

Dateianlage
cover.gif

Braun / Horn
Object-Oriented Programming with SIMOTION

Michael Braun is a product manager for Motion Control Engineering at
SIEMENS AG in Erlangen. Among other responsibilities, he is tasked with
communicating customer requirements to software developers/designers,
monitoring the implementation of these requirements and launching
new software on the market.

Dr. Wolfgang Horn is a software manager and developer at the Gesellschaft
für Industrielle Steuerungstechnik in Chemnitz, Germany. He is a leading
specialist in the architecture and programming of SIMOTION.

Object-Oriented
Programming

with SIMOTION
Basic Principles, Program Examples

and Software Concepts
according to IEC 61131-3

By Michael Braun and Wolfgang Horn

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

The authors and publisher have taken great care with all texts and illustrations in
this book. Nevertheless, errors can never be completely avoided. The publisher
and authors accept no liability, regardless of legal basis. Designations used in this
book may be trademarks whose use by third parties for their own purposes could
violate the rights of the owners.

www.publicis-books.de

Reproduction or transmission of this document or extracts thereof
is not permitted unless expressly authorized.

Print ISBN 978-3-89578-456-9
ePDF ISBN 978-3-89578-947-2

Publisher: Publicis Publishing, Erlangen, Germany
© 2017 by Publicis Pixelpark Erlangen – eine Zweigniederlassung
der Publicis Pixelpark GmbH

This publication and all parts thereof are protected by copyright. Any use of
it outside the strict provisions of the copyright law without the consent of the
publisher is forbidden and will incur penalties. This applies particularly to
reproduction, translation, microfilming or other processing‚ and to storage
or processing in electronic systems. It also applies to the use of individual
illustrations or extracts from the text.

Printed in Germany

5

Table of contents

Table of contents

Information for readers . 13

1 Developments in the Field of Control Engineering 1 18

1.1 The early days of programmable logic controllers (PLCs) 1.1 19

1.2 The PLC learns to communicate 1.2 . 22

1.3 Development of fieldbus systems 1.3 . 24

1.4 Integration of display systems in PLCs 1.4 . 25

1.5 Integration of motion control in PLCs 1.5 . 27

1.6 Drives become fully-fledged bus system nodes 1.6 . 30

1.7 PLC and PAC – what is the difference? 1.7 . 31

1.8 General conclusions about past developments 1.8 . 31

2 Basic Principles of Object-Oriented Programming 2 33

2.1 The basis of object-oriented programming 2.1 . 33
2.1.1 History . 33
2.1.2 What’s different? . 34
2.1.3 What does object orientation mean? . 35
2.1.4 Objects and their interactions . 36

2.2 General principles of OOP 2.2 . 37
2.2.1 Objects . 37
2.2.2 Classes . 39
2.2.3 Inheritance . 39
2.2.4 Overriding . 41
2.2.5 Interfaces for object interaction . 42
2.2.6 Summary . 44
2.2.7 Advantages of using OOP . 45
2.2.8 Disadvantages of OOP . 45

2.3 Tips about defining classes 2.3 . 46

3 Object-Oriented Programming 3 . 49

3.1 Implementation of OOP with SIMOTION 3.1 . 49

3.2 Function blocks with methods 3.2 . 50
3.2.1 Modularization without OOP extensions . 51
3.2.2 Program and data are separate . 53
3.2.3 Advances in the life cycle of software . 55
3.2.4 Disadvantages of programming without OOP extensions 56
3.2.5 Extensions to FBs and their access specification . 57
3.2.6 Use of methods to improve program structuring . 59
3.2.6.1 Example of FB with methods . 60

6

Table of contents

3.2.6.2 Example of a function block call . 61
3.2.7 Function block with methods for placing commands . 62
3.2.7.1 Example of the FB with command methods . 63
3.2.7.2 Example of an FB call with command methods . 65

3.3 Classes (CLASS) 3.3 . 66
3.3.1 Keywords supported for a class . 67
3.3.1.1 Example of a CLASS declaration . 69
3.3.2 Methods (METHOD) . 69
3.3.3 Methods and their access specification . 70
3.3.4 Declaration of instances of a class . 71
3.3.5 Rules for identifiers in a class . 72
3.3.6 Use of class methods . 72
3.3.6.1 Example of a CLASS COUNTER . 73
3.3.6.2 Use of the method of CLASS COUNTER . 74
3.3.6.3 Extension of the CLASS COUNTER and use of THIS . 75
3.3.6.4 Use of the methods UP and DOWN . 76
3.3.7 Classes and inheritance . 76
3.3.7.1 Example of derivation of a class . 78
3.3.7.2 Example of how to use base and derived classes . 79
3.3.7.3 Other aspects of the method call . 80
3.3.7.4 Example of base and derived classes in a function . 81
3.3.8 Abstract classes . 82

3.4 Examples of valve applications with OOP 3.4 . 84
3.4.1 Example with 4/3-way valve . 84
3.4.1.1 Example of a class for 4/3-way valves . 85
3.4.1.2 Example of a valve call . 87
3.4.1.3 Example with 4/3-way valve with fast/slow speed . 88
3.4.1.4 Example of a derived class ValveControl43FS . 89
3.4.1.5 Example of calls of base class and extended class . 90
3.4.1.6 Example of call of extended class with basic function . 91

3.5 Interfaces 3.5 . 92
3.5.1 Supported features . 93
3.5.2 Principles of interfaces . 94
3.5.2.1 Example of an interface declaration . 95
3.5.3 Representation of interfaces in the PNV of SCOUT . 97
3.5.4 Benefits of interfaces . 99
3.5.5 Interfaces as a reference to classes . 100
3.5.6 Valve classes with interfaces . 103
3.5.7 Declaration of the valve interface . 105
3.5.7.1 Example of ValveControl43 with limit switch monitoring 105
3.5.7.2 Example of ValveControl43 with error reporting . 108
3.5.7.3 Example of ValveControl43 with test error reporting 112
3.5.7.4 Example of class HMIReporting . 113
3.5.7.5 Example of ValveControl43 with error reporting . 115
3.5.8 Interface for neutralizing I/O components . 116
3.5.8.1 Connection of cameras to the control system . 116
3.5.8.2 Interface definition for a camera connection . 122

7

Table of contents

3.5.9 Interface for neutral I/O connection (condensed example) 123
3.5.9.1 Interface definition for neutral I/O connection . 125
3.5.9.2 Implementation in classes . 125
3.5.9.3 Interface definition and mapping table program . 126
3.5.9.4 Program for implementation and use of classes . 127
3.5.9.5 Interface for fast/slow speed switchover . 129
3.5.9.6 Implementation of classes for fast/slow speed . 130

