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Meinen Eltern gewidmet.



Foreword

When the original Santa Fe Institute (SFI) artificial stock market was
created in the early 1990’s, the creators realized that it contained many
interesting new technologies that had never been tested in economic
modeling. The authors kept to a very specific finance message in their
papers, but the hope was that others would pick up where these papers
left off and put these important issues to the test. Tackling the com-
plexities involved in implementation has held many people back from
this, and many parts of the SFI market remain unexplored. Ehren-
treich’s book is an important and careful study of some of the issues
involved in the workings of the SFI stock market.

As Ehrentreich’s book points out in its historical perspective, the
SFI market was intended as a computational test bed for a market
with boundedly rational learning agents replacing the standard setup
of perfectly rational equilibrium modeling common in economics and fi-
nance. These agents exhibit reasonable, purposeful behavior, but they
are not able to completely process every aspect of the world around
them. This can be viewed much more as a function of the complex-
ity of the world, rather than the computational limitations of agents.
In a financial world out of equilibrium, optimal behavior would re-
quire knowledge of strategies being used by all the other agents, an
information and computational task which seems well out of reach of
any trader. The SFI market’s main conclusion was that markets where
agents were learning might not converge to traditional simple rational
expectations equilibria. They go to some other steady state in which
a rich set of trading strategies survives in the trader population. In
this steady state the market demonstrates empirical signatures that
are present in most financial time series.
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This book is an excellent reference to both the learning, and em-
pirical literature in finance. It stresses the difficult empirical facts that
are out of reach of most traditional financial models including per-
sistent volatility and trading volume, and technical trading behavior.
However, Ehrentreich’s main mission is to dig deeply into the SFI mar-
ket structure to understand what is actually going on. Computational
economic models can often be explored at three levels. There is sort
of a big picture level where concepts such as rational expectations and
bounded rationality are explored. There is also the very low level where
researchers discuss the nuts and bolts of different modeling languages.
In between these sits a region where many of the computational learn-
ing technologies are implemented. This is where technologies such as
genetic algorithms, classifier systems, and neural networks drive much
of what is going on. This is Ehrentreich’s area of exploration, and it is
critically important to agent-based modelers since one needs to know
the sensitivity of the higher level results to changes in the learning
structures used beneath them.

The SFI market uses two learning mechanisms extensively: the ge-
netic algorithm, GA, and classifier system. Both of these are devel-
opments of John Holland, one of the SFI market coauthors. The GA
is a type of general evolutionary learning mechanism, and it is used in
both computer science and economics. Its properties have been studied,
but it is still not completely understood. In computer science it is often
studied in difficult optimization problems. These are problems with well
defined objectives, and are quite different from the more open ended co-
evolutionary problems in economics where agents are competing with
each other. The classifier system is an interesting learning structure
that allows agents to dynamically find relevant states in the world
around them. For example, actions might be conditioned on whether
a stock is currently priced above a certain multiple of dividends. The
classifier has the power to endogenously slice up a stream of empirical
information into states of the world. Very few learning mechanisms are
able to do this. With this generality comes a lot of model complexity,
and many implementations of the classifier seem computationally un-
wieldy. They also involve many implementation questions that need to
be explored.

In several chapters Ehrentreich explores some of the more impor-
tant aspects of the SFI classifier implementations. He shows that the
SFI classifier is sensitive to certain design characteristics. Under dif-
ferent assumptions about evolution the classifier system behaves very
differently from the original SFI model. Ehrentreich carefully modifies
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and explores his own operation on mutating trading strategies. Using
this modified mutation causes a situation in which the SFI market is
much more likely to converge to the rational expectations equilibrium,
and the rich technical trading dynamic does not emerge. The results in
the original SFI market are clearly sensitive to how mutation is imple-
mented. The book goes on to do a comparative study between mutation
operators. A key issue is how many technical trading related rules are
evolved, and whether the system is likely to generate lots of technical
rules by chance in the evolutionary process. The modified mutation op-
erator does not generate many of these rules, so they never really get a
foot in the door of trading activity. The SFI structure facilitates their
formation, but it is possible this could be driven more by genetic drift
than selection. The original SFI studies never really answered these
questions, and it only looked at trading strategy formation in an indi-
rect level by looking at aggregate numbers. This was a clear weakness.
Ehrentreich does some careful checks to see if technical rules are adding
value at the agent level. It appears that they are, so many of the SFI
indirect conclusions are sound.

