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1

Utilizing Phase Separation Reactions for Enhancement
of the Thermoelectric Efficiency in IV–VI Alloys
Yaniv Gelbstein

Ben-Gurion University of the Negev, Department of Materials Engineering, Beer-Sheva, 84105, Israel

1.1 Introduction

In recent years, demands for energy efficiency have motivated many researchers
worldwide to seek innovative methods capable of enhancing the efficiency of the
thermoelectric energy conversion of heat to electricity. Since the dimensionless
thermoelectric figure of merit ZT (=𝛼2

𝜎T/𝜅, where 𝛼 is the Seebeck coefficient,
𝜎 is the electrical conductivity, 𝜅 is the thermal conductivity, andT is the absolute
temperature) can be regarded to be proportional to the thermoelectric efficiency
for a given temperature difference, materials improvements in this direction
include either electronic optimization methods for maximizing the 𝛼2

𝜎 product
or phonons scattering methods for minimizing the thermal conductivity (the
denominator of ZT). These methods and approaches mainly involve interfaces
and submicron generation methods, which are much more effective in phonon
scattering (rather than electron scattering), and consequently reducing the
lattice contribution to the thermal conductivity, 𝜅L, without adversely affecting
the other involved electronic properties. The main challenge while dealing with
submicron features and interfaces for phonon scattering lies in the ability to
retain these features under the thermal conditions involved and the suppression
of undesirable coarsening effects over time. One plausible method for overcom-
ing this challenge is based on using thermodynamically driven phase separation
(i.e., spinodal decomposition or nucleation and growth) reactions, resulting in
submicron and multiinterface features, owing to the separation of the matrix
into two distinct phases, upon controlled heat treatments.The resultant features
from these reactions are considered as more thermodynamically stable than
other conventional nanostructuring methods, based on rapid consolidation
of nanopowders obtained by energetic ball milling or melt spinning, which
are susceptible to grain growth upon prolonged high temperature operation
conditions. The key in choosing appropriate thermoelectric compositions,
which follow phase separation reactions, is the requirement for a miscibility gap
between the involved phases.This condition is strongly dependent on the nature

Thermoelectric Energy Conversion: Basic Concepts and Device Applications, First Edition.
Edited by Diana Dávila Pineda and Alireza Rezania.
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2 1 Utilizing Phase Separation Reactions for Enhancement of the Thermoelectric Efficiency

of the chemical pair interaction between the involved substitution elements.
They can either distribute randomly in the host materials or separate the system
into different phase components. An attractive chemical interaction can lead
to an inhomogeneous distribution of the substitution atoms, leading to phase
separation. Otherwise, the atoms will be substituted in the host system with
a high solubility, forming a single solid solution phase. For achieving phase
separation, compositions with attractive chemical interactions are required.

1.2 IV–VI Alloys for Waste Heat Thermoelectric
Applications

The binary IV–VI compounds, based on columns IV (Ge, Pb, and Sn) and VI
(Te, Se, and S) of the periodic table, are narrow-band (∼0.2–0.3 eV) mixed
ionic–covalent compounds, which are known for several decades as the most
efficient thermoelectric materials for intermediate temperature ranges of up to
500 ∘C.The possibility for operation under the temperature range of 100–500 ∘C
is significant from a practical point of view for converting waste heat generated
in automotive diesel engines, in which a maximal temperature of 500 ∘C is devel-
oped, into useful electricity, and thus reducing fuel consumption and CO2 emis-
sion. In the automotive industry, the minimal cold side temperature of ∼100 ∘C
is mainly limited by the maximum available water flow rate through the radiator.
Lead chalcogenides (PbTe, PbSe, and PbS) crystallize in a NaCl cubic lattice,

