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PREFACE

In recent years, computational contact mechanics has been a topic of intense
research. The aim of this research has been to devise robust solution schemes
and new discretization techniques for description of contact phenomena, which
can then be applied to a much broader range of engineering analysis areas than
is currently the case. Among the broad areas of emphasis have been finite de-
formation contact problems, consideration of higher order interpolations, special
algorithms for rolling contact, and discrete element problems for large scale anal-
ysis. The main focus of this book is to convey modern techniques applied within
the range of computational contact mechanics.

Topics of interest within the community are wide ranging, and include com-

putational aspects of

e spatial and temporal discretization techniques for contact and impact prob-
lems with small and finite deformations;

e investigations on the reliability of micromechanical contact models;

e cmerging techniques for rolling contact mechanics;

e homogenization methods and multi-scale approaches to frictionless and fric-
tional contact problems;

o solution algorithms for single- and multi-processor computing environments,
enabling methods that span from multi-contact to multi-scale approaches;
and

e numerical experiments related to soil mechanics using discontinuous defor-
mation analysis.

The different contributions in this book will cover the topics described above,
while providing some needed background with respect to continuum mechanics and
finite element methods. The focus will be a detailed treatment of the theoretical
formulation of contact problems with regard to mechanics and mathematics. Fur-
thermore, discretization schemes for two- and three-dimensional contact problems
of small and large deformations will be discussed. These schemes include novel
and innovative formulations for rolling contact applications relating to tire con-
tact and noise generation of rolling tires. Solution techniques related to contact
mechanics are also of interest; hence, solvers for large scale multi-contact prob-
lems will be discussed. This includes multi-scale contact related to quasistatic,
dynamic, structural and granular applications. Special attention is also given to
conjugate gradient algorithms and extensions. This will include domain decom-
position methods for structural problems, their application to cellular materials
and important homogenization techniques in micro-macro approaches to frictional



problems. Finally, a contribution will cover discrete element techniques for multi
body contact analysis and their applications to industrial problems.

All contributions are of a theoretical and applied nature, suitable for graduate
students of applied mathematics, mechanics, engineering and physics with interest
i computer simulation of contact problems.

P. Wriggers and T. A. Laursen
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Emerging Spatial and Temporal Discretization
Methods in Contact and Impact Mechanics

Tod A. Laursen

Computational Mechanics Laboratory
Department of Civil and Environmental Engineering
Duke University, Durham, NC 27708-0287, USA

Abstract The focus of this discussion will be the recent evolution of both spatial
and temporal discretization techniques in contact and impact mechanics. With
regard to spatial discretization, attention will be focused on the movement from
traditional “node to surface” methodologies for description of contact interaction,
to new “surface to surface” algorithms that in most cases have their motivation in
the mortar method. While an anticipated result of this evolution was the increased
numerical accuracy produced by integral forms of the contact constraints, it has also
been seen that considerable robustness in large sliding applications results from the
non-local character of the formulation. In this discussion both of these advantages
of the surface to surface framework will be demonstrated, as will recent extensions
that enable reliable simulation of self-contact phenomena.

When extending computational contact formulations to the transient regime,
the consideration of reliable time integrators for impact phenomena is of inter-
est. Accordingly, we examine some of the issues associated with time stepping
in semidiscrete formulations of contact/impact, with particular emphasis on the
energy-momentum paradigm as applied to impact mechanics. We consider a form
of the energy-momentum approach which encompasses dissipative phenomena (such
as inelasticity and friction), and focus on a numerical approach that allows for ve-
locity discontinuities to be incorporated into the contact updating scheme.

1 Problem Formulation

We begin by summarizing the equations governing the contact of solids, with extensive
consideration of the continuum formulation of large deformation contact as described in
such early sources as Laursen and Simo (1993) and Wriggers and Miehe (1994). We
will consider the unilateral contact constraints between two deformable bodies here, with
potential (Coulomb) frictional contact between them also encompassed by the framework.

