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Preface

The aim of this monograph is to provide an introduction to some fundamental
problems, results and algorithms of invariant theory. The focus will be on the
three following aspects:

(i) Algebraic algorithms in invariant theory, in particular algorithms arising
from the theory of Gröbner bases;

(ii) Combinatorial algorithms in invariant theory, such as the straightening al-
gorithm, which relate to representation theory of the general linear group;

(iii) Applications to projective geometry.

Part of this material was covered in a graduate course which I taught at RISC-
Linz in the spring of 1989 and at Cornell University in the fall of 1989. The
specific selection of topics has been determined by my personal taste and my
belief that many interesting connections between invariant theory and symbolic
computation are yet to be explored.

In order to get started with her/his own explorations, the reader will find
exercises at the end of each section. The exercises vary in difficulty. Some of
them are easy and straightforward, while others are more difficult, and might in
fact lead to research projects. Exercises which I consider “more difficult” are
marked with a star.

This book is intended for a diverse audience: graduate students who wish
to learn the subject from scratch, researchers in the various fields of application
who want to concentrate on certain aspects of the theory, specialists who need
a reference on the algorithmic side of their field, and all others between these
extremes. The overwhelming majority of the results in this book are well known,
with many theorems dating back to the 19th century. Some of the algorithms,
however, are new and not published elsewhere.

I am grateful to B. Buchberger, D. Eisenbud, L. Grove, D. Kapur, Y. Laksh-
man, A. Logar, B. Mourrain, V. Reiner, S. Sundaram, R. Stanley, A. Zelevinsky,
G. Ziegler and numerous others who supplied comments on various versions of
the manuscript. Special thanks go to N. White for introducing me to the beau-
tiful subject of invariant theory, and for collaborating with me on the topics in
Chapters 2 and 3. I am grateful to the following institutions for their support: the
Austrian Science Foundation (FWF), the U.S. Army Research Office (through
MSI Cornell), the National Science Foundation, the Alfred P. Sloan Foundation,
and the Mittag-Leffler Institute (Stockholm).

Ithaca, June 1993 Bernd Sturmfels



Preface to the second edition

Computational Invariant Theory has seen a lot of progress since this book was
first published 14 years ago. Many new theorems have been proved, many new
algorithms have been developed, and many new applications have been explored.
Among the numerous interesting research developments, particularly noteworthy
from our perspective are the methods developed by Gregor Kemper for finite
groups and by Harm Derksen on reductive groups. The relevant references in-
clude

Harm Derksen, Computation of reductive group invariants, Advances in Mathe-
matics 141, 366–384, 1999;
Gregor Kemper, Computing invariants of reductive groups in positive character-
istic, Transformation Groups 8, 159–176, 2003.

These two authors also co-authored the following excellent book which centers
around the questions raised in my chapters 2 and 4, but which goes much further
and deeper than what I had done:

Harm Derksen and Gregor Kemper, Computational invariant theory (Encyclopae-
dia of mathematical sciences, vol. 130), Springer, Berlin, 2002.

In a sense, the present new edition of “Algorithms in Invariant Theory” may now
serve the role of a first introductory text which can be read prior to the book
by Derksen and Kemper. In addition, I wish to recommend three other terrific
books on invariant theory which deal with computational aspects and applications
outside of pure mathematics:

Karin Gatermann, Computer algebra methods for equivariant dynamical systems
(Lecture notes in mathematics, vol. 1728), Springer, Berlin, 2000;
Mara Neusel, Invariant theory, American Mathematical Society, Providence, R.I.,
2007;
Peter Olver, Classical invariant theory, Cambridge University Press, Cambridge,
1999.

Graduate students and researchers across the mathematical sciences will find it
worthwhile to consult these three books for further information on the beautiful
subject of classical invariant theory from a contempory perspective.

Berlin, January 2008 Bernd Sturmfels
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1 Introduction

Invariant theory is both a classical and a new area of mathematics. It played a
central role in 19th century algebra and geometry, yet many of its techniques
and algorithms were practically forgotten by the middle of the 20th century.

With the fields of combinatorics and computer science reviving old-fashioned
algorithmic mathematics during the past twenty years, also classical invariant
theory has come to a renaissance. We quote from the expository article of Kung
and Rota (1984):

“Like the Arabian phoenix rising out of its ashes, the theory of invariants, pro-
nounced dead at the turn of the century, is once again at the forefront of mathe-
matics. During its long eclipse, the language of modern algebra was developed,
a sharp tool now at last being applied to the very purpose for which it was
invented.”

This quote refers to the fact that three of Hilbert’s fundamental contributions
to modern algebra, namely, the Nullstellensatz, the Basis Theorem and the Syzygy
Theorem, were first proved as lemmas in his invariant theory papers (Hilbert
1890, 1893). It is also noteworthy that, contrary to a common belief, Hilbert’s
main results in invariant theory yield an explicit finite algorithm for computing
a fundamental set of invariants for all classical groups. We will discuss Hilbert’s
algorithm in Chap. 4.