The dynamics of wealth was never part of the original SFI market.
It is an interesting omission that the SFI market never really considered
long term wealth in a serious way in its implementation. This is strange
since many arguments about efficient markets thrive on the relative
dynamics of trader wealth. Ehrentreich concludes that this is a complex
problem, and there may be difficulties with some of the other studies
that try to tag a wealth dynamic onto the SFI market. In my opinion
this is one of the biggest limitations of the actual SFI market structure.

This book is an important piece of work for understanding the dy-
namics of models with interacting learning agents. I think researchers
in the future will find it critical in helping them to understand the
dynamics of evolutionary learning models. Most importantly, it sets
an important standard for doing careful internal experiments on these
markets and the learning mechanisms inside them.

Brandeis University, Waltham, MA
September 2007 Blake LeBaron



Preface

The road of science is filled with surprises. When embarking on a sci-
entific journey, we probably have a specific destination in mind, but
we never know whether the road will take us there nor what places we
may encounter along the way.

This trip was no exception. Before anyone starts reading this trav-
elogue, I think that I should briefly mention a few places that I visited,
but decided to pass over while writing this book. I originally aimed at
converting the well-known Santa Fe Institute Artificial Stock Market
(SFI-ASM) into a two stock version to study portfolio decisions of in-
dividual investors. My early forays into this unknown territory yielded
some interim results, but until now they are still waiting to be further
examined.

Instead, my road took a sudden and unexpected turn. One of the
most important findings of the original SFI-ASM was the emergence
of technical trading for faster learning speeds. Yet a thorough analysis
of the agent’s learning algorithm suggested that this might have been
caused by an ill-designed mutation operator. For a couple of years,
many tests confirmed this supposition. For instance, even though tech-
nical trading rules emerged in the original SFI-ASM, they were rarely
acted upon. Most importantly, though, was that agents with an alter-
native mutation operator discovered the homogeneous rational expec-
tations equilibrium, a result that found immediate approval by neoclas-
sically inclined economists.

I traveled a long way down this road. Since I considered the ex-
istence of technical trading to be an empirical fact of financial mar-
kets, I tried to unearth the necessary ingredients to reintroduce it into
my model. Nothing that I devised, neither social learning nor explicit
herding mechanisms, succeeded in that endeavor. There was, however,
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another surprise waiting behind the supposedly final turn of my jour-
ney. One newly designed test showed a slight superiority of technical
trading rules in the original model. A side-trip all the way down to
population genetics finally proved that my agents were committing a
mistake by deciding to ignore technical trading rules. Again, parts of
my prior research were discarded, and a new chapter was written ex-
plaining why I and previous researchers went wrong in interpreting the
simulation results. I hope that this chapter will prove most useful for
any research involving genetic algorithms. My prior belief that technical
trading was an artificially introduced model artifact had also caused me
to visit some previous studies about wealth levels. I was able to show
that the SFI-ASM was not designed to address any questions related
to wealth. Fortunately, this part was unaffected by the breakdown of
the initial motivation to look into the wealth generation process.

A long journey with such detours was certainly not easy. I could not
have arrived at the final destination without the tremendous support
and encouragement that I have found along the way. Above all, I wish to
thank my parents Werner and Ellinor Ehrentreich, for without them,
I would not have had the opportunity to embark on this journey. I
would also like to thank Reinhart Schmidt for letting me choose my
destination and for giving me the freedom to follow my own path.
Among the numerous friends, colleagues, and conference participants
who have contributed in many ways are Manfred Jäger, Ulrike Neyer,
Ralf Peters, Martin Klein, Heinz-Peter Galler, Joseph Felsenstein, Alan
Kirman, and James Stodder. Of course, this book would not have been
finished without the contributions by Blake LeBaron. Not only did
he play a major role in the creation of the model that I set out to
extend, then critiqued, and finally confirmed, he also often helped and
clarified many questions that I was pondering. Many thanks also go
to Lars Schiefner, Doris Storch, and Klaus Renger, especially for their
help during the final stages of this project. Last, but not least, I thank
Tanya Novak for her patience and help, especially for her proofreading.
Nonetheless, I absolve her from all remaining mistakes and typos and
credit them to my cats, Zina and Francesco, who stubbornly insisted
on their input by jumping on the keyboard.

I now hope that the reader will find it useful to visit the places that
I have found worthwhile to mention in this book.