We define open sets Q) € R™ 4 = {1,2},n,q = 2 or 3, to denote reference config-
urations of two bodies. They have boundaries 9Q(") which are individually subdivided
into non-intersecting regions Tl (Neumann boundary), Fg) (Dirichlet boundary), and

T (contact boundary), each invariant with time and satisfying

PO UT® UTO = 900, (1.1)
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Given a time interval I = [0, T], and appropriate spaces for admissible deformations goii)

and admissible variational functions g*o(z), the weak form of the dynamic contact problem
can be thus expressed for each body ():

Find <p§i) such that for all g*o(i):

. « (%) * 7 — *\ (2 s\ (2
((baVi= 1), &) +(DeSi, GRADIZN Y — (B @)y, = (6, &) . (1.2)

In (1.2) and throughout we make use of a shorthand description of integral products,
/ (o) (9)dR := (0,0)),  and / (o) (0)dI'™ := (o, 0)).  (13)
Q) INO)

Values in (1.2) include reference density, po; local material velocities, V; = ¢,; and a
representation of the second (symmetric) Piola-Kirchhoff stress, denoted S;. The contact
surface tractions (t;) are subject to a set of spatial geometric constraints dependent on
the unknown deformation mappings gogz).

The variational form in (1.2) is composed of integral virtual work expressions. Taking
the left hand side and summing over the contacting bodies ¢ gives the total virtual work

of the combined non-contact forces on the system:

G(S"ta‘»*o) = 22: K(pOVt - £, 82>(i)
i (1.4)

+(Dp,Se GRADE) - (0 )]

We use a standard Lagrangian description for the contact surfaces, designating the

material points as X € Ft(:l) and Y € 1“9, respectively. Contact points on 1“22) are often

mapped! from Fgl) through a closest point projection minimization

Y(X,t) = arg min [loi”(X) -} (V)] - (1.5)
Yerd

Summing the right hand side of (1.2) and establishing force balance (t() = —t(2) .= t)

along the shared contact surface ( I‘f;l) = I‘g) :=T.), yields a single integral expression
for the wirtual work of contact:

Gelorn ) = —(t. [p"V () P v (x.0) ) (1.6)

The contact problem is thus compactly stated in virtual work terms:

!Note that this means of identification of contact points will be revised when the mortar contact
framework is introduced
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Find <p,(5i), subject to the contact constraints, such that for all {ko(i):

Gy, @)+ Ge(py, ) =0 (1.7)

In defining the local contact conditions in the continuum problem, we may use (1.5)
to identify a unit direction vector v aligned with the contact surface normal, as well as
a gap function g, such that

o (X) - P (Y (X, 1) = —gv; (1.8)

and adopt the convention whereby v is directed outward of Q(2) such that the ‘gap’ is
negative (g < 0) for admissible (i.e. non-penetrated) deformations. Manipulation of
(1.8) defines a geometric description of the gap magnitude,

9= v (e"(X) - P (¥(X.1)). (1.9)

Following the approach given in Laursen and Simo (1993), we parameterize the pro-

jection contact surface (1“9) in reference variables £%, (o = 1,nsq — 1), and derive
nsq — 1 spatial vectors 7, through differentiation of (1.8) within this parameterization,
maintaining the closest-point minimization (indicated with the overbar notation) such
that

To =P, 4 (E(X 1) . (1.10)

The tangential vectors T, are orthogonal to the surface normal v, and are not in general
orthonormal. This requires consideration of the associated metric and its inverse,

Mg i=Tao T3 [mo‘ﬁ] = [mag] !, (1.11)
in order to define the dual basis,
7%= mry . (1.12)

(Note that here the summation convention is implied on repeated indices.) The con-
tact forces, t, can now be decomposed in terms of normal (¢y) and tangential (t7,,)
components, i.e.

t=tyv—tp, 7" (1.13)

Variations of the important surface quantities, namely the gap function g and the
projected surface parameterization £, can be generated as directional derivatives aligned
with deformation variation ¢. Consider

b9 =—v-[p(X) - (VY (X.1)) (1.14)

and

(2)

