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Preface

Again, the last year has been very successful for high performance computing
in Baden-Württemberg and beyond. The NEC SX-8 vector supercomputer is
highly utilized and has been very successfully used by many scientific projects.
In February 2007, the new “Landes-Höchstleistungsrechner HP XC4000” has
been inaugurated at the SSC in Karlsruhe. This massively parallel high per-
formance system complex, built from hundreds of Intel Itanium processors
and more than three thousand AMD Opteron cores, has helped in doing ad-
ditional science on a very high level. Nevertheless, the time has already come
to start thinking about the next follow-up system in future.

The discussions and plans on all scientific, advisory, and political levels
to realize an even larger “European Supercomputer” in Germany, where the
hardware costs alone will be around 200 Million Euro, are getting closer to
realization. There are many good reasons to invest in such a program be-
cause – beyond the infrastructure – such a scientific research tool will attract
the best brains to tackle the problems related to the software and method-
ology challenges. As part of the strategy, the three national supercomputing
centres HLRS (Stuttgart), NIC/JSC (Jülich) and LRZ (Munich) have formed
the Gauss-Centre for Supercomputing (GCS) as a new virtual organization
enabled by an agreement between the Federal Ministry of Education and Re-
search (BMBF) and the state ministries for research of Baden-Württemberg,
Bayern, and Nordrhein-Westfalen from July 2006. Already today, the GCS
provides the most powerful high-performance computing infrastructure in Eu-
rope.

Moreover, it is expected that in the next few months – following the pro-
posal of the German HPC community, guided by Professor Andreas Reuter
(EML) – the reshape of the High Performance Computing in Germany will
proceed to form the German HPC “Gauss Alliance”, with the goal to improve
and establish competitiveness for the coming years. Beyond the stabilization
and strengthening of the existing German infrastructures – including the nec-
essary hardware at a worldwide competitive level – a major software research
and support program to enable Computational Science and Engineering on the
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required level of expertise and performance – which means: running Petascale
applications on more than 100,000 processors – is promised by the BMBF. It
is expected that for the next years 20 Million Euro will be spend – on a yearly
basis – for projects to develop scalable algorithms, methods and tools in many
areas to support massively parallel systems. As we all know, we do not only
need competitive hardware but also excellent software and methods to ap-
proach – and solve – the most demanding problems in science and engineering.
To achieve this challenging goal every three-year project supported by that
program will need to integrate excellent research groups at the universities
with colleagues from the competence network of HPC centers in Germany.
The success of this approach is of utmost importance for our community and
also will strongly influence the development of new technologies and indus-
trial products; beyond that, this will finally determine if Germany will be an
accepted partner among the leading technology and research nations.

The role of national supercomputing centers like HLRS can never be lim-
ited to the pure operation and services of hardware systems. Research in
methods and tools is strongly necessary to be able to support users in ex-
ploiting the full potential of supercomputing systems. HLRS has emphasized
its leading role in this field over the last years. Most recently, as part of the
German national elite research program HLRS and its research partners at
the University of Stuttgart were awarded a funding of 30 Million Euro for the
next five years for a cluster of excellence in Simulation Technology. With this
success, the University of Stuttgart and HLRS will further strengthen their
national and international position as centers for high performance computing
and simulation technology.

The goal of the cluster of excellence in simulation technology is to go from
isolated approaches (numerical kernels, methods, and tools) to an integrated
system science. Research areas will include molecular and particle simulation,
advanced mechanics of multi-scale and multi-field problems, systems analysis
and inverse problems, numerical and computational mathematics, integrated
data management and interactive visualization, hybrid high-performance com-
puting systems and simulation software engineering and an integrative plat-
form of reflection and evaluation.

Since 1996, HLRS is supporting the scientific community as part of its of-
ficial mission. Like in the years before, the major results of the last 12 months
were reported at the Tenth Results and Review Workshop on High Perfor-
mance Computing in Science and Engineering, which was held October 4–5,
2007 at Stuttgart University. This volume contains the written versions of
the research work presented. The papers have been selected from all projects
running at HLRS and at SSC Karlsruhe during the one year period begin-
ning October 2006. Overall, 43 papers have been chosen from Physics, Solid
State Physics, Computational Fluid Dynamics, Chemistry, and other topics.
The largest number of contributions, as in many other years, came from CFD
with 17 papers. Although such a small collection cannot represent a large area
in total, the selected papers demonstrate the state of the art in high perfor-
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mance computing in Germany. The authors were encouraged to emphasize
computational techniques used in solving the problems examined. This often
forgotten aspect was the major focus of this volume, nevertheless this should
not disregard the importance of the newly computed scientific results for the
specific disciplines.

We gratefully acknowledge the continued support of the Land Baden-
Württemberg in promoting and supporting high performance computing.
Grateful acknowledgement is also due to the Deutsche Forschungsgemein-
schaft (DFG): many projects processed on the machines of HLRS and SSC
could not have been carried out without the support of the DFG. Also, we
thank the Springer Verlag for publishing this volume and thus helping to po-
sition the local activities into an international frame. We hope that this series
of publications is contributing to the global promotion of high performance
scientific computing.

Stuttgart, Oktober 2007 Wolfgang E. Nagel
Dietmar Kröner

Michael Resch
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Physics

Dr. Roland Speith

Institut für Astronomie und Astrophysik, Abteilung Computational Physics,
Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany

In the following section, a few projects with general physical background have
been selected to give an impression of the applications for physical research
currently running at the HLRS. The presented work clearly demonstrates
the need for super-computing resources to achieve the respective research
objectives, even though the different projects cover a wide range of Physics.

As in the previous years, nearly half of all Physics projects are related to
astrophysical research. Exemplary in this field is the work by Marek et al., who
report their progress in modelling core collapse supernovae. They investigate
the influence of details of the progenitor star on the supernova explosion, in
particular non-symmetric effects like stellar rotation. Their results indicate
that the neutrino-driven explosion might develop much later after the first
shock formation than previously assumed.

Another highlight in the astrophysical field is the project by Brügmann
et al., which deals with the simulation of gravitational wave signals generated
by the mergers of two orbiting black holes. They managed to perform the
largest numerical parameter study to date of black-hole binaries with detailed
analysis of the resulting gravitational wave profiles, which are very important
as signal templates for the current and future gravitational wave detectors.

Next to Astrophysics, research associated in the broader sense to the field
of Quantum Physics dominates the currently running projects. A particular
example is the work by Kühn, Steinhauser & Tentyukov regarding theoret-
ical Particle Physics. Their aim is to calculate fundamental parameters of
the Standard Model with very high accuracy, which may be helpful to iden-
tify deviations from the Standard Model by comparing with high precision
experiments.

Finally, as an example for a non-astrophysical, non-Quantum Physics
project, Hecht & Harting report on simulations of colloidal particle suspen-
sions in shear flow. They determine the dependence of clustering processes on
effects like pH-values and shear rates with a new parallel simulation method.

All the above listed projects once again show that high performance com-
puting has in general become a matter of routine. Also the number of com-
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plaints about technical problems is lower compared to the previous year, even
though there still have been a few records on code incompatibilities with com-
pilers and unstable runs on particular machines in the reports. Striking is the
number of long-term projects which continuously have progressed over years.
Roughly three quarters of all Physics projects are directly or indirectly con-
tinued from last year. This may demonstrate the on average high excellence
of the projects, but it also may indicate a weakness in attracting new research
projects and groups to the super-computing centres.



The SuperN-Project: Current Progress

in Modelling Core Collapse Supernovae

A. Marek, K. Kifonidis, H.-Th. Janka, and B. Müller

Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, Postfach 1317,
D-85741 Garching bei München, Germany
amarek@mpa-garching.mpg.de

Summary. We give an overview of the problems and the current status of our two-
dimensional (core collapse) supernova modelling, and discuss the system of equations
and the algorithm for its solution that are employed in our code. In particular we
report our recent progress, and focus on the ongoing calculations that are performed
on the NEC SX-8 at the HLRS Stuttgart. Especially, we will argue that it might be
possible that neutrino-driven supernova explosions set in at much later times than
previously considered. This, of course, enhances the need of a code that can make
efficient use of the multi-node capability of the NEC SX-8 for long-time simulations
of the postbounce evolution of collapsing stellar cores.

1 Introduction

A star more massive than about 8 solar masses ends its live in a cataclysmic
explosion, a supernova. Its quiescent evolution comes to an end, when the
pressure in its inner layers is no longer able to balance the inward pull of
gravity. Throughout its life, the star sustained this balance by generating
energy through a sequence of nuclear fusion reactions, forming increasingly
heavier elements in its core. However, when the core consists mainly of iron-
group nuclei, central energy generation ceases. The fusion reactions producing
iron-group nuclei relocate to the core’s surface, and their “ashes” continuously
increase the core’s mass. Similar to a white dwarf, such a core is stabilised
against gravity by the pressure of its degenerate gas of electrons. However,
to remain stable, its mass must stay smaller than the Chandrasekhar limit.
When the core grows larger than this limit, it collapses to a neutron star, and
a huge amount (∼ 1053 erg) of gravitational binding energy is set free. Most
(∼ 99%) of this energy is radiated away in neutrinos, but a small fraction
is transferred to the outer stellar layers and drives the violent mass ejection
which disrupts the star in a supernova.

