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In this specialist book, Videos and PowerPoint Presentations are referred to.
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For better comprehension, at different places animated PowerPoint Presentations 
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practice.
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It gives me a great pleasure to preface this excellent reference book for engineers 
and technicians. Sylvia Lüttgens, Günter Lüttgens and Wolfgang Schubert are 
well known for their very didactic manuals, excellent presentations and so well 
prepared demonstrations such way that rather complicate phenomena seem 
simple.

This reference book on Electrostatic Hazards for engineers and technicians is, 
in my knowledge, the first one with very clear explanations, describing step by 
step the phenomenon with very didactic concepts and perfect pedagogic 
demonstrations.

Electrostatic Hazard is a very worrying problem in a lot of industrial processes, 
using liquids, granular material, powders, or foils etc. It concerns a wide range of 
industries: Chemical, Petroleum, Pharmaceutical industry, as well as the agricul-
tural sector and electric power plants.

Indeed, in recent decades many industrial processes increasingly use electri-
cally insulating materials. These materials such as polymers have emerged with 
the petroleum products industry and have played a growing importance in 
industry because of their lower costs like metals and their easier processing, 
manufacturing and use. This has partly led to the fact that these materials and 
products brought about electrostatic hazards and nuisances and have become an 
important concern. When speaking about electrostatics, everyone has in mind 
the spark which we sometimes feel by touching the door of a car after being 
parked; or small pieces of paper attracted to a plastic wall that has been rubbed 
before. In fact, electrostatic charging in general is the study of electrical phenom-
ena when the charges are not moving (“static”). However, at present, the so-called 
electrostatic phenomena are those involving electrification processes whereby 
often charge accumulation due to the use of insulating materials and product 
takes place.

The electrostatic hazards are sources of dangers of electric discharges due to 
electrostatic phenomena. Under certain conditions, these discharges lead to 
ignitions causing fire or explosions. Electrostatic nuisances cause degradation of 
an industrial process due to electrostatic effects. Precondition for this is that the 
generated charge will be accumulated.

Preface
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Charge generation is, in principle, related to contact of material and separation 
thereafter as, e.g., friction, flow, transfer of solids, or liquids. The accumulation is the 
result of the storage or collection of such products or liquids in unearthed 
containers.

Unfortunately electrostatic hazards may result in fatal accidents, injuries, often 
serious, especially burns, property damage, often important or significant in that 
case, for example, of fire extension to nearby facilities.

This reference book has a very logical and scientific methodology, making 
these interrelations very clear and useful for engineers and technicians. Indeed, 
it starts with the situations with the Risk Assessment, explaining precisely when 
and where such risks come into being. Then the basics of Static Electricity are 
presented, developing all the concepts and equations which are needed to under-
stand the different phenomena. In another chapter the metrology, needed to 
understand the different situations, is presented. The processes of the different 
gas discharges are then exposed as well as different methods to prevent electro-
static disturbances. One important subject of the book is the presentation of very 
didactic descriptions of demonstration experiments and of case studies.

It would fall short of that goal to hold static electricity accountable only for 
dangers and nuisances, however, electrostatic mechanisms are used in many 
applications where one would not expect them as there are: photocopying tech-
niques, car body lacquering etc. Widely used is static electricity in improvements 
of many different scopes of application like wetting, drying, printing etc. 
Therefore one chapter is dedicated especially to that task to motivate the curious 
reader to improve other technologies with the help of static electricity.

Finally a very useful mathematic toolbox is given at the end of the book, mak-
ing an easy understanding of all equations needed to comprehend the different 
processes.

Each chapter provides a complete bibliography of what was stated.
And in the good end, I have spent a pleasant time to read this very educational 

and didactic reference book that I strongly recommend to any engineer and tech-
nician who wants to learn on Electrostatics.

Prof. em. Gerard Touchard
University Poitiers,

Groupe Electrofluidodynamique
Institute PPRIME

Poitiers, France
October 2016
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1

If static electricity was really static, as one may assume by its name, then it could 
be ignored. Only when it becomes more dynamic does it appear to be interesting 
and extend in our awareness from harmless electric shocks, sometimes felt when 
leaving a car, to the possibly fatal lightning strokes of a thunderstorm (for the 
latter, there is detailed information given in www.lightningsafety.noaa.gov).

However, our intention in this book is to demonstrate that the obviously weak 
electrostatic discharges are more or less capable of igniting combustible materi-
als, thus causing hostile fire and casualties. It is probably because of its unpre-
dictability that static electricity is often incorrectly blamed as a cause of fire and 
explosion when no other plausible explanation is at hand. So it seems logical to 
start with basics on fire and explosion.