3.6 Further optimization of the valve class 3.6 . 131
3.6.1 Existing implementation of ValveControl . 131
3.6.2 Design of a state machine . 132
3.6.2.1 Example of ValveControl43ST – state machine using CASE 134
3.6.2.2 Example of ValveControl43ST – state machine with classes 140

3.7 Abstract class for different drives 3.7 . 143
3.7.1 Functional differences between various drive solutions 144
3.7.2 Class model for connecting different drives . 146
3.7.2.1 Example of abstract class “CDrive” . 147
3.7.2.2 Example of class for direct-on-line starting drives . 148
3.7.2.3 Example of class for drives with star-delta starters . 149
3.7.2.4 Example of class for speed-controlled drives . 151
3.7.2.5 Example program for controlling drives of different types 155

3.8 Abstract class versus interface 3.8 . 157

3.9 OOP opens up the world of design patterns 3.9 . 159

4 OOP Supports Modular Software Concepts 4 . 161

4.1 Assembling projects for real machines 4.1 . 162
4.1.1 Module design . 163
4.1.2 The role of the software developer . 163
4.1.3 Modularizing software . 164
4.1.3.1 Creating equipment modules . 166
4.1.3.2 Software design of the equipment module . 167
4.1.3.3 Example of the class “CEMPusher” . 169
4.1.3.4 Example of an equipment module call . 174
4.1.4 Preparations for multiple reuse . 175
4.1.4.1 Example of the neutralized equipment module . 176

4.2 SIMOTION easyProject project generator 4.2 . 177
4.2.1 Adding your own modules to the project generator . 181
4.2.2 Creating a user interface for the project generator . 182
4.2.3 XML description of the equipment module . 184

5 Guide to Designing and Developing Software 5 . 188

5.1 Establishing requirements 5.1 . 188
5.1.1 Starting point – user interfaces . 189
5.1.2 Starting point – process operations . 189
5.1.3 Starting point – mechanical engineering elements . 190
5.1.4 Existing solutions . 191

8

Table of contents

5.2 Object-oriented design 5.2 . 192
5.2.1 Encapsulation . 192
5.2.2 Responsibility of a class . 193
5.2.3 Commonalities and differences between objects . 194
5.2.4 Principle of replaceability with derived classes . 194
5.2.5 Determining relationships . 195
5.2.6 SOLID principles . 197

5.3 Reusable and easy-to-maintain software 5.3 . 197
5.3.1 How can software be made reusable? . 197
5.3.2 Libraries are helpful . 198
5.3.3 What is the best way to develop modules? . 198

5.4 Organizational and legal aspects 5.4 . 201
5.4.1 Transition to OOP must be planned . 201
5.4.2 Software needs to be planned . 202
5.4.2.1 Analysis of existing programs . 202
5.4.2.2 Reuse of software . 203
5.4.3 Reuse and ownership of software . 205
5.4.3.1 Distribution of software . 206
5.4.3.2 Acquisition of software . 207
5.4.4 “Good software” and object-oriented design . 208

5.5 Software tests are a must! 5.5 . 211
5.5.1 Module test . 213
5.5.2 Integration test . 214
5.5.3 System test . 214
5.5.4 Acceptance test . 216

6 Additional Topics Relating to Software Structuring 6 217

6.1 I/O references 6.1 . 217
6.1.1 Declaration . 218
6.1.2 Linking references to I/O variables . 218

6.2 Namespaces 6.2 . 220

6.3 General references 6.3 . 222
6.3.1 Declaration and initialization . 223
6.3.2 Working with references . 224

7 Description of the Extended Functionality in SIMOTION 7 228

7.1 General extensions to the programming model 7.1 . 228

7.2 Classes in SIMOTION 7.2 . 229
7.2.1 Constants and user-defined data types in classes . 229
7.2.2 Naming of variables in classes and methods . 230
7.2.3 Method calls . 231
7.2.4 FINAL for methods and classes . 232
7.2.5 Declaration of abstract classes and methods . 232
7.2.6 Interface implementation and class derivations . 233
7.2.7 Type conversions for classes and interfaces . 234

9

Table of contents

7.3 Instantiation of classes and function blocks 7.3 . 236
7.3.1 User-defined initialization of instances . 236
7.3.2 Initialization of interface variables . 237
7.3.3 Creating class and function block instances . 238
7.3.4 RETAIN data in classes and function blocks . 239
7.3.5 Arrays of variable length . 239

7.4 Tips for creating compatible and efficient software 7.4 240
7.4.1 Methods and function calls . 240
7.4.2 Use of enum values and constants . 240
7.4.3 Use of predefined namespaces . 241
7.4.4 Declaration of data types, variables and methods . 242
7.4.5 Preparing structured data for transmission . 243

8 Introduction to SIMOTION 8 . 246

8.1 Classic development of control systems 8.1 . 246

8.2 New control concepts required 8.2 . 247

8.3 Technology Objects in SIMOTION 8.3 . 248

8.4 Three hardware platforms 8.4 . 249

8.5 Connecting drives and I/O devices to SIMOTION 8.5 . 251

8.6 Handling kinematics in SIMOTION 8.6 . 251

8.7 SIMOTION’s programming model 8.7 . 252
8.7.1 The units of SIMOTION . 253
8.7.2 The variable model in SIMOTION . 254
8.7.3 Libraries in SIMOTION . 258

8.8 The SIMOTION SCOUT engineering system 8.8 . 259

8.9 Components of SCOUT 8.9 . 260
8.9.1 The SCOUT project navigator . 261
8.9.2 Creating a new project . 262
8.9.3 Creating a new device . 263
8.9.4 Hardware configuration . 266
8.9.5 The SIMOTION address list . 268
8.9.6 Creating axes . 269
8.9.7 Creating drives . 274
8.9.8 Creating path objects . 276
8.9.9 Language editors in SCOUT . 278
8.9.10 Support for programming languages . 279
8.9.11 Inserting program sources (units) . 280
8.9.12 Entering programs . 282
8.9.13 Assigning programs to the execution system . 284
8.9.14 Integrated test functions . 285
8.9.15 Testing with “program status” . 286