Despite 40 years of research, the details of how this energy transfer happens
and how the explosion is initiated are still not well understood. Observational
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evidence about the physical processes deep inside the collapsing star is sparse
and almost exclusively indirect. The only direct observational access is via
measurements of neutrinos or gravitational waves. To obtain insight into the
events in the core, one must therefore heavily rely on sophisticated numeri-
cal simulations. The enormous amount of computer power required for this
purpose has led to the use of several, often questionable, approximations and
numerous ambiguous results in the past. Fortunately, however, the develop-
ment of numerical tools and computational resources has meanwhile advanced
to a point, where it is becoming possible to perform multi-dimensional simula-
tions with unprecedented accuracy. Therefore there is hope that the physical
processes which are essential for the explosion can finally be unravelled.

An understanding of the explosion mechanism is required to answer many
important questions of nuclear, gravitational, and astro-physics like the fol-
lowing:

• How do the explosion energy, the explosion timescale, and the mass of
the compact remnant depend on the progenitor’s mass? Is the explosion
mechanism the same for all progenitors? For which stars are black holes
left behind as compact remnants instead of neutron stars?

• What is the role of the – poorly known – equation of state (EoS) for the
proto neutron star? Do softer or stiffer EoSs favour the explosion of a core
collapse supernova?

• What is the role of rotation during the explosion? How rapidly do newly
formed neutron stars rotate?

• How do neutron stars receive their natal kicks? Are they accelerated by
asymmetric mass ejection and/or anisotropic neutrino emission?

• What are the generic properties of the neutrino emission and of the grav-
itational wave signal that are produced during stellar core collapse and
explosion? Up to which distances could these signals be measured with
operating or planned detectors on earth and in space? And what can one
learn about supernova dynamics from a future measurement of such signals
in case of a Galactic supernova?

2 Numerical Models

2.1 History and Constraints

According to theory, a shock wave is launched at the moment of “core bounce”
when the neutron star begins to emerge from the collapsing stellar iron core.
There is general agreement, supported by all “modern” numerical simulations,
that this shock is unable to propagate directly into the stellar mantle and enve-
lope, because it looses too much energy in dissociating iron into free nucleons
while it moves through the outer core. The “prompt” shock ultimately stalls.
Thus the currently favoured theoretical paradigm needs to exploit the fact
that a huge energy reservoir is present in the form of neutrinos, which are
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abundantly emitted from the hot, nascent neutron star. The absorption of
electron neutrinos and antineutrinos by free nucleons in the post shock layer
is thought to reenergize the shock, and lead to the supernova explosion.

Detailed spherically symmetric hydrodynamic models, which recently in-
clude a very accurate treatment of the time-dependent, multi-flavour, multi-
frequency neutrino transport based on a numerical solution of the Boltzmann
transport equation [1, 2, 3], reveal that this “delayed, neutrino-driven mecha-
nism” does not work as simply as originally envisioned. Although in principle
able to trigger the explosion (e.g., [4, 5, 6]), neutrino energy transfer to the
postshock matter turned out to be too weak. For inverting the infall of the
stellar core and initiating powerful mass ejection, an increase of the efficiency
of neutrino energy deposition is needed.

A number of physical phenomena have been pointed out that can enhance
neutrino energy deposition behind the stalled supernova shock. They are all
linked to the fact that the real world is multi-dimensional instead of spherically
symmetric (or one-dimensional; 1D) as assumed in the work cited above:

(1) Convective instabilities in the neutrino-heated layer between the neutron
star and the supernova shock develop to violent convective overturn [7].
This convective overturn is helpful for the explosion, mainly because
(a) neutrino-heated matter rises and increases the pressure behind the
shock, thus pushing the shock further out, and (b) cool matter is able to
penetrate closer to the neutron star where it can absorb neutrino energy
more efficiently. Both effects allow multi-dimensional models to explode
easier than spherically symmetric ones [8, 9, 10].

(2) Recent work [11, 12, 13, 14] has demonstrated that the stalled supernova
shock is also subject to a second non-radial low-mode instability, called
SASI, which can grow to a dipolar, global deformation of the shock [14,
15].

(3) Convective energy transport inside the nascent neutron star [16, 17, 18, 19]
might enhance the energy transport to the neutrinosphere and could thus
boost the neutrino luminosities. This would in turn increase the neutrino-
heating behind the shock.

This list of multi-dimensional phenomena awaits more detailed exploration in
multi-dimensional simulations. Until recently, such simulations have been per-
formed with only a grossly simplified treatment of the involved microphysics,
in particular of the neutrino transport and neutrino-matter interactions. At
best, grey (i.e., single energy) flux-limited diffusion schemes were employed.
All published successful simulations of supernova explosions by the convec-
tivly aided neutrino-heating mechanism in two [8, 9, 20] and three dimen-
sions [21, 22] used such a radical approximation of the neutrino transport.

Since, however, the role of the neutrinos is crucial for the problem, and
because previous experience shows that the outcome of simulations is indeed
very sensitive to the employed transport approximations, studies of the explo-
sion mechanism require the best available description of the neutrino physics.
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This implies that one has to solve the Boltzmann transport equation for neu-
trinos.

2.2 Recent Calculations and the Need for TFlop Simulations

We have recently advanced to a new level of accuracy for supernova sim-
ulations by generalising the VERTEX code, a Boltzmann solver for neu-
trino transport, from spherical symmetry [23] to multi-dimensional appli-
cations [24, 25]. The corresponding mathematical model, and in particular
our method for tackling the integro-differential transport problem in multi-
dimensions, will be summarised in Sect. 3.

Results of a set of simulations with our code in 1D and 2D for progenitor
stars with different masses have recently been published by [25, 26], and with
respect to the expected gravitational-wave signals from rotating and convec-
tive supernova cores by [27]. The recent progress in supernova modelling was
summarised and set in perspective in a conference article by [24].

Our collection of simulations has helped us to identify a number of effects
which have brought our two-dimensional models close to the threshold of
explosion. This makes us optimistic that the solution of the long-standing
problem of how massive stars explode may be in reach. In particular, we have
recognised the following aspects as advantageous:

• The details of the stellar progenitor (i.e. the mass of the iron core and
its radius–density relation) have substantial influence on the supernova
evolution. Especially, we found explosions of stellar models with low-mass
(i.e. small) iron cores [26, 28], whereas more massive stars resist the explo-
sion more persistent [25]. Thus detailed studies with different progenitor
models are necessary.

• Stellar rotation, even at a moderate level, supports the expansion of the
stalled shock by centrifugal forces and instigates overturn motion in the
neutrino-heated postshock matter by meridional circulation flows in addi-
tion to convective instabilities.

All these effects are potentially important, and some (or even all of them)
may represent crucial ingredients for a successful supernova simulation. So
far no multi-dimensional calculations have been performed, in which two or
more of these items have been taken into account simultaneously, and thus
their mutual interaction awaits to be investigated. It should also be kept in
mind that our knowledge of supernova microphysics, and especially the EoS
of neutron star matter, is still incomplete, which implies major uncertainties
for supernova modelling. Unfortunately, the impact of different descriptions
for this input physics has so far not been satisfactorily explored with re-
spect to the neutrino-heating mechanism and the long-time behaviour of the
supernova shock, in particular in multi-dimensional models. However, first
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multi-dimensional simulations of core collapse supernovae with different nu-
clear EoSs [19, 29] show a strong dependence of the supernova evolution on
the EoS.

From this it is clear that rather extensive parameter studies using multi-
dimensional simulations are required to identify the physical processes which
are essential for the explosion. Since on a dedicated machine performing at
a sustained speed of about 30 GFlops already a single 2D simulation has
a turn-around time of more than half a year, these parameter studies are not
possible without TFlop simulations.

3 The Mathematical Model

The non-linear system of partial differential equations which is solved in our
code consists of the following components:

• The Euler equations of hydrodynamics, supplemented by advection equa-
tions for the electron fraction and the chemical composition of the fluid,
and formulated in spherical coordinates;

• the Poisson equation for calculating the gravitational source terms which
enter the Euler equations, including corrections for general relativistic ef-
fects;

• the Boltzmann transport equation which determines the (non-equilibrium)
distribution function of the neutrinos;

• the emission, absorption, and scattering rates of neutrinos, which are re-
quired for the solution of the Boltzmann equation;

• the equation of state of the stellar fluid, which provides the closure relation
between the variables entering the Euler equations, i.e. density, momen-
tum, energy, electron fraction, composition, and pressure.

In what follows we will briefly summarise the neutrino transport algorithms.
For a more complete description of the entire code we refer the reader to [25],
and the references therein.