1.1  Basic Considerations on Fire and Explosion (  T1)

In which way do fire and explosion differ from one another?
Common to both is the manifestation of a flame, which always indicates a fast 

combustion of fuel/air mixtures in the gaseous phase. The chemical reac-
tion,  depending on the combustion heat of the fuel, leads to an increase in 
temperature.

Fire is characterized mainly by a stationary burning flame in an open atmos-
phere, for example, a lighted candle. Therefore the reaction heat spreads into the 
surroundings without increase in pressure.

However, when an ignition occurs in a combustible atmosphere within an 
enclosed space, for example, a drum, a flame front runs through the entire space, 
starting from the ignition source. Under atmospheric conditions, the flame front 
extends at a speed of 10 m/s. Therefore the heating effect of the flame causes a 
pressure increase of about 10 bars, which diminishes during subsequent cooling. 
It is decisive that this short time pressure increase may cause a devastating dam-
age called explosion.

The exothermic reaction of fuel in air occurs between the tiniest particles, that 
is, the molecules of fuel and oxygen. This is the case when prevailing fuel gas forms 
the required gaseous phase. With flammable liquids, this molecular fuel/oxygen 

Basics of Fire and Explosion: Risk Assessment

http://www.lightningsafety.noaa.gov


1  Basics of Fire and Explosion: Risk Assessment2

mixture can easily be achieved by vaporization of the liquid. However, for solid 
fuels (dusts, but not metal dusts), it is necessary to break their chemical bonds so 
that hydrocarbon molecules are set free to react with oxygen. Therefore a consid-
erable part of the ignition energy is used for melting, vaporizing, or cracking the 
dust particles to gaseous hydrocarbons. This is the reason why much more energy 
is always needed to ignite flammable dusts than is necessary to ignite flammable 
gases and vapors.

On the contrary, at metal dusts an oxidization at the particle surface takes 
place, which is exothermic as well.

Basically a fire or an explosion will occur when the following components coin-
cide with time and volume, which is known as the “danger triangle” (see Figure 1.1):

●● Fuel
●● Oxygen
●● Ignition source (heat)

This danger triangle is used worldwide mainly to show that three components 
are required to cause a fire, and if one of them is missing, combustion will not 
occur. Looking more into details, it is necessary to meet the additional condi-
tions for each component.

1.1.1  Fuel

In this context fuel stands for the material that causes an explosive atmosphere. 
Although it is necessary to distinguish between gaseous, liquid, and solid fuels, a 
common feature between them is that combustion is sustained only within a 
certain explosion range, which is determined by the lower and upper explosion 
limits. For flammable liquids, the lower explosion limit is characterized by the 
so-called flash point (see Figure 1.2). Between the lower and the upper explosion 
limits, an explosive atmosphere always prevails.

1.1.2  Heat

In this context heat stands for the thermal energy needed to start an ignition, also 
called an ignition source (see Figure 1.4).
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Figure 1.1  Danger triangle.
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1.1.3  Oxygen

For all fuels, a minimum oxygen concentration (MOC) in air is necessary below 
which combustion cannot occur.

1.1.4  Inerting Process

It is worth mentioning the “MOC,” which is defined as the threshold of oxygen 
concentration below which combustion is impossible. It is expressed in units of 
volume percent of oxygen and is independent of the concentration of fuel (see 
Table 1.1). But it is to be noted that the MOC varies with pressure and tempera-
ture and is also dependent on the type of inert gas.

1.1.5  Heat versus Oxygen

It has to be pointed out that there is an interrelation between the oxygen concen-
tration and the energy of the ignition source: the higher the oxygen concentra-
tion, the lower the need for ignition energy and vice versa.

1.2  Explosive Atmosphere

1.2.1  Explosion Limits with Flammable Liquids

In preventing fire and explosion in general, explosion limits are important. This 
can be explained by a simple experiment in which some lamp kerosene is poured 
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Figure 1.2  Vapor pressure/temperature curve of ethanol.
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into a small coquille: when a lighted match is dipped into the liquid, it becomes 
extinguished. Obviously lamp kerosene is fuel!

However, when this experiment is repeated after the lamp kerosene is heated 
up to 45 °C, the lighted match causes an ignition, and the liquid continues to burn 
at its surface.

The explanation for the behavior of the lamp kerosene in the aforementioned 
experiment has to do with the vapor pressure of the liquid. Depending on the 
temperature of the liquid, a certain vapor pressure, and hence vapor concentration, 
is developed above the surface of the liquid. Figure 1.2 shows the vapor pressure 
temperature curve for ethanol and the relation between the vapor concentration 
at the surface of the liquid and its temperature. As ethanol is indicated by a flash 
point of 12°C the above mentioned experiment would lead to a flame already at 
room temperature.