Throughout this text we will take the complex numbers C to be our ground
field. The ring of polynomials f .x1; x2; : : : ; xn/ in n variables with complex
coefficients is denoted CŒx1; x2; : : : ; xn�. All algorithms in this book will be
based upon arithmetic operations in the ground field only. This means that if
the scalars in our input data are contained in some subfield K � C, then all
scalars in the output also lie in K. Suppose, for instance, we specify an algorithm
whose input is a finite set of n� n-matrices over C, and whose output is a finite
subset of CŒx1; x2; : : : ; xn�. We will usually apply such an algorithm to a set of
input matrices which have entries lying in the field Q of rational numbers. We
can then be sure that all output polynomials will lie in QŒx1; x2; : : : ; xn�.

Chapter 1 starts out with a discussion of the ring of symmetric polynomials,
which is the simplest instance of a ring of invariants. In Sect. 1.2 we recall some
basics from the theory of Gröbner bases, and in Sect. 1.3 we give an elemen-
tary exposition of the fundamental problems in invariant theory. Section 1.4 is
independent and can be skipped upon first reading. It deals with invariants of
algebraic tori and their relation to integer programming. The results of Sect. 1.4
will be needed in Sect. 2.7 and in Chap. 4.



2 Introduction

1.1. Symmetric polynomials

Our starting point is the fundamental theorem on symmetric polynomials. This
is a basic result in algebra, and studying its proof will be useful to us in three
ways. First, we illustrate some fundamental questions in invariant theory with
their solution in the easiest case of the symmetric group. Secondly, the main
theorem on symmetric polynomials is a crucial lemma for several theorems to
follow, and finally, the algorithm underlying its proof teaches us some basic
computer algebra techniques.

A polynomial f 2 CŒx1; : : : ; xn� is said to be symmetric if it is invariant
under every permutation of the variables x1; x2; : : : ; xn. For example, the poly-
nomial f1 WD x1x2Cx1x3 is not symmetric because f1.x1; x2; x3/ 6D f1.x2; x1;
x3/ D x1x2 Cx2x3. On the other hand, f2 WD x1x2 Cx1x3 Cx2x3 is symmetric.

Let ´ be a new variable, and consider the polynomial

g.´/ D .´ � x1/.´ � x2/ : : : .´ � xn/

D ´n � �1´
n�1 C �2´

n�2 � : : :C .�1/n�n:

We observe that the coefficients of g with respect to the new variable ´,

�1 D x1 C x2 C : : :C xn;

�2 D x1x2 C x1x3 C : : :C x2x3 C : : :C xn�1xn;

�3 D x1x2x3 C x1x2x4 C : : :C xn�2xn�1xn;

� � � � � � � � � � � � � � � � � � � � �
�n D x1x2x3 � � � xn;

are symmetric in the old variables x1; x2; : : : ; xn. The polynomials �1; �2; : : : ; �n

2 CŒx1; x2; : : : ; xn� are called the elementary symmetric polynomials.
Since the property to be symmetric is preserved under addition and multi-

plication of polynomials, the symmetric polynomials form a subring of CŒx1;
: : : ; xn�. This implies that every polynomial expression p.�1; �2; : : : ; �n/ in the
elementary symmetric polynomials is symmetric in CŒx1; : : : ; xn�. For instance,
the monomial c � ��1

1 �
�2

2 : : : �
�n
n in the elementary symmetric polynomials is

symmetric and homogeneous of degree �1 C 2�2 C : : : C n�n in the original
variables x1; x2; : : : ; xn.

Theorem 1.1.1 (Main theorem on symmetric polynomials). Every symmetric
polynomial f in CŒx1; : : : ; xn� can be written uniquely as a polynomial

f .x1; x2; : : : ; xn/ D p
�
�1.x1; : : : ; xn/; : : : ; �n.x1; : : : ; xn/

�
in the elementary symmetric polynomials.

Proof. The proof to be presented here follows the one in van der Waerden
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(1971). Let f 2 CŒx1; : : : ; xn� be any symmetric polynomial. Then the fol-
lowing algorithm rewrites f uniquely as a polynomial in �1; : : : ; �n.

We sort the monomials in f using the degree lexicographic order, here de-
noted “�”. In this order a monomial x˛1

1 : : : x
˛n
n is smaller than another mono-

mial xˇ1

1 : : : x
ˇn
n if it has lower total degree (i.e.,

P
˛i <

P
ˇi ), or if they have

the same total degree and the first nonvanishing difference ˛i � ˇi is negative.
For any monomial x˛1

1 : : : x
˛n
n occurring in the symmetric polynomial f also

all its images x˛1

�1 : : : x
˛n
� n under any permutation � of the variables occur in f .

This implies that the initial monomial init.f / D c � x�1

1 x
�2

2 : : : x
�n
n of f satisfies

�1 � �2 � : : : � �n. By definition, the initial monomial is the largest monomial
with respect to the total order “�” which appears with a nonzero coefficient
in f .

In our algorithm we now replace f by the new symmetric polynomial Qf WD
f �c ���1��2

1 �
�2��3

2 � � � ��n�1��n

n�1 �
�n
n , we store the summand c ���1��2

1 �
�2��3

2 � � �
�

�n�1��n

n�1 �
�n
n , and, if Qf is nonzero, then we return to the beginning of the pre-

vious paragraph.
Why does this process terminate? By construction, the initial monomial of

c ���1��2

1 �
�2��3

2 � � � ��n�1��n

n�1 �
�n
n equals init.f /. Hence in the difference defining

Qf the two initial monomials cancel, and we get init. Qf / � init.f /. The set
of monomials m with m � init.f / is finite because their degree is bounded.
Hence the above rewriting algorithm must terminate because otherwise it would
generate an infinite decreasing chain of monomials.