Note about using the example programs . 293

Index . 294

10

List of Figures

List of Figures

Figure 1 Example of a ladder logic program . 20

Figure 2 Example of SIEMENS STL . 20

Figure 3 SIMATIC S5-150K . 22

Figure 4 WF470 with compact operator panel . 26

Figure 5 S5-150K with WF625 and WS600G . 28

Figure 6 Communication between objects – object-oriented . 34

Figure 7 Communication between objects – procedural . 35

Figure 8 Hydraulic aggregate . 38

Figure 9 Class and object . 39

Figure 10 Inheritance principle with classes . 40

Figure 11 Hydraulic aggregate with HMI display . 43

Figure 12 Valve-cylinder combination . 51

Figure 13 FB_Valve . 52

Figure 14 Program and data are separate in function blocks . 55

Figure 15 Function blocks need to be copied and adapted . 56

Figure 16 Programming FB Valve43 with methods . 59

Figure 17 Further development FB Valve43 extended . 63

Figure 18 CLASS in the PNV . 66

Figure 19 Access definition for methods (source: IEC 61131-3 ED3) 71

Figure 20 Classes and their derivations . 77

Figure 21 Derivation and counter call principle . 78

Figure 22 Plant with a 4/3-way valve . 85

Figure 23 4/3-way valve with fast/slow speed . 89

Figure 24 Interfaces (source: IEC 61131-3 ED3) . 95

Figure 25 Interface representation in PNV . 98

Figure 26 Interfaces in classes . 99

Figure 27 Overview of valve and HMI development . 104

Figure 28 Interface for error reporting . 105

Figure 29 Delta picker with two belts . 118

Figure 30 Conveyor belt with parts . 119

Figure 31 Product register of SIMOTION handling . 120

Figure 32 Proposal for a standard telegram for cameras . 121

Figure 33 Interface for camera . 122

Figure 34 Principle of signal transfer in layers . 124

Figure 35 Neutral interface . 125

Figure 36 Valve with neutral I/O connection . 126

Figure 37 Valve with signal interconnection . 132

Figure 38 Valve state machine . 133

Figure 39 Different drive types in one plant . 144

11

List of Figures

Figure 40 Class model CDrive . 146

Figure 41 SIMOTION Technology Objects . 152

Figure 42 Hierarchy as defined by ISA-88-01 . 165

Figure 43 Equipment module for conveyor belt with ejector . 167

Figure 44 Software design of the equipment module . 168

Figure 45 States of the equipment module . 169

Figure 46 Functions of the easyProject project generator . 178

Figure 47 “easyProject” project generator . 178

Figure 48 User interface of the project generator . 179

Figure 49 Equipment modules of the project generator . 180

Figure 50 Generating a project . 180

Figure 51 Structure of the project generator data . 181

Figure 52 Equipment module PusherX . 182

Figure 53 User interface of the equipment module . 183

Figure 54 Representation of classes and objects in UML . 196

Figure 55 Interaction between PLC, technology modules and motion control . . . 247

Figure 56 Integration of PLC, motion and technology . 248

Figure 57 Technology Objects in SIMOTION . 249

Figure 58 The 3 hardware platforms of SIMOTION . 250

Figure 59 SIMOTION with drives and I/O devices . 251

Figure 60 Kinematics supported by SIMOTION . 252

Figure 61 Programs and data are organized in units . 254

Figure 62 Variable model of SIMOTION . 255

Figure 63 Libraries in the SIMOTION project . 258

Figure 64 SCOUT engineering system . 259

Figure 65 SCOUT workbench . 260

Figure 66 Project navigator . 261

Figure 67 Result of creating a new project . 263

Figure 68 Inserting a device . 264

Figure 69 Properties – Ethernet interface PNxIO . 265

Figure 70 Setting up PG/PC communication . 265

Figure 71 Insert SIMOTION device with “Open HW Config” . 267

Figure 72 HW Config with the SIMOTION device . 267

Figure 73 Address list . 268

Figure 74 SCOUT with inserted D435-2 device . 269

Figure 75 Creating a drive axis . 270

Figure 76 Axis configuration – axis type . 272

Figure 77 Axis configuration – summary . 273

Figure 78 Assigning a drive to the axis . 274

Figure 79 Axis wizard for assigning a drive . 275

Figure 80 Inserting a path object . 276

Figure 81 Path object in the PNV . 277

Figure 82 3D delta picker . 277

Figure 83 Programming languages in SCOUT . 278

12

List of Figures

Figure 84 Comparison function in SCOUT . 280

Figure 85 Inserting program units . 281

Figure 86 Inserting an ST source file (unit) . 282

Figure 87 ST programming editor . 283

Figure 88 Program for execution system . 283

Figure 89 The execution system of SIMOTION . 284

Figure 90 BackgroundTask: assigning programs . 285

Figure 91 Status displays in SCOUT . 286

Figure 92 Enable Program status . 287

Figure 93 Program status display . 288

Figure 94 Method call chain . 289

Figure 95 Setting the call path/task selection . 289

Figure 96 Operating principle of “Program status” . 291

List of Tables

Table 1 Keywords for classes . 67

Table 2 Declaration of instances of a class . 71

Table 3 Keywords for interfaces . 93

Table 4 Comparison between abstract class and interface . 158

Table 5 Predefined namespaces (scopes) . 241

13

Information for readers

Information for readers

The demand for ever more flexible solutions in the field of mechanical engineering
is also changing the methods by which the control systems themselves are pro-
grammed. Since we have already decided that mechatronic systems are the right way
to go, the need to develop highly modular software and the programming techniques
suitable for software of this kind is posing tough challenges. As the trend in favor of
creating modular functional units within machines increases, it is inevitable that this
modularity will be reflected in the software. The extensions defined in IEC 61131-3
ED3 relating to object-oriented programming go a long way to support the ongo-
ing efforts to achieve modularized software. Designers of automation engineering
software will thus have to deal with changes similar to those experienced by the
programmers of PC software from the mid-1980s onwards.

If we want to create application software for automation systems that is far superior
in design and structure, easier to modify and, above all, modular, then there will
be no alternative to object-oriented programming. With software version 4.5 of
the SIMOTION system, it will become possible to use object-oriented programming
mechanisms as defined in IEC 61131-3 ED3. The purpose of this book is to help pro-
grammers get to grips with this new way of thinking and programming. Illustrative
examples have been provided for each separate topic to make the learning process
easier. Each example is based on and relates to previous examples that have been
provided to explain individual topics. At the end of the book, the reader will find a
reusable machine module that is fully implemented in OOP.

