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Preface

The analysis of singular perturbed differential equations began early in the
twentieth century, when approximate solutions were constructed from asymp-
totic expansions. (Preliminary attempts appear in the nineteenth century –
see [vD94].) This technique has flourished since the mid-1960s and its principal
ideas and methods are described in several textbooks; nevertheless, asymp-
totic expansions may be impossible to construct or may fail to simplify the
given problem and then numerical approximations are often the only option.

The systematic study of numerical methods for singular perturbation prob-
lems started somewhat later – in the 1970s. From this time onwards the re-
search frontier has steadily expanded, but the exposition of new developments
in the analysis of these numerical methods has not received its due attention.
The first textbook that concentrated on this analysis was [DMS80], which
collected various results for ordinary differential equations. But after 1980
no further textbook appeared until 1996, when three books were published:
Miller et al. [MOS96], which specializes in upwind finite difference methods
on Shishkin meshes, Morton’s book [Mor96], which is a general introduction
to numerical methods for convection-diffusion problems with an emphasis on
the cell-vertex finite volume method, and [RST96], the first edition of the
present book. Nevertheless many methods and techniques that are important
today, especially for partial differential equations, were developed after 1996.
To give some examples, layer-adapted special meshes are frequently used,
new stabilization techniques (such as discontinuous Galerkin methods and lo-
cal subspace projections) are prominent, and there is a growing interest in
the use of adaptive methods. Consequently contemporary researchers must
comb the literature to gain an overview of current developments in this active
area. In this second edition we retain the exposition of basic material that
underpinned the first edition while extending its coverage to significant new
numerical methods for singularly perturbed differential equations.

Our purposes in writing this introductory book are twofold. First, we
present a structured and comprehensive account of current ideas in the nu-
merical analysis of singularly perturbed differential equations. Second, this
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important area has many open problems and we hope that our book will
stimulate their investigation. Our choice of topics is inevitably personal and
reflects our own main interests.

We have learned a great deal about singularly perturbed problems from
other researchers. We thank those colleagues who helped and influenced
us; these include V.B. Andreev, A.E. Berger, P.A. Farrell, A. Felgenhauer,
E.C. Gartland, Ch. Großmann, A.F. Hegarty, V. John, R.B. Kellogg,
N. Kopteva, G. Lube, N. Madden, G. Matthies, J.J.H. Miller, K.W. Morton,
F. Schieweck, G.I. Shishkin, E. Süli, and R. Vulanović; in particular Herbert
Goering and Eugene O’Riordan guided our initial steps in the area. Our re-
search colleague T. Linß deserves additional thanks for providing many of the
figures in this book.

Our work was supported by the Deutsche Forschungsgemeinschaft and by
the Boole Centre for Research in Informatics at the National University of
Ireland, Cork. We are grateful to them, to the Mathematisches Forschungsin-
stitut in Oberwolfach for its hospitality, and to Springer-Verlag for its coop-
eration.
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Notation

I identity
L differential operator
L∗ adjoint operator
a(·, ·) bilinear form
g,G Green’s function
V, V ∗ Banach space and the corresponding dual space
Vh finite-dimensional subspace of V
|| · ||V norm on the space V
|| · ||∗,d discrete version of the norm || · ||∗
r · s scalar product of vectors in Rd

(·, ·) scalar product in Hilbert space
f(v) or 〈f, v〉 functional f applied to v
||f ||∗ norm of the functional f
U ↪→ V continuous embedding of U in V
Ω given space variable(s) domain
∂Ω = Γ boundary of Ω
meas (Ω) measure of Ω
n outward-pointing unit vector normal to ∂Ω
t, T time with t ∈ (0, T )
Q = Ω × (0, T ) given domain for nonstationary problems
Cl(Ω), Cl,α(Ω) function spaces
Lp(Ω) function space, 1 ≤ p ≤ ∞
|| · ||0,p norm in Lp(Ω)
|| · ||Lp,d discrete norm in Lp(Ω)
Wm,p(Ω), ‖ · ‖m,p,Ω Sobolev spaces and their norms
H l(Ω),H l

0(Ω) Sobolev spaces W 1,2(Ω)
|| · ||l, | · |l norm and seminorm in H l(Ω)
|| · ||l,E H l-norm restricted to E ⊂ Ω
ε singular perturbation parameter
C generic constant, independent of ε



XIV Notation

|| · ||ε ε-weighted H1(Ω) norm
|| · ||gr graph norm
∇ or grad gradient
div, div c = ∇ · c divergence operator
O(·), o(·) Landau symbols
Pr polynomials of degree at most r
P disc

r piecewise polynomials of degree at most r, discontinu-
ous across element boundaries

Qr products of polynomials of degree at most r
Qdisc

r products of polynomials of degree at most r, discon-
tinuous across element boundaries

h, hi mesh parameter in space
τ, τj mesh parameter in time
Lh difference operator
D+, D−, D0 difference quotients
�,�h Laplacian and its discretization
ωh, Ωh set of meshpoints
u, uh, ui, u

j
i , uij unknown(s)

u0 reduced solution
Ih interpolation operator
uI = Ih u nodal interpolant of u
πhu,Πhu, ihu quasi-interpolant of u, defined for non-smooth func-

tions u
mesh-dependent norms are written with three vertical lines: ||| · ‖|

||| · |||SD norm used in streamline diffusion finite element
method

||| · |||CIP norm used in continuous interior penalty finite element
method

||| · |||LPS norm used in local projection stabilization finite ele-
ment method

||| · |||dG norm used in discontinuous Galerkin finite element
method

||| · |||GLS norm used in the Galerkin least-squares finite element
method



Introduction

Imagine a river – a river flowing strongly and smoothly. Liquid pollution pours
into the water at a certain point. What shape does the pollution stain form
on the surface of the river?

Two physical processes operate here: the pollution diffuses slowly through
the water, but the dominant mechanism is the swift movement of the river,
which rapidly convects the pollution downstream. Convection alone would
carry the pollution along a one-dimensional curve on the surface; diffusion
gradually spreads that curve, resulting in a long thin curved wedge shape.

When convection and diffusion are both present in a linear differential
equation and convection dominates, we have a convection-diffusion problem.

The simplest mathematical model of a convection-diffusion problem is a
two-point boundary value problem of the form

−εu′′(x) + a(x)u′(x) + b(x)u(x) = f(x) for 0 < x < 1,

with u(0) = u(1) = 0, where ε is a small positive parameter and a, b and f
are some given functions. Here the term u′′ corresponds to diffusion and its
coefficient −ε is small. The term u′ represents convection, while u and f play
the rôles of a source and driving term respectively. (Spriet and Vansteenkiste
[SV82] explain why diffusion and convection should be modelled by second-
order and first-order derivatives respectively.)

Example 0.1. Consider the problem

−εu′′(x) + u′(x) = 1 for 0 < x < 1, (0.1)

with u(0) = u(1) = 0 and 0 < ε � 1.
Suppose that we set formally ε = 0 here. This yields

u′(x) = 1 for 0 < x < 1, (0.2)

with u(0) = u(1) = 0. Unlike (0.1) this problem has no solution in C1[0, 1].
We infer that when ε is near zero, the solution of (0.1) is badly behaved in
some way. ♣



2 Introduction

Problems like (0.1) form the subject matter of this book. They are differen-
tial equations (ordinary or partial) that depend on a small positive parameter
ε and whose solutions (or their derivatives) approach a discontinuous limit as
ε approaches zero. Such problems are said to be singularly perturbed, where
we regard ε as a perturbation parameter. In more technical terms, one cannot
represent the solution of a singularly perturbed differential equation as an
asymptotic expansion in powers of ε.

The solutions of singular perturbation problems typically contain layers.
Ludwig Prandtl introduced the terminology boundary layer at the Third Inter-
national Congress of Mathematicians in Heidelberg in 1904. (Prandtl’s paper,
“Über Flüssigkeitsbewegung bei sehr kleiner Reibung”, is one of the most in-
fluential applied mathematics papers of the 20th century.) To see how such
layers arise, consider the following time-dependent Navier-Stokes problem in
two space variables x and y:

∂u

∂t
− 1

Re
�u + (u · ∇)u = −∇ p in the upper half-plane y > 0, (0.3a)

∇ · u = 0 in the same domain, (0.3b)
u = 0 on the boundary y = 0, (0.3c)

at large Reynolds number Re. One can regard the boundary y = 0 as a fixed
plate, and we assume that the velocity u at y = ∞ is parallel to the x-axis
with magnitude U . We seek a flow, at constant pressure p, whose velocity is
parallel to the plate and independent of x. Then equation (0.3a) reduces to

∂u

∂t
= ε

∂2u

∂y2
, where ε =

1
Re

.

Set η = y/(2
√

εt) and let u(y, t) = U f(η). A computation leads to

u = 2U erf(η), where erf(η) =
1√
π

∫ η

0

e−s2
ds. (0.4)

Equation (0.4) shows that there is a narrow region near y = 0 where u departs
significantly from the constant flow U . We say that u has a boundary layer at
y = 0. See [CM93] for a detailed discussion. Linearization of (0.3) yields an
equation of the form

∂u

∂t
− ε�u + b · ∇u + cu = f,

where b is independent of u. Such convection-diffusion equations model many
fluid flows [Hir88, KL04]; they appear in the well-known Oseen equations and
in related subjects like water pollution problems [REI+07], simulation of oil
extraction from underground reservoirs [Ewi83], flows in chemical reactors
[Alh07] and convective heat transport problems with large Péclet numbers
[Jak59].

Of course, convection-diffusion equations do not arise only in fluid flows;
the next illustration comes from semiconductor device simulation.
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Example 0.2. The “continuity equation” for electrons [PHSM87] in a steady-
state scaled model of a one-dimensional semiconductor – with several simpli-
fying assumptions – is

d2n

dx2
− d

dx

[
n

d

dx
(ψ + log n)

]
= 0, (0.5)

where the unknown function n is the electron concentration, and ψ (which
is computed from another part of the model) is the electrostatic potential.
Now dψ/dx is typically very large (perhaps 105) on part of its domain (see
[PHSM87, Figure 2]), so the unit coefficient of the diffusion term d2n/dx2 will
be dominated there by the convection term coefficient. That is, equation (0.5)
is a convection-diffusion problem. ♣

Singularly perturbed differential equations appear in several branches of
applied mathematics. (We have seen only two examples, albeit significant
ones.) The analysis and numerical solution of convection-diffusion problems
deservedly attracts substantial attention.

In this book, we discuss the nature of solutions of various singularly per-
turbed differential equations before presenting methods for their numerical
solution. Thus Part I begins with an exposition of the technique of matched
asymptotic expansions, which is then used to examine various classes of two-
point boundary value problems. In Part II we move on to time-dependent
problems with one space dimension. Elliptic and parabolic problems in several
space dimensions come in Part III. Finally, Part IV discusses finite element
methods for a significant applied model: the Navier-Stokes equations.

If any discretization technique is applied to a parameter-dependent prob-
lem, then the behaviour of the discretization depends on the parameter.
For singularly perturbed problems, conventional techniques often lead to dis-
cretizations that are worthless if the singular perturbation parameter is close
to some critical value. We are interested in robust methods that work for all
values of the singular perturbation parameter. We therefore track carefully
the dependence on this parameter of those constants that arise in consistency,
stability and error estimates. Thus the philosophy of this book emphasizes
realistic error estimates. This contrasts sharply with much published research
whose analysis ignores the effect of parameter dependence. There is a growing
awareness of the dangers of this neglect; in the particular case of the incom-
pressible Navier-Stokes equations, Johnson, Rannacher and Boman [JRB95a]
observe that existing analyses often contain constants that depend on exp(Re),
where Re is the Reynolds number, and conclude that “in the majority of cases
of interest, the existing error analysis has no meaning”. We hope that the
careful approach that is followed here will provide a serviceable foundation
for future work.

Discretization leads to a linear or nonlinear system of equations with a
large number of unknowns. Iterative methods are commonly used to solve
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these systems. It is important to realize that these solvers, like the underly-
ing discretization, should be robust with respect to the singular perturbation
parameter. The discretization of a convection-diffusion problem usually pro-
duces a nonsymmetric system of equations and this asymmetry complicates
the linear algebra analysis. No attempt is made in this book to discuss these
issues; instead the recent textbook of Elman, Silvester and Wathen [ESW05]
is recommended.