It remains to be seen that the representation of symmetric polynomials in
terms of elementary symmetric polynomials is unique. In other words, we need
to show that the elementary symmetric polynomials �1; : : : ; �n are algebraically
independent over C.

Suppose on the contrary that there is a nonzero polynomial p.y1; : : : ; yn/
such that p.�1; : : : ; �n/ D 0 in CŒx1; : : : ; xn�. Given any monomial y˛1

1 � � �y˛n
n

of p, we find that x˛1C˛2C:::C˛n

1 x
˛2C:::C˛n

2 � � � x˛n
n is the initial monomial of

�
˛1

1 � � � �˛n
n . Since the linear map

.˛1; ˛2; : : : ; ˛n/ 7! .˛1 C ˛2 C : : :C ˛n; ˛2 C : : :C ˛n; : : : ; ˛n/

is injective, all other monomials �ˇ1

1 : : : �
ˇn
n in the expansion of p.�1; : : : ; �n/

have a different initial monomial. The lexicographically largest monomial
x

˛1C˛2C:::C˛n

1 x
˛2C:::C˛n

2 � � � x˛n
n is not cancelled by any other monomial, and

therefore p.�1; : : : ; �n/ 6D 0. This contradiction completes the proof of Theo-
rem 1.1.1. G

As an example for the above rewriting procedure, we write the bivariate
symmetric polynomial x3

1 C x3
2 as a polynomial in the elementary symmetric

polynomials:

x3
1 C x3

2 �! �3
1 � 3x2

1x2 � 3x1x
2
2 �! �3

1 � 3�1�2:
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The subring CŒx�Sn of symmetric polynomials in CŒx� WD CŒx1; : : : ; xn�
is the prototype of an invariant ring. The elementary symmetric polynomials
�1; : : : ; �n are said to form a fundamental system of invariants. Such fundamen-
tal systems are generally far from being unique. Let us describe another gener-
ating set for the symmetric polynomials which will be useful later in Sect. 2.1.
The polynomial pk.x/ WD xk

1 C xk
2 C : : :C xk

n is called the k-th power sum.

Proposition 1.1.2. The ring of symmetric polynomials is generated by the first
n power sums, i.e.,

CŒx�Sn D CŒ�1; �2; : : : ; �n� D CŒp1; p2; : : : ; pn�:

Proof. A partition of an integer d is an integer vector � D .�1; �2; : : : ; �n/
such that �1 � �2 � : : : � �n � 0 and �1 C �2 C : : : C �n D d . We assign
to a monomial xi1

1 : : : x
in
n of degree d the partition �.i1; : : : ; in/ which is the

decreasingly sorted string of its exponents.
This gives rise to the following total order on the set of degree d mono-

mials in CŒx�. We set xi1
1 : : : x

in
n � x

j1

1 : : : x
jn
n if the partition �.i1; : : : ; in/ is

lexicographically larger than �.j1; : : : ; jn/, or if the partitions are equal and
.i1; : : : ; in/ is lexicographically smaller than .j1; : : : ; jn/. We note that this total
order on the set of monomials in CŒx� is not a monomial order in the sense of
Gröbner bases theory (cf. Sect. 1.2). As an example, for n D 3, d D 4 we have
x4

3 � x4
2 � x4

1 � x2x
3
3 � x3

2x3 � x1x
3
3 � x1x

3
2 � x3

1x3 � x3
1x2 � x2

2x
2
3 �

x2
1x

2
3 � x2

1x
2
2 � x1x2x

2
3 � x1x

2
2x3 � x2

1x2x3.
We find that the initial monomial of a product of power sums equals

init.pi1pi2 : : : pin/ D ci1i2:::in � xi1
1 x

i2
2 : : : x

in
n whenever i1 � i2 � : : : � in;

where ci1i2:::in is a positive integer.
Now we are prepared to describe an algorithm which proves Proposition

1.1.2. It rewrites a given symmetric polynomial f 2 CŒx� as a polynomial func-
tion in p1; p2; : : : ; pn. By Theorem 1.1.1 we may assume that f is one of the el-
ementary symmetric polynomials. In particular, the degree d of f is less or equal
to n. Its initial monomial init.f / D c � xi1

1 : : : x
in
n satisfies n � i1 � : : : � in.