similarly to what happens in the high temperature phases of SnTe and GeTe.The
latter follow a second-order lattice distortion to rhombohedral or orthorhombic
structures upon decreasing the temperature, the significance of which on
practical thermoelectric applications will be reviewed in detail in the follow-
ing paragraphs. Another characteristic of the IV–VI compounds is the large
deviation of stoichiometry, which in the case of PbTe is extended toward both
Pb- and Te-rich compositions, enabling control of the electronic conduction
toward n- and p-type conduction, respectively. In the case of GeTe, the deviation
of stoichiometry is toward Te-rich compositions only, resulting in high carrier
concentration (1020–1021/cm3) p-type conduction, which is beyond the optimal
required for thermoelectric applications (∼1019/cm3). To reduce the holes con-
centration in order to obtain optimal thermoelectric properties, it is necessary
to dope GeTe with donor-type electroactive impurities. Bi2Te3 acts as a donor
when it is dissolved in GeTe. In the case of PbTe, the most common dopants
are PbI2 and Bi for obtaining optimal thermoelectric n-type compositions and
Na for the p-type. Yet, for many years, owing to opposite influences of the
carrier concentration on the various properties involved in the thermoelectric
figure of merit, ZT, all the attempts to maximize the ZT value of the binary
IV–VI compounds beyond ∼1 just by electronically doping optimization did
not succeed. In the recent years, combined methods of electronic optimization
and nanostructuring for reduction of the lattice thermal conductivity in IV–VI
based alloys resulted in much higher ZT values of up to ∼2.2, as can be seen in
Figure 1.1a,b for various p- and n-type compositions, respectively [1–13].
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Figure 1.1 ZT values of the most efficient IV–VI alloys recently published – the p-type:
Pb0.98Tl0.02Te [1], Pb0.99Na0.01Te [2], Ge0.87Pb0.13Te [3], Ge0.5Pb0.25Sn0.25Te [4], Pb0.96Sr0.04Te
(2%Na) [5], Ag0.9Pb5Sn3Sb0.7Te10 – LASTT [6], Na0.95Pb20SbTe22 – SALT [7], Pb0.97Mg0.03Te:Na [8],
PbTe0.85Se0.15:2%Na [9]; and n-type: AgPb18SbTe20 – LAST [10], PbTe (0.1 at%In) [11], PbI2 doped
PbTe with various carrier concentrations of 6.54× 1018, 2.19× 1019, 4.22× 1019 and
6.09× 1019/cm3 [11], K0.95Pb20Sb1.2Te22 – PLAT [12], and (Pb0.95Sn0.05Te)0.92(PbS)0.08:0.055 mol%
PbI2 [13]. (Pei et al. 2012 [8]. Reproduced with permission of Nature Publishing Group.)

It can be seen in the figure that early attempts to optimize the p-type Na-doped
PbTe (Pb0.99Na0.01Te [2]) and the n-type PbI2-doped PbTe with various carrier
concentrations of 6.54× 1018, 2.19× 1019, 4.22× 1019, and 6.09× 1019/cm3 [11]
resulted in relatively low maximal ZTs of 0.8 and 1.1, respectively. An effect of
reduction of the carrier concentration on reduction of the maximal temperature
at which maximal ZT is obtained because of electronic doping optimization
can be easily seen for the PbI2-doped PbTe [11] compositions in the figure.
This finding had initiated the functionally graded materials (FGM) concept, in
which thermoelectric legs composed of a singular matrix compound (e.g., PbTe)
doped by a gradual dopant concentration, each optimal in its correspondent
temperature along the leg, yield higher average ZT values than any singular
doping concentration over the wide temperature gradients, usually apparent
in practical operations. Yet, even this approach did not yield average ZTs
higher than 1 for common operation conditions of 100–500 ∘C, and novel
approaches for ZT enhancement had to be considered. One of such approaches,
inspired by Kaidanov and Ravich [14], was based on advanced electronic doping
based on generation of localized “deep” resonant states lying inside the energy
gap, which are capable of pinning the Fermi energy of the compounds at a
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favorable level, required for electronic thermoelectric optimization. Related
to IV–VI based compounds, it was found that Group III dopants (Al, Ga, In,
Tl) can be utilized for generation of such states. Application of this approach
for thermoelectric optimization of n-type In-doped PbTe [11] resulted in
higher average ZT for the temperature range of 100–500 than any of the
PbI2-doped materials, but without any success in increasing the average ZT
beyond 1. On the other hand, a dramatic increase of the maximal ZT to a
level of ∼1.5 was recently demonstrated upon Tl doping of PbTe for the p-type
Pb0.98Tl0.02Te [1] composition (Figure 1.1a). A second approach that was taken
in the recent years for enhancement of the ZT values of IV–VI based alloys
is based on nanostructuring for reduction of the lattice thermal conductivity.
Several examples of nanostructured materials with maximal ZTs higher than
1 and in some cases even higher than 2 are illustrated in Figure 1.1a,b. These
include the p-type Agx(Pb,Sn)mSbyTe2+m (LASTT) [6], NaPbmSbTe2+m (SALT)
[7], Gex(SnyPb1−y)1−xTe [3, 4], and the n-type AgPbmSbTe2+m (LAST) [10],
KPbmSbTem+2 (PLAT) [12], and (Pb0.95Sn0.05Te)x(PbS)1−x [13] families of mate-
rials; all exhibit nanostructures and very low lattice thermal conductivities.
Different mechanisms for nanostructuring are involved in the above-listed
examples. Yet, two of the most efficient materials listed in Figure 1.1a,b are
the p-type Ge0.87Pb0.13Te [3] and the n-type (Pb0.95Sn0.05Te)0.92(PbS)0.08 [13]
compositions, both following thermodynamically driven phase separation
reactions of the matrix into two distinct submicron phases. Since such reactions
and the correspondent nanophases are considered as much more thermody-
namically stable than many of the other methods listed above, as required for
long-term thermoelectric applications, a detailed description of this effect and
the conditions for achieving it will be given in the next paragraph.
It is noteworthy that the above-listed methods and compositions resulting