In general standard notation is used for function spaces, norms, etc. (see
the notation list on page XIII), but two special conventions should be noted.
First, the unknown u in a singular perturbation problem depends, of course,
on the perturbation parameter ε. While one must always bear this dependence
in mind, it is not included in our notation; that is, we write u(x) instead of,
for instance, u(x, ε) or uε(x). This simplifies the notation, especially when
the discretization requires the use of some indices that depend on the mesh.
On the other hand, an expression like limε→0 u(x) then looks odd, but one
should remember that the unknown u does depend on ε. Every notation has
its advantages and disadvantages! Second, in our analysis it is important to
declare whether or not each constant depends on ε. Thus we denote by C
(sometimes subscripted or superscripted) a generic constant that is always
independent of the perturbation parameter and of any mesh used. Other letters
are used to denote other “constants” when such a dependence is present.

The following example illustrates our system of numbering and internal
cross-referencing. In Part I, Theorem 1.4 lies in Chapter 1 (hence the num-
bering “1.∗”). In Part I it is referred to as “Theorem 1.4”, but we call it
“Theorem I.1.4” when it’s referred to from outside Part I. A similar conven-
tion is used for equations, Lemmas, etc.

We assume that the reader is familiar with the basic theory of ordinary
and partial differential equations, and with the jargon and usage of finite
difference and finite element methods.

Finally, despite our best efforts, mistakes are undoubtedly present in this
book. We invite each reader to email us [rst-book@ovgu.de] any corrections
that s/he notices, and this information will be made publicly available at the
website [www.rst-book.ovgu.de].



Part I

Ordinary Differential Equations



Part I of this book deals with singularly perturbed two-point boundary
value problems. This field of research is of interest in its own right and also
serves as an introduction to the more complicated problems posed in higher
dimensions that we shall meet later in Parts II, III and IV. An initial discussion
of analytical techniques such as maximum principles, asymptotic expansions
and stability estimates for the solution of the boundary value problem provides
the background needed for the numerical analysis of these ordinary differential
equations. Then finite difference, finite element and finite volume methods are
presented and analysed, error estimates are derived in various norms, and the
relevance of mesh selection is examined. The material here is explained in
detail in order to lead the reader gently into this fascinating world.



1

The Analytical Behaviour of Solutions

We begin with a general form of the problem that will occupy our attention
throughout most of Part I. Consider the linear two-point boundary value
problem

Lu := −εu′′ + b(x)u′ + c(x)u = f(x) for x ∈ (d, e),

with the boundary conditions

αdu(d)− βdu
′(d) = γd,

αeu(e)− βeu
′(e) = γe.

Assume that the functions b, c and f are continuous. The constants αd, αe,
βd, βe, γd and γe are given, and the parameter ε satisfies 0 < ε� 1.

In general, one can assume homogeneous boundary conditions γd = γe = 0
by subtracting from u a smooth function ψ that satisfies the original boundary
conditions. For example, given Dirichlet boundary conditions u(d) = γd and
u(e) = γe, take

ψ(x) = γd
x− e

d− e
+ γe

x− d

e− d

and set u∗(x) = u(x)−ψ(x). Then u∗ is the solution of a differential equation
of the same type but with homogeneous boundary conditions.

One can also assume without loss of generality that x ∈ [0, 1] by means of
the linear transformation

x �→ x− d

e− d
.

The analytical behaviour of the solution of a singularly perturbed bound-
ary value problem depends on the nature of the boundary conditions. From
the numerical analyst’s point of view, the most difficult case is when these con-
ditions are Dirichlet. We consequently pay scant attention to other boundary
conditions. Thus Sections 1.1 and 1.2 investigate the singularly perturbed
problem
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Lu : = −εu′′ + b(x)u′ + c(x)u = f(x) for x ∈ (0, 1), (1.1a)
u(0) = u(1) = 0, with c(x) ≥ 0 for x ∈ [0, 1] , (1.1b)

under the conditions on ε, b, c and f stated earlier. This is a typical convection-
diffusion problem (see the Introduction) because in general we assume that b
is not identically zero.

We begin our study by stating three closely-related properties of differen-
tial operators M : C2(0, 1) → C(0, 1). Let w ∈ C2(0, 1) ∩ C[0, 1]. Then M is
said to be inverse-monotone if the inequalities

Mw(x) ≥ 0 for all x ∈ (0, 1), w(0) ≥ 0, w(1) ≥ 0

together imply that w(x) ≥ 0 for all x ∈ [0, 1]. To see that the operator L of
(1.1) is inverse-monotone, one argues by contradiction [GT83].

We say that M satisfies a maximum principle if Mu(x) = 0 for all x ∈ (0, 1)
implies that

min{u(0), u(1), 0} ≤ u(x) ≤ max{u(0), u(1), 0} for all x ∈ [0, 1].

Inverse-monotonicity implies that L satisfies a maximum principle. It also im-
plies that L satisfies the following comparison principle which for our purposes
is the most useful of the three properties.

Lemma 1.1 (Comparison principle). Let v, w ∈ C2(0, 1)∩C[0, 1] satisfy

Lw(x) ≥ Lv(x) for all x ∈ (0, 1)

and w(0) ≥ v(0), w(1) ≥ v(1). Then

w(x) ≥ v(x) for all x ∈ [0, 1].

We then say that w is a barrier function for v. A fairly complete discussion of
maximum and comparison principles for second-order elliptic problems can be
found in [GT83]. Unfortunately the terminology in the literature is inconsis-
tent, in the sense that each of the three properties above is sometimes called
a maximum principle.

Lemma 1.1 implies immediately the uniqueness of classical solutions of the
boundary value problem (1.1). In this one-dimensional case, the existence of a
classical solution follows. The condition c ≥ 0 cannot in general be discarded,
as is evident from the problem

−εu′′ + λu = 0 on (0, 1), u(0) = u(1) = 0,

which has multiple solutions when λ = −εk2π2, k = 1, 2, . . . .
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1.1 Linear Second-Order Problems Without Turning
Points

Existence and uniqueness of the classical solution u of (1.1) are now guaran-
teed, but the behaviour of u when ε is small is still obscure. To gain an initial
insight into the structure of u when ε is near zero, we study a simple example.

Example 1.2. The boundary value problem

−εu′′ + u′ = 1 on (0, 1), u(0) = u(1) = 0,

has the solution

u(x) = x−
exp(− 1−x

ε )− exp(− 1
ε )

1− exp(− 1
ε )

.

Hence, for a ∈ [0, 1),

lim
x→a

lim
ε→0

u(x) = a = lim
ε→0

lim
x→a

u(x),

but
1 = lim

x→1
lim
ε→0

u(x) �= lim
ε→0

lim
x→1

u(x) = 0.

The presence of a point (x = 1 in this example) where such an inequality
appears means that the problem is singularly perturbed . The inequality implies
that the solution u(x) changes abruptly as x approaches 1 – we say that there
is a boundary layer at x = 1. See Figure 1.1. ♣
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Fig. 1.1. Solution of Example 1.2 with a boundary layer at x = 1
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1.1.1 Asymptotic Expansions

Can we approximate the solution u of (1.1) by a simple known function? Yes,
by means of a standard technique in singular perturbation theory called the
method of matched asymptotic expansions; see, for instance, [Eck73, O’M91].
The function uas constructed by this technique is an asymptotic expansion
of u; it illuminates the nature of u and thus is valuable information.

The function uas is an asymptotic expansion of order m of u (in the max-
imum norm) if there is a constant C such that

|u(x)− uas(x)| ≤ Cεm+1 for all x ∈ [0, 1] and all ε sufficiently small.

Here we remind the reader that throughout the book C denotes a generic
constant that is independent of ε. In the construction of uas for (1.1), we
assume that b, c and f are sufficiently smooth on [0,1].

The first step is to try to find a global expansion (or regular expansion or
outer expansion) ug. This function will be a good approximation of u away
from any layer(s), i.e., on nearly all of the domain [0, 1]. We set

ug(x) =
m∑

ν=0

ενuν(x), (1.2)

where the uν(x) are yet to be determined. (Here, as for regular perturbations,
we try to expand the solution in a Taylor-type series.) Define the operator L0

by formally setting ε = 0 in L, viz.,

L0v := bv′ + cv.

Substituting ug into (1.1) and equating coefficients of like powers of ε yields

L0u0 = f,

L0uν = u′′
ν−1 for ν = 1, ...,m.

If b(x) has any zero in the interval [0, 1], this causes difficulty in defining the
coefficients uν of the global expansion because the operator L0 then becomes
singular. Zeros of b are called turning points. We exclude such phenomena
here and defer their examination to Section 1.2.

Suppose that b(x) �= 0 for all x ∈ [0, 1]. Then in principle one can calculate
u0, u1, . . . , um explicitly, provided that there is some additional condition on
each of these functions that ensures its uniqueness. One of the boundary
conditions in (1.1b) should be used to define u0, and the crucial question is:
which boundary condition should we discard? Guided by Example 1.2, we
state the following cancellation law, which specifies the boundary condition
to discard (see Section 1.4.1 for a more general formulation):

• If b > 0 then the boundary layer is located at x = 1 and to define u0 one
omits the boundary condition at x = 1. If b < 0 then the boundary layer
is located at x = 0 and the boundary condition at x = 0 is dropped.
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The transformation x �→ 1 − x reduces the case b < 0 to b > 0; thus
it suffices to study the case b > 0 in detail. The coefficients in the global
expansion ug are defined by

L0u0 = f, u0(0) = 0, (1.3a)
L0uν = u′′

ν−1, uν(0) = 0 for ν = 1, ...,m. (1.3b)

We call equation (1.3a) the reduced problem and u0 is the reduced solution.
The condition u0(0) = 0 comes from (1.1b), while the conditions uν(0) = 0
for ν ≥ 1 ensure that ug(0) = u(0).

The aim of the method of matched asymptotic expansions is to construct
an approximation of u that is valid for all x ∈ [0, 1]. But ug cannot be such
an approximation since it fails to satisfy the boundary condition at x = 1.
Therefore one adds a local correction to ug near x = 1. First, observe that
the difference w := u− ug satisfies

Lw = εm+1u′′
m,

w(0) = 0, w(1) = −
m∑

ν=0

ενuν(1).

Write L = εL1+L0. Recalling that a local correction is needed near x = 1,
where the solution u has a boundary layer, we stretch the scale there in the
x direction by introducing the local variable

ξ =
1− x

δ
, where δ > 0 is small and yet to be specified.

One chooses δ such that L0 and εL1 have formally the same order with respect
to ε after the independent variable is transformed from x to ξ. That is, since
b �= 0, one sets

εδ−2 ≈ δ−1.

This leads to the choice δ = ε.
In terms of the new variable ξ, use Taylor expansions to write

b(1− εξ) =
∞∑

ν=0

bνενξν with b0 = b(1),

c(1− εξ) =
∞∑

ν=0

cνενξν with c0 = c(1).

Consequently, for any sufficiently differentiable function g, we can express L
in terms of ξ as

εL1g + L0g =
1
ε

∞∑
ν=0

ενL∗
νg,

with
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L∗
0 := − d2

dξ2
− b0

d

dξ
,

L∗
1 := −b1ξ

d

dξ
+ c0,

etc. Now introduce the local expansion

vloc(ξ) =
m+1∑
µ=0

εµvµ(ξ). (1.4)

In order that vloc approximates w = u − ug, the local corrections vµ should
satisfy the boundary layer equations

L∗
0v0 = 0, (1.5a)

L∗
0vµ = −

µ∑
κ=1

L∗
κvµ−κ, for µ = 1, ...,m + 1. (1.5b)

To obtain the correct boundary condition at x = 1, one takes vκ(0) = −uκ(1)
for κ = 0, 1, . . . ,m. As the differential equations (1.5) are of second order,
a further boundary condition is also needed. To ensure the local character
of the local correction, one requires that limξ→∞ vµ(ξ) = 0. With these two
boundary conditions the problem (1.5) has a unique solution, because the
characteristic equation corresponding to L∗

0 (which is a differential operator
with constant coefficients) is

−λ2 − b(1)λ = 0,

which has exactly one negative root. For example, the first-order correction is

v0(ξ) = −u0(1)e−b(1)ξ.