Aap 68 =75 10V (X) - P V(X )] +gv- -6V 5 (V(X.0)] . (1.15)
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where the symmetric matrix A, and its inverse A%? are defined as

Aug i=map+ v (67 0 (V(X,0)]  and  [A%F] = [Aap) 7L . (1.16)

Temporal derivatives (denoted with a superimposed dot) are calculated in the same
manner, yielding a local description for a gap rate, vy = g and local measures of relative
tangential motion, or slip rates, v3 = £% in terms of material velocities v = @Ei):

oy =g =—v- [VO(X) - V(Y (X,1), (1.17)
and

Aag v = Aap € = 75 [VI(X) = VOV (X, )] + gv- [V 5 (Y (X,1))] . (1.18)

The slip rates can then be used in the definition of a relative and frame indifferent slip
velocity as proposed in Laursen and Simo (1993). Although many choices of reference
frame are possible for posing of the frictional conditions, here we opt for a completely
spatial definition of the slip velocity through use of the spatial metric mqg. Consider the
definition

vy = vgn'g = magvgn'o‘. (1.19)

The descriptions in (1.14) and (1.15) are now combined with the contact force decom-
position (1.13) and substituted into the variational equation to restate the virtual work
of contact in terms of the surface variations,

Gy, &) = / [tn0g + tro0E%] dT. (1.20)
T

The equivalence of (1.6) and (1.20) rests upon a pair of complementarity conditions,
tng=0 and trog =0, (1.21)

which establish that the contact force magnitudes (non-zero only during contact) and
the gap functions ¢g (negative only when out of contact) cannot be mutually non-zero in
the continuum description. The dilitational components of the tangential variation (the
last term in each of (1.15) and (1.16)) can thus be considered as zero over the contact
surfaces, validating the virtual work description (1.20).

With the global virtual work expression established, we wish now to apply a standard
set of Kuhn-Tucker conditions in terms of the kinematic geometry, first in the normal
direction, which remains the same for both frictionless and frictional contact:

g<0
ty >0

tNQZO
tN’UN:O.

(1.22)
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In the event that frictional response is to be described, the contact conditions may be
generically introduced via the following well-known equations of evolution:

Cb(tT,tN) = [tTa’InaﬂtT[Jl/2 - ,utN S 0,

8 . lr,
Mgl = y———————
P = Vg mPrty, 12 (1.23)
7y =0,
40 =0

where p is the coefficient of friction.

2 Traditional Node-to-Surface Formulation of Contact

In developing a finite element representation of the system we have described, one begins

by considering cp(z)h and cp( ) , finite-dimensional counterparts of ¢ and cp( ). In par-

ik . . ~\h
ticular, :0(1) e V" ¢ V®  while cp(z)h, considered to be continuous in time, satisfies
the following for each time ¢:

o e el (2.1)

where Ct(z) and V) are the space of admissible configurations at time ¢ and the space
of admissible variations, respectively. Substitution of these finite dimensional quantities
into the global variational principle (1.7) gives a set of nonlinear ordinary differential
equations of the form

Md(t) + F™(d(t)) + F(d(t)) = F'(t), (2.2)

subject to initial conditions on d and d. In (2.2), M is the mass matrix, F™" is the
internal force vector, F° is the contact force vector, and F°**(t) is the external force
vector (consisting of known data). The vector d symbolically represents the solution
vector, or a vector of nodal values of the motion ¢". The manipulations necessary to
derive M, F™™ and F®'(t) from the virtual works of the contacting bodies have been
extensively treated in the literature and will not be examined here. In the semidiscrete
approach, approximate solutions to (2.2) are found by applying temporal integration
schemes, as will be discussed later. The quasistatic equivalent of (2.2) is formally obtained
by omission of the inertial term M d.