Minneapolis, MN
September 2007 Norman Ehrentreich
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1

Introduction

What I cannot create, I do not understand.
Richard P. Feynman

In addition to deduction and induction, simulation is sometimes seen
as a third methodology for doing research. Even though simulation does
not prove theorems, it can enhance our understanding of complex phe-
nomena that have been out of reach for deductive theory. Tesfatsion de-
fines agent-based simulations as the computational study of economies
that are modeled as evolving systems of autonomous interacting agents
[421]. In the last decade, they have become a widely accepted tool for
studying decentralized markets.

A major advantage is that agent-based models allow the removal
of many restrictive assumptions that are required by analytical models
for tractability. For instance, all investors could be modeled as het-
erogeneous with respect to their preferences, endowments, and trading
strategies.

Among the numerous agent-based simulations of financial markets
[247, 268, 81], the Santa Fe Institute Artificial Stock Market (SFI-ASM)
is one of the pioneering models and thus, probably the most well-known
and best studied. It was created by a group of economists and com-
puter scientists at the Santa Fe Institute in New Mexico to test whether
artificially intelligent agents would converge to the homogeneous ratio-
nal expectations equilibrium or not. The original SFI-ASM has been
described in a series of papers [331, 11, 330, 244].

In agent-based simulations, replication of existing models from
scratch is an important, but often neglected step. Axelrod empha-
sizes that without this outside confirmation, possible erroneous results
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based on programming errors or misinterpretation of simulation data
can go undetected [13]. Skepticism towards computational models is
sometimes voiced since their results are seen as counterintuitive and
incomprehensible because the computer program remains an impene-
trable “black box”. Judd considers the black box criticism to be more a
result of poor exposition of computational work and a lack of sufficient
sensitivity analyses. Since third party replications need to open that
black box widely, that criticism can effectively be addressed [208].

This book starts by presenting the reasons that led to the adoption
of the agent-based programming approach in economics. Since one of
these reasons, the desire to replace the representative agent approach
with heterogeneous agents, leads to a break down of rational expec-
tation formation, chapter 3 contrasts several concepts of agent ratio-
nality. When modeling less than fully rational agents, researchers have
to equip their agents with learning algorithms which are discussed in
chapter 4.

The replication of selected stylized facts of financial markets through
agent-based simulations of financial markets is the focus of chapter 5. It
starts by introducing the Efficient Market Hypothesis (EMH). Much of
our empirical knowledge about financial markets, often summarized as
stylized facts, stems from attempts to either prove or disprove the EMH.
Several competing market hypotheses that strive to better explain the
stylized facts than the EMH are subsequently discussed. In the final
part of chapter 5, a selection of agent-based models of financial markets
is briefly introduced.

The main part of this book analyzes a particular Java-replication
of the SFI-ASM model which was originally programmed in Objective-
C. The goal is to assess whether the SFI-ASM’s result of emergent
technical trading is robust to changes in the model design. To this
end, the simulation results are supplemented by theoretical analyses
of certain model features. The replication results of the reprogrammed
Java-version are presented in chapter 6. A Markov chain analysis of
the original mutation operator delivers the motivation to develop an
alternative mutation operator in chapter 7. Because of the differences
in simulation results, chapter 8 needs to reexamine the model structure
with respect to wealth accumulation. The final chapter analyzes and
compares the two mutation operators in more detail. By interpreting
the insights gained from the theoretical analysis of the two mutation
operators, chapter 9 concludes by offering an explanation as to why
the validity of the EMH is entirely consistent with the simultaneous
existence of technical trading rules.
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The Rationale for Agent-Based Modeling

Imagine how hard physics would be if electrons could think.
Murray Gell-Man1

2.1 Introduction

The ascent of powerful and affordable microcomputers and the avail-
ability of huge economic data sets have sparked the development of a
rather recent branch in economic research. The rapidly growing field
of computational economics is a broad concept and encompasses many
different areas. An eclectic and not exhausting overview of all these
different activities2 can be found in the “Handbook of Computational
Economics” by Amman et al. [8]. Since a precise definition of compu-
tational economics is not being offered by its editors, Riechmann goes
as far as to suggest that every economist who uses a computer for more
than mere typewriting engages in computational economics [356].