Remark 1.3. A critical question in this method is whether or not the equations
(1.5) for the local correction possess a number of decaying solutions that is
equal to the number of boundary conditions that are not satisfied by the global
approximation. If one cancels the wrong boundary condition when defining the
reduced problem, this can lead to boundary layer equations without decaying
solutions and the method then fails. ♣

Boundary layers are classified according to the nature of the boundary
layer equations. The simplest layers are exponential boundary layers (which
are sometimes called ordinary boundary layers), where the solutions of the
boundary layer equations are decaying exponential functions. The solution of
(1.1) usually has a layer of this type at x = 1 when b > 0 on [0, 1].

Theorem 1.4. If the coefficients and the right-hand side of the boundary
value problem (1.1) are sufficiently smooth and b(x) > β > 0 on [0, 1], then
its solution u has a matched asymptotic expansion of the form
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uas(x) =
m∑

ν=0

ενuν(x) +
m∑

µ=0

εµvµ

(
1− x

ε

)
, (1.6)

such that for any sufficiently small fixed constant ε0 one has

|u(x)− uas(x)| ≤ Cεm+1 for x ∈ [0, 1] and ε ≤ ε0.

Here C is independent of x and ε.

Proof. Consider

u∗
as(x) :=

m∑
ν=0

ενuν(x) +
m+1∑
µ=0

εµvµ

(
1− x

ε

)
,

which has an additional term for µ = m + 1 compared with (1.6). (This is a
standard trick: if the transformed problem in the local variables has a leading
term that is O(ε−l), one considers

∑m+l
µ=0 .) Our construction of the uν and vµ

yields

L(u− u∗
as) = O(εm+1),

(u− u∗
as)(0) = O(εκ), (u− u∗

as)(1) = O(εm+1),

where κ > 0 is arbitrary. Now apply the comparison principle of Lemma 1.1,
with the barrier function w(x) = Cεm+1(1+x) – this choice of w exploits the
property b ≥ b0 > 0. We get

|(u− u∗
as)(x)| ≤ |w(x)| ≤ Cεm+1 for all x ∈ [0, 1].

But |uas(x) − u∗
as(x)| = |εm+1vm+1((1 − x)/ε)| ≤ Cεm+1, so a triangle in-

equality completes the argument. ��

A formal differentiation of (1.6) leads to the following conjecture:
If b, c and f are sufficiently smooth and b > 0 (so turning points are excluded),
the solution u of the boundary value problem (1.1) satisfies

|u(i)(x)| ≤ C

[
1 + ε−i exp

(
−b(1)

1− x

ε

)]
.

A rigorous proof of the validity of this differentiation is possible [O’M91], but
it is not simple. In Section 1.1.3 we shall prove a similar bound on u(i)(x)
without using an asymptotic expansion.

Remark 1.5. (Effect of boundary conditions on the layer) In the case b > 0,
suppose that the boundary conditions in (1.1b) are replaced by

u(0) = 0, u′(1) = 0.
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Then the method of matched asymptotic expansions yields a local correction
of the type

vloc(ξ) = ε

m∑
µ=0

εµvµ(ξ)

because, for example,
− ε

b(1)
u′

0(1)e−b(1)ξ

corrects the boundary condition at x = 1. One can show that:
A Dirichlet boundary condition at x = 1 causes a boundary layer there with

u′(1) = O(ε−1) as ε → 0,

but a Neumann boundary condition at x = 1 causes a less severe boundary
layer, since then

u′(1) = O(1) and u′′(1) = O(ε−1) as ε → 0.

For example, the exact solution of

−εu′′ + u′ = 1, u(0) = 0 and u′(1) = 0

is u(x) = x− ε[e−(1−x)/ε − e−1/ε].
Under special circumstances, a different weakening of the boundary layer

can occur. If, for example, the boundary condition at x = 1 were

b(1)u′(1) + c(1)u(1) = f(1)

– which is satisfied by the reduced solution u0 of (1.3a) – then the asymptotic
expansion of u starts with u0+εu1+ε2v2 because one can choose v0 ≡ v1 ≡ 0.
In this particular case one has

u′′(1) = 0 and u′′′(1) = O(ε−1) as ε → 0,

while u(x), u′(x) and u′′(x) are all bounded uniformly on [0, 1] as ε → 0. ♣

1.1.2 The Green’s Function and Stability Estimates

Assume that b(x) ≥ β > 0 on [0, 1]. The comparison principle of Lemma 1.1
provides a simple proof of the stability estimate

‖v‖∞ ≤ C‖Lv‖∞ for all v ∈ C2[0, 1] with v(0) = v(1) = 0, (1.7)

where
‖z‖∞ := max

x∈[0,1]
|z(x)|.

To prove (1.7), use w(x) = ‖Lv‖∞(1 + x)/β as a barrier function for v.
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Note that the stability constant C in (1.7) is independent of ε. When
applied to the solution u of (1.1), inequality (1.7) yields

‖u‖∞ ≤ C‖f‖∞.

This is typical: a stability inequality implies an a priori estimate for the exact
solution. This a priori estimate tells us that u is bounded, uniformly with
respect to ε, in the maximum norm.

For the analysis of numerical methods, especially on non-equidistant
meshes and in the context of a posteriori error estimates, it is very useful
to have stronger stability results that use other norms. Let (A, ‖ · ‖A) and
(B, ‖ · ‖B) be normed linear spaces with M : A → B. Then M is said to be
uniformly (A,B)-stable if

‖v‖A ≤ C ‖Mv‖B for all v ∈ A (1.8)

with a stability constant C that is independent of ε. If A = B, we say simply
that M is A-stable.

In this section we shall derive stability results for the convection-diffusion
problem (1.1) under the hypotheses that b is continuous and does not vanish
in [0, 1]. The (L∞, L1) stability result (1.19) comes from [Gar89], while the
negative norm stability estimate (1.20) is in [And01, Kop01b]. We follow the
presentation of [Lin02a].

Consider the boundary value problem (1.1):

Lu := −εu′′ + bu′ + cu = f,

u(0) = u(1) = 0,

where b ≥ β > 0. Additionally, to simplify certain arguments, assume that

c ≥ 0 and c− b′ ≥ 0. (1.9)

Remark 1.6. Because b > 0 the conditions (1.9) can always be guaranteed
for ε smaller than some threshold value ε0 by making a change of variable
u(x) = û(x) exp(kx) with the constant k chosen appropriately. ♣

The standard Green’s function G(x, ξ) associated with L and homogeneous
Dirichlet boundary conditions is for each fixed ξ ∈ [0, 1] the solution of

(L G(·, ξ))(x) = δ(x− ξ) for x ∈ (0, 1), G(0, ξ) = G(1, ξ) = 0, (1.10)

where δ is the Dirac-δ distribution. Equivalently, to avoid introducing distri-
butions, for fixed ξ one seeks a classical solution in C2((0, 1) \ {ξ}) ∩ C[0, 1]
that satisfies

(L G(·, ξ))(x) = 0 for x ∈ (0, 1) \ {ξ}, G(0, ξ) = G(1, ξ) = 0, (1.11)

and the jump condition
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−ε[G(·, ξ)′](ξ) = 1,

where the notation [v](d) := v(d+0)− v(d− 0) denotes the jump of a discon-
tinuous function v(x) at x = d.

In terms of the adjoint operator L∗v := −εv′′ − (bv)′ + cv, for fixed x the
Green’s function G(x, ξ) satisfies

(L∗G(x, ·))(ξ) = δ(ξ − x) for ξ ∈ (0, 1), G(x, 0) = G(x, 1) = 0. (1.12)

To derive stability estimates we shall use the solution representation

v(x) =
∫ 1

0

G(x, ξ)(L v)(ξ) dξ (1.13)

which is valid for all v satisfying v(0) = v(1) = 0. Thus some bounds on G
are needed.

Similarly to the classical comparison principle of Lemma 1.1, one has: if
the functions v and w in C2((0, 1) \ {ξ}) ∩ C[0, 1] satisfy

v(0) ≤ w(0),
v(1) ≤ w(1),
Lv(x) ≤ Lw(x) in (0, 1) \ {ξ},

−ε[v′](ξ) ≤ −ε[w′](ξ),

then v(x) ≤ w(x) for all x ∈ [0, 1]. This piecewise comparison principle can
be found in [Mey98]; it is well known in the field of enclosing discretization
methods but is rarely stated explicitly in the literature. Using the comparison
principle with the barrier functions Ĝ1 ≡ 0 and

Ĝ2 =
{

(1/β) exp(−β(ξ − x)/ε) for 0 ≤ x ≤ ξ,
1/β for ξ ≤ x ≤ 1,

we get the following bounds for the Green’s function:

0 ≤ G(x, ξ) ≤ 1
β

for (x, ξ) ∈ [0, 1]× [0, 1]. (1.14)

The representation (1.13) then implies that for any function v ∈ W 2,1(0, 1)
with v(0) = v(1) = 0, the stability estimate (1.7) has been sharpened to the
(L∞, L1) estimate

‖v‖∞ ≤ 1
β
‖L v‖L1 for v ∈W 1,1

0 (0, 1) ∩W 2,1(0, 1).

Here we used the notation Wm,p(0, 1) for the Sobolev space of functions de-
fined on [0, 1] whose derivatives of order m are in Lp. Functions in W 1,p

0 (0, 1)
vanish at x = 0 and x = 1. See [Ada78] for a thorough discussion of Sobolev
spaces.
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We want to go one step further. For each v ∈ W 1,∞
0 (0, 1) let the auxiliary

function V ∈ L∞(0, 1) satisfy V ′ = L v. Then an integration by parts gives

v(x) = −
∫ 1

0

Gξ(x, ξ)V (ξ)dξ (1.15)

and

v′(x) = −
∫ 1

0

Gxξ(x, ξ)V (ξ)dξ. (1.16)

These formulas are well defined: piecewise existence of Gxξ follows from ex-
plicit representations of G in [And01] or, alternatively, from the piecewise
existence of Gxx and Gξξ.

To extract the desired stability estimates from these representations, we
need more information about the Green’s function.

Since G ≥ 0 and G satisfies the boundary conditions of (1.12), one has
Gξ(x, 0) ≥ 0 and Gξ(x, 1) ≤ 0. Rearranging (1.12) shows that v(·) := Gξ(x, ·)
satisfies

εvξ + bv = (c− bξ)G ≥ 0 for ξ ∈ (0, x) (1.17)

where we used (1.9). As v(0) ≥ 0, an integration of (1.17) yields v ≥ 0 on
[0, x], so G(x, ·) increases monotonically on [0, x]. Integrating (1.12) over [ξ, 1]
with ξ > x gives

εGξ(x, ξ)− εGξ(x, 1) + b(ξ)G(x, ξ)− b(1)G(x, 1) = −
∫ 1

ξ

c(s)G(x, s)ds.

Hence, using c ≥ 0 from (1.9),

εGξ(x, ξ) ≤ εGξ(x, 1)− b(ξ)G(x, ξ) ≤ 0 .

Thus G(x, ·) decreases monotonically on [x, 1].
One can prove similarly that Gx(x, ξ) ≥ 0 for 0 ≤ x < ξ ≤ 1 and

Gx(x, ξ) ≤ 0 for 0 ≤ ξ < x ≤ 1. Consequently

Gxξ(x, 0) ≤ 0 and Gxξ(x, 1) ≤ 0 for x ∈ (0, 1).

For ξ < x we see that w = Gxξ(x, ·) satisfies

εwξ + bw = (c− bξ)Gx ≤ 0.

It now follows from w(0) ≤ 0 that Gxξ ≤ 0 for ξ < x. For ξ > x, differentiate
the above identity:

εGxξ(x, ξ)− εGxξ(x, 1) + b(ξ)Gx(x, ξ)− b(1)Gx(x, 1) = −
∫ 1

ξ

c(s)Gx(x, s)ds.