Now replace f by Qf WD f � c
ci1:::in

pi1 : : : pin . By the above observation the

initial monomials in this difference cancel, and we get init. Qf / � init.f /. Since
both f and Qf have the same degree d , this process terminates with the desired
result. G

Here is an example for the rewriting process in the proof of Proposition
1.1.2. We express the three-variate symmetric polynomial f WD x1x2x3 as a
polynomial function in p1; p2 and p3. Using the above method, we get
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x1x2x3 �! 1
6
p3

1 � 1
2

P
i 6Dj

x2
i xj � 1

6

P
k

x3
k

�! 1
6
p3

1 � 1
2

�
p1p2 �P

k

x3
k

� � 1
6

P
k

x3
k

�! 1
6
p3

1 � 1
2
p1p2 C 1

3
p3:

Theorem 1.1.1 and Proposition 1.1.2 show that the monomials in the ele-
mentary symmetric polynomials and the monomials in the power sums are both
C-vector space bases for the ring of symmetric polynomials CŒx�Sn . There are
a number of other important such bases, including the complete symmetric poly-
nomials, the monomial symmetric polynomials and the Schur polynomials. The
relations between these bases is of great importance in algebraic combinatorics
and representation theory. A basic reference for the theory of symmetric poly-
nomials is Macdonald (1979).

We close this section with the definition of the Schur polynomials. Let An

denote the alternating group, which is the subgroup of Sn consisting of all even
permutations. Let CŒx�An denote the subring of polynomials which are fixed by
all even permutations. We have the inclusion CŒx�Sn � CŒx�An . This inclusion
is proper, because the polynomial

D.x1; : : : ; xn/ WD Q
1�i<j �n

.xi � xj /

is fixed by all even permutations but not by any odd permutation.

Proposition 1.1.3. Every polynomial f 2 CŒx�An can be written uniquely in
the form f D g C h �D, where g and h are symmetric polynomials.

Proof. We set

g.x1; : : : ; xn/ WD 1
2

�
f .x1; x2; x3; : : : ; xn/C f .x2; x1; x3; : : : ; xn/

�
and

Qh.x1; : : : ; xn/ WD 1
2

�
f .x1; x2; x3; : : : ; xn/ � f .x2; x1; x3; : : : ; xn/

�
:

Thus f is the sum of the symmetric polynomial g and the antisymmetric poly-
nomial Qh. Here Qh being antisymmetric means that

Qh.x�1
; : : : ; x�n

/ D sign.�/ � Qh.x1; : : : ; xn/

for all permutations � 2 Sn. Hence Qh vanishes identically if we replace one of
the variables xi by some other variable xj . This implies that xi � xj divides Qh,
for all 1 	 i < j 	 n, and therefore D divides Qh. To show uniqueness, we
suppose that f D gC hD D g0 C h0D. Applying an odd permutation � , we get
f B � D g � hD D g0 � h0D. Now add both equations to conclude g D g0 and
therefore h D h0. G
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With any partition � D .�1 � �2 � : : : � �n/ of an integer d we associate
the homogeneous polynomial

a�.x1; : : : ; xn/ D det

0BBBBB@
x

�1Cn�1
1 x

�1Cn�1
2 � � � x

�1Cn�1
n

x
�2Cn�2
1 x

�2Cn�2
2 � � � x

�2Cn�2
n

:::
:::

: : :
:::

x
�n

1 x
�n

2 � � � x
�n
n

1CCCCCA :

Note that the total degree of a�.x1; : : : ; xn/ equals d C �
n
2

�
.

The polynomials a� are precisely the nonzero images of monomials under
antisymmetrization. Here by antisymmetrization of a polynomial we mean its
canonical projection into the subspace of antisymmetric polynomials. Therefore
the a� form a basis for the C-vector space of all antisymmetric polynomials. We
may proceed as in the proof of Proposition 1.1.3 and divide a� by the discrimi-
nant. The resulting expression s� WD a�=D is a symmetric polynomial which is
homogeneous of degree d D j�j. We call s�.x1; : : : ; xn/ the Schur polynomial
associated with the partition �.

Corollary 1.1.4. The set of Schur polynomials s�, where � D .�1 � �2 � : : :
� �n/ ranges over all partitions of d into at most n parts, forms a basis for the
C-vector space CŒx�Sn

d
of all symmetric polynomials homogeneous of degree d .

Proof. It follows from Proposition 1.1.3 that multiplication with D is an iso-
morphism from the vector space of symmetric polynomials to the space of an-
tisymmetric polynomials. The images of the Schur polynomials s� under this
isomorphism are the antisymmetrized monomials a�. Since the latter are a basis,
also the former are a basis. G

Exercises

(1) Write the symmetric polynomials f WD x3
1

C x3
2

C x3
3

and
g WD .x1 � x2/

2.x1 � x3/
2.x2 � x3/

2 as polynomials in the elementary
symmetric polynomials �1 D x1 C x2 C x3, �2 D x1x2 C x1x3 C x2x3,
and �3 D x1x2x3.

(2) Study the complexity of the algorithm in the proof of Theorem 1.1.1. More
precisely, find an upper bound in terms of deg.f / for the number of steps
needed to express a symmetric f 2 CŒx1; : : : ; xn� as a polynomial in the
elementary symmetric polynomials.

(3) Write the symmetric polynomials �4 WD x1x2x3x4 and
p5 WD x5

1
C x5

2
C x5

3
C x5

4
as polynomials in the first four power sums

p D x1 C x2 C x3 C x4, p2 D x2
1

C x2
2

C x2
3

C x2
4

,
p3 D x3

1
C x3

2
C x3

3
C x3

4
, p4 D x4

1
C x4

2
C x4

3
C x4

4
.