Equation (2.2) is in general highly nonlinear, mostly because of the terms F™(d)
and F°(d). The first of these, the internal force vector, often contains both geometric
and material nonlinearities, causing it to depend in a complex manner on d. The second,
the contact force vector, derives from expression (1.20) and has a form which depends
on the method of spatial discretization. We will focus on this topic in the remainder
of this section as well as the next. First we will consider node-to-surface methods for
approximation of contact interaction, and then in the next section, a more recent surface-
to-surface approach will be summarized.
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2.1 Contact Surface Discretization

An important attribute of the contact formulation we consider is that all development
depends only on the configurations and variations evaluated on the contact surfaces 1“&”,
and not on values in the interiors of the bodies. Thus, in considering the discretization

. * (7 -\ h
leading to specification of F°(d), only the restrictions of <p(z)h and go(z) to T need
to be considered. These restrictions are considered to be collections of local mappings
(denoted by superscript e’s), defined over individual element surfaces.

For example, go(l)he(n), with € AM°, is expressed as

Nnes

W () =Y Na(m)d(t) (2.3)
a=1

where dfll)(t) is a nodal value of ga(l)h, and npes is the number of nodes per element
surface. N,(n) denotes a standard Lagrangian shape function, defined on the biunit

square AV for three dimensional problems and on AV = [—1,1] for two dimensional

h
problems. The interpolation of g*a(l) is similarly conceived, via

Nnes

« (1 h€ o
&V )= Ne(melh, (2.4)
a=1

h
where cgl), a nodal value of {5(1) , is independent of time (and, owing to the arbitrary

« (1) . . . . . .
nature of <p( ) , will ultimately be argued to be arbitrary). Using the isoparametric
interpolation scheme, one also has:

Nnes

X" () =" Na(m)Xa. (2.5)
a=1

Analogues of (2.3)—(2.5) are assumed to hold for body (2); i.e.

he | mme 2.6
5" @)= 3 Me)e, (26)

and

Y™ (&) =) N(§)Yo, (2.7)

defined over element surface parent domains AP,
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e+1
pe—1 h (1)}7, sel

Fgl) Fgl)he Fgl)

Fgl)h

Figure 1. Division of the contact integral into subintegrals.

The contact virtual work in the discrete setting is now written, by substitution of the
above discrete fields into (1.20), as

—  h
Ge(h, ") = /F g 4t 5Ear, 2.8)

where all quantities in the integrand depend on the discrete fields as given previously for
the continuous case. As before, indices «, 3, 7, etc. run between 1 and ngg — 1 in (2.8)
and in all other expressions in this chapter.

2.2 Numerical Integration of the Contact Integral

We now summarize the manner in which the contact virtual work integral is approx-
imated in the traditional node-to-surface implementation. Dropping the subscript ¢’s to
reduce notation, (2.8) may be written as a sum of integrals over the n,.; element surfaces

of Fgl)h:
h Nsel *ah
=3 /P e [theBg" 8 €T (29)
e=1 c

where each subintegral of (2.9) is evaluated using quadrature. Figure 1 may be consulted
for a graphic illustration of this division into subintegrals.

Performing a change of variables to the parent domain (i.e., A(l)e) and applying an
appropriate quadrature rule gives

G(e", " Z { i W*j( n")og" (n") + t, (nk)&“o‘h(n’“)]}

e=1

_f{%wk 5@c fck}

(2.10)
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where n;,; is the number of integration points per element surface of 1“£1>h (corresponding
to the quadrature rule in use), W* is the quadrature weight corresponding to local
quadrature point k, j is the jacobian of the transformation between the parent and
reference domains, n* € AD s the (local) parent coordinate of quadrature point k,

5®°" is the vector of nodal variations corresponding to quadrature point k, and fck
is the (local) contact force vector, corresponding to quadrature point k. The quantities
§g"(n*) and s (n*) are computed using (1.14) and (1.15), with discrete fields replacing
their continuous counterparts. The discrete contact virtual work is thus equal to a sum of
individual quadrature point contributions. In particular, the global contact force vector
F° can be expressed as

Msel Mint - N .
o= A whimhse (2.11)
k=1
where A is the standard finite element assembly operator and k is a revised quadrature

h
point index, which runs over all quadrature points in I‘gl) .