This gives Gxξ ≤ 0 for ξ > x.
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The next step is to bound the L1 norms of Gξ and Gxξ using the above
monotonicity properties and the L∞ bound (1.14). First, we get

‖Gξ(x, ·)‖L1 =
∫ x

0

Gξ(x, ξ)dξ −
∫ 1

x

Gξ(x, ξ)dξ = 2G(x, x) ≤ 2
β

. (1.18)

A related argument shows that

‖Gxξ(x, ·)‖L1 =
2
ε

,

on taking account of the singularity caused by Gx(x, x+0)−Gx(x, x−0) = 1/ε.
These bounds can be combined with (1.15) and (1.16) to produce new stability
estimates. In summary, introducing the norm

‖v‖∗ := inf
V :V ′=v

‖V ‖∞,

the stability results we have proved in this section are the following:

Theorem 1.7. The operator L satisfies the stability estimates

‖v‖∞ ≤ 1
β
‖L v‖L1 for v ∈ W 1,1

0 (0, 1) ∩W 2,1(0, 1) (1.19)

and
β

2
‖v‖∞ +

ε

2
‖v′‖∞ ≤ ‖L v‖∗ for v ∈ W 1,∞

0 (0, 1). (1.20)

The space W−1,∞ = (W 1,1
0 )′ is isometrically isomorphic to the space of

distributions generated by integrals of L∞ functions and equipped with the
norm ‖ · ‖∗; see [Ada78, Theorem 3.10]. In this sense, the norm ‖ · ‖∗ is the
W−1,∞-norm and we say that (1.20) is a negative-norm stability estimate.

Now L1[0, 1] ⊂ W−1,∞ = (W 1,1
0 )′. Andreev [And01, Lemma 2.6] observed

that

‖f‖−1,∞ = sup
1=‖v‖

W
1,1
0

∣∣∣∣ ∫ 1

0

fv dx

∣∣∣∣ = inf
C

∥∥∥∥∫ 1

f(s) ds + C

∥∥∥∥
∞

= ‖f‖∗.

Note that since
‖v‖∗ ≤ ‖v‖L1 ≤ ‖v‖∞,

the negative-norm bound is the strongest of our stability results.
In [And01] an assumption of the type (1.9) was not used, which makes

the analysis more difficult; this paper begins with a differential equation in
conservation form (assuming a different sign for the convective term)

Lv := −εv′′ − (bv)′ + cv,

then goes on to the more complicated case where the equation is not in con-
servation form.
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1.1.3 A Priori Estimates for Derivatives and Solution
Decomposition

The numerical analysis of discretization methods requires information about
higher-order derivatives of u, the solution of (1.1). Theorem 1.7 tells us that

|u(k)(x)| ≤ Cε−k for x ∈ [0, 1], k = 0, 1.

Hence, by repeated differentiation of the differential equation (1.1a), we obtain

|u(k)(x)| ≤ Cε−k forx ∈ [0, 1], k = 0, 1, . . . , q,

where q depends on the smoothness of the data.
In general, crude bounds like these are inadequate for the job of analysing

discretization methods. We now use the argument of [KT78, Lemma 2.3] to
deduce a sharper estimate directly from (1.1); no asymptotic expansion is
used.

Lemma 1.8. Assume that b(x) > β > 0 and b, c, f are sufficiently smooth.
Then for i = 1, 2, . . . , q, the solution u of (1.1) satisfies

|u(i)(x)| ≤ C

[
1 + ε−i exp

(
−β

1− x

ε

)]
for 0 ≤ x ≤ 1,

where the maximal order q depends on the smoothness of the data.

Proof. Set h = f−cu. Using an integrating factor we integrate −εu′′+bu′ = h
twice, obtaining

u(x) = up(x) + K1 + K2

∫ 1

x

exp[−ε−1(B(1)−B(t))] dt,

where

up(x) := −
∫ 1

x

z(t) dt, z(x) :=
∫ 1

x

ε−1h(t) exp[−ε−1(B(t)−B(x))] dt,

B(x) :=
∫ x

0

b(t) dt;

here the constants of integration (K1 and K2) may depend on ε.
The boundary condition u(1) = 0 implies that K1 = 0. One can also see

that u′(1) = −K2. Now u(0) = 0 gives

K2

∫ 1

0

exp[−ε−1(B(1)−B(t))] dt = −up(0). (1.21)

The bound ‖u‖∞ ≤ C implied by (1.7) leads to
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|z(x)| ≤ Cε−1

∫ 1

x

exp[−ε−1(B(t)−B(x))] dt.

Applying the inequality

exp[−ε−1(B(t)−B(x)] ≤ exp[−βε−1(t− x)] for x ≤ t,

we obtain

|z(x)| ≤ Cε−1

∫ 1

x

exp[−βε−1(t− x)] dt ≤ C.

Hence |up(0)| ≤ C. Set ‖b‖∞ = maxx∈[0,1] b(x). Then∫ 1

0

exp[−ε−1(B(1)−B(t)] dt) ≥
∫ 1

0

exp[−‖b‖∞ε−1(1− t)] dt ≥ Cε.

It then follows from (1.21) that |K2| ≤ Cε−1.
Now

u′(x) = z(x)−K2 exp[−ε−1(B(1)−B(x))]

implies that

|u′(x)| ≤ C

[
1 + ε−1 exp

(
−β(1− x)

ε

)]
.

The bound on u(i)(x) for i > 1 follows by induction on i and repeated differ-
entiation of (1.1a). ��

A classical asymptotic expansion like that of Theorem 1.4 decomposes the
solution u into a smooth part (i.e., a function for which certain low-order
derivatives are bounded uniformly in ε), a layer part and a remainder. We
now construct a decomposition of u into a sum of a smooth part and a layer
part, with no remainder. This type of decomposition is helpful in the analysis
of certain numerical methods.

The standard asymptotic expansion of Theorem 1.4 gives

u = u0 + εu1 + . . . + εkuk + v0 + εv1 + . . . + εkvk + εk+1R,

where R satisfies a boundary value problem similar to (1.1). Set

S∗ := u0 + εu1 + . . . + εkuk + εk+1R,

E∗ := v0 + εv1 + . . . + εkvk,

The crude estimate ‖R(m)‖∞ ≤ Cε−m yields

|S∗(l)(x)| ≤ C for l ≤ k + 1. (1.22)

For the boundary layer functions, the construction of Section 1.1 leads to

|E∗(l)(x)| ≤ Cε−l exp
(
−β(1− x)

ε

)
. (1.23)
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We call a decomposition u = S∗ + E∗ with the properties (1.22) and (1.23)
an S-type decomposition.

A minor modification of this construction yields an S-decomposition; this
splitting of u enjoys the extra property that the layer part lies in the null space
of L. Decompositions of this type were introduced by Shishkin in the analysis
of difference schemes on piecewise equidistant meshes; see Section 2.4.2. Write

u = u0 + εu1 + . . . + εkuk + εk+1u∗
k+1 + v0 + εv1 + . . . + εkvk + εk+1v∗

k+1,

where u0, . . . , uk, v0, . . . , vk are the standard terms of the asymptotic expan-
sion whereas u∗

k+1 and v∗
k+1 are defined by

Lu∗
k+1 = u′′

k , u∗
k+1(0) = u∗

k+1(1) = 0

and

Lv∗k+1 = −ε−(k+1)L(v0 + εv1 + . . . + εkvk),

v∗
k+1(0) = 0, v∗

k+1(1) = −(v0 + εv1 + . . . + εkvk)(1).

Now set

S := u0 + εu1 + . . . + εkuk + εk+1u∗
k+1,

E := v0 + εv1 + . . . + εkvk + εk+1v∗
k+1,

and putting q = k + 1 we obtain

Lemma 1.9. (S-decomposition) Let q be some positive integer. Consider
the boundary value problem (1.1) with b(x) > β > 0 and sufficiently smooth
data. Its solution u can be decomposed as u = S +E, where the smooth part S
satisfies LS = f and

|S(l)(x)| ≤ C for 0 ≤ l ≤ q,

while the layer part E satisfies LE = 0 and

|E(l)(x)| ≤ Cε−l exp
(
−β(1− x)

ε

)
for 0 ≤ l ≤ q.

Clearly Lemma 1.9 implies the bounds of Lemma 1.8. Conversely, the
S-decomposition of Lemma 1.9 can in fact be deduced from Lemma 1.8, as we
now show. Assume the bounds of Lemma 1.8. Let x∗ = 1− (qε/β) ln 1/ε. Set
S(x) = u(x) in [0, x∗]. Then Lemma 1.8 implies that

|S(l)(x)| ≤ C on [0, x∗] for 0 ≤ l ≤ q

since e−β(1−x∗)/ε = εq. Thus one can extend the definition of S to all of [0, 1]
with |S(l)(x)| ≤ 2C on [0, 1] for 0 ≤ l ≤ q.

Now consider E := u− S. Then E ≡ 0 in [0, x∗], while in (x∗, 1] one has



24 1 The Analytical Behaviour of Solutions

|E(q)(x)| ≤ |u(q)(x)|+ |S(q)(x)| ≤ C
(
1 + ε−qe−β(1−x)/ε

)
≤ Cε−qe−β(1−x)/ε.

Integrating E(k) for k = q, q − 1, . . . , 1, we get inductively

|E(k−1)(x)| =
∣∣∣∣ ∫ x

x∗
E(k)(s)ds

∣∣∣∣
≤ C

∫ x

x∗
ε−ke−β(1−s)/εds ≤ Cε−(k−1)e−β(1−x)/ε .

Thus S + E is an S-decomposition of u.
In [Lin02b] Linß shows how to construct an S-decomposition under mini-

mal regularity hypotheses.

Remark 1.10. (Reaction-Diffusion Problems) Consider the reaction-diffusion
problem

−εu′′ + c(x)u = f(x) on (0, 1)

with Dirichlet boundary conditions. Assume that c > γ > 0 on [0, 1]. Then
in general the solution u contains exponential boundary layers of the form
exp(−√γx/

√
ε) and exp(−√γ(1 − x)/

√
ε); note that these layers depend on√

ε and are present at both x = 0 and x = 1. An S-decomposition of u can be
found in [MOS96, Chapter 6].

The stability properties of the reaction-diffusion operator are very differ-
ent from those of the convection-diffusion operator. For instance, the Green’s
function of the reaction-diffusion problem with homogeneous Dirichlet condi-
tions satisfies

‖G‖∞ ≤ C√
ε

and is not bounded as ε → 0. ♣

Remark 1.11. (Two-parameter convection-diffusion-reaction problems) Con-
sider the two-parameter problem

−ε1u
′′ + ε2b(x)u′ + c(x)u = f(x)

where ε1 and ε2 are small positive parameters, b > 0 and c > 0. It is shown in
[LR04] that the nature of the solution decomposition depends on the relative
sizes of ε1 and ε2. The associated Green’s function satisfies

‖G‖∞ ≤ C√
ε1 + ε2

2

;

see [RU03]. ♣
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1.2 Linear Second-Order Turning-Point Problems

In second-order singularly perturbed differential equations, isolated points
where the coefficient of u′ vanishes are called turning points. We first look at
the case of a single turning point in the interior of the domain. For convenience,
the differential equation is posed on (−1, 1) with its turning point placed at
x = 0. That is, we consider

Lu := −εu′′ + xb(x)u′ + c(x)u = f(x) in (−1, 1), (1.24a)
u(−1) = u(1) = 0, (1.24b)

under the following hypotheses:

(i) b(x) �= 0 on [−1, 1], (1.25a)
(ii) c(x) ≥ 0, c(0) > 0. (1.25b)

The assumption c(0) > 0 simplifies the problem, as will be seen later. As in
the cancellation law of page 12, the location of any boundary layer(s) depends
on the sign of the convection term. From our previous experience, we expect
a boundary layer at x = −1 if the coefficient xb(x) of the convection term is
negative at x = −1, and a boundary layer at x = 1 if the same coefficient is
positive at x = 1.

If b(x) is positive on [−1, 1], we have xb(x)|x=−1 < 0 and xb(x)|x=1 > 0.
Consequently, if b is positive on [−1, 1], then the solution u has two boundary
layers. In this case, the reduced solution is the smooth solution of

L0u0 := xb(x)u′
0 + c(x)u0 = f(x) for − 1 < x < 1,

with no additional boundary condition! The function u0 is well defined: use
c(0) > 0 and a Taylor expansion about the singular point x = 0. Combin-
ing u0 with two boundary layer corrections, we obtain a first-order asymp-
totic expansion of u, and it is straightforward to prove a result analogous to
Theorem 1.4.

