with WF625 and WS600G
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Motion control functionality is fully integrated in modern PLC systems and an inte-
gral component of the PLC’s operating system. Despite this integration of motion 
control functions, it is still necessary to invest programming time and effort in order 
to ensure effective organization of motion control movements:

 ◼ Programmers were forced to expand their domain knowledge in order to 
understand the processes managed by the motion control program. The 
knowledge they acquired lead inevitably to changes in the way the machine 
operating sequence was programmed.

 ◼ They also needed to understand the control processes of the posi-
tioned-controlled positioning modules and the subordinate drive control 
system. Errors occurring in these functional areas needed to be detected 
and managed by appropriate reactions in the machine operating sequence.

 ◼ Every positioning module works autonomously. As a result, it became 
necessary to synchronize positioning movements across multiple modules 
in the PLC. In this context, the most challenging task was to manage inter-
ruptions to the process caused by errors and restart the process smoothly 
again afterwards.

 ◼ In addition to organizing the motion control functionality itself, it was in 
some instances also necessary to create routines to manage the CNC pro-
grams in the PLC so that various retooling operations could be conducted 
quickly and automatically.

Integration of motion control functionality into programmable logic controllers 
did and does represent an important step in the process of enhancing plant flexi-
bility. Motion control functionality has become an indispensable feature of modern 
machinery because the shift towards mechatronic systems is already in full swing.

Obstacles

Motion control functions are now an integral component of control systems. As in the past, 
it is essential for programmers to have the required level of domain knowledge if they are 
to create useful process plant programs. It is precisely because motion control functionality 
is integrated in the control system that software structuring and modularization have 
become so important. If we ignore this fact, it will simply be impossible to make further 
progress towards creating more abstract software modules.

Solutions

For programmers to write programs that are properly structured and modularized, they 
need to have an understanding of the domain engineering associated with motion control. 
Since this expertise does not come about by itself, the relevant personnel need to be given 
the time and opportunity to acquire the knowledge they need.