(4) Consider the vector space V D CŒx1; x2; x3�
S3

6
of all symmetric
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polynomials in three variables which are homogeneous of degree 6. What is
the dimension of V ? We get three different bases for V by considering
Schur polynomials s.�1;�2;�3/, monomials � i1

1
�

i2

2
�

i3

3
in the elementary

symmetric polynomials, and monomials pi1

1
p

i2

2
p

i3

3
in the power sum

symmetric polynomials. Express each element in one of these bases as a
linear combination with respect to the other two bases.

(5) Prove the following explicit formula for the elementary symmetric
polynomials in terms of the power sums (Macdonald 1979, p. 20):

�k D 1

k Š
det

0BBBBBBB@

p1 1 0 : : : 0

p2 p1 2 : : : 0

:::
:::

: : :
: : :

:::

pk�1 pk�2 : : : p1 k � 1
pk pk�1 : : : : : : p1

1CCCCCCCA
:

1.2. Gröbner bases

In this section we review background material from computational algebra. More
specifically, we give a brief introduction to the theory of Gröbner bases. Our
emphasis is on how to use Gröbner bases as a basic building block in designing
more advanced algebraic algorithms. Readers who are interested in “how this
black box works” may wish to consult either of the text books Cox et al. (1992)
or Becker et al. (1993). See also Buchberger (1985, 1988) and Robbiano (1988)
for additional references and details on the computation of Gröbner bases.

Gröbner bases are a general-purpose method for multivariate polynomial
computations. They were introduced by Bruno Buchberger in his 1965 disser-
tation, written at the University of Innsbruck (Tyrolia, Austria) under the super-
vision of Wolfgang Gröbner. Buchberger’s main contribution is a finite algorithm
for transforming an arbitrary generating set of an ideal into a Gröbner basis for
that ideal.

The basic principles underlying the concept of Gröbner bases can be traced
back to the late 19th century and the early 20th century. One such early reference
is P. Gordan’s 1900 paper on the invariant theory of binary forms. What is called
“Le système irréductible N” on page 152 of Gordan (1900) is a Gröbner basis
for the ideal under consideration.

Buchberger’s Gröbner basis method generalizes three well-known algebraic
algorithms:

– the Euclidean algorithm (for univariate polynomials)
– Gaussian elimination (for linear polynomials)
– the Sylvester resultant (for eliminating one variable from two polynomials)

So we can think of Gröbner bases as a version of the Euclidean algorithm
which works also for more than one variable, or as a version of Gaussian elimi-
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nation which works also for higher degree polynomials. The basic algorithms
are implemented in many computer algebra systems, e.g., MAPLE, REDUCE,
AXIOM, MATHEMATICA, MACSYMA, MACAULAY, COCOA1, and playing with
one of these systems is an excellent way of familiarizing oneself with Gröbner
bases. In MAPLE, for instance, the command “gbasis” is used to compute a Gröb-
ner basis for a given set of polynomials, while the command “normalf” reduces
any other polynomial to normal form with respect to a given Gröbner basis.

The mathematical setup is as follows. A total order “�” on the monomi-
als x�1

1 : : : x
�n
n in CŒx1; : : : ; xn� is said to be a monomial order if 1 
 m1 and

.m1 � m2 ) m1�m3 � m2�m3/ for all monomialsm1; m2; m3 2 CŒx1; : : : ; xn�.
Both the degree lexicographic order discussed in Sect. 1.1 and the (purely) lexi-
cographic order are important examples of monomial orders. Every linear order
on the variables x1; x2; : : : ; xn can be extended to a lexicographic order on the
monomials. For example, the order x1 � x3 � x2 on three variables induces the
(purely) lexicographic order 1 � x1 � x2

1 � x3
1 � x4

1 � : : : � x3 � x3x1 �
x3x

2
1 � : : : � x2 � x2x1 � x2x

2
1 � : : : on CŒx1; x2; x3�.

We now fix any monomial order “�” on CŒx1; : : : ; xn�. The largest mono-
mial of a polynomial f 2 CŒx1; : : : ; xn� with respect to “�” is denoted by
init.f / and called the initial monomial of f . For an ideal I � CŒx1; : : : ; xn�,
we define its initial ideal as init.I / WD hfinit.f / W f 2 I gi. In other words,
init.I / is the ideal generated by the initial monomials of all polynomials in I .
An ideal which is generated by monomials, such as init.I /, is said to be a mono-
mial ideal. The monomials m 62 init.I / are called standard, and the monomials
m 2 init.I / are nonstandard.

A finite subset G WD fg1; g2; : : : ; gsg of an ideal I is called a Gröbner basis
for I provided the initial ideal init.I / is generated by finit.g1/; : : : ; init.gs/g.
One last definition: the Gröbner basis G is called reduced if init.gi / does not
divide any monomial occurring in gj , for all distinct i; j 2 f1; 2; : : : ; sg. Gröb-
ner bases programs (such as “gbasis” in MAPLE) take a finite set F � CŒx� and
they output a reduced Gröbner basis G for the ideal hFi generated by F . They
are based on the Buchberger algorithm.