k
The contact force contribution f¢ from each quadrature point may be merely ex-

tracted from (2.10) once the vector of nodal variations for each quadrature point (6<I>ck)
has been defined. To make the discussion more concrete with regard to j(n*) and Wk,
consider the case where nodal quadrature is employed to evaluate the element subin-
tegrals generated by trilinear discretization in three dimensions (meaning each surface
element is bilinearly interpolated). In this case the weights have the values W* = 1,
k =1 —4, and the n¥’s are given by n' = (-1,-1), n®> = (1,-1), n® = (1,1), and

n* = (—1,1). At each point n¥, the jacobian of the transformation is given by

J@*) = X" 0 (") x X"z ()] (2.12)

where the partial derivatives indicated in (2.12) are with respect to the surface coordinates
h
n' and n? associated with Fg)

3 Mortar Formulation of Contact

Mortar methods were originally proposed as a technique for joining together potentially
dissimilarly meshed domains (see, for example, Anagnostou et al. (1990). Several authors
recognized the applicability of such methods to contact at an early stage, and proposed
formulations for kinematically linear contact (see Belgacem et al. (1997); Hild (2000);
McDevitt and Laursen (2000); El-Abbasi and Bathe (2001)). Here, we discuss the de-
velopment of a mortar framework for large deformation problems, as summarized in a
number of recent papers (see Puso and Laursen (2004a,b); Yang et al. (2005)). These
have been shown to be robust for large deformation applications in both two and three
dimensions, and under either dynamic or quasistatic circumstances.

In this section, we review some of the key constructs of mortar-based contact algo-
rithms, by considering as a point of departure an alternative method for describing the
virtual work expression in (2.8). In doing so, it is now more natural (in contrast to (2.8))
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to represent the contact virtual work G¢ in terms of spatial configuration quantities, via
c * x (1) % (2) v
clop) == [ A (67X 6P @) i, (3.1)
/YC

where 7( ) is the current configuration of the (non-mortar) contact surface 1“9), the
mortar multiplier A now denotes the Cauchy contact traction, and where ¢ (Y') is the
current position of the contact point for X. Superscript h’s have been omitted in (3.1)
to simplify notation. As we have seen, in traditional contact implementations, the point
Y is typically explicitly determined for each point X at which which contact constraints
are to be enforced. Here we will employ a spatial integration procedure which will only
indirectly define pairings between points X and Y.

A discrete version of the contact problem is achieved through substitution of finite
dimensional approximations for deformation mappings, variations, and Lagrange multi-
pliers. This results in the following mortar approximation to the contact virtual work,
denoted as G™:

ns mns nm

G (e @) == 3D D A s —nfied | (3.2

A B C

The expressions for nfqll)g and nfé are key to the mortar formulation of contact, and

involve inner products of surface shape functions:
nh = [ N (D00) N (000)
oL
n= [ O (€000) N (€2 (¥ ()
¥

The normal and tangential portions of the contact operator are now exposed by
splitting each nodal A4 into normal and frictional parts:

A = ANA + )‘TA- (3.4)

(3.3)

The normal part of the contact traction may be represented as (see Puso and Laursen
(2004a))
AN, = —An, 4 (nO sum) (3.5)

where Ay, represents the contact pressure at node A. It is subject to Kuhn-Tucker

conditions via
/\NA >0

ga <0 (3.6)
/\NAgA = 0

where the mortar projected gap ga at slave node A is defined as

JA =MNA -Gy,
an (3.7)

A =KA ZnABtp Zn(z ,
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where k4 is a scale factor defined as

_ 1
FA = L(Lref)
pMaD (3.8)

D = | NS (e000) N5 (60 00) ar.
rmh

The scaling defined in (3.8), while not by any means unique, is performed so that the
gap function g, is dimensionally correct; this feature is of crucial importance when
implementing penalty methods in particular. Equation (3.7) is written in terms of a
nodal normal n 4 associated with each slave node A.