By using the curve, temperatures can be assigned to the lower and upper 
explosion limits of a liquid. The temperature related to the lower explosion limit 
is called the flash point (°C) and is a simple and reliable way of defining the 
danger of flammable liquids in view of their ease of ignition. Liquids at a tem-
perature lower than their flash point cannot be ignited. Therefore, the flash 
point ranks as the most important data when using flammable liquids and is 
listed in safety data sheets, for instance, indicating that they will not burn at 
room temperature.

In the example for ethanol, the explosion danger exists only within the explo-
sion range, which is limited by the lower explosion temperature (12 °C) and the 
upper one (37 °C). After ignition, the flame spreads through the entire volume 
without any further fuel or air access. Also, it has to be taken into consideration 

Table 1.1  Threshold of oxygen concentration for some gases and  
dusts with two kinds of inert gases (volume percent oxygen).

Gas or dust Nitrogen/air Carbon dioxide/air

Ethane 11 14
Hydrogen 5 5
Isobutane 12 15
Methane 12 15
n-Butane 12 15
Propane 12 15
PE-HD 16 —
PE-LD 16 —
Paper 14 —
PMMA 16 —
PP 16 —
PVC 17 —
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that ignition is not possible above the upper explosion temperature. The fuel/air 
mixture is, so to speak, too rich, because of a lack of oxygen. This effect is used, 
for example, in gasoline tanks for cars. They will never explode but may burn 
down when there is a leakage (access to air).

Below the lower explosion limit, the average distance between fuel molecules 
to each other in air is too large; hence, by means of radiation from the ignition 
source, no sufficient energy can be transferred to continue the ignition (the 
decrease of energy by radiation follows the square of the distance). Above the 
upper explosion limit, the concentration of fuel molecules is so high that there is 
no enough oxygen between them for a reaction to take place.

In this context, it has to be stated that all vapors of flammable liquids show a 
higher density than air; thus they will always accumulate at the bottom of a vessel.

1.2.1.1  Classification of Flammable Liquids
Until 2009 the classification for flammable liquids depicted in Figure 1.3 was 
valid.

In 2009 flammable liquids were classified as hazardous substances and so have been 
covered in the United Nations Globally Harmonized System (GHS) of Classification 
and Labelling of Chemicals (UN 2013) [1].

The aim of the GHS is to have the same criteria worldwide for classifying 
chemicals according to environmental and physical hazards (see Table 1.2).

Now flammable liquids (see Table 1.3) are being classified according to their 
flash point (TF) and initial boiling point (TIBP).
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Figure 1.3  System of flammable liquids (up to 2009).

Table 1.2  Criteria for flammable liquids.

Category Criteria

1 Flash point < 23 °C and initial boiling point ≤ 35 °C
2 Flash point < 23 °C and initial boiling point > 35 °C
3 Flash point > 23 °C and ≤ 60 °C
4 Flash point > 60 °C and ≤ 93 °C
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Table 1.3  Flammable liquids, classification, and labeling.

Hazard 
category

Pictogram Signal word Hazard statement Hazard statement 
codes

1 Danger Extremely flammable liquid 
and vapor

H224

2 Danger Highly flammable liquid and 
vapor

H225

3 Warning Flammable liquid and vapor H226

4 No 
pictogram

Warning Combustible liquid H227

Note: Aerosols should not be classified as flammable liquids.

1.2.2  Explosion Limits with Combustible Dusts

In contrast to gases and vapors, mixtures of solid fuels (combustible dusts) and 
air are inhomogeneous because of the effect of gravity on particles; for example, 
with dusts in air, the particle distribution is not constant with reference to time 
and space. In terms of safety, the explosion limits for dust/air mixtures are not as 
critical as those for vapor/air and gaseous/air mixtures.

For most combustible organic dusts, the lower explosion limit ranges between 
20 and 50 g/m3. However, there are a few very sensitive dusts with a lower explo-
sion limit down to 10 g/m3. For instance, a few millimeters of combustible dust 
settled on the floor may present an explosion hazard in the entire room when 
swirled up by a draft of air. To determine an upper explosion limit is difficult as 
it ranges in concentrations of 1 kg/m3 and above.

1.2.3  Metal Dusts

Finely dispersed airborne metallic dust can also be explosive in so far as the metal 
itself tends to oxidize.

In contrast to the aforementioned organic dusts, transfer into the gaseous phase 
is not necessary to ignite metal dusts because they react exothermally directly at 
their surfaces with the oxygen in air.

1.3  Hybrid Mixtures (  P7)

An increased ignition danger always exists when powder products are combined 
with combustible gases or vapors because the ignition energy of the latter is 
lower on most occasions. Furthermore it has to be taken into consideration that 
hybrid mixtures are already combustible when the concentration of the dust as 
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well as that of the gas is lower than their respective explosion limits. The needed 
energy to ignite hybrid mixtures is always lower than that of the pure dust cloud. 
Hybrid mixtures are to be expected, for example, when the powder is wet with 
flammable solvents.