in maximal ZTs higher than 1, as shown in Figure 1.1a,b, did not necessarily
result in higher average ZTs than 1 over the entire operation temperature range
(100–500 ∘C) required for automotive waste heat recovery. For such applications
the maximal possible thermoelectric efficiency, defined as the ratio between the
obtained electrical power on the load resistance and the absorbed heat, can be
calculated using Eq. (1.1).

𝜂 = ΔT
TH

•

√
1 + ZT − 1

√
1 + ZT +

TC

TH

(1.1)

where 𝜂 is the thermoelectric efficiency, ZT is the average dimensionless ther-
moelectric figure of merit, TC is the cold side temperature of the thermoelectric
sample, TH is the hot side temperature of the thermoelectric sample, and ΔT is
the temperature difference along the thermoelectric sample (ΔT =TH –TC).
The maximal thermoelectric efficiency values for the samples shown in

Figure 1.1a,b, calculated using Eq. (1.1) and the average ZTs for each compo-
sition, are illustrated in Figure 1.1c,d for a constant cold side temperature of
100 ∘C and varied hot side temperatures in the range of 300–500 ∘C. From these
figures it can be easily seen that some of the recently published compositions
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showing maximal ZTs higher than 1 and in some cases even higher than 1.6,
do not necessarily show higher efficiency values than those calculated using Eq.
(1.1) for an average ZT of 1 (dashed line in the figure). On the other hand, some
of the compositions show very high efficiency values of up to 14–15% (the p-type
Ge0.87Pb0.13Te [3] and the n-type AgPb18SbTe20 – LAST [10] compositions) for
the temperature range of 100–500 ∘C.
Besides high average ZTs, other important factors required for practical

applications include high mechanical properties and improved structural and
chemical stability at the operating temperatures. Mechanical properties are
important in determining the performance of thermoelectric materials since
they are subject in the course of their operation to various mechanical and
thermal stresses. In this context, it was recently shown that the less thermo-
electrically efficient p-Pb1−xSnxTe compound, compared to Na-doped PbTe, is
more favorable for practical thermoelectric applications because of the highly
mechanical brittle nature of the latter [2]. Regarding chemical and structural
stability, PbTe-based compounds were associated for many years with improved
structural and chemical stability at the operating temperatures than GeTe-based
compounds. The improved chemical stability is due to a lower vapor pressure,
namely, lower sublimation rates of PbTe, as can be seen in Figure 1.2.
In telluride-based thermoelectric materials (e.g., PbTe and GeTe), the main

degradation mechanism during normal operation conditions (100–500 ∘C) is
sublimation of GeTe, PbTe, or SnTe in amolecular form (Figure 1.2). For PbTe, the
maximal allowed hot side temperature for long operation conditions is 500 ∘C,
corresponding to a maximal vapor pressure of ∼6× 10−8 atm (Figure 1.2). It can
be seen from the figure that this vapor pressure corresponds to a temperature of
∼410 ∘C for the case of GeTe, which can be considered as the maximal allowed
operation temperature for this class of materials. Beyond this temperature,
high sublimation and corresponding degradation rates can be expected. An
improved structural stability of PbTe compared to GeTe was considered for
many years mainly because of the single-phase cubic NaCl structure of PbTe
over the whole operating temperature range, in contrast to the rhombohedral
to cubic NaCl phase transition at 427 ∘C in GeTe. Recently, the highly efficient