But if we emphasize the aspect of computability of economic prob-
lems, i.e., problems that allow for numerical results, the roots of com-
putational economics could easily be dated back before computers were
actually used by economists.3 Several contributions in this handbook

1 Attributed to Gell-Mann, 1969 Nobel laureate in physics and co-founder of the
Santa Fe Institute, cited by Page [329].

2 Among those are, for instance, the numerical computation of Nash equilibria, de-
terministic and stochastic simulations, or numerical dynamic programming prob-
lems.

3 Nagurney [316], as well as Kendrick [217], mention the early contributions to
computational economics in the 1950ies by Koopmans, Samuelson, or Solow. In
finance, the work by Markowitz about efficient portfolio diversification needs to
be mentioned at this point [288, 289].



6 2 The Rationale for Agent-Based Modeling

focus on algorithms and numerical methods for finding Nash-equilibria
or the solutions to dynamic nonlinear systems of equations, yet some of
them were developed even before computers were. The access to com-
puter technology just reduced the sometimes prohibitive computational
costs of these algorithms and allowed them to be used for practical pur-
poses.

Within computational economics, the field of agent-based modeling
or simulation (ABM, ABS), sometimes also called microscopic simula-
tion (MS, Levy et al. [248]) or agent-based computational economics
(ACE, Tesfatsion [420]), seems currently to be the most rapidly grow-
ing discipline. This is acknowledged, for instance, by the appearance
of a second volume of the “Handbook of Computational Economics”
which will be solely dedicated to this approach [209].

In the ABS approach, model economies are built from the bottom
up, i.e., they consist of many autonomous and interacting agents. It
had its first breakthrough with the influential models by Schelling [375,
376] about endogenous neighborhood segregation.4 These models are
populated by two types of agents who only care about the composition
of their own small neighborhood. In particular, they do not tolerate
more than a certain fraction of agents of the other type in their vicinity,
however, they do not care about integration or segregation on the city
level. Unsatisfied agents are allowed to move to a neighborhood that
they are happy with. Schelling showed that for a wide range of the
agents’ neighborhood tolerance parameter, an initially integrated city
emerges to an almost completely segregated entity.5 Thus, Schelling
demonstrated how stable macrobehavior may emerge from strictly local
motives on the agents’ level, a macrobehavior that would be hard to
predict by exclusively looking at individual motives. Nowadays, this
phenomenon is known as emergence, a key concept of the theory of
complex adaptive systems.

The agent-based approach is currently considered by many re-
searchers as the latest revolution in economic methodology. However,

4 A comparison of the different versions by Schelling is given by Pancs and Vriend
[332]. The most important distinction is the dimensionality of neighborhoods. In
his 1969 model, a neighborhood is defined only in one dimension, i.e., agents popu-
late a line, while his later models use two dimensional lattices. A two-dimensional
web-based simulation example in NetLogo by Wilensky [436] can be found at
http://ccl.northwestern.edu/netlogo/models/Segregation.

5 Pancs and Vriend [332] extend the framework by asking how individual prefer-
ences may alter the outcome. Surprisingly, the results are very robust to changes
in preferences. Even if all agents strictly prefer perfect integration, neighborhood
segregation will still occur.
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in order to understand and properly evaluate this shift in methodol-
ogy, Bankes points out that one should not focus on the progress in the
computer sciences which made this whole development possible, but on
the inappropriateness of traditional methods which made it necessary
[22].

The deficiencies of analytical modeling can only be sought in its
assumptions. Thus, the first part of this chapter discusses some of
these and contrasts them with the requirements of agent-based mod-
eling. The main culprits from an agent-based point of view are the
widespread assumption of representative agents and that of rational
expectations. First, it is obvious that fictitious representative agents
in macroeconomic models are incapable of generating emergent phe-
nomena. Financial markets would also be characterized by the absence
of any trading activity. Secondly, fully rational and perfectly informed
agents have essentially no ability to exercise free choice. Despite some
suggestive rhetoric, individuals can follow only one, i.e., the rational
course of action [235].

The agent-based modeling approach, on the other hand, requires
neither of these two assumptions. The ability to cope with heteroge-
neous and boundedly rational agents makes it a perfect tool to study
decentralized markets. Instead of a reductionist approach, agent-based
models treat the economy as an evolving complex adaptive system con-
sisting of many heterogeneous and interacting agents. The development
of artificial financial markets has thus become a major application for
the agent-based paradigm.6

2.2 The Representative Agent Modeling Approach

The notion of representative agents appeared in the economic literature
already in the late 19th century. Edgeworth used the term ‘representa-
tive particular ’ [104, p. 109], while Marshall introduced a ‘representative
firm’ in his Principles of Economics [290].7 However, only after Lucas
[261] had published his article about econometric policy evaluation—
the famous Lucas-critique—they became the dominant macroeconomic

6 According to [227], scientific paradigms share two essential characteristics: First,
their achievements must have enough novelty to attract a permanent group of
scientists away from competing modes of scientific activity. Secondly, their open-
endedness must allow for addressing many different kinds of problems. Whether
the agent-based modeling approach already is or might become the next paradigm
in the economic sciences is left to the reader to be answered.