The previous paragraph is perhaps the most compact way of defining Gröb-
ner bases, but it is not at all informative on what Gröbner bases theory is all
about. Before proceeding with our theoretical crash course, we present six con-
crete examples .F ;G/ where G is a reduced Gröbner basis for the ideal hFi.
Example 1.2.1 (Easy examples of Gröbner bases). In (1), (2), (5), (6) we also
give examples for the normal form reduction versus a Gröbner bases G which
rewrites every polynomial modulo hFi as a C-linear combination of standard
monomials (cf. Theorem 1.2.6). In all examples the used monomial order is
specified and the initial monomials are underlined.

(1) For any set of univariate polynomials F , the reduced Gröbner basis G is

1 Among software packages for Gröbner bases which are current in 2008 we also
recommend MACAULAY 2, MAGMA and SINGULAR.
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always a singleton, consisting of the greatest common divisor of F . Note
that 1 � x � x2 � x3 � x4 � : : : is the only monomial order on CŒx�.

F D f12x3 � x2 � 23x � 11; x4 � x2 � 2x � 1g
G D fx2 � x � 1g
Normal form: x3 C x2 !G 3x C 2

Here x2 generates the initial ideal, hence 1 and x are the only standard
monomials.

(2) This ideal in two variables corresponds to the intersection of the unit circle
with a certain hyperbola. We use the purely lexicographic order induced from
x � y.

F D fy2 C x2 � 1; 3xy � 1g
G D fy C 3x3 � 3x; 9x4 � 9x2 C 1g
Normal form: y4 C y3 !G 27x3 C 9x2 � 24x � 8

The Gröbner basis is triangularized, and we can easily compute coordinates
for the intersection points of these two curves. There are four such points and
hence the residue ring CŒx; y�=hFi is a four-dimensional C-vector space.
The set of standard monomials f1; x; x2; x3g is a basis for this vector space
because the normal form of any bivariate polynomial is a polynomial in x of
degree at most 3.

(3) If we add the line y D xC1, then the three curves have no point in common.
This means that the ideal equals the whole ring. The Gröbner basis with
respect to any monomial order consists of a nonzero constant.

F D fy2 C x2 � 1; 3xy � 1; y � x � 1g
G D f1g

(4) The three bivariate polynomials in (3) are algebraically dependent. In order
to find an algebraic dependence, we introduce three new “slack” variables f ,
g and h, and we compute a Gröbner basis of

F D fy2 C x2 � 1 � f; 3xy � 1 � g; y � x � 1 � hg
with respect to the lexicographic order induced from f � g � h � x � y.

G D fy � x � h� 1; 3x2 C 3x � gC 3hx � 1; 3h2 C 6hC 2g� 3f C 2g
The third polynomial is an algebraic dependence between the circle, the hy-
perbola and the line.

(5) We apply the same slack variable computation to the elementary symmetric
polynomials in CŒx1; x2; x3�, using the lexicographic order induced from
�1 � �2 � �3 � x1 � x2 � x3.

F D fx1 C x2 C x3 � �1; x1x2 C x1x3 C x2x3 � �2; x1x2x3 � �3g
G D fx3 Cx2 Cx1 ��1; x

2
2 Cx1x2 Cx2

1 ��1x2 ��1x1 C�2; x
3
1 ��1x

2
1 C

�2x1 � �3g
The Gröbner basis does not contain any polynomial in the slack variables
�1; �2; �3 because the elementary symmetric polynomials are algebraically
independent. Here the standard monomials are 1; x1; x

2
1 ; x2; x2x1; x2x

2
1 and

all their products with monomials of the form �
i1
1 �

i2
2 �

i3
3 .

Normal form: .x1 � x2/
2.x1 � x3/

2.x2 � x3/
2 !G

�27�2
3 C 18�3�2�1 � 4�3�

3
1 � 4�3

2 C �2
2�

2
1
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(6) This is a special case of a polynomial system which will be studied in detail
in Chap. 3, namely, the set of d �d -subdeterminants of an n�d -matrix .xij /
whose entries are indeterminates. We apply the slack variable computation
to the six 2 � 2-minors of a 4 � 2-matrix, using the lexicographic order
induced from the variable order Œ12� � Œ13� � Œ14� � Œ23� � Œ24� � Œ34� �
x11 � x12 � x21 � x22 � x31 � x32 � x41 � x42. In the polynomial ring
in these 14 D 6C 8 variables, we consider the ideal generated by

F D fx11x22 � x12x21 � Œ12�; x11x32 � x12x31 � Œ13�;
x11x42 � x12x41 � Œ14�; x21x32 � x22x31 � Œ23�;
x21x42 � x22x41 � Œ24�; x31x42 � x32x41 � Œ34�g

The Gröbner basis equals
G D F [ fŒ12�Œ34� � Œ13�Œ24�C Œ14�Œ23�; : : : : : : : : : (and

many more) : : :g
This polynomial is an algebraic dependence among the 2 � 2-minors of any
4 � 2-matrix. It is known as the (quadratic) Grassmann–Plücker syzygy.
Using the Gröbner basis G, we can rewrite any polynomial which lies in
the subring generated by the 2 � 2-determinants as a polynomial function in
Œ12�; Œ13�; : : : ; Œ34�.

Normal form: x11x22x31x42 C x11x22x32x41 C x12x21x31x42 C
x12x21x32x41 � 2x11x21x32x42 � 2x12x22x31x41 !G
Œ14�Œ23�C Œ13�Œ24�

Before continuing to read any further, we urge the reader to verify these six
examples and to compute at least fifteen more Gröbner bases using one of the
computer algebra systems mentioned above.