3.1 “Ray-by-Ray Plus” Variable Eddington Factor Solution
of the Neutrino Transport Problem

The crucial quantity required to determine the source terms for the en-
ergy, momentum, and electron fraction of the fluid owing to its interac-
tion with the neutrinos is the neutrino distribution function in phase space,
f(r, ϑ, φ, ε, Θ, Φ, t). Equivalently, the neutrino intensity I = c/(2π�c)3 · ε3f
may be used. Both are seven-dimensional functions, as they describe, at every
point in space (r, ϑ, φ), the distribution of neutrinos propagating with energy
ε into the direction (Θ,Φ) at time t (Fig. 1).

The evolution of I (or f) in time is governed by the Boltzmann equation,
and solving this equation is, in general, a six-dimensional problem (as time
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Fig. 1. Illustration of the phase space coordinates
(see the main text)

is usually not counted as a separate dimension). A solution of this equation
by direct discretisation (using an SN scheme) would require computational
resources in the PetaFlop range. Although there are attempts by at least one
group in the United States to follow such an approach, we feel that, with the
currently available computational resources, it is mandatory to reduce the
dimensionality of the problem.

Actually this should be possible, since the source terms entering the hy-
drodynamic equations are integrals of I over momentum space (i.e. over ε, Θ,
and Φ), and thus only a fraction of the information contained in I is truly
required to compute the dynamics of the flow. It makes therefore sense to
consider angular moments of I, and to solve evolution equations for these
moments, instead of dealing with the Boltzmann equation directly. The 0th
to 3rd order moments are defined as

J,H,K,L, . . . (r, ϑ, φ, ε, t) =
1
4π

∫
I(r, ϑ, φ, ε, Θ, Φ, t)n0,1,2,3,... dΩ (1)

where dΩ = sinΘ dΘ dΦ, n = (cosΘ, sinΘ cosΦ, sinΘ sinΦ), and exponen-
tiation represents repeated application of the dyadic product. Note that the
moments are tensors of the required rank.

This leaves us with a four-dimensional problem. So far no approximations
have been made. In order to reduce the size of the problem even further,
one needs to resort to assumptions on its symmetry. At this point, one usu-
ally employs azimuthal symmetry for the stellar matter distribution, i.e. any
dependence on the azimuth angle φ is ignored, which implies that the hydro-
dynamics of the problem can be treated in two dimensions. It also implies
I(r, ϑ, ε, Θ, Φ) = I(r, ϑ, ε, Θ,−Φ). If, in addition, it is assumed that I is even
independent of Φ, then each of the angular moments of I becomes a scalar,
which depends on two spatial dimensions, and one dimension in momentum
space: J,H,K,L = J,H,K,L(r, ϑ, ε, t). Thus we have reduced the problem to
three dimensions in total.
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The System of Equations

With the aforementioned assumptions it can be shown [25], that in order to
compute the source terms for the energy and electron fraction of the fluid,
the following two transport equations need to be solved:
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These are evolution equations for the neutrino energy density, J , and the
neutrino flux, H , and follow from the zeroth and first moment equations
of the comoving frame (Boltzmann) transport equation in the Newtonian,
O(v/c) approximation. The quantities C(0) and C(1) are source terms that
result from the collision term of the Boltzmann equation, while βr = vr/c and
βϑ = vϑ/c, where vr and vϑ are the components of the hydrodynamic velocity,
and c is the speed of light. The functional dependences βr = βr(r, ϑ, t), J =
J(r, ϑ, ε, t), etc. are suppressed in the notation. This system includes four
unknown moments (J,H,K,L) but only two equations, and thus needs to be
supplemented by two more relations. This is done by substituting K = fK · J
and L = fL · J , where fK and fL are the variable Eddington factors, which
for the moment may be regarded as being known, but in our case is indeed
determined from a separate simplified (“model”) Boltzmann equation.

A finite volume discretisation of (2–3) is sufficient to guarantee exact con-
servation of the total neutrino energy. However, and as described in detail
in [23], it is not sufficient to guarantee also exact conservation of the neutrino
number. To achieve this, we discretise and solve a set of two additional equa-
tions. With J = J/ε, H = H/ε, K = K/ε, and L = L/ε, this set of equations
reads
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The moment equations (2–5) are very similar to the O(v/c) equations in spher-
ical symmetry which were solved in the 1D simulations of [23] (see Eqs. 7, 8, 30,
and 31 of the latter work). This similarity has allowed us to reuse a good
fraction of the one-dimensional version of VERTEX, for coding the multi-
dimensional algorithm. The additional terms necessary for this purpose have
been set in boldface above.

Finally, the changes of the energy, e, and electron fraction, Ye, required
for the hydrodynamics are given by the following two equations

de
dt

= −4π
ρ

∫ ∞

0

dε
∑

ν∈(νe,ν̄e,... )

C(0)
ν (ε), (6)

dYe

dt
= −4πmB

ρ

∫ ∞

0

dε
(
C(0)

νe
(ε) − C(0)

ν̄e
(ε)
)

(7)

(for the momentum source terms due to neutrinos see [25]). Here mB is the
baryon mass, and the sum in (6) runs over all neutrino types. The full system
consisting of (2–7) is stiff, and thus requires an appropriate discretisation
scheme for its stable solution.

Method of Solution

In order to discretise (2–7), the spatial domain [0, rmax]× [ϑmin, ϑmax] is cov-
ered by Nr radial, and Nϑ angular zones, where ϑmin = 0 and ϑmax = π
correspond to the north and south poles, respectively, of the spherical grid.
(In general, we allow for grids with different radial resolutions in the neutrino
transport and hydrodynamic parts of the code. The number of radial zones
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for the hydrodynamics will be denoted by Nhyd
r .) The number of bins used

in energy space is Nε and the number of neutrino types taken into account
is Nν .

The equations are solved in two operator-split steps corresponding to a lat-
eral and a radial sweep.

In the first step, we treat the boldface terms in the respectively first lines
of (2–5), which describe the lateral advection of the neutrinos with the stellar
fluid, and thus couple the angular moments of the neutrino distribution of
neighbouring angular zones. For this purpose we consider the equation

1
c

∂Ξ

∂t
+

1
r sinϑ

∂(sinϑβϑ Ξ)
∂ϑ

= 0 , (8)

where Ξ represents one of the moments J , H , J , or H. Although it has been
suppressed in the above notation, an equation of this form has to be solved
for each radius, for each energy bin, and for each type of neutrino. An explicit
upwind scheme is used for this purpose.

In the second step, the radial sweep is performed. Several points need to
be noted here:

• terms in boldface not yet taken into account in the lateral sweep, need to
be included into the discretisation scheme of the radial sweep. This can be
done in a straightforward way since these remaining terms do not include
derivatives of the transport variables (J,H) or (J ,H). They only depend
on the hydrodynamic velocity vϑ, which is a constant scalar field for the
transport problem.

• the right hand sides (source terms) of the equations and the coupling in
energy space have to be accounted for. The coupling in energy is non-local,
since the source terms of (2–5) stem from the Boltzmann equation, which
is an integro-differential equation and couples all the energy bins

• the discretisation scheme for the radial sweep is implicit in time. Explicit
schemes would require very small time steps to cope with the stiffness of
the source terms in the optically thick regime, and the small CFL time step
dictated by neutrino propagation with the speed of light in the optically
thin regime. Still, even with an implicit scheme � 105 time steps are
required per simulation. This makes the calculations expensive.

Once the equations for the radial sweep have been discretized in radius and
energy, the resulting solver is applied ray-by-ray for each angle ϑ and for each
type of neutrino, i.e. for constant ϑ, Nν two-dimensional problems need to be
solved.

The discretisation itself is done using a second order accurate scheme with
backward differencing in time according to [23]. This leads to a non-linear
system of algebraic equations, which is solved by Newton-Raphson iteration
with explicit construction and inversion of the corresponding Jacobian matrix.
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4 Recent Results and Ongoing Work

We make use of the computer resources available to us at the HLRS to ad-
dress some of the important questions in SN theory (see Sect. 1) with 2D-
simulations. At the HLRS, we typically run our code on one node of the NEC
SX-8 (8 processors, OpenMP-parallised) of the SX-8 with 98.3% of vector
operations and 22000 MFLOPS per second.

In the following we present some of our results from these simulations that
are currently performed at the HLRS. For the neutrino interaction rates we
use the full set as described in [30] and general relativistic effects are taken
into account according to [31].

4.1 The Importance of Hydrodynamic Instabilities Inside the
Supernova Core

Buras et al. [26] recently reported two simulations of an 11.2 M� stellar pro-
genitor model with two different setups: on the one hand they calculated a 90◦

wedge centred around the equatorial plane with periodic boundary conditions
(from here on called model s11.2-wedge). On the other hand a full 180◦ model
(from north to south pole) with reflecting boundary conditions was calculated
(from here on this model is called s11.2-180). Interestingly, the latter model
showed an explosion whereas the former one failed to explode.