This book will be useful for anyone who wants to learn about object-oriented pro-
gramming for automation engineering applications. The first part of the book
focuses on explaining the basic principles of object-oriented programming and is
based on the implementation of OOP in SIMOTION according to IEC 61131-3 ED3
(chapters 1 to 6). The second part is a general introduction to the SIMOTION system
itself (chapters 7 and 8).

We would advise readers who are not yet familiar with SIMOTION to start by reading
the second part “Introduction to SIMOTION”. This explains the basic principles of
the SIMOTION control system and its engineering system SIMOTION SCOUT.

For readers to fully understand and learn the content relating to object-oriented
programming, they must already be familiar with high-level programming lan-
guages such as Structured Text or Pascal. They must also have a basic knowledge of
programmable logic controllers and their system behavior.

Readers will also notice that descriptions of certain issues are repeated in different
chapters. This approach was motivated by our desire to manage with as few cross
references between chapters as possible. We have therefore made it possible for our
readers to jump between chapters without losing track of the discussion.

The examples we have included were specially developed for the book and they all
build on one another. We deliberately kept them simple because we wanted them to
clearly demonstrate the potential uses of object-oriented mechanisms. While all our
examples are based on this idea, some of them still managed to grow to a significant

14

Information for readers

size. We obviously realize that nobody wants to go to the trouble of typing out all the
program code printed in this book. We have therefore made the examples from this
book available to our readers as an Internet download. You will find corresponding
links to them at www.siemens.com/simotion. Please note the conditions for use of
the examples.

Personal comments by the authors

Michael Braun

I have thought a very great deal about this chapter and was determined for a long
time that I wouldn’t write it at all. Perhaps because I myself am someone who often
skips this kind of chapter in books. But life is a learning process and after giving the
matter some thought, I decided that this chapter would give me the opportunity to
tell our readers something about myself and my motivation for writing this book.

From the very beginning of my career, I have followed developments in the field of
automation engineering and found them to be extraordinarily exciting. My atten-
tion was primarily focused on the design and development of software. To develop
programs that will ultimately allow a production plant to do its job properly was,
and still is, an occupation that I find thoroughly exhilarating, but it is also an activity
that keeps the programmer on a continual learning curve. The ability to write good
software is not something that falls out the sky into your lap (it didn’t fall into mine
either!). In my experience, you go through three distinct phases as a programmer.

During the first phase, you focus your attention on learning the basics of a new
system or programming language. Certain relationships are not quite clear and it
is simply a question of taking the first tentative steps. You are learning the basics
and writing your first programs. As a general rule, you will later throw these into
the waste bin because you have implemented them ineffectively or perhaps in an
overcomplicated manner. But because you have got them to work, you make the
transition into the second phase.

During this phase, you are reaching the point where you are familiar with all the
elements of the language and can use “clever” tricks to formulate solutions. The fact
that nobody can actually understand the solution is something that you deliberately
ignore, such is your pride in the ingenuity and brilliance that have flowed into the
creation of this software. Any pangs of conscience sink without trace in this mood
of euphoria! This is the most dangerous time in your life as a programmer because
you are writing unreadable code. It is now time for a helpful colleague to come along
and tell you in no uncertain terms that your programs are rubbish (happened to
me as well). You’ll get another chance to see the error of your ways if you find you
cannot get rid of this “brilliant” code and are obliged to take on the responsibility of
maintaining it (this is also a great opportunity to prove that you are “indispensable”).
These shocks will help you get through the second phase.

If you have reached the third phase, you will be over the worst and finally capable
of writing comprehensible program code that is easy to maintain – in other words,
you are creating reusable software. Every programmer should endeavor to reach
this phase as quickly as possible.

15

Information for readers

Creating software for modern mechanical engineering applications is a team task.
The times when a developer hatched software in a quiet little room behind closed
doors are long gone. The creation process is driven by a continuous exchange of
information between different members of the team, but also communication
between different engineering disciplines. The more efficient the communication
between all the participants, the more effectively individual developers can com-
plete the tasks specifically assigned to them. Software development is an iterative
process that undergoes repeated rounds of improvement. With each improvement,
the development team gets closer to some imaginary optimum. I say “imaginary”
because the definition of “optimum” also changes over time.

It is thus a fact that the software never actually gets finished. As development work
progresses, it is inevitable that a deliverable version of the software will sooner or
later emerge, but this delivery state is actually the basis for the next development
stage.

Like the user software, the development system is itself also a kind of software that
undergoes changes. Object-oriented programming is an extension of the develop-
ment system for automation engineering software which can, and should, make life
much easier for developers of application software than the conventional develop-
ment environments in which they have previously worked. But for this to succeed,
it is essential that programmers become familiar with and thoroughly understand
the mechanisms of this programming method.

It was for this purpose that a description and explanation of object-oriented pro-
gramming mechanisms was added to the SIMOTION documentation. The volume of
this documentation ultimately became so extensive that it led to the idea of writing
a book about OOP. You are now holding this book in your hands and I sincerely wish
that it will help you to think up many new ideas for improving your own software.
Learning and implementing what you have learned is something you have to do
yourself, but please don’t forget to have fun as well!

Acknowledgements

Object-oriented programming is not yet as widely established in automation engi-
neering as it is in the PC environment. This book has been written with the intention
of helping anyone who wishes to learn this new programming method. It would
never have come into being without the help of many colleagues. It was the discus-
sions I had with some of these colleagues that helped me most when I found myself
in need of creative inspiration. I would like to express my gratitude to all helpers
and supporters.

Before I could get started, I needed to abandon my “procedural mindset” and it was
our software architect Dr. Michael Schlereth, my colleague and fellow author Dr.
Wolfgang Horn, and Thomas Hennefelder from our application center who helped
me most in this respect. They gave freely of their time to discuss my programs and
basic ideas with me. But when someone occasionally said “But you just don’t do it
like that!”, I was forced to reevaluate and change course and it was precisely this
kind of exchange that helped me to move forwards. I would also like to express my
gratitude to Rumwald Hermann, Klaus Lummer and Nils Focke from the SIMOTION
development team for their assistance and encouragement.

I also received valuable support from my colleagues from Product Management and
System Management who willingly assisted with proofreading. For this reason, I

16

Information for readers

would like to make special mention of my colleagues Benno Bruss, Jürgen Büssert,
Kai Flucke, Alexander Heider, Manfred Popp and Wolfgang Wiedemann from Inte-
gration Testing. Last but not least, a special note of thanks goes to my bosses Erwin
Neis, Josef Hammer and Rudolf Teplitzky for their constant encouragement and the
freedom I needed to write this book.