We next discuss a few aspects of Gröbner bases theory which will be used
in the later chapters. To begin with we prove that every ideal indeed admits a
finite Gröbner basis.

Lemma 1.2.2 (Hilbert 1890, Gordan 1900). Every monomial ideal M in
CŒx1; : : : ; xn� is finitely generated by monomials.

Proof. We proceed by induction on n. By definition, a monomial ideal M in
CŒx1� is generated by fxj

1 W j 2 J g, where J is some subset of the nonnega-
tive integers. The set J has a minimal element j0, and M is generated by the
singleton fxj0

1 g. This proves the assertion for n D 1.
Suppose that Lemma 1.2.2 is true for monomial ideals in n � 1 variables.

For every nonnegative integer j 2 N consider the .n � 1/-variate monomial
ideal Mj which is generated by all monomials m 2 CŒx1; : : : ; xn�1� such that
m � xj

n 2 M. By the induction hypothesis, Mj is generated by a finite set Sj

of monomials. Next observe the inclusions M0 � M1 � M2 � : : : � Mi �
MiC1 � : : :. By the induction hypothesis, also the monomial ideal

S1
j D0 Mj

is finitely generated. This implies the existence of an integer r such that Mr D
MrC1 D MrC2 D MrC3 D : : :. It follows that a monomial x˛1

1 : : : x
˛n�1

n�1 x
˛n
n

is contained in M if and only if x˛1

1 : : : x
˛n�1

n�1 is contained in Mt , where t D
min fr; ˛ng. Hence the finite monomial set

Sr
iD0 Si � xi

n generates M. G
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Corollary 1.2.3. Let “�” be any monomial order on CŒx1; : : : ; xn�. Then there
is no infinite descending chain of monomials m1 � m2 � m3 � m4 � : : :.

Proof. Consider any infinite set fm1; m2; m3; : : :g of monomials in CŒx1; : : : ;
xn�. Its ideal is finitely generated by Lemma 1.2.2. Hence there exists an inte-
ger j such that mj 2 hm1; m2; : : : ; mj �1i. This means that mi divides mj for
some i < j . Since “�” is a monomial order, this implies mi � mj with i < j .
This proves Corollary 1.2.3. G
Theorem 1.2.4.
(1) Any ideal I � CŒx1; : : : ; xn� has a Gröbner basis G with respect to any

monomial order “�”.
(2) Every Gröbner basis G generates its ideal I .

Proof. Statement (1) follows directly from Lemma 1.2.2 and the definition of
Gröbner bases. We prove statement (2) by contradiction. Suppose the Gröbner
basis G does not generate its ideal, that is, the set I n hGi is nonempty. By
Corollary 1.2.3, the set of initial monomials finit.f / W f 2 I n hGig has a mini-
mal element init.f0/ with respect to “�”. The monomial init.f0/ is contained in
init.I / D hinit.G/i. Let g 2 G such that init.g/ divides init.f0/, say, init.f0/ D
m � init.g/.

Now consider the polynomial f1 WD f0�m �g. By construction, f1 2 I nhGi.
But we also have init.f1/ � init.f0/. This contradicts the minimality in the
choice of f0. This contradiction shows that G does generate the ideal I . G

From this we obtain as a direct consequence the following basic result.

Corollary 1.2.5 (Hilbert’s basis theorem). Every ideal in the polynomial ring
CŒx1; x2; : : : ; xn� is finitely generated.

We will next prove the normal form property of Gröbner bases.

Theorem 1.2.6. Let I be any ideal and “�” any monomial order on CŒx1; : : : ;
xn�. The set of (residue classes of) standard monomials is a C-vector space basis
for the residue ring CŒx1; : : : ; xn�=I .

Proof. Let G be a Gröbner basis for I , and consider the following algorithm
which computes the normal form modulo I .
Input: p 2 CŒx1; : : : ; xn�.
1. Check whether all monomials in p are standard. If so, we are done: p is in

normal form and equivalent modulo I to the input polynomial.
2. Otherwise let hnst.p/ be the highest nonstandard monomial occurring in p.

Find g 2 G such that init.g/ divides hnst.p/, say, m � init.g/ D hnst.p/.
3. Replace p by Qp WD p �m � g, and go to 1.

We have init. Qp/ � init.p/ in Step 3, and hence Corollary 1.2.3 implies that this
algorithm terminates with a representation of p 2 CŒx1; : : : ; xn� as a C-linear
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combination of standard monomials modulo I . We conclude the proof of Theo-
rem 1.2.6 by observing that such a representation is necessarily unique because,
by definition, every polynomial in I contains at least one nonstandard mono-
mial. This means that zero cannot be written as nontrivial linear combination
of standard monomials in CŒx1; : : : ; xn�=I . G

Sometimes it is possible to give an a priori proof that an explicitly known
“nice” subset of a polynomial ideal I happens to be a Gröbner basis. In such
a lucky situation there is no need to apply the Buchberger algorithm. In order
to establish the Gröbner basis property, tools from algebraic combinatorics are
particularly useful. We illustrate this by generalizing the above Example (5) to
an arbitrary number of variables.