Although other implementations of mortar-based frictional contact are possible, we
consider here a penalty regularization of the Coulomb frictional conditions. This may be
expressed via

[, >\T = €T |V — H H

@ = ]| - < 0
¥>0
4 =0

where ep is the frictional penalty parameter. The frictional conditions in (1.23) are
recovered in the limit as ex — oo. L, A7 is the Lie derivative of the frictional traction,
giving rise (for example) to the sort of expression for the slip rate given previously in
(1.19). Note that (1.19) contains material time derivatives of the components of Ar only;
the absence of derivatives of base vectors assures its frame indifference.

As shown in Yang et al. (2005), the notion of frame indifferent slip velocity needs to
be adapted somewhat when one moves from the node-to-surface to mortar framework
for contact analysis. An appropriate notion of tangential velocity to use in a mortar
projected framework is

ns

v, = —ka an o) =Y ilhey | - (I -nan) (3.10)
B

where n( ) and 7'1541;3 are time derivatives of the mortar integrals (holding node A con-

stant). Note that the scaling factors x4 have again been introduced to retain dimensional
consistency. Since the mortar integral time derivatives are invariant with respect to any
rigid body motion relative to the original spatial frame, vp, is frame indifferent.

With these definitions in hand, a trial state-return map strategy is employed to deter-
mine the Coulomb frictional tractions in an algorithmic, time stepping procedure. The
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algorithm begins by computation of a trial state, assuming no slip during the increment:

rial 2 2 2
N = ¢ enma[ 2 (2, ) of?
o (3.11)
1 1 1
- Z (”Eaxgenﬂ - 7154,)3") ‘P%)] (I —ny®mny),
B
with a corresponding trial value for the slip function
ria rial
eyl = \ AT = A, | (3.12)
A return map is then used to define the final frictional traction via
rial . ria .
)‘%Anﬂ | if <I>f4n+l1 < 0 (stick),
Ar,,, = i (3.13)

Ta

n+1 n+1 . .

HAN,, |W otherwise (slip).
TaAp 1

In these expressions, the subscript n+1 means a state associated with the current iteration
for the unknown solution at ¢,41, while n is associated with the last (converged) time
level.

4 Numerical Examples of Mortar Contact Treatment

A few numerical examples are now given to demonstrate the accuracy and robustness of
the mortar contact approach.

4.1 Hertzian Contact

A cylinder on cylinder Hertzian contact problem is presented first to investigate the
accuracy characteristics of this formulation (see Figure 2). The cylinders are modelled
as consistent of isotropic linear elastic materials (£ = 200.0, v = 0.3), and the Coulomb
friction coefficient is taken as 0.2.

The cylinders are pressed together by a distributed pressure p, inducing a normal con-
tact force P at the point of contact. Subsequently, a second distributed load ¢ is applied
in the tangential direction of the plane. The finite element meshes are shown in Figure 3;
while the comparison of the numerical result and the analytical solution Johnson (1985)
for the surface tractions is given in Figure 4. There are some small differences between
the solutions because we use a large deformation formulation; furthermore, some spatial
oscillations in the numerical solution for the frictional traction are present, seemingly due
to the nonsmoothness of the frictional traction field at the stick slip boundary. Notably,
these oscillations disappear for fine meshes (see Figure 5).

4.2 Three Dimensional Torus—Cylinder Impact Example

A three dimensional problem now serves to demonstrate the performance of the ap-
proach in a truly large deformation application. The initial configuration and the finite
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Figure 2. Schematic of the cylinder on cylinder Hertzian contact problem.

element mesh for this example are given in Figure 6; in this problem, the torus will be
given an initial velocity such that it actually penetrates and moves through the cylinder.
The torus and the cylinder are idealized as Neo-Hookean hyperelastic materials, with
E = 2250 and v = 0.3.; the reference density of the two bodies is p = 0.1. Frictionless
response is assumed in the bodies between the two bodies. The deformed configurations
at different time steps are shown in Figure 7. Table 1 shows the superior convergence
performance (with tolerance 1 x 1078) of the mortar contact method for this problem,
using Newton-Raphson iteration on the global nonlinear equations.