For his assistance with the creation and testing of the example programs, I would
finally like to say a special word of thanks to my colleague Frank Becker from APC
Cologne.

Wolfgang Horn

When Michael Braun first came to me with the idea of writing a book about object-ori-
ented programming, my initial reaction was: Why do we need to write yet another
book on this subject? After all, countless publications about this topic from the
viewpoint of a myriad of different programming languages and applications already
exist. But when I had given more thought to the matter, I quickly realized that there
is not much literature available that specifically relates to automation engineering
or gives adequate support to those who wish to learn object-oriented programming
techniques for control systems.

Based on my own professional practice, I am well aware of the opportunities and
potential that can be exploited when OOP is used. This is true, of course, only if OOP
is directly supported by the programming environment and by the programming
language used. With the implementation of the 3rd Edition of the IEC in SIMOTION,
we have now given our users direct access to the world of OOP. But this alone is not
enough.

In the course of many discussions with Michael Braun and other colleagues who
are pursuing this development with enthusiasm, it became clear to me that sim-
ply learning the new language constructs is not sufficient. In order to achieve a
sustained effect, it is also important to understand why one can or should use a
particular language element or technology. Listening to the questions posed by my
colleagues, it became apparent that simple examples of programming constructs
would not be enough and we would also need to give guidance as to which new solu-
tions for automation engineering tasks could be developed by using object-oriented
programming.

We have discussed many of these aspects in this book. We have aimed to help readers
get to grips with the subject of object orientation using examples from the field
of control engineering. To those readers who already have experience with other
object-oriented programming languages we will try to explain the specific require-
ments of control engineering. Control-specific languages are specially formulated to
ensure that control system software can be programmed in such a way that program
runtimes do not exceed certain limits, in other words, to ensure that the number of
runtime errors during program execution are minimized. As a result, readers of this
book will search in vain for any reference to constructs for dynamic object generation
and destruction. The reason that constructs of this kind are not offered in the control
programming environment is a simple one: they could have a significantly negative
impact on the real-time capability of the application.

When I set out on my professional career path, the programming language Struc-
tured Text (ST) was still one of the rank outsiders in the field of control technology.
The increasing complexity of programs of the kind we are now encountering in

17

Information for readers

the field of motion control in particular is literally forcing us to adopt high-level
programming languages like ST. A logical continuation of this approach can be seen
in the support for object orientation afforded by control systems. It is my opinion
that this method of control system programming will have become the standard for
automation solutions in just a few years time.

By writing this book, we hope to contribute in some way to helping object-oriented
programming find broader acceptance in control engineering applications. With
respect to the modularity and combinability of software modules, the potential ben-
efits of object-oriented programming, particularly for more complex applications,
are enormous. In the meantime, I would like to join my colleague Michael Braun
in wishing our readers much enjoyment and patience in learning and trying out
their new skills.

18

1 Developments in the Field of Control Engineering

1 Developments in the Field of Control
 Engineering 1

One of the most important extensions to IEC 61131-3 ED3 describes the mechanisms
for the object-oriented programming of control systems in automation applications.
This development has provided a solid basis for standardizing programs used in
automation systems and offers a solution for overcoming the limitations associated
with procedural programming methods.

As a result of the increasing trend to make mechanically engineered systems as
flexible as possible, it has become essential to change existing programs in such a
way that modular machine concepts are also reflected in the software. As a result,
modularization is becoming the guiding principle for designing the programs of
the future. Modularized software comprises modules that are fully functional and
tested as independent entities, but they can be combined to create a single functional
unit within different machines.

Anyone wishing to attain, and then retain, a competitive position on the interna-
tional market must be capable of minimizing commissioning times. This can be
achieved only if standardized program modules function reliably when combined
with other modules so that any corrective work during the commissioning phase is
either unnecessary or reduced to an absolute minimum.

The requirements to be fulfilled by the application software architecture and the
automation systems are therefore as follows:

 ◼ The software must have a modular structure. The modules are totally
encapsulated with the ability to function fully independently.

 ◼ The independent design of the modules means that even data belong to a
module, i.e. are an integral part of that module. In other words, it must be
possible to link data to the module and to prevent any changes from being
made to the data outside the module.

 ◼ The ability to test modules as independent entities is crucial if they are to
be combined and assembled to create a functional unit. The modules must
therefore be designed in such a way that they can be individually tested in a
test environment.

 ◼ Combining different modules in an environment must involve only mini-
mal software modification, or none at all. To achieve this goal, interaction
between modules is implemented on the basis of neutral interfaces.

 ◼ Since the machinery as a whole including all its individual components
will undergo modernization over its service life, it is absolutely imperative
that the machine software can be adapted accordingly. However, any mod-
ernization process should, wherever possible, preclude the need to modify
tried-and-tested, functionally reliable modules.

 ◼ It must be possible for the machine manufacturer’s software module devel-
opers to work as independently of one another as possible. To this end, it
is necessary to use programming languages with appropriate mechanisms

19

1.1 The early days of programmable logic controllers (PLCs)

to reduce interdependencies between software modules. Agreement on
the interfaces provided to allow data exchange between different software
modules shall therefore be capable of being defined.

To satisfy all the requirements described above, we need to find a better program-
ming model than the procedural methods presently used to write control engineer-
ing programs.

Modern automation systems have been evolving through a process of development
for many years. During this time, the methods used to program them have also
changed in various ways. It was advances in the field of automation engineering that
necessitated these changes, and these in turn influenced users. Any forced change
was met with a degree of resistance by some, and it was this attitude that blocked the
acceptance of new approaches to programming. Programmers were only prepared to
accept new methods if their concerns or misgivings were addressed and alleviated.

The advent of object-oriented programming hails another paradigm shift in auto-
mation engineering. As programmers experienced the advances made in the field of
automation engineering, they developed a specific programming methodology for
individual applications. These methods now need to be examined, changed where
necessary, or even rejected altogether. But this could again engender misgivings or
reservations, and if it is not possible to alleviate these, they will be an obstacle to the
introduction of new methods. Programmers may well have adopted this mindset,
for example, as a result of their past experience of change.

For this reason, we are going to allow ourselves a brief tour through the history of
automation technology and pay special attention to the consequences of automa-
tion advances on programming. While the development stages described below are
certainly representative, they are not necessarily given in the correct chronological
sequence. Nor does the description claim to be complete. Nevertheless, each of these
advances actually resulted in changes to programming methods. We now need to
think about these consequences and, where misgivings and reservations from the
past still exist, find effective arguments to counter them.