In order to investigate whether the different wedge size or the different
boundary conditions caused this qualitative difference of the simulations, we
have performed simulations for two additional models: the first one, model
s11.2-90, employed a 90◦ wedge from the pole to the equator with reflecting
boundary conditions. The second model, s11.2-wedge-refl, was chosen with
a setup as model s11.2-wedge, however, reflecting boundary conditions were
used. The basic setup of all four models is sketched in Fig. 2.

We found that both models containing the polar axis developed explosions
and that the wedge models did not explode independent of the boundary

Fig. 2. Schematic overview over the setups
chosen for model s11.2-180 (a), s11.2-90 (b),
s11.2-wedge-refl (c), and s11.2-wedge (d).
Blue arrows indicate the use of reflecting
boundary conditions, whereas red arrows
indicate the use of periodic boundary con-
ditions. The sketches are oriented such that
the equatorial plane is represented by the
horizontal line
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condition, although all models show a similar strength of neutrino heating.
A more detailed analysis [19] showed that in the exploding models a strong
non-radial hydrodynamical instability of the accretion shock, the so-called
SASI [13], developed, which was suppressed in the non-exploding (wedge)
models. A projection of the shock-positions onto spherical harmonics Yl,m,

rshock(θ, t) =
∞∑

l=0

al,0(t)Yl,0(θ) , (9)

where m is set to zero due to the adopted axial symmetry of our 2D calcu-
lations, clearly shows the presence of this time and angle dependent shock
instability, see Fig. 3.

a b

Fig. 3. Time-dependent coefficients of the expansion of the shock position into
spherical harmonics (cf. (9)) Note that the the coefficients are normalised to the
amplitude of the l = 0 mode. a: The coefficients corresponding to the l = 1 mode.
b: The coefficients corresponding to the l = 2 mode

From this, together with (semi) analytical arguments given in [12, 13]
(see also Sect. 2.1), we conclude that the SASI can play a crucial role for the
development of an explosion. Indeed up to now all multi-dimensional explosion
models of the Garching supernova group showed such kind if instabilities
gaining strength before the onset of the explosion (see also paragraph 4.2).

4.2 Effects of Rotation

As we have already described in our last report [29], we have started a full
180◦ simulation of a 15M� progenitor star including rotation. This still on-
going simulation, model L&S-rot, – it was partly performed at the SX-8 of
the HLRS – is now the longest (tpb > 600ms) multidimensional Boltzmann
neutrino transport simulation worldwide. As we argued in our last report, the
reason for pushing this simulation to such late times is that rotation and angu-
lar momentum become more and more important at later times as matter has
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fallen from larger radii to the shock position. During all the simulated super-
nova evolution we find the presence of the already mentioned SASI low-mode
deformation of the accretion layer and shock (see previous Sect. 4.1), and at
a time of roughly 500 ms after the shock formation we observe the onset of
an explosion (see Fig. 4). However, it is yet not clear whether the presence
of rotation is crucial for the explosion of this 15 M� model, or whether this

Fig. 4. The shock position (solid white line) at the north pole (upper panel) and
south pole (lower panel) of the rotating 15 M� model as function of postbounce
time. Colour coded is the entropy of the stellar fluid

Fig. 5. The ratio of the advection timescale to the heating timescale for the rotating
model L&S-rot and the non-rotating model L&S-2D. Also shown is model L&S-rot-
90 which is identical to model L&S-rot except for the computational domain that
does not extend from pole to pole but from the north pole to the equator (see also
Sect. 4.1). The advection timescale is the characteristic timescale that matter stays
inside the heating region before it is advected to the proto-neutron star. The heating
timescale is the typical timescale that matter needs to be exposed to neutrino heating
for observing enough energy to become gravitationally unbound
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model would also explode without rotation. Since the comparison of the ro-
tating and a corresponding non-rotating model reveals qualitatively the same
behaviour, see e.g. Fig. 5, it is absolutely necessary to evolve both models to
a time of more than 500 ms after the shock formation in order to answer this
question.

Although the importance of rotation in this particular model is not yet
fully understood, this calculation nevertheless shows that the convectivly or
SASI supported neutrino-heating mechanism is viable to produce explosions
for massive progenitors (M > 10 M�) much later than previously considered.

5 Conclusions and Outlook

We continued to simulate well resolved 2D models of core collapse supernovae
with detailed neutrino transport at the HLRS. We found that non-radial hy-
drodynamic instabilities support the onset of supernova explosions and for
a 15M� progenitor model we obtained a supernova explosion at a time of
roughly 600 ms after the shock formation. These results indicate that super-
nova explosions might develop at much later times than previously thought,
which has to be investigated in more detail in the future. Especially the non-
rotating model has to be evolved to a time of roughly 700ms after the shock
formation, in order to clarify the importance of rotation in the exploding
model. All in all, this means longer evolution times per model and thus em-
phasises the need for very efficient numerical tools. With support by the staff
of the HLRS, our code is currently optimised for multi-node usage on the
NEC SX-8 which will allow us to evolve our supernova models faster to longer
evolution times than it is possible at the moment. This will be crucial for
investigating the importance of the stellar rotation as well as the possibility
of supernova explosions at late times (t > 0.5 s).
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1 Introduction

We present a status report on our second year of work on the numerical
simulation of gravitational wave signals from coalescing black holes at HLRS.
We report in particular on a significant number of important results we have
obtained, and on progress with optimizing our algorithms and code.

Gravitational waves and their sources are described by the Einstein equa-
tions, which underly the theory of general relativity (see e.g., our previous re-
port [23], or the overview article [31]). A large international effort is currently
underway to detect gravitational waves and start a new field of astrophysi-
cal research, gravitational wave astronomy. Within Germany, this research is
conducted within the SFB/TR 7 “Gravitational Wave Astronomy”.

In our work we solve the Einstein equations numerically, mainly with
finite-difference methods. Essentially, the solution process has two parts: first,
appropriate initial data have to be constructed by solving elliptic constraint
equations, which in some sense generalize the divergence constraints of electro-
magnetism. Second, these data are evolved by solving a system of hyperbolic
equations. The hyperbolic character of the evolution equations expresses the
fact that in general relativity physical information propagates at the speed of
light.

The particular type of gravitational wave source that we study is the
inspiral and coalescence of black-hole binaries. The efficiency of gravitational
wave sources is related to their compactness: A weak field calculation yields
the loss of energy of a system as
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diation power thus scales with the sixth power of the frequency of the system.
Due to the weakness of gravity, expressed in the factor G

5c5 , only systems of
astrophysical dimensions – large masses moving at a significant fraction of the
speed of light – generate significant amounts of gravitational radiation. Since
black holes are the most compact objects we can consider, black-hole bina-
ries are a particularly efficient and important source for current and future
gravitational wave detectors.

Gravitational waves have so far been detected only indirectly by com-
paring the tightening of the orbit of the Hulse-Taylor binary pulsar with
the theoretical prediction from energy loss due to gravitational wave emis-
sion [41, 54]. However, a growing network of gravitational-wave detectors such
as LIGO [1, 43], GEO [29, 33] and VIRGO [56] is currently taking science
data and direct detection is forseen for the next few years. In order to actu-
ally extract information about the sources from observations, accurate signal
templates are needed for various types of sources.

Producing templates for gravitational-wave data analysis will require large
parameter studies, and correspondingly large computational resources: The
eventual goal of our simulations is to map the parameter space of gravitational
wave signals from black hole coalescence. Our simulations typically start with
initial data that correspond to the astrophysically most relevant case of quasi-
circular inspiral, which essentially means that the eccentricity is very small.
The parameter space is then essentially given by the mass ratio and individual
spins, as well as the initial orientation of the spins. The latter determines in
particular the spin orientation at merger time, which has a strong influence
on the gravitational wave signal. In order to produce “complete” waveforms,
which contain large numbers of gravitational wave cycles from the inspiral
phase, as well as the merger and ringdown phases, it is necessary to start the
numerical simulations in the regime where Post-Newtonian analytical calcu-
lations are valid. These describe very accurately the waveforms of the early
inspiral process, but break down for small separations of the black holes. This
“matching” of analytical and numerical results requires large initial black-
hole separations and large integration times. Improving current estimates for
the validity of the Post-Newtonian approximation is an integral part of the
research, and will eventually determine the computational cost.

Crucial technical problems in the field at this point relate to the efficiency
of the simulations, and to the establishment of a “data analysis pipeline”,
connecting analytical calculations of the early inspiral phase with numerical
simulations and gravitational-wave searches in actual detector data.

Since our last report, we have obtained a large number of important results:
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• Through careful analysis of simulations of a single black hole, we described
for the first time the geometrical behavior of numerical solutions in the
now-standard “moving puncture” method of evolving black-hole space-
times [38, 39].

• We have presented the most detailed study of the two proposed versions
of the moving-puncture method as applied to equal-mass binaries [21].

• All moving-puncture simulations to date have used a particular type of
initial data, Bowen-York puncture data [19, 20]. These data make the
physically unrealistic assumption of conformal flatness. We have made
significant progress in removing this assumption for binaries made up of
spinning black holes [37].