If the condition c(0) > 0 is removed, this changes the nature of the prob-
lem. In the example

−εu′′ + xu′ = x, u(−1) = u(1) = 0,

one finds that
u0(x) = x + A,

with a constant A that is not determined by the method of matched asymp-
totic expansions. This is called a resonance case. The difficulty arises because
µ1 → 0 as ε → 0, where µ1 is an eigenvalue of

−εw′′ + xw′ + µw = 0, w(−1) = w(1) = 0.

See [dG76] for details of the asymptotic behaviour in this situation.
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We return to the case c(0) > 0. Our experience in Section 1.1 leads us to
expect that if b is negative on [−1, 1], then boundary layers will not occur. In
this case the reduced solution u0 satisfies

L0u0 = f in (−1, 0), u0(−1) = 0,

and
L0u0 = f in (0, 1), u0(1) = 0.

The behaviour of u0 near the turning point x = 0 depends strongly on the
parameter λ := −c(0)/b(0) > 0. This is clearly demonstrated by the example

xbu′
0 + cu0 = bxk (constants b < 0 < c, integer k > 0),

whose solution is

u0(x) =
{

(|x|k − |x|λ)/(k − λ), if λ �= k,
xk ln |x|, if λ = k.

At x = 0 the solution has an interior layer .
Once more, we digress to the case where c(0) > 0 does not hold. If λ = 0,

then an interior shock layer in u exists, i.e., u0 is discontinuous. For example,
the solution of

−xu′
0 = x

that satisfies u0(−1) = u0(1) = 0 is

u0(x) =
{

1− x for 0 < x ≤ 1,
−1− x for − 1 ≤ x < 0.

Returning to the case λ > 0, we state without proof a result of Berger
et al. [BHK84] on the behaviour of the derivatives of u (see [CL93] for a
simpler argument in the case 0 < λ < 1).

Lemma 1.12. In the turning-point problem (1.24), assume that b(x) is neg-
ative and λ is not an integer. Assume also that b, c and f are sufficiently
smooth. Write λ = m + β, where m is a non-negative integer and 0 < β < 1.
Then the solution u of (1.24) satisfies

|u(l)(x)| ≤ C on (−1, 1) for l ≤ m, (1.26)

and for −1 < x < 1 and l = m + 1,m + 2, . . . ,q,

|u(l)(x)| ≤ C
(
1 + |x|+ ε1/2

)λ−l

on (−1, 1). (1.27)

Here the value of q depends on the smoothness of b, c and f .
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The interior layer in u is called a cusp layer because it can be modelled
approximately by the cusp-like function (x2 + ε)λ/2. If one defines the local
variable ξ in the layer by ξ := x/ε1/2, one obtains the interior layer equation

−d2v

dξ2
+ b(0)ξ

dv

dξ
+ c(0)v = 0.

The solution of this equation can be expressed in terms of parabolic cylinder
functions; see [BHK84].

The problem analysed in Lemma 1.12, where the coefficient of u′ has a
simple zero, has a simple turning point at x = 0. If the problem has a finite
number of simple turning points in (−1, 1), then the result of this lemma
is valid in a neighbourhood of each of these turning points. There are few
stability estimates for turning-point problems in the literature; see [Doe98]
for some (L∞, L∞) and (L1, L1) estimates in certain situations for simple
turning points. For multiple turning-point problems, where the coefficient of
u′ has a multiple zero, less is known; see [VF93], where such a problem is
discussed.

We close this section with a general L1-norm bound on the derivative of
the solution u of (1.1). No assumption is made on the sign of b so this result
applies also to solutions of (1.24a).

Theorem 1.13. For the boundary value problem (1.1), assume that b, c and
f are smooth and c(x) ≥ c0 > 0 for 0 ≤ x ≤ 1. Then there exists a constant
C such that ∫ 1

0

|u′(x)| dx ≤ C. (1.28)

Proof. The argument uses Lorenz’s technique [Lor82, Nii84]. First, write (1.1)
in the form

−εu′′ + (bu)′ + (c− b′)u = f

and differentiate, to get

(c− b′)u′ = εu′′′ − (bu)′′ + f ′ − (c′ − b′′)u. (1.29)

An integration by parts then yields∫ 1

0

(c− b′)u′ dx = [εu′′ − (bu)′]10 +
∫ 1

0

[f ′ − (c′ − b′′)u] dx

= [(c− b′)u− f ]10 +
∫ 1

0

[f ′ − (c′ − b′′)u] dx.

Since c(x) ≥ c0 > 0, a comparison principle and barrier function argument
gives ‖u‖∞ ≤ ‖f‖∞/c0 = C. Hence∣∣∣∣∫ 1

0

(c− b′)u′ dx

∣∣∣∣ ≤ C.
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Unfortunately, this is not exactly the desired estimate and we have to
modify the simple argument presented above. Thus, before integrating (1.29),
multiply by sgn(u′), where

sgn(z) :=

⎧⎨⎩−1 if z < 0,
0 if z = 0,
1 if z > 0.

This gives∫ 1

0

(c− b′)|u′| dx = ε

∫ 1

0

u′′′sgn(u′) dx−
∫ 1

0

(bu)′′sgn(u′) dx

+
∫ 1

0

[f ′ − (c′ − b′′)u]sgn(u′) dx.

We would like to integrate by parts as before, but this is impossible because
the function sgn is not differentiable. Thus replace sgn by a differentiable
approximation sµ, where µ is a positive parameter and sµ → sgn as µ → 0+.
This is done by defining

sµ(z) =

⎧⎪⎪⎨⎪⎪⎩
−1 for z ≤ −µ,

−1 + (z/µ + 1)2 for − µ < z ≤ 0,
1− (z/µ− 1)2 for 0 < z < µ,

1 for z ≥ µ,

for each µ > 0. For later use, observe that∣∣∣∣dsµ(z)
dz

∣∣∣∣ ≤ C∗

µ
for all z ∈ (−1, 1).

Replacing s above by sµ, one obtains∫ 1

0

(c− b′)u′sµ(u′) dx = ε

∫ 1

0

u′′′sµ(u′) dx−
∫ 1

0

(bu)′′sµ(u′) dx

+
∫ 1

0

[f ′ − (c′ − b′′)u]sµ(u′) dx.

Since ∫ 1

0

u′′′sµ(u′) dx = u′′sµ(u′)|10 −
∫ 1

0

(u′′)2
dsµ(z)

dz
|z=u′ dx

and dsµ(z)/dz ≥ 0, it follows that∫ 1

0

u′′′sµ(u′) dx ≤ u′′sµ(u′)|10.

Now letting µ→ 0+ gives
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0

(c− b′)|u′| dx ≤ εu′′s(u′)|10 + lim
µ→0+

E + C (1.30)

with

E = −
∫ 1

0

(bu)′′sµ(u′) dx.

Integrating by parts, write

E = −(bu)′sµ(u′)|10 + E1 + E2, with E2 =
∫ 1

0

b′u(sµ(u′))′ dx.

By Lebesgue’s dominated convergence theorem one has

lim
µ→0+

E2 = b′us(u′)|10 −
∫ 1

0

b′|u′| dx−
∫ 1

0

b′′us(u′) dx.

We will show below that limµ→0+ E1 = 0. Assuming this for the moment, it
follows from (1.30) that∫ 1

0

(c− b′)|u′| dx ≤ (εu′′ − bu′)s(u′)|10 −
∫ 1

0

b′|u′| dx + C,

whence ∫ 1

0

|u′| dx ≤ C,

since c(x) ≥ c0 > 0 and εu′′ − bu′ = cu− f .
To complete the proof, consider limµ→0+ E1. Now |bu′′| ≤ K, where K

may depend on ε, and |(d/dz)(sµ(z))| ≤ C∗/µ. Hence

|E1| =
∣∣∣∣∣
∫
|u′|<µ

bu′u′′ d

dz
sµ(z)|z=u′ dx

∣∣∣∣∣
≤ C∗K(ε) meas{x ∈ [0, 1] : 0 < |u′(x)| < µ},

which implies that limµ→0+ E1 = 0. ��

Theorem 1.13 is quite powerful because it makes no assumption regarding
the location or multiplicity of turning points.

1.3 Quasilinear Problems

We now move on to the more general quasilinear boundary value problem

−εu′′(x) + b(x, u(x))u′(x) + c(x, u(x)) = 0, for x ∈ (0, 1), (1.31a)
u(0) = A, u(1) = B. (1.31b)
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Unlike the previous sections, inhomogeneous boundary conditions are assumed
here since a transformation to homogeneous boundary conditions would alter
slightly the nonlinear differential operator. In the semilinear case, i.e., when
b(x, u) = b(x), results similar to those of Sections 1.1 and 1.2 are valid.

Assume that

∂c

∂s
(x, s) ≥ µ > 0 for all x ∈ (0, 1) and all s ∈ R. (1.32)

Then Nagumo’s theory of upper and lower solutions [CH84] yields existence
of a solution u of (1.31) with

|u(x)| ≤ max
{

1
µ

max
x∈[0,1]

|c(x, 0)|, |A|, |B|
}

for all x ∈ [0, 1].

This solution is unique [O’M91].
If b(·, ·) has constant sign – say b < 0 – then, as in Section 1.1, we expect

a boundary layer at x = 0. The theory is more complicated than in the linear
case: one must include a pertinent boundary layer stability assumption, as we
describe below. For the moment assume that u has a boundary layer at x = 0.
Then the reduced solution uR is defined by

b(x, uR)u′
R + c(x, uR) = 0 on (0, 1) with uR(1) = B,

where we assume that

b(x, uR(x)) ≤ −κ < 0 for all x ∈ [0, 1] and some κ > 0.

With the aim of finding a boundary layer correction v0 at x = 0, set
ξ = x/ε. Then v0 should satisfy

−d2v0

dξ2
+ b(0, uR(0) + v0)

dv0

dξ
= 0, v0(0) = A− uR(0).

In the linear case, one can compute v0 explicitly and see that it is expo-
nentially decaying. But in the nonlinear case, the existence of exponentially
boundary layers v0 depends on |A−uR(0)|. One needs the following additional
boundary layer stability assumption [CH84, VBK95], which guarantees that
the boundary layer jump |A − uR(0)| belongs to the domain of influence of
the asymptotically stable solution v0 ≡ 0:∫ uR(0)

η

b(0, s) ds < 0 if A < η < uR(0) (1.33a)

and ∫ η

uR(0)

b(0, s) ds < 0 if uR(0) < η < A. (1.33b)
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The necessity of the inequalities (1.33) can be deduced from the implicit rep-
resentation

ξ =
∫ A−uR(0)

v0

ds

q(s)
where q(s) = −

∫ s

0

b(0, uR(0) + t)dt.

These conditions say essentially that the jump |A − uR(0)| should not be
too large; if they are violated, then we cannot construct a boundary layer
correction at x = 0.

A rigorous analysis leads to the following classical result [O’M91], which
is due to Coddington and Levinson.

Theorem 1.14. Assume that b and c are sufficiently smooth. Define the re-
duced solution uR by

b(x, uR)u′
R + c(x, uR) = 0 on (0, 1) with uR(1) = B.

Assume that b(x, uR(x)) ≤ −κ < 0 and that the boundary layer stability
conditions (1.33) are satisfied. Then for 0 < x < 1 one has

u(x) = uR(x) + O (|A− uR(0)| exp(−κx/ε)) + O(ε),

u′(x) = u′
R(x) + O

(
ε−1 exp(−κx/ε)

)
+ O(ε).