1.1 The early days of programmable logic controllers
(PLCs) 1.1

A notable feature of early programmable logic controller (PLC) applications was
the fact that users of this new control generation knew virtually nothing about pro-
gramming. Before the days of the PLC, automation systems had been implemented
using hard-wired relay controls, contactor controls or electronic components.
Machine designers, commissioning engineers and service personnel were suddenly
confronted with programming instead of wiring. For this reason, programming
methods needed to be devised with a view to what users already knew.

At this time, users understood how to read circuit diagrams and use wiring in order
to implement functions. It therefore made sense to design programming methods
which supported these capabilities. Thus was born the “ladder logic” programming
method (Figure 1) with resemblance to a circuit diagram, and the “function block
diagram” system that is based on electronic diagrams.

20

1 Developments in the Field of Control Engineering

More complex function elements of the system such as timers or counters were
represented as a box with corresponding inputs and outputs. To allow users to
create their own complex function modules, the system provided them with a tool
to program their own function blocks or functions and these were represented in
turn as complex elements (boxes) with inputs and outputs in the ladder diagram or
function block diagram.

More complex elements of this kind needed to be programmed in a different way
to the functionally limited ladder or function block diagram elements. Users were
therefore provided with two programming languages with syntax similar to assem-
bler language, i.e. Statement List (STL) (Figure 2) or Instruction List (IL).

These enabled users to create programs of significant complexity which supported
the programming, for example, of computation functions and branches within the
program. However, each control system manufacturer created their own set of com-
mands and there were wide variations between the command sets available. For this
reason, it was extremely difficult to transfer programs from one control system to

Figure 2 Example of SIEMENS STL

Figure 1 Example of a ladder logic program

21

1.1 The early days of programmable logic controllers (PLCs)

another and users were required to learn the different “dialects” and approaches of
each individual control system manufacturer.

Another disadvantage of these assembler-like mnemonics (= a plain-text,
human-readable abbreviation for an assembler instruction) was that the scope for
program structuring was extremely limited and the structuring tools were very
laborious to use. Furthermore, many users also felt compelled to teach themselves
how to program. As a result, some programs were readable to a greater or lesser
extent, while others contained sections of code that were impossible to maintain.

Despite all these problems, the ease with which programs could be changed and
the flexibility this offered was an immense advantage over conventional wiring,
and this was what eventually swept the programmable logic controller to triumph.
Programming therefore became an established, and now indispensable, part of the
mechanical engineering process.

Obstacles

The ease with which software programs could be changed also encouraged some pro-
grammers to work according to the “trial and error” principle. They were particularly
susceptible to this temptation when working under time pressure to make a machine
function ready for acceptance or delivery. This practice of putting the finishing touches to
a program by testing it during commissioning resulted in an unacceptably large number
of program variants and ultimately to software that had no structure. This problem had
a lasting, negative impact when it came to reusing programs.

It can often be observed in companies today that the time originally planned for writing
software is continuously squeezed as a machine construction project progresses. The
company has agreed a delivery deadline, but further technical changes to the machinery
(including those requested by the customer) lead to unplanned additional expenditure
or labor and exacerbate the scheduling situation. Changes to the system design can
probably never be avoided because they are generally justified for technical or other
reasons. Nonetheless, investment of substantially more labor in a project should logically
lead to an extension of the delivery deadline.

The end customer will only accept a deadline extension if it can be proved incontrovertibly
that the extra outlay was unavoidable due to requests for changes made by the customer.
But this proof can be provided only in cases where the scope of supply was clearly and
unambiguously formulated. If the scope of supply is not clearly defined when a system is
sold, it is inevitable that the scope promised by the seller will be open to interpretation.
In such cases, the end customer will generally demand delivery by the agreed deadline.
As a result, the time scheduled for programming software is squeezed. “It’s so easy to
change software and you can do it so quickly”. This attitude often leads to the problem
that unfinished software is handed over to the commissioning team and has to be finished
within whatever time remains. The software cannot be made to conform to the specified
design guidelines and becomes less reusable.

Solutions

Precise software planning is the key to success. Software functions can be planned effi-
ciently only if the relevant requirements are identified in advance. On the basis of these
requirements, it is possible to work out how the software must be implemented and
structured. The time required to develop the software can be calculated and the relevant
deadlines planned accordingly.

22

1 Developments in the Field of Control Engineering

Regular consultation with the customer prevents any unpleasant surprises for either party.
For this purpose, the implementation schedule must be discussed with the customer and
recorded in writing at an early stage.

A process for implementing development of the software must also be set out. The status
and progress of the development task is then clearly identifiable and any deviations from
the agreed process can be picked up early. When deviations are identified early enough,
there is still time to take corrective action.

1.2 The PLC learns to communicate 1.2

The early PLCs had limited resources (e.g. memory capacity or processing perfor-
mance). Nor was fine scaling of the different performance classes of control systems
possible as it is with modern systems. This lack of scalability meant that it was
necessary to use multiple control systems in a single plant, and where several con-
trol systems were deployed, they needed to be synchronized with one another. One
of the simplest methods, but also one with extremely limited possibilities, was to
synchronize different controls via inputs and outputs. This option was not viable in
cases where large volumes of data needed to be exchanged.

The problem was resolved by using special communication modules that could be
inserted in the PLC. These “computer links” (e.g. RK512) utilized standardized pro-
tocol frames (e.g. 3964R) to exchange data and were operated by driver blocks in
the PLC. Even though the links provided by these modules were essentially no more
than point-to-point connections, their use increased the communication capability
of PLCs. Figure 3 shows a compact control system dating from around 1980.

Figure 3 SIMATIC S5-150K

23

1.2 The PLC learns to communicate

Another advantage of these computer links was that they provided a master com-
puter interface. Using the same technology, therefore, it was possible to establish
communication links between control system and master computer levels in order
to record production data.

Since programmers were required to synchronize control systems by programming
communication links between them, they were also forced to create programs that
included the relevant communication mechanisms in addition to the implemented
actual control task. This meant that they had to take the following aspects into
account when designing the software:

 ◼ The link to individual devices/control systems needed to be connected and
possibly disconnected. The system behavior when individual components
were switched on or off also needed to be taken into account.

 ◼ Connections needed to be managed depending on the number of nodes.
The data needed to be structured accordingly and transferred to / dis-
patched from the relevant communication module for the purpose of data
exchange.