7 A discussion of the origins of representative agents can be found in [172].
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approach. Today’s representative agent models are characterized by
an explicitly stated optimization problem of the representative agent,
which can be either a consumer or a producer. The derived individual
demand or supply curves are then, in turn, used for the corresponding
aggregate demand or supply curves.

A series of papers in which the rationale for using representative
agent models is convincingly set forth does not exist according to
[172]. From the “large set of introductions, paragraphs, and parenthet-
ical asides”, however, Hartley identifies several motives for their use.
They were thought to avoid the Lucas critique, to provide rigorous
microfoundations to macroeconomics, and to help build powerful Wal-
rasian general equilibrium models.

2.2.1 Avoiding the Lucas-Critique

Before [261], macroeconomic models were often defined in terms of
three vectors: yt being the set of endogenous variables, xt the vector
of exogenous forcing variables, and εt the set of random shocks. Fixed
parameters are subsumed in a vector θ.

yt+1 = F (yt, xt, θ, εt) . (2.1)

Lucas, however, criticized that it is likely that some of the the parame-
ters contained in θ change due to a shift of policy regime λ. Aggregate
quantities and prices might react differently than predicted since agents
may change their behavior in a way which is not captured in the ag-
gregate equations. For instance, agents could adapt their expectations
about future inflation rates or, in the case of rational expectations,
change them even before an anticipated policy shift is implemented.
An attempt to exploit a potential trade-off between unemployment and
the inflation rate through an expansionary monetary policy may thus
be foiled. Taking the Lucas-critique into account, equation (2.1) should
be rewritten as

yt+1 = F (yt, xt, θ(λ), µ, εt) , (2.2)

where θ(λ) contains regime dependent parameters, while µ is thought
to consist of truly invariable taste and technology parameters.

While Lucas offered no solution to this fundamental problem, rep-
resentative agent models were soon to be thought of offering an easy
escape from it. Going beyond simple aggregate relationships and an-
alyzing the economy at a deeper level than before, macroeconomists
pretended to know the structural equations from which the aggregate
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supply and demand curves are derived [371]. If a policy change is an-
nounced or implemented, the representative agent simply recalculates
his optimization problem, given his objective function and budget con-
straints. This approach also satisfied the desire for a microfoundation
in the new classical sense since behavior is derived from a utility max-
imization problem.8

Hartley argues though that it is impossible to identify truly in-
variable taste and technology parameters [172]. Acknowledging this,
economists should realize that the Lucas critique imposes a standard
that no macroeconomic model can probably ever fulfil. Since represen-
tative agent models suffer from the same deficiencies as old style Key-
nesian macroeconomic models, the justification for their use is greatly
undermined.

2.2.2 Building Walrasian General Equilibrium Models

The desire to build Walrasian general equilibrium models of the econ-
omy provides another strong motivation for using representative agents.
Not only are economists interested in the existence of equilibria within
these types of models, they should furthermore be unique and stable.
The Arrow-Debreu framework as the modern embodiment of Walrasian
models, however, is far too complex to be solved for millions of het-
erogeneous consumers and firms. Using a representative agent instead
makes it easy to find the competitive equilibrium allocation for a model
economy [370].

However, for Walrasian models to be true, their structural assump-
tions have to be true. False structural assumptions lead to false conclu-
sions.9 Since real individuals are obviously heterogeneous with respect
to their preferences and cognitive abilities, the assumption of a rep-
resentative agent cannot be considered structural since it is not true.
Thus, it must be superficial, i.e., irrelevant to the underlying structure
of the economy. When using representative agents instead of hetero-
geneous individuals in a Walrasian model, the modeler must believe

8 According to [172], there is another view of what constitutes an appropriate mi-
crofoundation. Keynesian models, for instance, backed up their macroeconomic
relationships with some explanatory story which is thought to be entirely suffi-
cient.