The hypotheses of Theorem 1.14 can be weakened. In particular, one can
replace the condition b(x, uR(x)) ≤ −κ < 0 by the hypothesis that uR is glob-
ally stable, viz., that b(x, uR(x)) < 0 for 0 < x ≤ 1; see [How78, Theorem 5.5].
Analogously, if uL is defined by

b(x, uL)u′
L + c(x, uL) = 0 with uL(0) = A,

we say that uL is globally stable if b(x, uL(x)) > 0 for 0 ≤ x < 1.
One can verify that the conditions of Theorem 1.14 are satisfied in the

example

−εu′′ − euu′ +
π

2
sin

πx

2
e2u = 0, u(0) = A, u(1) = 0,

without any restriction on the boundary layer jump.
In the example

−εu′′ − uu′ + u = 0, u(0) = −2, u(1) = 1.5, (1.34)

both uR(x) = x + 0.5 and uL(x) = −2 + x are globally stable, but neither
boundary layer stability condition (the condition for uL is analogous to (1.33))
is satisfied: ∫ uR(0)=0.5

A=−2

(−s) ds �< 0 and
∫ B=1.5

uL(1)=−1

(−s) ds �> 0.
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Thus a boundary layer cannot exist at x = 0 nor at x = 1 because the
boundary layer jump is too large! That is, the solution u has an interior layer
but no boundary layer.

As with the linear turning-point problems of Section 1.2, we expect interior
layers if no boundary layer is present. In the nonlinear case the analysis can
be much more complicated than before. It is not easy to find the location(s)
of possible interior layers, and the reduced equation may have more than one
solution – then it is not clear which of these is the correct limit (as ε → 0) of
the exact solution u in a given subinterval and where a transition from one
reduced solution to another takes place. A discontinuous transition will cause
a shock layer in the solution u, and a continuous transition a corner layer.

We sketch the situation for the problem

−εu′′ + b(u)u′ + c(x, u) = 0 for x ∈ (0, 1), (1.35a)
u(0) = A, u(1) = B, (1.35b)

under the hypothesis (1.32). It is easier to handle (1.35) than (1.31) because
the convection term can be written in the conservation form

b(u)u′ = (e(u))′, with e(u) :=
∫ u

b(s)ds.

The principal approach used to find the reduced solution u0(x) := limε→0 u(x)
is a standard technique in the theory of conservation laws (see [LeV90]); these
are equations of the form ut + (e(u))′ = 0, where t is a time variable.

Introduce the entropy flux E(·) and the convex entropy function U(·),
which depend on e(·) above. These functions are related by

dE

dz
=

dU

dz

de

dz
.

A simple example is U(z) = z2/2, E(z) =
∫ z

se′(s)ds. Another important
choice is due to Kruzkov [LeV90]: set

U(z) = |z − k| and E(z) = [e(z)− e(k)] sgn(u− k),

where k is an arbitrary constant. Multiplying the differential equation (1.35a)
by U ′(u), one writes it in the form

d

dx
E(u) + U ′(u)c(x, u) = ε

d2

dx2
U(u)− εU ′′(u)

(
du

dx

)2

.

Now multiply by a smooth function ϕ, integrate by parts, and take the limit
as ε → 0. This steers us to the inequality∫ 1

0

[−E(u0)ϕ′ + U ′(u0)c(x, u0)ϕ] dx ≤ −E(u0)ϕ|10.
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That is, Kruzkov’s choice yields∫ 1

0

sgn(u0 − k) [(e(u0)− e(k))ϕ′ − c(x, u0)ϕ] dx

≥
∑

i=0,1

(−1)isgn (u0(i)− k) (e(u0(i))− e(k)) ϕ(i).

If one chooses special test functions ϕ, this yields [Lor84] the following con-
venient characterization of the reduced solution u0 :

Theorem 1.15. For 0 ≤ x ≤ 1, set u0(x) = limε→0 u(x), where u is the
solution of (1.35). Then
(i) If u0 is smooth in a subinterval, it satisfies the reduced equation

b(u0)u′
0 + c(x, u0) = 0.

(ii) At the boundaries x = 0 and x = 1, u0 satisfies

sgn
(
u0(0)−A

) ∫ u0(0)

k

b(s) ds ≤ 0 for all k between A and u0(0),

sgn
(
u0(1)−B

) ∫ u0(1)

k

b(s) ds ≥ 0 for all k between B and u0(1).

(iii) At a discontinuity x∗ ∈ (0, 1) of u0, the following jump condition is
satisfied:

sgn
(
u0(x+

∗ )− u0(x−
∗ )
) ∫ u0(x∗)

k

b(s) ds ≥ 0

for all k between u0(x+
∗ ) and u0(x−

∗ ).

Part (ii) of Theorem 1.15 is closely related to the boundary layer stability
conditions (1.33), and the characterization (iii) allows us to find the position
of interior layers.

For example, consider the case where uL and uR are globally stable but
no boundary layer exists. For convenience we assume that uL < 0 < uR. We
expect that

u0(x) =
{

uL(x) for 0 ≤ x < x∗,
uR(x) for x∗ < x ≤ 1,

but x∗ is unknown. Theorem 1.15 (iii) tells us that

J(x∗) = 0, where J(x) :=
∫ uR(x)

uL(x)

b(s) ds. (1.36)

Because no boundary layer is present,

J(0) =
∫ uR(0)

A

b(s)ds > 0 and J(1) =
∫ B

uL(1)

b(s)ds < 0.
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Furthermore, for some ζ ∈ (uL, uR),

J ′(x) = b(uR)u′
R − b(uL)u′

L = c(x, uL)− c(x, uR) = cu(x, ζ)(uL − uR)
< 0.

Hence x∗ is uniquely determined by (1.36). In example (1.34),

J(x) =
∫ x+0.5

−2+x

(−s)ds = −1
2
(5x− 3.75),

which delivers the value x∗ = 0.75.
Suppose now that we know only that b(x, uL(x)) > 0 on [0, xL) for some

xL ∈ (0, 1) (i.e., uL is stable only on [0, xL)), and b(x, uR(x)) < 0 on (xR, 1]
for some xR ∈ (xL, 1). Then one expects that

u0(x) =

⎧⎨⎩uL(x) for 0 ≤ x ≤ xL,
us(x) for xL ≤ x ≤ xR,
uR(x) for xR ≤ x ≤ 1,

with us a smooth solution of the reduced equation and corner layers at xL

and xR. If example (1.34) is modified to

−εu′′ − uu′ + u = 0, u(0) = −1
2
, u(1) =

1
3
,

then one gets uL(x) = −1/2 + x with xL = 1/2, and uR(x) = x − 2/3 with
xR = 2/3. In this example, us ≡ 0 and

u0(x) =

⎧⎨⎩
x− 1

2 for 0 ≤ x ≤ 1
2 ,

0 for 1
2 ≤ x ≤ 2

3 ,

x− 2
3 for 2

3 ≤ x ≤ 1.

We end with a stability result from [Lor82] and an a priori bound on the
first-order derivative of the exact solution of the quasilinear problem (1.35).
Define the operator T by

Tv := −εv′′ + b(v)v′ + c(x, v).

Theorem 1.16. In the boundary value problem (1.31) assume that

∂c

∂s
(x, s) ≥ µ > 0 for all x ∈ (0, 1) and all s ∈ R.

Then for all v and w in C2(0, 1) that satisfy v(0) = w(0) and v(1) = w(1),
one has

‖v − w‖L1 ≤
1
µ
||Tv − Tw||L1 .

Furthermore, ∫ 1

0

|u′(x)|dx ≤ C.

The proof of the stability result uses the Green’s function of the linearized
problem, while the proof of the a priori bound for u′ resembles the proof of
Theorem 1.13.
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1.4 Linear Higher-Order Problems and Systems

1.4.1 Asymptotic Expansions for Higher-Order Problems

Consider the linear differential equation

Lu := εm−nu(m) +
n∑

ν=0

aν(x)u(ν) = f(x), for 0 < x < 1, (1.37)

subject to the boundary conditions

u(µi)(0) = 0, for i = 1, ..., r, (1.38a)

u(µi)(1) = 0, for i = r + 1, ...,m. (1.38b)

Here m and n are positive integers with m > n, so the order of the differential
equation decreases if one sets ε = 0. The boundary conditions are ordered so
that m > µ1 > µ2 > ... > µr ≥ 0 and m > µr+1 > µr+2 > ... > µm ≥ 0.
Furthermore, we exclude turning points by assuming that

an(x) �= 0 for all x ∈ [0, 1]. (1.39)

Applying the method of matched asymptotic expansions, the leading part
u0 of the global expansion satisfies the nth-order equation

L0u0 :=
n∑

ν=0

aν(x)u(ν)
0 = f.

It is natural to attach n boundary conditions to this differential equation.
That is, m − n of the original m boundary conditions will be discarded and
we must decide which conditions to retain.

Introduce the local variable ξ = x/ε to investigate possible boundary layers
at x = 0 (one could similarly explore the behaviour of u near x = 1). The
leading term in the local correction is a differential equation with constant
coefficients. Its characteristic equation is

λn
(
λm−n + an(0)

)
= 0.

Suppose that σ roots of this equation have negative real part and τ roots
have positive real part. Two possible situations can occur [O’M91]: in the
nonexceptional case, σ + τ = m − n, while in the exceptional case there are
two pure imaginary roots so σ+τ = m−n−2. The corresponding cancellation
law is:

• Cancel σ boundary conditions at x = 0 and τ boundary conditions at
x = 1, choosing those with the highest-order derivatives.

• In the exceptional case, also cancel from the remaining boundary con-
ditions those two with the highest-order derivatives, provided that they
belong to the same endpoint and that the selection is without ambiguity.
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After the application of the cancellation law, the reduced solution is required
to satisfy the remaining n boundary conditions; this defines the reduced prob-
lem. If the cancellation law and reduced problem are well defined then the
method of matched asymptotic expansions works, but the cancellation law is
not well defined in all cases.

For example, consider the boundary value problem

ε2u(4) − u′′ = f(x) for x ∈ (0, 1),

subject to the boundary conditions

u′′′(0) = u(0) = u′(1) = u(1) = 0.

Here we have σ = τ = 1 and the cancellation law is well defined. The reduced
problem is

−u′′
0 = f with u0(0) = u0(1) = 0.

This has a unique solution. We find that u(x) has an asymptotic expansion
of the form

uas(x) =
m∑

ν=0

uν(x)εν + ε3

(
m∑

µ=0

vµ(ξ)εµ

)
e−x/ε

+ ε

(
m∑

µ=0

wµ(ζ)εµ

)
e−(1−x)/ε,

for arbitrary m, with ξ = x/ε and ζ = (1 − x)/ε. This expansion can be
formally differentiated to get information about derivatives of u; see [O’M91].

Little is known about higher-order problems with turning points.

1.4.2 A Stability Result

Stability is an essential property of every discretization method and to get
some insight into this property one must study the stability properties of the
given continuous problem. Furthermore, asymptotic expansions require high
smoothness of the coefficients of the problem; consequently, they may fail to
provide sufficient information about derivatives of the exact solution for the
analysis of discretization methods.

We consider the boundary value problem (1.37)–(1.38), under the assump-
tion (1.39), for the case n = m−1. That is, the order of the differential equation
decreases by one if ε = 0. We introduce the abbreviation

Bu = (B1u,B2u, ..., Bmu) = 0

for the m boundary conditions (1.38) and define the norm

‖v‖ε,m−1,∞ := max
{
‖v‖∞, ‖v′‖∞, ..., ‖v(m−2)‖∞, ε‖v(m−1)‖∞

}
.
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Remark 1.17. It is possible to replace ε‖v(m−1)‖∞ by ‖v(m−1)‖L1 . ♣

Niederdrenk and Yserentant [NY83] prove the following stability estimate
for continuous coefficients, and Gartland [Gar91] extends it to the case

am−1 ∈ L∞, a0, a1, ..., am−2 ∈ L1. (1.40)

Theorem 1.18. Assume that the boundary conditions are bounded with re-
spect to the norm ‖ · ‖ε,m−1,∞, in the sense that

|Bν(v)| ≤ C‖v‖ε,m−1,∞ for ν = 1, ...,m.

Suppose that (1.40) is satisfied. If there exists a fundamental system {φν} for
Lφ = 0 that satisfies

‖φν‖ε,m−1,∞ ≤ C,

and the m ×m matrix [Bµ(φν)] has an inverse whose norm (induced by the
discrete L1 norm) can be bounded independently of ε, then we have the stability
inequality

‖v‖ε,m−1,∞ ≤ C (‖Lv‖L1 + |Bv|) .