 ◼ Connection monitoring systems needed to be implemented and a suitable
response programmed in the machine operating sequence.

 ◼ There was a risk of telegram loss under certain operating conditions. This
could happen, for example, if a control system was unable to empty the tele-
gram buffer of a communication module because its cycle time had been
extended temporarily. In this instance as well, it was necessary to engineer
suitable program responses.

 ◼ Production-relevant data needed to be collected in the control system and
prepared for transfer to master computers.

Obstacles

Control system programs increased in size due to the addition of communication mech-
anisms. These bigger programs needed to remain manageable. Suitable structuring of
the software and the modular programming this involved were the logical consequences
of the drive towards program manageability. Not only were programmers required to
concentrate on programming machine operating sequences, they also needed to consider
the data structures in the control system. It seemed meaningful, on the one hand, to
separate the communication functions from the machine operating sequences. On the
other, however, these sequences were naturally influenced by the communication data.
A way needed to be found to effectively combine communication functions with machine
operating sequences. But it was also important to ensure that software changes in one
area (e.g. machine operating sequence) would not automatically entail software changes
in another area (e.g. communication).

Solutions

Without clear definitions and structures, software designs can become so idiosyncratic
that they become difficult or even impossible to maintain and upgrade in the long term.
Software design, modularization and standardization of software are still clearly defined
objectives of the development process. By creating reusable software components and
implementing a well-planned structure, it is possible to reduce the outlay for software
development and plan deadlines with greater confidence.

24

1 Developments in the Field of Control Engineering

1.3 Development of fieldbus systems 1.3

The centralized structure of programmable logic controllers with central processing
units (CPU) mounted in the same rack as I/O modules made it necessary to increase
the volume of wiring between the control cabinet and actuators (such as valves)
installed in the machine or control components (such as switches and buttons) that
were needed to control the machinery. It was the expense of installing this wiring
that provided the impetus for change. The elements (actuators and sensors) were
installed in the machine rather than in the control cabinet and the goal was to find
a way of connecting them to the PLC using less wiring.

With this objective in mind, the control system manufacturers developed new com-
munication modules that provided a serial bus link between the control system and
field devices. By deploying these fieldbuses, it was possible to reduce the volume of
wiring to actuators and sensors in the field.

Reducing the volume of cabling also had a further benefit. Since actuators and sen-
sors were now linked to the PLC via a bus system, it was no longer necessary to have
such a large number of I/O modules in the PLC rack. The terminal strip converters
were relocated directly into local control boxes, allowing use of significantly smaller
control cabinets.

But this development objective of achieving a substantial reduction in wiring ulti-
mately increased the complexity of the software design process:

 ◼ It was necessary to provide systems to monitor proper booting when exter-
nal I/O devices connected to the bus were powered up.

 ◼ Failure of a component during operation needed to be detected by the
software and modeled by a suitable response in the process.

 ◼ The software developer needed to work out a substitute value strategy for
inputs and outputs that would no longer be available if external I/O devices
failed. This substitute value strategy had to be integrated into the relevant
programs.

Obstacles

As I/O devices were relocated to external, bus-coupled components, the complexity of
the software design process increased yet again, but remained relatively easy to manage
as long as the I/O devices were purely digital or analog. As the technology continued to
advance, however, ever more complex I/O devices were coupled to buses and needed to
become a particular focus of attention for software developers. Implementing successful
interaction with I/O components is not easy, especially when some of them are complex
and capable of independent operation. This task becomes even more difficult if the com-
ponents have their own independent operating sequence that needs to be synchronized
with the machine process. If the link to a component of this kind fails, the stop response
that may be required is relatively easy to manage. However, system restart after the stop
command may well involve significantly more complex programs. To achieve a successful
system restart, the main process requires more information and this needs to be acquired
by an additionally programmed information exchange with the affected I/O component.

25

1.4 Integration of display systems in PLCs

Solutions

A well-planned software design is absolutely essential if these interrelationships are to be
managed effectively. Without a suitable software design, many unique software versions
are created over time as machines are delivered – an approach which makes software
maintenance significantly more difficult and renders modularization and standardization
completely impossible.

In conclusion, it is fair to say that fieldbus systems and their components had an enor-
mous impact on programming, as we will see later on (see Chapter 1.6 “Drives become
fully-fledged bus system nodes 1.6”).

1.4 Integration of display systems in PLCs 1.4

As the complexity and size of installations increased, it became necessary to provide
the machine operator with a clear overview of process events. This entailed a great
deal more than just an indication of the machine status signaled via lamps and
illuminated pushbuttons. Machine operating sequences were becoming ever more
complex, necessitating a general improvement in the quality of display systems.
Driven by this necessity and aided by continuous advances in computer technology,
it became economical to deploy visualization systems in the form of plug-in modules
in the programmable logic controller. Control system manufacturers developed
single-board computers that could be plugged into the PLC and allowed screens to be
connected as a Human Machine Interface (HMI). These mini-computers exchanged
data with the PLC via the backplane bus and had their own driver blocks in the PLC
CPU. Manufacturers developed configuring tools and supplied these to users so that
they could configure their own displays. One of the first screen systems of this kind
for SIMATIC controllers was the WS400 visualization system (comprising the WF470
display module and various operator panels) developed by Siemens (Figure 4).

Using this visualization system, it was possible to display the plant as a block graphic
and show the status of individual machine modules. Further configurable detail
views provided the machine operator with more precise information about indi-
vidual modules. The visualization system was capable of displaying the machine
operating sequences for executing processes and also featured a standardized fault
diagnostics system that indicated any problems.

Programmers were therefore required to structure the software and data in such a
way that information could be transferred to the visualization system:

 ◼ Data models had to be modularized for display purposes at least, and
scalability for different plant sizes needed to be taken into account. It was
only by structuring the software in this way that it could be reused across
different plants.

 ◼ The operator needed to be supplied with detailed information if any faults
developed in the plant. Programmers therefore needed to ensure that the
relevant plant faults were transferred to the visualization system by means
of flags in the control system and that the corresponding fault messages
were assigned to the flags by text lists.

26

1 Developments in the Field of Control Engineering

 ◼ They also had to program status messages for transfer to the HMI system.

 ◼ Since it was necessary to shut down plant sections or even the entire plant
when serious faults occurred, fault-signaling processes often resulted in the
display of many other follow-on faults in addition to the actual fault cause.
This flurry of fault messages did not help the operator or service engineer
to resolve the problem. The consequence for the software design process
was that programmers now also needed to consider a means of evaluating
initial and follow-on faults and to integrate a suitable evaluation strategy
into the plant software.