4.3 A three dimensional postbuckling problem

This example demonstrates the performance of the algorithm for three dimensional
self-contact problems. Self-contact can happen in a postbuckling process such as a car
crash. In this example, we analyze a cylinder postbuckling problem. The initial config-
uration and the finite element mesh are given in Figure 8. The bottom surface of the
cylinder is fixed and a vertical displacement is applied on the top surface. Figure 9 shows
a sequence of buckling modes. Note that only half of the cylinder is plotted to see the
deformation more clearly. The height of the cylinder is 50 mm, the diameter is 15 mm,
and the thickness is 0.5 mm. The cylinder is made of aluminum and is discretized with
1800 eight-node finite strain elastoplastic elements, and the material properties are bulk



Emerging Spatial and Temporal Discretization Methods 13
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Figure 3. Mesh for the Hertzian contact problem.

modulus K = 63.84 GPa, shear modulus G = 26.12 GPa, yield stress oy = 31 MPa,
and a linear hardening rate H = % Two self-contact surfaces are predefined, i.e., the
inner and outer surfaces of the cylinder (we preclude the possibility of contact between
inner and outer surfaces). We ignore the friction traction on the two self-contact surfaces

(there is only a small amount of sliding). The applied displacement on the top of the
cylinder is d = [0.0 0.0 60.0t]T7 where ¢ is the load factor.

Figure 10 shows the curve of the reaction force vs. displacement at the top with a
sequence of buckle cycles in the curve. The contribution of self-contact is clearly shown.
It is this contact, manifested in the figure as a reversal of load at the bottom of each buckle
cycle, which provides the stiffening mechanism necessary to trigger the next buckle.

This problem is extremely nonlinear because the deformation also induces large plastic
strains in the cylinder. Table 2 presents the Newton-Raphson convergence sequences at
two different load steps with different load increments. When d = 24 mm and Ad = 0.3
mm, it struggles at the first few iterations and finally converged quadratically with the
help of line searches. All other cases presented in the table converge quadratically without
using line search.
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Figure 4. Computed nodal contact tractions for frictional cylinder on cylinder contact
problem; coarse mesh.

4.4 A Three Dimensional Flat Tire Rolling Problem

A highly loaded rolling tire is analyzed in this problem to further test the efficiency and
robustness of the proposed self-contact algorithm. In this example, the inner tire surfaces
undergo self-contact, requiring a high degree of robustness of the searching algorithm and
in the contact formulation. The diameter of the tire wheel is 16 inches, the width of the
tire is 235 mm, and the height of the tire is 806 mm. A neo-Hookean hyperelastic material
model is assumed, with an initial Young’s modulus of £ = 2250 MPa and Poisson’s ratio
v = 0.45. The frictional coefficients for the contact between tire and the road surface and
for the contact inside the tire are both chosen to be 0.5. The initial configuration and the
finite element mesh is given in Figure 11. A vertical loading (displacement controlled)
is first applied to deform the tire until self-contacts occur and contact pressure reaches
a certain level. The tire is then rolled and displacements are applied on the tire wheel
surface. Inertial effects are ignored and the road is considered to be rigid. Deformed
configurations at different load steps are shown in Figure 12, where (c¢) and (d) only
show a quarter of the tire to demonstrate self-contact inside the tire and the rotation of
the tire. As the figure indicates, significant deformation, as well as sliding, occur in this
problem. This example further demonstrates the applicability of the proposed techniques
to very challenging contact and self-contact problems. Table 3 presents the quadratic
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Figure 5. Computed nodal contact tractions for frictional cylinder on cylinder contact
problem; finer mesh.

Figure 6. The initial configuration of the torus cylinder impact problem.
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Figure 7. Deformed configurations of the torus—cylinder impact problem: (a) t = 1; (b)
t=2.5;(c) t=4.0; (d) t =5.5; (e) t =7.0; (f) t = 8.5.
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Table 1. Energy norms of convergence sequences at different time steps; torus-cylinder

impact problem.
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Figure 8. The initial configuration of the cylinder postbuckling problem.
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Figure 9. Deformed configurations of the cylinder post-buckling problem at different
time steps.