9 Hartley contrasts the requirement of true structural assumptions in Walrasian
equilibrium models with Friedman’s famous dictum that the realism of assump-
tions is irrelevant [172]. For Friedman, the validity of a theory is based on how
well its prediction match reality, no matter how realistic its assumptions.
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that the actual world would not look very different from the model if
populated by identical clones [172, p. 66].

There is mounting evidence, however, that this is not the case. First
of all, representative agent models are usually characterized by a com-
plete absence of trade and exchange in equilibrium [225], one of the
most basic activities in a market economy.10 For instance, in the classi-
cal CAPM [389, 252, 313], there is no trade after agents have completed
their initial portfolio-diversification.

2.2.3 Representative Agents and the Fallacy of Composition

It has long been known in economics that what is true for individual
agents may not hold for the aggregate economy. This phenomenon is
called the fallacy of composition [61, 172]. Together with its logical
counterpart, the fallacy of division, it highlights the tension between
micro- and macroeconomics. The economy as a whole is formed by
many consumers and firms whose interactions may cause emergent be-
havior at the macroeconomic level. Correct policy recommendations for
individual economic units may not work for the aggregate economy or
vice versa. For instance, in times of recession, a profit maximizing firm
is likely to lay off workers in order to survive, while a similar action
by the government as an aggregate player will aggravate the economic
downturn.

Representative agent models usually commit the fallacy of com-
position by ignoring valid aggregation concerns. Kirman, for instance,
provides a graphical example based on [203] in which the representative
agent disagrees with all individuals in the economy [225]. Policy rec-
ommendations based on the representative agent, a common practice
in today’s macroeconomics, are illegitimate in this case.

A rigorous treatment of this logical fallacy can be found in the liter-
ature on exact aggregation.11 Gorman [160] was the first who derived
general conditions under which the aggregation of individual prefer-
ences is possible. He showed that aggregate demand is dependent on
income distribution unless all agents have identical homothetic utility
functions. Only when their Engel curves are parallel and linear, a redis-
tribution of income will leave the aggregate demand unaffected. Other
authors [412, 203, 249] derived similar conditions for exact aggregation,
10 In the literature, there are as many no-trade theorems [306, 12, 422] as attempts

to solve this apparent contradiction with economic reality. These attempts are
usually characterized by a relaxation of the assumption of strict homogeneity of
market participants [83, 230, 428].

11 An introduction to the problem of exact aggregation can be found in [161].
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the least restrictive ones given in [249]. In any case, those conditions
are still so special that no economist would ever consider them to be
plausible [225]. In the unlikely event of them being satisfied, no-trade
situations would be the result.

For apparent reasons, the literature on exact aggregation has largely
been ignored by representative agent modelers. In summarizing this
body of research, Kirman concludes that the reduction of a group of
heterogeneous agents to a representative agent is not just an analytical
convenience, but is “both unjustified and leads to conclusions which are
usually misleading and often wrong”. Hence, “the ‘representative’ agent
deserves a decent burial, as an approach to economic analysis that is
not only primitive, but fundamentally erroneous” [225, p. 119].

2.2.4 Expectation Formation in Markets with Heterogeneous
Investors

In asset pricing models with homogeneous investors, asset prices typ-
ically reflect the discounted expected payoffs and follow a martingale,
i.e., today’s expectation of next period’s price Et [pt+1] just equals the
current price pt [365]. This martingale property of asset prices implies
that the expectations of the representative investor satisfy the law of it-
erated expectations: Et [Et+1(pt+2)] = Et [pt+2], that is, his expectation
today of tomorrow’s expectation of future payoffs equals his current
expectation of these future payoffs [6]. Since all investors are alike,
individual and average expectations of future asset prices coincide.

Yet, when giving up the concept of a representative investor, the
knowledge of average expectations of future payoffs becomes impor-
tant for an individual investor. With differential private information
and public information, an individual’s expectation and the average
expectation about future payoffs are likely to diverge. Furthermore,
for average expectations, the law of iterated expectations is not satis-
fied anymore. Thus, according to Keynes [218], real financial markets
with heterogeneous agents resemble more a beauty contest in which
the competitors have to choose the six prettiest faces from a hundred
photographs, the winner being the one whose choice most nearly cor-
responds to the average preferences of the other competitors. Instead
of choosing the face that one considers prettiest, participants devote
their intelligence to anticipate “what average opinion expects the aver-