The theorem is also valid for more general boundary condition functionals.
Note that for (1.38), the boundedness of the boundary conditions with respect
to the norm ‖ · ‖ε,m−1,∞ requires that

µ1 ≤ m− 2 and µr+1 ≤ m− 2;

thus the boundary conditions cannot contain the (m− 1)th derivative.
The conditions on the fundamental system and on the inverse of the matrix

[Bµ(φν)] are opposing constraints, as can be seen from a careful study of the
following example.

Example 1.19. Consider the differential operator and boundary conditions

Lu := εu(4) + u′′′, Bu := (u(0), u′′(0), u(1), u′′(1)) .

Then the fundamental system {1, x, x2, ε2e−x/ε} satisfies the conditions of
Theorem 1.18. With homogeneous boundary data, the theorem gives not only
stability but also the a priori estimate

‖u‖∞ + ‖u′‖∞ + ‖u′′‖∞ + ε‖u′′′‖∞ + ‖u′′′‖L1 ≤ C‖f‖L1 .

If, however, the boundary conditions are

Bu := (u(0), u′(0), u(1), u′(1)) ,

then Theorem 1.18 does not apply and stability holds only in some weaker
norm. ♣

Little attention has been paid in the literature to the case n ≤ m − 2 for
m > 2. See [SS95a] for some results when n = m− 2.
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1.4.3 Systems of Ordinary Differential Equations

Systems of ordinary differential equations are often discussed in books on
asymptotic expansions for singularly perturbed problems: see, e.g., [O’M91,
Chapter 3], [VB90, Chapter 2] or [Was65, Chapter 7]. Nevertheless in the past
relatively little attention was paid to their numerical solution, although the pa-
pers [Bak69] (reaction-diffusion systems) and [AKK74] (convection-diffusion
systems) are worth noting. In recent years interest in this area has grown, as
we now describe.

Consider a general system of M equations:

Lu : = −εu′′ + Bu′ + Au = f on Ω := (0, 1), (1.41a)
u(0) = g0, u(1) = g1, (1.41b)

where u = (u1, u2, . . . , uM )T is the unknown solution while f = (f1, . . . , fM )T ,
g0 and g1 are constant column vectors, and A = (aij) and B = (bij) are M×M
matrices.

The system (1.41) is said to be weakly coupled if the convection coupling
matrix B is diagonal, i.e., the ith equation of the system is

−εu′′
i + biiu

′
i +

M∑
j=1

aijuj = fi, (1.42)

so the system is coupled only through the lower-order reaction terms.
Linß [Lin07b] allows different diffusion coefficients in different equations:

ε = εi in the ith equation for i = 1, . . . , M . Assume that bii(x) ≥ βi > 0
and aii(x) ≥ α > 0 on [0, 1] for each i. (In [Lin07b] the weaker hypothesis
|bii(x)| ≥ βi > 0 is used, which permits layers in u at both ends of [0,1], but
for brevity we won’t consider this here.) Rewrite (1.42) as

−εiu
′′
i + biiu

′
i + aiiui = −

∑
j �=i

aijuj + fi, (1.43)

Then ‖ui‖∞ ≤ ‖(−
∑

j �=i aijuj + fi)/aii‖∞ by a standard maximum principle
argument. Rearranging, one gets

‖ui‖∞ −
∑
j �=i

∥∥∥∥aij

aii

∥∥∥∥
∞
‖uj‖∞ ≤

∥∥∥∥ fi

aii

∥∥∥∥
∞

for i = 1, . . . , M.

Define the M × M matrix Γ = (γij) by γii = 1, γij = −‖aij/aii‖∞ for
i �= j. Assume that Γ is inverse-monotone, i.e., that Γ−1 ≥ 0. It follows that
‖u‖∞ ≤ C‖f‖∞ for some constant C, where ‖v‖∞ = maxi ‖vi‖∞ for v =
(v1, . . . , vM )T . One can now apply the scalar-equation analysis of Lemma 1.8
to (1.43) for each i and get

|u(k)
i (x)| ≤ C

[
1 + ε−k

i e−βi(1−x)/εi

]
for x ∈ [0, 1] and k = 0, 1.
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Thus there is no strong interaction between the layers in the first-order deriv-
atives of different components ui; nevertheless the domains of these layers can
overlap and this influences the construction of numerical methods for (1.41).

The system (1.41) is said to be strongly coupled if for some i ∈ {1, . . . , M}
one has bij �= 0 for some j �= i. Such systems do not satisfy a maximum
principle of the usual type. One now gets stronger interactions between layers;
see [AKK74, Lin07a, OS, OSS]. For each i assume bii(x) ≥ βi > 0 and aii(x) ≥
0 on [0, 1]. Rewrite the ith equation as

Liu := −εu′′
i + biiu

′
i + aiiui = fi +

m∑
j=1
j �=i

[
(bijuj)′ − (b′ij + aij)uj

]
, (1.44a)

ui(0) = ui(1) = 0. (1.44b)

For the scalar problem Liv = φ and v(0) = v(1) = 0, one has by (1.20) – see
[AK98, And02] for the case where (1.9) is not satisfied – the stability result
‖v‖∞ ≤ Ci‖φ‖W−1,∞ for a certain constant Ci that depends only on bii and
aii. Apply this result to (1.44) then, similarly to the analysis of (1.43), gather
the ‖uj‖∞ terms to the left-hand side. Define the M ×M matrix Υ = (γij)
by γii = 1, γij = −Ci[‖b′ij + aij‖L1 + ‖bij‖∞] for i �= j. Assuming that Υ is
inverse monotone, we get an a priori bound on ‖u‖∞. Using this bound, it
is shown in [OSS] that one can decompose each component of u similarly to
(1.22) and (1.23).

For the analysis of systems of reaction-diffusion equations (i.e., B ≡ 0 in
(1.41)), see [Bak69, LM, MS03].
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Numerical Methods for Second-Order
Boundary Value Problems

2.1 Finite Difference Methods on Equidistant Meshes

2.1.1 Classical Convergence Theory for Central Differencing

This section examines linear two-point boundary value problems that are not
singularly perturbed, in order to introduce the classical terminology of finite
difference methods. Thus consider the problem

Lu := −u′′ + b(x)u′ + c(x)u = f(x), u(0) = u(1) = 0, (2.1)

under the assumptions that b, c, f are smooth and c(x) ≥ 0.
Finite difference methods will be studied on an equidistant grid with mesh

size h = 1/N ; that is, set

xi = ih for i = 0, 1, ..., N, with x0 = 0 and xN = 1.

(We could work equally well with almost-equidistant meshes, but for simplicity
restrict ourselves to the equidistant case. See Section 2.4 for a classification
of meshes and for extensions of the theory to meshes that are not almost
equidistant.)

A finite difference method is a discretization of the differential equation
using the grid points xi, where the unknowns ui (for i = 0, . . . , N) are approx-
imations of the values u(xi). It is natural to approximate u′(x) by the central
difference

(D0u)(x) := [u(x + h)− u(x− h)]/(2h).

Composing the forward and backward differences

(D+u)(x) := [u(x + h)− u(x)]/h and (D−u)(x) := [u(x)− u(x− h)]/h,

yields the following central approximation for u′′(x):

(D+D−u)(x) := [u(x + h)− 2u(x) + u(x− h)]/h2.
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The order of accuracy of every finite difference approximation depends on the
smoothness of u. For instance, Taylor’s formula yields

u(x± h) = u(x)± hu′(x) + h2 u′′(x)
2

± h3 u′′′(x)
6

+ R4,

with

R4 =
∫ x±h

x

[u′′′(ξ)− u′′′(x)]
(x± h− ξ)2

2
dξ.

Hence ∣∣(D+D−u)(x)− u′′(x)
∣∣ ≤ Kh2 if u ∈ C4, (2.2)

– this condition can be weakened to the Lipschitz continuity of u′′′ – and we
say that D+D− is second-order accurate, which is sometimes written as O(h2)
accurate. The order decreases if u is less smooth; for example, if one only has
u ∈ C3, then D+D− is first-order accurate. Using the notation

gi = g(xi), where g can be b, c or f,

the classical central difference scheme for the boundary value problem (2.1)
is

−D+D−ui + biD
0ui + ciui = fi for i = 1, ..., N − 1, (2.3a)
u0 = uN = 0. (2.3b)

This is a tridiagonal system of linear equations:

riui−1 + siui + tiui+1 = fi for i = 1, ..., N − 1, with u0 = uN = 0, (2.4)

where
ri = − 1

h2
− 1

2h
bi, si = ci +

2
h2

, ti = − 1
h2

+
1
2h

bi. (2.5)

Two questions must now be tackled: what properties does the discrete
problem (2.3) enjoy? What can we say about the errors |u(xi)− ui| ?

Classical convergence theory for finite difference methods is based on the
complementary concepts of consistency and stability. First, formally write
(2.3) (or any difference scheme) as

Lhuh = fh, (2.6)

where Lh is a matrix,

uh := (uh(x0), uh(x1), ..., uh(xN ))T := (u0, u1, . . . , uN )T ,

and fh := (f(x0), f(x1), . . . , f(xN ))T . Functions defined on the grid, such as
uh and fh, are called grid functions. The restriction of a function v ∈ C[0, 1]
to a grid function is denoted by Rhv, viz., Rhv = (v(x0), v(x1), ..., v(xN )). We
sometimes omit Rh when the meaning is clear. The discrete maximum norm
on the space of grid functions is

‖vh‖∞,d := max
i
|vh(xi)|.
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Definition 2.1. Consider a difference scheme of the form Lhuh = Rh(Lu),
where we incorporate the boundary conditions into the scheme by taking the
first and last rows of Lh to be identical to the first and last rows respectively
of the identity matrix, with (RhLu)0 = u0 and (RhLu)N = uN . This scheme
is consistent of order k in the discrete maximum norm if

‖LhRhu−RhLu‖∞,d ≤ Khk,

where the positive constants K and k are independent of h.

One could define consistency analogously with respect to an arbitrary norm.
As in (2.2), one can apply Taylor’s formula to prove

Lemma 2.2. Under the assumption u ∈ C4[0, 1], the central difference scheme
(2.3) is consistent of order two.

Applying the discrete operator Lh to the error at the interior grid points
yields

Lh(Rhu− uh) = LhRhu− fh = LhRhu−RhLu. (2.7)

In order to estimate Rhu − uh from (2.7) and the consistency order, it is
natural to introduce the concept of stability.

Definition 2.3. A discrete problem Lhuh = fh is stable in the discrete max-
imum norm, if there exists a constant K (the stability constant) that is inde-
pendent of h, such that

‖uh‖∞,d ≤ K‖Lhuh‖∞,d (2.8)

for all mesh functions uh.

Note that, analogously to the continuous case, one could generalize this to
(A,B) stability which is particularly important for non-equidistant meshes.
Thus, to be precise, Definition 2.3 deals with (L∞, L∞) stability.

Our final ingredient is

Definition 2.4. A difference method for (2.1) is convergent (of order k) in
the discrete maximum norm if there exist positive constants K and k that are
independent of h for which

‖uh −Rhu‖∞,d ≤ Khk.

The main result of classical convergence theory for finite difference meth-
ods now follows immediately:

Consistency + Stability =⇒ Convergence.

The investigation of the order of consistency is usually based on Taylor’s for-
mula and is straightforward. But to prove stability one needs some new tools.
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In classical finite difference analyses, it is standard to use the theory of M-
matrices, which is now described; see [Boh81, OR70] for further information.

The material that follows uses the natural ordering of vectors, viz., x ≤ y
if and only if xi ≤ yi for all i. Sometimes we simply write z ≥ 1 when we
mean that zi ≥ 1 for all i. For each matrix A = (aij), the inequality A ≥ 0
means that aij ≥ 0 for all i and j.

A matrix A for which A−1 exists with A−1 ≥ 0 is called inverse-monotone.

Lemma 2.5 (Discrete comparison principle). Let A be inverse-monotone.
Then Av ≤ Aw implies that v ≤ w.

Proof. The argument is simple: multiply A(v − w) = b ≤ 0 by A−1 and use
A−1 ≥ 0. ��

The class of M-matrices is an important subset of the class of inverse-
monotone matrices.

Definition 2.6. A matrix A is an M-matrix if its entries aij satisfy aij ≤ 0
for i �= j and its inverse A−1 exists with A−1 ≥ 0.