• An independent code, LEAN, has been developed, and used to perform
a comparison of head-on collision simulations using puncture and excision
initial data [53].

• Astrophysicists have for many years been waiting for numerical simulations
to accurately calculate the recoil when two black holes of unequal mass col-
lide. In the largest parameter study to date of black-hole binaries requiring
approximately 150000 CPU hours, we have calculated the maximum re-
coil of unequal-mass nonspinning binaries to be 175.2± 11 km/s [35], and
performed a detailed analysis of the gravitational waves emitted during
unequal-mass binary mergers [17].

• Far more spectacularly, we have found that extremely large recoils are
possible for spinning black holes, and estimated the kick from one config-
uration as 2500 km/s, large enough to eject the remnant black hole even
from a giant elliptical galaxy [34].

• We have begun work on establishing a data-analysis pipeline to provide
our numerical waveforms to the gravitational-wave data-analysis commu-
nity [2, 3]. This work may increase the chances of gravitational-wave de-
tection by at least a factor of ten.

Further research in all of these areas is still underway; there are a wealth of
areas of explore. In this paper we will provide further details of these results,
and present performance tuning results and a summary of code optimization
over the last twelve months.

2 Status of the Field

The numerical solution of the full Einstein equations represents a very com-
plex problem, and for two black holes the spacetime singularities that are
encountered in the interior of black holes pose an additional challenge. In or-
der to obtain accurate results both the use of mesh refinement techniques and
a good choice of coordinate gauge are essential. Together with the compli-
cated structure of the equations – a typical code has between ten and several
dozen evolution variables, and, when expanded, the right hand sides of the
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evolution equations have thousands of terms – this yields a computationally
very complex and mathematically very subtle problem.

For a long time, typical runs had been severely limited by the achievable
evolution time before the simulations become too inaccurate or before the
computer code became unstable, and there were serious doubts whether nu-
merical relativity techniques could produce gravitational-wave templates, at
least in the near future. This picture has drastically changed ever since the first
simulations of a complete black hole orbit were obtained in early 2004 [24]. In
spring of 2005 Pretorius [49] presented the first simulation lasting for several
orbits, using adaptive mesh refinement, second-order finite differencing, a so-
phisticated method to excise the singular interior of the black hole from the
grid, and an implicit evolution algorithm.

An alternative to the “excision” method of treating black holes is to “fill”
the black hole with a topological defect in the form of an interior space-
like asymptotic end, the “puncture” [5, 20], and to freeze the evolution of
the asymptotic region through a judicious choice of coordinate gauge [6, 7,
10, 22]. The latter approach, combined with a setup where the topological
defect is allowed to move across the grid (“moving puncture” approach [11,
28]) has lead to a giant leap forward in the field [12, 13, 26, 27, 39, 40, 53],
taking the first orbit simulations of black holes [24, 49] to more than ten
orbits and allowing accurate wave extraction. It is this approach of moving
punctures that we and most groups follow. There are now ten groups capable
of performing black hole binary evolutions, with Jena being one of five groups
leading the field.

Recent work in the field has shifted focus from methodological work to
studies of astrophysical relevance. A particular focus of the last few months
has been the on the so-called recoil or rocket effect due to “beamed” emission
of gravitational radiation [15, 18, 48]. By momentum conservation, radiation
of energy in a preferred direction corresponds to a loss of linear momentum
and the black hole that results from the merger thus recoils from the center-
of-mass frame with speeds of up to several thousand km/s. The velocity of
this “kick” depends on the configuration of the system (e.g. the mass ratios
and spins) and details of the merger dynamics, but not on the total mass
(velocity is dimensionless in geometric units).

From an astrophysical point of view, the recoil effect is particularly inter-
esting for massive black holes with masses > 105M�, which exist at the center
of many galaxies and have a substantial impact on the structure and formation
of their host galaxies, as is demonstrated by the correlation of the black-hole
mass with the bulge mass, luminosity and velocity dispersion [32, 45, 46, 47].
The largest recoil effects have so far been found [34] for a particularly simple
configuration: equal mass black holes with (initially) anti-aligned spins in the
orbital plane. Such large kicks are on the order of 1% of the speed of light, and
larger than the escape velocity of about 2000 km/s of giant elliptical galaxies.

In order to predict accurate gravitational wave signals, it is necessary to
perform simulations over many orbits and connect such numerical simula-
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tions to post-Newtonian analytical calculations. It turns out that in such long
simulations phase errors of the orbits are very hard to control, and accurate
simulations with second or fourth order accurate methods are prohibitively
expensive. As an example for long evolutions we show results from three sim-
ulations with initial coordinate separations D = 10, 12, 14, corresponding to
somewhat more than 5, 9 and 14 orbits. Orbital tracks are shown in Fig. 1,
and gravitational wave signals in Fig. 2. The signals have been shifted in time
to reach the maximum at t = 0, which in particular compensates for the large
numerical errors in phase. In order to overcome phase inaccuracies in long

Fig. 1. Coordinate tracks of the puncture locations for inspirals with initial coordi-
nate separations D = 10, 12, 14, corresponding to a bit more than 5, 9 and 14 orbits

Fig. 2. Gravitational wave signals from the simulations shown in Fig. 1, shifted in
time to reach the maximum at t = 0
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evolutions, spectral methods have been suggested and significant progress has
been made by the Caltech-Cornell group [50]. In our group we have recently
obtained excellent results with 6th order accurate finite differencing methods
as described below. We are currently in the process of fine-tuning our grid
setup for 6th order evolutions for different types of initial data (adjustments
are required for black holes with spins or unequal mass evolutions).

3 Description of the Method

3.1 Continuum Problem

Writing the Einstein equations as an initial-value problem yields a coupled
system of second differential order elliptic constraints and hyperbolic evolu-
tion equations that preserve the constraints. In the free evolution approach,
which is most common in the field, the constraints are only solved initially,
and later only the hyperbolic equations are used to construct the solution.
There is a large freedom in writing the Einstein equations as a system of par-
tial differential equations, and much research has gone into finding optimal
choices. We currently employ the most popular choice, the so-called BSSN
system [4, 7, 14, 36, 52].

3.2 Numerical Methods for the Evolution Problem

Discretization in space is performed with standard fourth-order accurate sten-
cils, although we are currently working on a transition to making sixth order
accurate methods our standard choice. Symmetric stencils are used with the
exception of the advection terms associated with the shift vector, where we
use lop-sided upwind stencils, see e.g. [57] for the fourth order case. For the
sixth order case we find that several choices for the advection term stencils
yield stable evolutions, but the lop-sided upwind stencil which is closest to
the symmetric case yields by far the best accuracy, i.e. we use

f ′(x) =
2f(x− 2h) − 24f(x− h) − 35f(x) + 80f(x+ h)

60h

+
−30f(x+ 2h) + 8f(x+ 3h) − f(x+ 4h)

60h
− 1

105
d7f(x)
dx7

h6.

Alternative asymmetric choices would be

f ′(x) =
−10f(x− h) − 77f(x) + 150f(x+ h) − 100f(x+ 2h)

60h

+
50f(x+ 3h) − 15f(x+ 4h) + 2f(x+ 5h)

60h
+

1
42
d7f(x)
dx7

h6,

f ′(x) =
−147f(x) + 360f(x+ h) − 450f(x+ 2h) + 400f(x+ 3h)

60h

+
−225f(x+ 4h) + 72f(x+ 5h) − 10f(x+ 6h)

60h
− 1

7
d7f(x)
dx7

h6
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for the stencils that deviate more from the symmetric choice. We can see that
the first choice has the smallest leading error term. The symmetric stencil
has an even smaller error term 1

140
d7f(x)

dx7 h6, but does not show equally ro-
bust results, as is common for solving advection equations. For non-advection
derivative terms we again use the standard symmetric stencil. Time integra-
tion is performed by standard Runge-Kutta type methods, in particular 3rd
and 4th order Runge-Kutta and second-order accurate three-step iterative
Crank-Nicholson integrators as described in [25], where Courant limits and
stability properties are discussed for the types of equations used here.

Mesh refinement techniques are utilized to resolve the different scales of
the problem, and to follow the motion of the black holes. The relevant spatial
scales of the binary black-hole problem are the scales of the holes, their orbital
motion, the typical wave lengths of the ring-down of the individual and merged
black holes, the typical wavelength of the merger waveform and the asymptotic
falloff of the fields. All of these scales can be estimated from the initial data
and vary relatively slowly with time. It is thus very efficient to essentially use
a fixed mesh refinement strategy, with inner level refinement boxes following
the motion of the black holes. Typically we use about 10 refinement levels
(refining the grid spacing by factors of 2), roughly half of which follow the
movement of the black holes. The numerical algorithm is a modification of
the standard Berger-Oliger algorithm [16] as described in [21].

3.3 Numerical Methods for Solving the Constraints

Since the Einstein equations constitute a constrained system, initial data for
the evolution equations has to satisfy the constraints. The binary black hole
initial data used in our simulations is so-called puncture initial data, which
requires the solution of one scalar non-linear elliptic equation [20]. In the
BAM code such data can be obtained with a parallel geometric multigrid
solver, which however is using second order finite differencing.