Let I denote the ideal in CŒx; y � D CŒx1; x2; : : : ; xn; y1; y2; : : : ; yn� which
is generated by the polynomials �i .x1; : : : ; xn/ � yi for i D 1; 2; : : : ; n. Here
�i denotes the i -th elementary symmetric polynomial. In other words, I is the
ideal of all algebraic relations between the roots and coefficients of a generic
univariate polynomial.

The i -th complete symmetric polynomial hi is defined to be the sum of all
monomials of degree i in the given set of variables. In particular, we have
hi .xk; : : : ; xn/ D P

x
�k

k
x

�kC1

kC1
� � � x�n

n where the sum ranges over all
�

n�kCi
i

�
nonnegative integer vectors .	k; 	kC1; : : : ; 	n/ whose coordinates sum to i .

Theorem 1.2.7. The unique reduced Gröbner basis of I with respect to the
lexicographic monomial order induced from x1 � x2 � : : : � xn � y1 � y2 �
: : : � yn equals

G D
�
hk.xk; : : : ; xn/C

kP
iD1

.�1/i hk�i .xk; : : : ; xn/yi W k D 1; : : : ; n

�
:

Proof. In the proof we use a few basic facts about symmetric polynomials and
Hilbert series of graded algebras. We first note the following symmetric poly-
nomial identity

hk.xk; : : : ; xn/C
kP

iD1

.�1/i hk�i .xk; : : : ; xn/ �i .x1; : : : ; xk�1; xk; : : : ; xn/ D 0:

This identity shows that G is indeed a subset of the ideal I .
We introduce a grading on CŒx; y � by setting degree.xi / D 1 and degree.yj /

D j . The ideal I is homogeneous with respect to this grading. The quotient ring
R D CŒx; y �=I is isomorphic as a graded algebra to CŒx1; : : : ; xn�, and hence
the Hilbert series of R D L1

dD0Rd equals H.R; ´/ D P1
dD0 dimC.Rd /´

d D
.1 � ´/�n. It follows from Theorem 1.2.6 that the quotient CŒx; y �= init�.I /
modulo the initial ideal has the same Hilbert series .1 � ´/�n.

Consider the monomial ideal J D hx1; x
2
2 ; x

3
3 ; : : : ; x

n
ni which is generated

by the initial monomials of the elements in G. Clearly, J is contained in the
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initial ideal init�.I /. Our assertion states that these two ideals are equal. For the
proof it is sufficient to verify that the Hilbert series of R0 WD CŒx; y �=J equals
the Hilbert series of R.

A vector space basis for R0 is given by the set of all monomials xi1
1 � � � xin

n y
j1

1

� � �yjn
n whose exponents satisfy the constraints i1 < 1; i2 < 2; : : : ; in < n. This

shows that the Hilbert series of R0 equals the formal power series

H.R0; ´/ D
�P

´i1Ci2C:::Cin
	 �P

´j1C2j2C:::Cnjn

	
:

The second sum is over all .j1; : : : ; jn/ 2 Nn and thus equals Œ.1 � ´/.1 �
´2/ � � � .1 � ´n/��1. The first sum is over all .i1; : : : ; in/ 2 Nn with i� < � and
hence equals the polynomial .1C ´/.1C ´C ´2/ � � � .1C ´C ´2 C : : :C ´n�1/.
We compute their product as follows:

H.R0; ´/ D



1

1 � ´
�


1C ´

1 � ´2

�

1C ´C ´2

1 � ´3

�
� � �


1C ´C ´2 C : : :C ´n�1

1 � ´n

�
D



1

1 � ´
�


1

1 � ´
�


1

1 � ´
�

� � �



1

1 � ´
�

D H.R; ´/:

This completes the proof of Theorem 1.2.7. G
The normal form reduction versus the Gröbner basis G in Theorem 1.2.7

provides an alternative algorithm for the Main Theorem on Symmetric Polyno-
mials (1.1.1). If we reduce any symmetric polynomial in the variables x1; x2;
: : : ; xn modulo G, then we get a linear combination of standard monomials
y

i1
1 y

i2
2 � � �yin

n . These can be identified with monomials � i1
1 �

i2
2 � � � � in

n in the ele-
mentary symmetric polynomial.

Exercises

(1) Let “�” be a monomial order and let I be any ideal in CŒx1; : : : ; xn�.
A monomial m is called minimally nonstandard if m is nonstandard and
all proper divisors of m are standard. Show that the set of minimally
nonstandard monomials is finite.

(2) Prove that the reduced Gröbner basis Gred of I with respect to “�” is unique
(up to multiplicative constants from C). Give an algorithm which transforms
an arbitrary Gröbner basis into Gred.

(3) Let I � CŒx1; : : : ; xn� be an ideal, given by a finite set of generators. Using
Gröbner bases, describe an algorithm for computing the elimination ideals
I \ CŒx1; : : : ; xi �, i D 1; : : : ; n � 1, and prove its correctness.

(4) Find a characterization for all monomial orders on the polynomial ring
CŒx1; x2�. (Hint: Each variable receives a certain “weight” which behaves
additively under multiplication of variables.) Generalize your result to
n variables.