Figure 1.2 Temperature
dependence of the vapor
pressures of various IV–VI alloys
and the mostly volatile
elements in these systems
[15–19].
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p-type GexPb1−xTe alloys, including the Ge0.87Pb0.13Te composition shown in
Figure 1.1a, were shown to follow a second-order phase transition from the
high-temperature cubic phase to the low-temperature rhomoboheral phase with
a decreased phase transition temperature, Tc, by moving from GeTe toward
PbTe richer compositions [20]. Second-order phase transitions occur when a
new state of reduced symmetry develops continuously from the disordered (high
temperature) phase and are characterized by the absence of discontinuities of
the thermodynamic state functions (entropy, enthalpy, volume).The character of
the phase transition (first- or second-order) is important to determine whether
a certain material is suitable for serving in thermoelectric applications in which
large temperature gradients are usually involved. In such instances, a singular
intermediate temperature Tc at which one crystal structure is transformed into
another with the corresponding sharp variation of the lattice parameters (as in
first-order transitions) can result in mechanical weakness. A continuous varia-
tion of the lattice parameters from one phase to the other (as in second-order
transitions) is more favorable from the mechanical stability standpoint. There-
fore, GexPb1−xTe alloys exhibit a very high potential, both from mechanical
stability and thermoelectric performance considerations, for being involved as
p-type legs in practical thermoelectric applications. Since the very high maximal
ZTs of the p-type Ge0.87Pb0.13Te and the n-type (Pb0.95Sn0.05Te)0.92(PbS)0.08
compositions in Figure 1.1a,b are mainly attributed to very low lattice thermal
conductivity values resulting from nano- and submicron features originating
from phase separation reactions, a detailed description of these reactions and
their potential in enhancement of the thermoelectric figure of merit is given in
the next paragraph.

1.3 Thermodynamically Driven Phase Separation
Reactions

As mentioned earlier, retaining a submicron structure during a practical
thermoelectric operation under a large temperature gradient is of great impor-
tance. One method for retaining such structures is based on the generation of
thermodynamically driven phase separation reactions such as spinodal decom-
position or nucleation and growth. For understanding the thermodynamic
conditions required for generation of such reactions, a basic understanding of the
thermodynamics of mixing is required and will be given referring to Figure 1.3.
The Gibbs energy of mixing, ΔGm, for a binary A–B mixture, can be described

in terms of Eq. (1.2) [21].

ΔGm = ΔHm − TΔSm
= 𝜔 ⋅ x ⋅ (1 − x) + T ⋅ R ⋅ [(1 − x) ⋅ ln(1 − x) + x ⋅ ln(x)] (1.2)

The left term of Eq. (1.2) represents the enthalpy of mixing, ΔHm, while the
right term represents the entropy term of mixing (−TΔSm), where T is the abso-
lute temperature, ΔSm is the entropy of mixing, x is the concentration of one of
themixture’s components (the concentration of the other component is therefore
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Figure 1.3 Compositional dependencies of the enthalpy, ΔHm, entropy, −TΔSm, terms of
mixing (a), and Gibbs free energy of mixing, ΔGm (b) for various temperatures; a phase
diagram, built from the thermodynamic terms mentioned above, showing a miscibility gap
between two components A and B in a binary mixture (c) and a representative phase
separation microstructure showing a continuous variation of the concentration of the
components A and B in the A–B binary mixture described above (d).