During the last funding period we have implemented an interface to the
special purpose pseudo-spectral collocation code described in [9] for the BAM
code. Such data was already available to LEAN as a Cactus module.

In BAM, the AMR data is obtained by barycentric interpolation, typically
with 8th order polynomials for both the 4th and 6th order finite differencing
methods. The efficiency of the spectral solver is sufficient to solve the initial
data problem on a single processor, which is what we currently do.

3.4 Code Structure

We have implemented our methods in two independent codes, which we use for
cross-checking of results and performance, in order to achieve reliable results
from accurate and efficient simulations.

The LEAN code is based on the Cactus infrastructure [8, 55], which is
a community code and thus not fully under our control. The BAM [22, 24]
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code has been developed by our group and is designed to solve partial differ-
ential equations on structured meshes, in particular a coupled system of (typ-
ically hyperbolic) evolution equations and elliptic equations. The complexity
of the equations is addressed by using a Mathematica package integrated
into the code, which produces C-code from high-level problem descriptions in
Mathematica notebooks.

The BAM code is organized as a “framework”, similar in spirit to the
Cactus code [8, 55], but dropping much of its complexity. The computational
domain is decomposed into cubes, following standard domain-decomposition
algorithms, and is parallelized with MPI. Our mesh refinement algorithm is
based on the standard Berger-Oliger algorithm, but with additional buffer
zones, along the lines of [42, 51].

3.5 Computational Cost

Since adaptive meshes are being used, the memory requirement is not easily
expressed in terms of Cartesian box sizes. A typical large run has a cubical
box as its coarsest level with about 1503 grid points. Typical refinements
use 10 levels with 1 or 2 boxes per level (depending on whether the black
holes fit into one box or require two individual boxes). Depending on the
refinement criterion and in particular when two boxes are merged into one
larger box, the memory requirement is not constant and may exceed 1503

by up to a factor of 4. About 100–160 grid functions are required in double
precision. Extrapolating the memory requirement from the smaller runs that
we performed so far, we estimate that not more than 200GByte of RAM are
needed. For 4GByte of RAM per core on the LRZ Altix system, memory
usage is therefore not a limiting factor.

However, production runs typically require on the order of 105 time steps
on the finest level, and hence the number of floating point operations required
per grid point per time step is a more stringent issue than memory. The aim
is to perform simulations of black hole binaries at large separation, and the
larger the separation, the longer it takes the black holes to complete one orbit.
Typical large runs take from about 3 days to up to a week using checkpointing,
not counting the time spent in re-queuing simulations.

Each such run results in one data point in the parameter space of black
hole binaries. The number of data points in the space of initial data needed to
provide useful information for gravitational wave data analysis is very much
an open question right now, which we hope to address with our research.

4 Status Report of Optimization Work

4.1 General Remarks

Our BAM and LEAN codes have so far been run on Linux clusters based on
AMD Opteron, and Intel architectures, and we find rather consistent perfor-
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mance results for the systems we use: our in-house clusters doppler (24 AMD
Opteron nodes with Infiniband network) and kepler (35 Intel Woodcrest nodes
with Infiniband network), the HLRS cluster strider and the Itanium-based
Altix cluster at LRZ. In summer 2005 the Jena group applied for and was
granted support by the LRZ in its porting and optimization initiative for the
new Altix system. We find that optimizations performed on the Altix system
carry over to our in-house clusters and strider at HLRS.

Apart from standard timing tests we have used various tools: VampirTrace
has been used successfully to identify communication overheads, in particular
in analysis routines that compute quantities like the gravitational wave con-
tent in our simulations. For large numbers of processors, these routines have
become the performance bottleneck. These calculations require computing in-
tegrals over spheres, where the collocation points are not aligned with the grid
used for evolving the configuration, consequently the required interpolation
operations are rather expensive in communication. Recent optimizations have
removed this bottleneck, but systematic scaling results for larger number of
processors are not yet available due to end of our allocation at HLRS and the
downtime of HLRB2 at LRZ caused by a system-upgrade.

Various of our analysis tools require interpolation of tensor fields from
Cartesian grids onto parameterized surfaces, say for wave extraction and ap-
parent horizon finding. It was found that the scaling of the wave extraction
routine in BAM was poor due to the interpolator, and this part of the code
took tens of percent for typical production runs on 32 and more processors.
We optimized the MPI implementation of BAM’s point-wise interpolator so
that wave extraction dropped to less than one percent of the overall run time.

Significant gains in efficiency have been obtained by replacing fourth order
finite differencing by sixth order finite differencing as summarized in Sec. 3.
This result is nontrivial for our application for several reasons: One of the
problems one faces is that higher order methods generally require a larger
number of buffer zones for our adaptive mesh refinement algorithm, and some
experiments are required to to test different choices in practice. Furthermore,
the moving puncture method deals with non-smooth features inside of the
black hole horizons, and the AEI and Brownsville groups have previously
reported failures to obtain stable and accurate moving puncture evolutions
with sixth order methods [30, 44].

An important issue that we could identify, and which is an equally serious
problem in alternative numerical relativity codes against which we bench-
marked, is the overflow of registers due to the complexity of the Einstein
equations. We have started to analyze the memory access pattern of the equa-
tions, and were able to perform some promising experiments, but significant
further work will be required to rewrite the equations in an optimal way.
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4.2 Memory Optimizations

After development of the new moving puncture methods and wave extraction
tools had been completed in BAM, we optimized the memory usage of the
current production code. After analyzing the use of temporary memory, it
was possible to reduce the peak memory footprint counted in 3d AMR grid
variables from about 280 variables to 175 variables. Part of this improvement
was due to a more memory efficient implementation of the Runge-Kutta time
evolution scheme.

4.3 Scaling

Our most extensive scaling tests have been performed with the second order
accurate version of our code, still with non-moving boxes of refinement. In such
cases we typically reach 60–90% of scaling on up to 128 processors, which has
been tested on different machines. With the new fourth-order code we have
so far only tested scaling on up to 32 processors. We get 77% scaling on the
Cray Opteron cluster Strider going from 4 to 32 processors, and increasing the
problem size by a factor close to 8. The 32-processor run corresponds to the
initial 10M of runtime of a typical production run with 14.4GByte memory
usage (i.e. approximately 450MByte per processor).

Already our initial scaling results on the LRZ Altix system have been very
promising. In Fig. 3 we show results for the performance of the original BAM
code (second order code with fixed mesh refinement). As reference point we
compare to a SUN cluster (LION-XO at Penn State University) with 80 dual
Opteron SunFire v20z nodes, 2.4GHz processors, 4GB RAM per processor,
with Infiniband network, and using the gcc compiler. The timings on the first
Altix test system were obtained prior to any optimizations. The test system
had 64 Itanium processors at 1.6GHz and 4GB RAM per CPU.

The code reached 4 to 8% of peak performance or 260 to 530 MFlops on the
Altix. These numbers have been improved upon in subsequent optimizations,
but since the new numbers are not final yet, and also since there has been a ma-
jor upgrade to the BAM code very recently, we do not want to quote premature
benchmarks. However, note that even these early results show very promising
network performance, see the lower panel in Fig. 3. The run labelled 5 × 80
requires 3.7GB memory, run 5× 128 requires 15GB memory. For these prob-
lem sizes the Altix system clearly scales better than the Opteron/Infiniband
cluster. This is important since the new moving-box/AMR algorithm of BAM
and LEAN requires even more communication than the previous version of
the code reported on here. We do not have recent scaling results for strider,
since our grant has expired – we are currently in the process of preparing
a grant application for the NEC vector machines at HLRS.
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Fig. 3. Benchmarking the BAM code on the initial LRZ Altix system and an
Opteron/Infiniband cluster, LION-XO. The upper panel shows the run times in
seconds for different problem sizes, while the lower panel shows performance relative
to perfect scaling

5 Conclusions and Plans for Future Work

We have presented a summary of recent work of the Jena numerical relativ-
ity group on simulating the coalescence of black hole binaries in full general
relativity. In the last year we have obtained astrophysically relevant results:
In the largest numerical parameter study to date of black-hole binaries, we
have calculated the recoil of nonspinning binaries for mass ratios from 1:1 to
1:4 [35], and performed a detailed analysis of the gravitational waves emitted
during unequal-mass binary mergers [17]. We have also found that extremely
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large recoils are possible for spinning black holes, and estimated the kick from
one configuration as 2500km/s, large enough to eject the remnant black hole
even from a giant elliptical galaxy [34]. We have also made significant progress
with developing our methods and further optimizing our code. Large param-
eter studies forseen for the near future include the case of large mass ratios
on the order of 1:10, and general spin configurations. While our initial HLRS
allocation for strider has recently expired, we are currently in the process
of porting our code the the NEC vector processor architecture, and prepare
a grant application for the NEC SX-8.
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1 Aim of the Project

The main purpose of particle physics is the explanation of the fundamental
mechanism for the interaction of the elementary particles. On the experi-
mental side the investigations take mainly place at the big accelerators at
CERN (Geneva) or FERMILAB (Chicago). On the other hand it it essential
to develop theoretical models which describe the fundamental interactions
and which, of course, have to be confronted with the experiment.