 ◼ The integration of visualization systems into PLCs forced programmers to
implement additional modules in the plant software, modules that were
absolutely essential to effective operation of the machine but had little to do
with the actual control task. The size and complexity of programs continued
to increase as a consequence. Modularization and clear structures had
become even more important as efforts were made to create software that
could be maintained and upgraded. System programming nevertheless
continued in the LAD/FBD or STL languages. Sequential processes were
programmed with the GRAPH-5 language that had been specially developed
for the purpose.

Modern visualization systems are linked to the control system via Industrial Ether-
net. Configuring tools for HMI systems are a standard element of the engineering
software and function as integral components of appropriate software suites. Achiev-
ing the required degree of software modularization and developing suitable data
models in the control system still remain a key responsibility of software developers
and designers.

Figure 4 WF470 with compact operator panel

27

1.5 Integration of motion control in PLCs

Obstacles

Modern visualization systems allow direct use of PLC tags in configured plant displays. This
is one of the positive features that is often highlighted when HMI systems are marketed.
It seems simple enough and implies that users can easily create any plant display of their
choice. The drawback of this system is that it creates tightly coupled software components.
This means that changes to the machine program then also entail changes to the tag
management system and thus to changed tag addresses. As a consequence, the HMI
displays must at least be recompiled and reloaded. Loose coupling between software
components and independent software development are then no longer an option.

Solutions

A much better solution is to define a well-planned interface to the HMI. The machine
program transfers the necessary data to the interface and fetches from the interface the
data required for an operational sequence. Only interface tags are used in plant displays.
This approach ensures that data are loosely coupled. The HMI and control system can be
loaded independently of one another, and the control program and display configuring
software can be developed independently. Another advantage of this solution is that data
do not need to be collected across the entire program, but can be transferred in a block to
the HMI system, a solution that guarantees significantly faster transfer rates.

1.5 Integration of motion control in PLCs 1.5

The call for machine manufacturers to build machines that could be retooled quickly
for manufacturing new products made it necessary to achieve a greater flexibility
of machine motion. This resulted in an increasing trend to equip motion axes with
electric drives rather than with the conventional mechanical or hydraulic solutions.
The deployment of electric drives made it necessary in turn to use systems that
supported flexible positioning of the drive. As with HMI systems, positioning mod-
ules with special microcomputer systems that could be plugged into the PLC were
developed and so made it possible to flexibly position drives in the machine. To
enable positioning modules of this kind to be connected to the drive systems used in
those days, they needed to be equipped with analog setpoint outputs and be capable
of detecting the axis position via connectable encoder systems.

The WS600 system (Figure 5) was one of the first positioning systems developed
for the SIMATIC PLC. This system comprised the WF625 positioning module and the
WS600G display system.

Communication between the user program and the positioning modules was han-
dled by a standard software package. Data blocks with data content that needed to
be administered by the user program acted as the interface to the user program.

The traversing programs were programmed via the WS600G operator panels and the
programming methods were based on the semantics relating to numerical control of
machines defined by DIN 66025/ISO 6983. It was thus possible to adapt the traversing
movements more flexibly to the requirements of the production process.

28

1 Developments in the Field of Control Engineering

This trend towards integrating motion control functions into PLCs had a serious
impact on the PLC control programs. The user program became responsible for
managing the traversing movements in the form of CNC programs and the coordina-
tion of different modules. The fact that the positioning modules had their own cycle
that was generally considerably shorter than the PLC cycle needed to be taken into
account in the PLC program. Owing to these cycle time differences, synchronization
routines had to be added to the PLC program.

If the traversing motion was executed faster than the time it took for the PLC to
complete a scan cycle, then the signal changes of the positioning module could
not be registered correctly in the PLC program. For the person programming the
PLC, this made it difficult to determine whether or not the positioning process had
actually taken place. When it came to fully automated processes, this lack of certainty
was not acceptable. The PLC programmer therefore needed to take measures in the
sequential program to ensure that positioning operations were clearly terminated.
This could be done, for example, by implementing functions that compared the
actual and target positions. Since it was possible to change the position values by
entering programming commands at the WS600G operator panel, the programmer
needed to ensure that the target positions required to perform the comparison were
dynamically calculated so as not to impair the flexibility of the plant. The additional
programming effort required to achieve this goal should not be underestimated.

These problems were solved by advances in the design of positioning modules which
saw the implementation of handshake mechanisms at the interface. This develop-
ment helped make PLC programs slightly simpler again.

Figure 5 S5-150K with WF625 and WS600G

29

1.5 Integration of motion control in PLCs

Motion control functionality is fully integrated in modern PLC systems and an inte-
gral component of the PLC’s operating system. Despite this integration of motion
control functions, it is still necessary to invest programming time and effort in order
to ensure effective organization of motion control movements:

 ◼ Programmers were forced to expand their domain knowledge in order to
understand the processes managed by the motion control program. The
knowledge they acquired lead inevitably to changes in the way the machine
operating sequence was programmed.

 ◼ They also needed to understand the control processes of the posi-
tioned-controlled positioning modules and the subordinate drive control
system. Errors occurring in these functional areas needed to be detected
and managed by appropriate reactions in the machine operating sequence.

 ◼ Every positioning module works autonomously. As a result, it became
necessary to synchronize positioning movements across multiple modules
in the PLC. In this context, the most challenging task was to manage inter-
ruptions to the process caused by errors and restart the process smoothly
again afterwards.

 ◼ In addition to organizing the motion control functionality itself, it was in
some instances also necessary to create routines to manage the CNC pro-
grams in the PLC so that various retooling operations could be conducted
quickly and automatically.

Integration of motion control functionality into programmable logic controllers
did and does represent an important step in the process of enhancing plant flexi-
bility. Motion control functionality has become an indispensable feature of modern
machinery because the shift towards mechatronic systems is already in full swing.

Obstacles

Motion control functions are now an integral component of control systems. As in the past,
it is essential for programmers to have the required level of domain knowledge if they are
to create useful process plant programs. It is precisely because motion control functionality
is integrated in the control system that software structuring and modularization have
become so important. If we ignore this fact, it will simply be impossible to make further
progress towards creating more abstract software modules.

Solutions

For programmers to write programs that are properly structured and modularized, they
need to have an understanding of the domain engineering associated with motion control.
Since this expertise does not come about by itself, the relevant personnel need to be given
the time and opportunity to acquire the knowledge they need.