1− x), 𝜔 is the interaction parameter between the mixture’s components A and
B, and R is the ideal gas constant (=8.314 J/mol/K). In ideal mixtures or ideal
solutions, in which the enthalpies of mixing equal zero,ΔGm is solely determined
by the entropy of mixing. The regular solution model, described by Eq. (1.2),
is a simple example of a nonideal solution that can be referred to many of the
binary mixtures available in practical thermoelectric systems. ΔSm is always
positive, since there is always a positive entropy gain upon mixing, and therefore
–TΔSm is always negative, as described in Figure 1.3a for various temperatures.
Therefore, it can be shown that entropy considerations will solely lead to a
homogeneous solution with an always negative ΔGm function. Consequently,
the miscibility characteristics of the two components A and B in a binary
mixture are solely determined by the enthalpy of mixing and more specifically
by the dimensionless interaction parameter 𝜔 (Eq. (1.2)) between the mixture’s
components. A negative chemical interaction (𝜔< 0), which is themost common
situation, will lead to a high solubility substitution of the matrix A and B atoms,
forming a single solubility phase. In this case, both ΔHm and ΔGm will follow
the same trend of the (−TΔSm) function in Figure 1.3a, exhibiting one deep
minimum. A more rare situation, in which an attractive chemical interaction
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(𝜔> 0) exists, can lead to an inhomogeneous distribution of the substitution
atoms, leading to phase separation and a miscibility gap in the phase diagram as
will be explained in the following few sentences. In this case,ΔHm will follow the
trend observed in Figure 1.3a, exhibiting one maximum, and ΔGm, which is the
sum of the positive ΔHm and the negative (−TΔSm) functions, and will follow
the two local minima trend shown in Figure 1.3b. The ΔGm curves, obtained at
various temperatures as shown in Figure 1.3b, can determine the phase diagram
of the system (Figure 1.3c). Steady-state conditions, defined by the binodal curve,
representing the limits of solid solubility, can be obtained by the intersection of
each of the isothermal curves of Figure 1.3b with a common tangent. These are
the local minima compositions, obtained for each temperature, satisfying the
dGm/dx= 0 condition. The spinodal curve of the phase diagram (Figure 1.3c) is
determined by the inflection points (d2Gm/dx2 = 0) of the free energy isotherms
of Figure 1.3b. Under the spinodal curve, namely, between the inflection points,
where the curvature of the free energy function is negative (d2Gm/dx2 < 0), the
spinodal decomposition mechanism of phase separation can occur. Therefore,
for compositions within the spinodal curve, a homogeneous solution is unstable
against microscopic compositional fluctuations, and there is no thermodynamic
barrier to the growth of a new phase. As a result, the phase transformation is
spontaneous, does not require any external activation energy, and is solely diffu-
sion controlled. The compositions between the spinodal and the binodal curves,
in which the curvature of the free energy function is positive (d2Gm/dx2 > 0), are
considered as metastable, and in this region of the phase diagram the nucleation
and growth mechanism for phase separation will dominate. In this region, a
nucleus of a critical size has to form before it is energetically favorable for it
to grow. Therefore, in contrast to the spinodal decomposition which can be
treated purely as a diffusion problem, by an approximate analytical solution
to the general diffusion equation, theories of nucleation and growth have to
involve thermodynamic considerations, and the diffusion problem involved in
the growth of the nucleus is far more difficult to solve. Furthermore, owing to
the rapid phase separation mechanism involved in spinodal decomposition,
this reaction is uniformly distributed throughout the materials by continuous
low amplitude periodic modulations and not just at discrete nucleation sites
as in the nucleation and growth regime. As a result, spinodal decomposition is
characterized by a very finely dispersed microstructure, shown in Figure 1.3d,
which can significantly reduce the lattice thermal conductivity and consequently
maximize ZT. In this figure, the continuous compositional modulations of A
and B atoms, obtained by crossing the two separated phases, can be easily seen.
The first explanation of the fluctuation’s periodicity was originally given by
Hillert [22], upon derivation of a flux equation for one-dimensional diffusion
on a discrete lattice based on a regular solution model. The equation takes
into account the interfacial energy effects between adjacent separated phases.
Subsequently, the effects of coherency strains on dictating the morphology were
included by Cahn [23]. Therefore, both of the phase separation phenomena
described above represent two mechanisms by which a solution of two or
more components can be separated into distinct phases with different chemical
compositions and physical properties. Owing to the rapid reactions involved,