Currently there is a well-established theory, the so-called Standard Model,
which has been verified by experimental studies to a very high precision.
However, there are strong hints that the Standard Model is not the final
theory describing the fundamental interaction of the elementary particles.
E.g., it can not describe the large amount dark matter present in the universe
and it can not explain the observed huge excess of matter over anti-matter.

There are basically two routes which explore deviations from the Stan-
dard Model and which provide hints for so-called “Grand Unified Theories”
(GUTs): one either performs experiments where the colliding particles have
very high energy or one extracts physical observables to very high precision at
lower energies and confronts them with precise theoretical calculations. Both
ways are currently followed. The main emphasis of this project is centered on
the second option. In particular, the corresponding calculations are important
in the precise determination of the fundamental parameters of the Standard
Model like coupling constants or quark masses.

The basic tool in order to perform precise calculations is perturbation the-
ory which is based on the expansion in a small parameter, in our case the cou-
pling constants between the various particles. In particle physics perturbation
theory is organized in a very intuitive way: all mathemematical expressions
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which have to be computed can be visualized in terms of so-called Feynman
diagrams where each particle is represented by a line and interactions between
particles by vertices. The main difficulty in practical applications is the oc-
currence of closed loops at higher order in perturbation theory. This project
deals at the forefront of what is currently possible and considers Feynman
diagrams up to five loops. (Examples will be given below.)

The basic object which is considered in this project is the photon two-point
function, Π(q2), which is related to the correlator of two vector currents, jμ,
through1

(−q2gμν + qμqν
)
Π(q2) = i

∫
dx eiqx〈0|T jμ(x)j†ν (0)|0〉 . (1)

Some sample Feynman diagrams up to five-loop order are shown in Fig. 1. The
external current jμ is represented by a blob, the quark lines by the straight
lines with an arrow and the gluons by the curly lines. Currently a closed
analytic calculation taking into account the masses of the quarks, mq, is only
possible up to two loops. At three-loop order a semi-numerical method has
been developed based on expansions in m2

q/q
2 and q2/m2

q which leads to
accurate approximations of the three-loop result for Π(q2). The four-loop
result for the massive and the five-loop one for the massless correlator are
under investigation in this project.

Fig. 1. Sample diagrams contributing to Π(q2)

The imaginary part of the quantityΠ(q2) is directly related to the physical
cross section, σ, for the production of hadrons in e+e− annihilation, respec-
tively, its normalized version leads to the famous R-ratio given by

R(s) =
σ(e+e− → hadrons)
σ(e+e− → μ+μ−)

= 12π Im
[
Π(q2 = s+ iε)

]
, (2)

where
√
s is the considered center-of-mass energy. R(s) is one of the most

important and clean places for precise tests of Quantum Chromodynamics
(QCD) and the Standard Model. This quantity together with the related
semileptonic τ lepton decay rate provide us with invaluable information about

1 For the notation commonly used in high-energy physics we refer to the standard
textbooks like, e.g., [1].
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the numerical value of the strong coupling constant αs as well as its running
from the τ lepton mass to the one of the Z boson. There is also a significant
amount of purely theoretical interest to higher order contributions to this
quantity related, e.g., to renormalons.

Diagrammatically the imaginary part is represented by those Feynman
diagrams which are obtained by cutting (i.e. separating the left and the right
blob by chopping individual lines) the diagrams of Fig. 1 in all possible ways.

The main purpose is the computation of quantum corrections induced by
the strong interaction to R(s) which can be cast in the form

R(s) =
∑
i≥ 0

(αs

π

)i

δR(i) + quark mass effects . (3)

For massless quarks the corrections up to i = 2 are known since more than
30 years and δR(3) has been computed beginning of the nineties (for compre-
hensive reviews, see [2, 3]). Currently, the term δR(4) is only partially known
and considered in the current project. It originates from the imaginary part of
five-loop diagrams for Π(q2). This fact is used for the practical calculations.
Actually, a sophisticated method has been developed which allows to reduce
the computation of the imaginary part of five-loop diagrams to real parts of
four-loop diagrams. Thus, in order to get δR(4) for massless quarks one has to
consider four-loop integrals, which are actually of the same type as the ones
needed for the calculation of the four-loop approximation of Π(q2) (in the
massless case).

There are a variety of important physical applications of Π(q2) and its
imaginary part R(s). E.g., the quantity R(s) can be used for the determina-
tion of αs by confronting (3) with experimental results. In this context it is
particularly promising to consider

√
s = MZ , where MZ is the mass of the

Z boson, since in the past very precise data has been collected at the CERN
Large Electron Positron (LEP) Collider. Furthermore, it is planned that an In-
ternational Linear Collider could significantly improve the experimental data.
Thus, αs could be extracted with an uncertainty below 1% – once δR(4) is
available.

The technique developed for the quantity R(s) can immediately be applied
to the decay rate of the τ lepton, which can be used for the determination of
the strange quark mass [4]. Furthermore, if one replaces in the above discussion
the vector by a scalar current, there are applications in connection to the Higgs
boson. More details will be presented below.

From the above discussion it becomes clear that the main aim of this
project is the computation of massless propagator-type diagrams to four-loop
order within perturbative quantum field theory. The most important software
tools necessary for our calculations are described in the next Section and the
physical applications are discussed in Sects. 3 and 4.
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2 Parallel Computer Algebra

The workhorse for most of the computations performed in this project is the
computer algebra program ParFORM [5]. ParFORM is the parallel version of the
Computer Algebra System FORM [6] which – in contrast to Mathematica or
Maple – is designed for the manipulation of huge expressions ranging up to
several tera byte. The latter is very crucial for for multi-loop calculations.
Thus it is essential to have a fast access to the hard disk where the temporary
expressions are stored.

There are essentially two implementations of ParFORM: one is based on
MPI (“Message Passing Interface”) which is quite good for systems that have
processors with separated memory, and the other one is specially adopted to
Symmetric-Multi-Processor (SMP) architectures with shared memory imple-
mented using the NUMA (“Non-Uniform-Memory-Access”) technology. The
comparison of the speed-up curves can be seen in Fig. 2.

In the recent years ParFORM has been used on many different platforms
ranging from SMP machines with up to 32 processors to simple PC-clusters
connected by a Gigabit ethernet. In Fig. 3 the results are summarized and
compared with the speed-up obtained at the XC6000 cluster. It should be
stressed that, although the MPI version of ParFORM has to be used on the
XC6000 cluster the same speed-up as for the faster SMP version (cf. Fig. 2)
has been obtained.

The run-time of our problems varies from a few days or weeks up to about
two months. Due to the very structure of FORM and due to the organization
of the calculation it is not possible to set check points. Since the maximum
CPU time at the Landeshöchstleistungsrechner is limited to about seven days
it is only possible to submit small and medium-sized jobs.

In Fig. 4 the performance of ParFORM is shown for a typical job where
up to 60 processors have been used. For the XC6000 a good scaling be-
haviour is observed up to about 16 processors. Above approximately 24 pro-
cessors the saturation region starts and only a marginal gain is observed once
60 processors are employed. The situation is much worse for the new Lan-

Fig. 2. Speed-up as a function of the
used processors. The full (red) curve
is based on the MPI and the dotted
(blue) curve on the shared-memory (SM)
version of ParFORM. The data point have
been obtained on a 32-processor Itanium
computer
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Fig. 3. Speed-up curves for various
computer clusters with different inter-
connections

Fig. 4. CPU-time and speedup curve for a typical job on the XC6000 and XC4000

deshöchstleistungsrechner (XC4000). Beyond about ten processors the system
is very unstable and is thus less attractive for our applications. It seems that
the interconnection of the individual nodes is much worse than for the XC6000
cluster – at least for our applications.

Very recently a different concept for the parallelization of FORM has been
developed. The basic idea is the use of POSIX2 threads in order to realize the
communication between the various processors of a shared memory machine.
The main application is thus centered around multi-core machines with two,
four or eight cores. First tests of TFORM [7] were quite successful and com-
parable speed-up to ParFORM could be achieved. In future we will continue
to further development of TFORM. Due to the hardware structure of the Lan-
deshöchstleistungsrechner this is very promising. It is particularly tempting
to combine TFORM and ParFORM in order to reach an optimal speed-up.