1.4  Allocation of Explosion-Endangered Areas 
and Permissible Equipment (  P6)

In the ATEX 137 “Workplace Directive,” the minimum requirements for improv-
ing the safety of workers potentially at risk from explosive atmospheres are 
laid down.

The plant management must divide areas where hazardous explosive atmos-
pheres may occur into “zones.” The classification given to a particular zone and 
its size and location depends on the likelihood of an explosive atmosphere occur-
ring and its persistence if it does.

An explosive atmosphere can be divided into zones according to IEC 60079-
10-1 and 60079-10-2 [2]:

Zone 0: Area in which an explosive atmosphere consisting of a mixture with air 
of flammable substances in the form of gas, vapor, or mist is present continu-
ously or for long periods or frequently

Zone 1: Area in which an explosive atmosphere consisting of a mixture with air 
of flammable substances in the form of gas, vapor, or mist is likely to occur in 
normal operation occasionally

Zone 2: Area in which an explosive atmosphere consisting of a mixture with air 
of flammable substances in the form of gas, vapor, or mist is not likely to occur 
in normal operation but, if it does occur, will persist for a short period only

Zone 20: Area in which an explosive atmosphere in the form of a cloud of com-
bustible dust in air is present continuously or for long periods or frequently for 
short periods
Note: Areas where piles of dust are present but where dust clouds are not present continuously, or 
for a long period, or frequently are not included in this zone.

Zone 21: Area in which an explosive atmosphere in the form of a cloud of com-
bustible dust in air is likely to occur occasionally in normal operation

Zone 22: Area in which an explosive atmosphere in the form of a cloud of com-
bustible dust in air is not likely to occur in normal operation but if it does 
occur will persist for a short period only

1.5  Permissible Equipment (Equipment Protection 
Level)

An equipment category indicates the level of protection provided by the equip-
ment to be used according to zones (  T6).

Here, areas in which an explosive atmosphere consisting of a mixture with air 
of flammable substances in the form of gas, vapor, or mist prevails are indicated 
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with the letter G (gas). Correspondingly, areas in which an explosive atmosphere 
in the form of a cloud of combustible dust in air exists are indicated with the let-
ter D (dust).

1.5.1  Classification of Equipment Protection Level That Is Currently 
in the Introductory Stage

As already discussed, explosive atmospheres are divided into zones based on the 
probability that such an atmosphere will occur. But experience has shown that in 
some situations, a risk assessment would give the plant operator more flexibility. 
On this account and to facilitate a dependable risk assessment approach to make 
equipment selection easier, “equipment protection levels” (EPLs) have been 
introduced. EPLs identify and characterize all equipments according to the igni-
tion risk they might produce.

According to IEC60079-0:2011 [3], equipment for use in explosive atmos-
pheres is classified into the following EPLs (with distinguishing signs such as M 
for mining, G for gases, and D for dusts).

EPL Ma: Equipment for installation in a mine susceptible to firedamp, having a 
“very high” level of protection, which has sufficient security that it is unlikely 
to become an ignition source in normal operation, during expected malfunc-
tions, or during rare malfunctions, even when left energized in the presence of 
an outbreak of gas

EPL Mb: Equipment for installation in a mine susceptible to firedamp, having a 
“high” level of protection, which has sufficient security that it is unlikely to 
become a source of ignition in normal operation or during expected malfunc-
tions in the time span between there being an outbreak of gas and the equip-
ment being de-energized

EPL Ga: Equipment for explosive gas atmospheres, having a “very high” level of 
protection, which is not a source of ignition in normal operation, during 
expected malfunctions, or during rare malfunctions

EPL Gb: Equipment for explosive gas atmospheres, having a “high” level of pro-
tection, which is not a source of ignition in normal operation or during 
expected malfunctions

EPL Gc: Equipment for explosive gas atmospheres, having an “enhanced” level of 
protection, which is not a source of ignition in normal operation and which 
may have some additional protection to ensure that it remains inactive as an 
ignition source in the case of regular expected occurrences

EPL Da: Equipment for explosive dust atmospheres, having a “very high” level of 
protection, which is not a source of ignition in normal operation, during 
expected malfunctions, or during rare malfunctions

EPL Db: Equipment for explosive dust atmospheres, having a “high” level of pro-
tection, which is not a source of ignition in normal operation or during 
expected malfunctions

EPL Dc: Equipment for explosive dust atmospheres, having an “enhanced” level 
of protection, which is not a source of ignition in normal operation and which 
may have some additional protection to ensure that it remains inactive as an 
ignition source in the case of regular expected occurrences