The diagonal entries of an M-matrix satisfy aii > 0.
While the condition aij ≤ 0 is easy to check, it may be difficult to verify

directly the inequality A−1 ≥ 0. Fortunately, several equivalent but more
tractable characterizations of M-matrices are known. The following result is
frequently used in the context of discretization methods (see [Boh81] or [AK90]
for a proof).

Theorem 2.7 (M-criterion). Let the matrix A satisfy aij ≤ 0 for i �= j.
Then A is an M-matrix if and only if there exists a vector e > 0 such that
Ae > 0. Furthermore, we have

‖A−1‖∞,d ≤
‖e‖∞,d

mink(Ae)k
. (2.9)

Here the matrix norm is the norm induced by the corresponding vector norm.

In Theorem 2.7 the vector e is called a majorizing element for the ma-
trix A. This theorem allows us to verify that the coefficient matrix of a given
discretization is an M-matrix while simultaneously estimating the stability
constant from (2.9) — provided that we are able to find a majorizing element.
The following recipe for construction of this element is often successful:

• Find a function e > 0 such that Le(x) > 0 for x ∈ (0, 1) – this is a
majorizing element for the differential operator L.

• Restrict e to a grid function eh.

In general, if the first step in this method is feasible then the method will
work (at least for sufficiently small h) provided the discretization is consistent
to some positive order.

For homogeneous boundary conditions one usually eliminates the variables
u0 and uN before applying Theorem 2.7.
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Example 2.8. Consider the special case where b(x) ≡ 0 in the differential op-
erator L of (2.1). Choose e(x) := x(1− x)/2. Then

Le(x) = 1 + c(x)e(x) ≥ 1.

On setting eh := Rhe one obtains

Lheh ≥ (1, ..., 1)T .

since D+D− discretizes quadratic functions exactly at the interior grid points.
Now inequality (2.9) provides a stability constant of 1/8. ♣

In the general case of (2.1), the construction of a majorizing element is
slightly more complicated. Define e(x) to be the solution of the boundary
value problem

−w′′ + b(x)w′ = 1, w(0) = w(1) = 0.

Then e(x) > 0 for x ∈ (0, 1) and e(x) is bounded. The inequality c(x) ≥ 0
and the consistency of the discretization imply that at the interior grid points
one has

Lheh = RhLe + (Lheh −RhLe) ≥ 1/2

for all sufficiently small h, because RhLe = 1. This proves

Lemma 2.9. For all sufficiently small h, the central difference scheme for
the boundary value problem (2.1) is stable in the discrete maximum norm;
moreover, the corresponding coefficient matrix is then an M-matrix.

One can clearly combine Lemmas 2.2 (consistency) and 2.9 (stability) to
obtain a second-order convergence result.

Remark 2.10. In general, the proof of stability via M-matrices is inapplicable
to higher-order difference schemes that are based on stencils with more than
three points. It may nevertheless be possible to use the property of strong
diagonal dominance (see, e.g., [Her90]) or to factor a matrix as a product of
M-matrices [Lor75] or to use special splittings [AK90]. For a general stability
theory of difference schemes see [Gri85a]. ♣

2.1.2 Upwind Schemes

This subsection and its two successors study difference schemes for the singu-
larly perturbed boundary value problem

Lu := −εu′′ + b(x)u′ + c(x)u = f(x) on (0, 1), u(0) = u(1) = 0, (2.10)

when turning points are excluded, i.e., when b(x) �= 0 for all x ∈ [0, 1]. We
also assume that c ≥ 0 on [0,1] and that the functions b, c and f are smooth.
Recall that for b > 0 there is an exponential boundary layer at x = 1, and for
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b < 0 the boundary layer is at x = 0. The conditions “b < 0” and “b > 0” are
equivalent: the change of variable x �→ 1−x transforms the problem from one
formulation to the other.

Suppose that ε > 0 is small. If u exhibits a boundary layer, this adversely
affects both consistency and stability. If instead the boundary conditions are
such that u has no layer, then the consistency error improves but stability
may still be a problem.

To begin, the central difference scheme is applied to the example

−εu′′ + u′ = 0 on (0, 1), u(0) = 0, u(1) = 1.

A transformation u(x) = x + v(x) would give homogeneous boundary con-
ditions, but one can use the scheme directly with inhomogeneous conditions.
The discrete problem is

−εD+D−ui + D0ui = 0, u0 = 0, uN = 1.

It is easy to solve this exactly:

ui =
ri − 1
rN − 1

, with r =
2ε + h

2ε− h
.

If h � 2ε, then r ≈ −1 so this computed solution oscillates badly and is not
close to the true solution

u(x) =
e−(1−x)/ε − e−1/ε

1− e−1/ε
.

Figure 2.1 shows the oscillations of the central scheme on an uniform mesh
if ε is small compared with h. On the other hand if h < 2ε, then the central
difference scheme works — but from the practical point of view this assump-
tion is unsatisfactory when, for instance, ε = 10−5. A fortiori, in two or three
dimensions such a mesh restriction would lead to unacceptably large numbers
of mesh points, as for small ε the dimension of the algebraic system generated
would be too large for computer solution.

Returning to the general problem (2.10), write the central difference
scheme in the form of (2.5), viz.,

ri = − ε

h2
− 1

2h
bi, si = ci +

2ε

h2
, ti = − ε

h2
+

1
2h

bi.

This gives an M-matrix and hence stability if we assume that

h ≤ h0(ε) =
2ε

‖b‖∞
,

which generalizes the observation of the example above. Note that h0(ε) → 0
if ε → 0. This conclusion is not confined to the central difference scheme:
Classical numerical methods on equidistant grids yield satisfactory numerical
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Fig. 2.1. Oscillations of the central difference scheme

solutions for singularly perturbed boundary value problems only if one uses an
unacceptably large number of grid points. In this sense, classical methods fail.

An alternative heuristic explanation for the failure of central differencing
in the above example is that when ε � h the scheme is essentially D0ui = 0,
which implies in particular that uN−2 ≈ uN = 1, so uN−2 is a poor approxi-
mation to u(xN−2) ≈ 0.

This argument also shows that we would do well to avoid any difference
approximation of u′(xN−1) that uses uN . The simplest candidate meeting this
requirement is the approximation

u′(xi) ≈
ui − ui−1

h
. (2.11)

An inspection of the signs of the matrix entries of the earlier discrete problem,
with the aim of modifying the difference scheme in order to generate an M-
matrix, also motivates (2.11).

Thus for the general case where the sign of b may be positive or negative,
consider the scheme

−εD+D−ui + biD
ℵui + ciui = fi for i = 1, ..., N − 1, (2.12a)
u0 = uN = 0, (2.12b)

with

Dℵ =
{

D+ if b < 0,
D− if b > 0.

(2.12c)
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This is the simple upwind scheme. (We saw in the Introduction that convection
dominates the problem and assigns a direction to the flow; upwind means
that the finite difference approximation of the convection term is taken on the
upstream side of each mesh point.) The numerical behaviour of the upwind
scheme is much better than the central scheme: see Figure 2.2.
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Fig. 2.2. Solution of the upwind scheme on an equidistant mesh

We now begin our analysis of the upwind scheme. Write Lh for the matrix
of the scheme after eliminating u0 and uN . In the form (2.4), the coefficients
of the discrete problem are

ri = − ε

h2
− 1

h
max{0, bi}, si = ci +

2ε

h2
+

1
h
|bi|,

ti = − ε

h2
+

1
h

min{0, bi}.

Now the off-diagonal matrix entries are non-positive, irrespective of the rela-
tive sizes of h and ε.

Lemma 2.11. Assume that b(x) �= 0 for all x ∈ [0, 1]. Then the coefficient
matrix Lh for the upwind scheme (2.12) is an M-matrix and the upwind
scheme is uniformly stable with respect to the perturbation parameter:

‖uh‖∞,d ≤ C‖Lhuh‖∞,d,

with a stability constant C that is independent of ε and h.
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Proof. For definiteness assume that b(x) ≥ β > 0. We construct a suitable
majorizing vector. Choose e(x) := x, so Le(x) ≥ β. A direct computation
yields Lheh ≥ β. By Theorem 2.7 the matrix is an M-matrix and one gets the
desired stability bound with stability constant C = 1/β. ��

This stability result for the upwind scheme remains valid on arbitrary
meshes. Moreover, introducing mesh analogues of the norms previously seen,
one can also prove (L∞,d, L1,d) and (L∞,d,W−1,∞,d) stability results which
are useful when analysing the scheme on layer-adapted meshes, as will be seen
later.

In ensuring the stability of the upwind scheme, we have paid a certain
price in accuracy: D+ and D− are only O(h) approximations of the first-
order derivative whereas the central difference D0 is an O(h2) approximation.
The precise analysis of the consistency error and convergence behaviour of the
upwind scheme that now follows is based on [KT78] and draws on the bounds
of Lemma 1.8 on derivatives of the exact solution u.

Theorem 2.12. Assume that b > β > 0 and c ≥ 0. Then there exists a
positive constant β∗, which depends only on β, such that the error of the
simple upwind scheme (2.12) at the inner grid points {xi : i = 1, . . . , N − 1}
satisfies

|u(xi)− ui| ≤
{

Ch
[
1 + ε−1 exp(−β∗(1− xi)/ε)

]
if h ≤ ε,

Ch + C exp(−β∗(1− xi+1)/ε) if h ≥ ε.

Proof. As for the central scheme in Section 2.1.1, the consistency error is
estimated using Taylor’s formula. At each grid point xi one obtains

|τi| := |Lhu(xi)− f(xi)| ≤ C

∫ xi+1

xi−1

(
ε|u(3)(t)|+ |u(2)(t)|

)
dt. (2.13)

The crude bound |u(k)| ≤ Cε−k combined with the stability result of
Lemma 2.11 yields only |u(xi)−ui| ≤ Ch/ε2, so a more precise bound on |u(k)|
is needed. Invoking Lemma 1.8 yields the inequality

|τi| ≤ Ch + Cε−2

∫ xi+1

xi−1

exp (−β(1− t)/ε) dt

≤ Ch + Cε−1 sinh
(

βh

ε

)
exp

(
− β(1− xi)

ε

)
.

Consider first the case when h ≤ ε. Then βh/ε is bounded. Now sinh t ≤ Ct
when t is bounded, so

|τi| ≤ Ch

[
1 + ε−2 exp

(
− β(1− xi)

ε

)]
.
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At first sight, this inequality seems unable to deliver the desired power of ε
(viz., ε−1 instead of ε−2) when Lemma 2.11 is applied. But if one considers
the boundary value problem

−εw′′ + bw′ + cw = Cε−1 exp
(
− β(1− x)

ε

)
, w(0) = w(1) = 0,

then using the barrier function

w∗(x) = C exp
(
− β∗(1− x)

ε

)
where β∗ > β, the comparison principle of Lemma 1.1 yields the estimate

|w(x)| ≤ C exp
(
− β∗(1− x)

ε

)
– where w has gained a power of ε compared with Lw ! The same calculation
at the discrete level, using the discrete comparison principle of Lemma 2.5,
completes the proof of the theorem when h ≤ ε.

In the more difficult case h ≥ ε, we decompose the solution as

u(x) = −u0(1) exp
(
− b(1)(1− x)

ε

)
+ z(x).

By imitating the proof of Lemma 1.8 one finds that

|z(i)(x)| ≤ C

[
1 + ε1−i exp

(
− b(1)(1− x)

ε

)]
.

Set

v(x) = −u0(1) exp
(
− b(1)(1− x)

ε

)
and define vh and zh by

Lhvh = Lv and Lhzh = Lz,

where vh and zh agree with v and z, respectively, at x0 and xN . Then

|u(xi)− ui| = |v(xi) + z(xi)− (vi + zi)| ≤ |v(xi)− vi|+ |z(xi)− zi|.

For the consistency error associated with z, similarly to before one gets

|τi(z)| ≤ Ch + C sinh
(

βh

ε

)
exp

(
− β(1− xi)

ε

)
.

As now h ≥ ε, we use the inequality sinh t ≤ Cet. Hence

|τi(z)| ≤ Ch + C exp
(
− β(1− xi+1)

ε

)
.