A further program, Crusher, which has been developed in our group, im-
plements the so-called Laporta-algorithm [8, 9]. In high-energy physics the
Laporta-algorithm is a widespread tool which is used to reduce the huge num-

2 “a Portable Operating System Interface for uniX”
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Fig. 5. Speed-up curve for the
program TCrusher. The solid
(red) and dotted (blue) curves
corresponds to computers
with two and four dual core
opteron CPUs, respectively

ber of Feynman integrals occuring in the calculation of physical quantity to
a small set of basis integrals. The reduction is essentially based on a partic-
ular implementation of the Gauss elimination algorithm which is applied to
a system of equation obtained from the original Feynman diagrams. The main
problem in the practical implementation of the Laporta-algorithm is that the
number of equations ranges typically up to several millions and thus an effec-
tive method is mandatory. Crusher is written in C++ and uses the computer
algebra program Fermat [10] for the manipulation of the coefficients of the
sought integrals which are rational functions in the space-time, mass and mo-
mentum of the space-time and mass parameters of the problem. Very recently
a thread-based version of Crusher has been developed, TCrusher. In Fig. 5
the speed-up curves obtained on a four- and eight-core opteron computer, are
shown as a function of the number of used threads. The speed-up curves have
been generated for a relatively small problem with a runtime of approximately
one hour. They show the speed-up for the main and most time consuming part
of the program, namely the solving of the equations. A speed-up of three can
be reached with four threads. For problems with a higher complexity an even
larger speed-up can be reached.

3 Massless Four-Loop Integrals: σ(e+e− → hadrons)

For most of the compute-jobs connected to the massless four-loop integrals
we have used about eight processors which leads to the total amount of about
50 processors assuming six jobs in the batch queue. For some jobs it turned
out that it is advantageous to use more processors up to a maximum of 32.
Almost all results connected to this sub-project were obtained on the XC6000
Itanium nodes.

As mentioned in the Introduction R(s) is currently known to order α3
s and

the corresponding theoretical uncertainty in the value of αs(MZ) is around 3%
which is the same as the experimental one. In future the experimental errors
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will be decreased and thus it is necessary to compute the O(α4
s) term in order

to reduce also the uncertainties in the theoretical prediction. The calculation
is highly non-trivial and requires a lot of preparation work to be done which
is necessary to fine tune the programs and to accumulate experience.

The preparation work has been under way during last years. A few re-
lated projects have been successfully completed and their results have been
published [11, 12, 13, 14]. Thus, the theoretical possibility of the complete
calculation has been demonstrated.

As mentioned in Sect. 1 the order α4
s contribution to R(s) is related to the

absorptive part of the five-loop vector current correlator, whose calculation
eventually boils down to finding a host of four-loop propagator-type integrals
(p-integrals).

In order to cope with the problem the special package, BAICER, has been
created. This is a FORM package capable to analytically compute p-integrals up
to four loops. Since the conventional method [15] to treat such integrals is not
applicable (and is commonly considered as not being possible for the foresee-
able future), BAICER uses a completely different approach [16, 17, 18]. Namely,
the package computes coefficients in decomposition of a given p-integral into
the irreducible ones. The coefficients are known to be rational functions of the
space-time dimension D and are computed as expansion over 1/D as D → ∞.
From the knowledge of sufficiently many terms in the expansion one can re-
construct their exact form. The terms in the 1/D expansion are expressed in
terms of simple Gaussian integrals. Starting from four loops very large num-
ber of the latter are necessary to calculate. For example, the first non-trivial
five-loop QCD result obtained with BAICER – the α3

sn
2
f contribution to R(s)

in QCD [19] – involves several billions of Gaussian integrals.
During 2006 and 2007 the following problems have been computed with

BAICER on the basis of our local SGI multi-processor computer and the
XC6000 in the Rechenzentrum.

1. The O(α5
s) correction to the H → gg partial width of the Standard Model

Higgs boson with intermediate mass MH < 2Mt [20]. Its knowledge is
useful because with around 20% the O(α4

s) correction is sizeable. The
new four-loop correction increases the total Higgs-boson hadronic width
by a small amount of order 1 per mille and stabilizes significantly the
residual scale dependence.

2. The four-loop anomalous dimensions of the tensor current and the non-
singlet twist-two operator. In the second case we do not only compute the
anomalous dimension but also the four-loop matrix element of the (zero-
momentum) insertion of the operator between two quark states. Such in-
formation is useful for lattice calculations within so-called regularization-
independent renormalization schemes [21, 22].
The knowledge of the anomalous dimension of the tensor quark current
is important because it occurs in the matching between currents in QCD
effective quark theory [23]. It also appears during the extraction of one of
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the least known CKM parameters, |Vub|, from the corresponding leptonic
and semileptoinc decays of B-mesons (see, e.g., [24, 25]).
The results for specific (and phenomenologically most interesting) value
for the number of the active quark flavours, nf = 3, have been published
in [26]. Meanwhile we have finished calculations for generic nf ; the corre-
sponding publication in preparation.

3. The most extensive calculation performed on the XC6000 is directly re-
lated to R(s); namely the evaluation of the β-function for the so-called
Quenched3 QED (QQED) in the five loop approximation. In fact, the
quantity can be considered as an important gauge independent contri-
bution to R(s) at order α4

s (namely the one proportional to the colour
structure C4

F ). The QQED β-function is also a fascinating theoretical ob-
ject by its own right:
(i) It is scheme independent in all orders.
(ii) Its coefficients are simple rational numbers at one, two, three and

four loops: (4/3, 4,−2,−46).
(iii) There is a belief that this characteristic reflects some deep not yet

understood property of the quantum field theory which should be
valid in all orders (see, e.g., [27, 28]).

The result of our calculation for the five-loop term of the QQED
β-function unexpectedly contains an irrational contribution proportional
to ζ(3). At the moment we are checking our calculations and simultane-
ously we extend them to include all other colour structures necessary for
R(s).

4 Massive Vacuum Integrals: Π(q2) to Four Loops

As mentioned in the Introduction, it is also one of the aims of the project
to compute four-loop corrections to the polarization function Π(q2) including
massive quarks. An immediate application is discussed in [29] where very
precise values for the charm and bottom quark mass have been extracted.
Furthermore, after taking the imaginary part, one would obtain the full quark
mass dependence of R(s) to order α3

s.
The main challenge in the computation of Π(q2) is due the occurrence

of two mass scales: the quark mass and the external momentum. After writ-
ing down the mathematical expression for the four-loop Feynman diagrams
contributing to Π(q2) one has millions of different integrals. As mentioned
in Sect. 1, the standard approach is to reduce them to a small set of basis
integrals with the help of the Laporta-algorithm which we implemented in the
parallel program TCrusher.

The status of this sub-project is as follows: TCrusher has successfully been
applied to the three-loop diagrams. The reduction to master integrals took

3 i.e., diagrams with closed fermion loops are not considered
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about 48 CPU hours where 4 processors have been used. Once the result is ex-
pressed in terms of basis integrals the latter have to be computed. A promising
approach is based on an expansion for small external momentum. For illus-
tration we present the results for the coefficient of the 30th expansion term
of Π(q2) in limit of small external momentum:

Π(q2)|3 loops = . . .+
αs

π

(
q2

4m2
Q

)30{
− 0.88385CA CF + 6.0034C2

F

− 0.092427CFTF + 0.52365CFnlTF

}
+ . . . , (4)

(nl = nf − 1) which is in agreement with the literature [30]. At this point is
should be stressed that in the approach where in a first step an expansion for
small q is done and afterwards the reduction to the basis integrals is performed
it is hardly possible to reach the tenth expansion term [31].

Currently the reduction of the four-loop diagrams is performed on the
cluster XC4000. On average 64 processors are used. The average CPU time
needed for the reduction of a typical diagram amounts to 100 days.
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Summary. In suspensions of colloidal particles different types of interactions are
in a subtle interplay. In this report we are interested in sub-micro meter sized Al2O3

particles which are suspended in water. Their interactions can be adjusted by tuning
the pH-value and the salt concentration. In this manner different microscopic struc-
tures can be obtained. Industrial processes for the production of ceramics can be
optimized by taking advantage of specific changes of the microscopic structure. To
investigate the influences of the pH-value and the salt concentration on the micro-
scopic structure and the properties of the suspension, we have developed a coupled
Stochastic Rotation Dynamics (SRD) and Molecular Dynamics (MD) simulation
code. The code has been parallelized using MPI. We utilize the pair correlation
function and the structure factor to analyze the structure of the suspension. The
results are summarized in a stability diagram. For selected conditions we study the
process of cluster formation in large scale simulations of dilute suspensions.

Key words: Stochastic Rotation Dynamics; Molecular Dynamics; colloids; cluster-
ing

1 Introduction

Colloid science is a very fascinating research field, gaining more and more
importance in the last years. It closely connects physics, chemistry, material
science, biology, and several branches of engineering technology. According to
its key role in modern science a considerable amount of research has been per-
formed to describe colloidal suspensions from a theoretical point of view and
by simulations [16, 28, 29, 41, 47, 49] as well as to understand the particle-
particle interactions [3, 11, 12, 15, 51, 52], the phase behavior [10, 23, 32, 50],
the relevant processes on the microscale and their influence on macroscopic
parameters [13, 40, 54]. Colloidal suspensions are in fact complicated sys-
tems, since depending on the particle sizes, materials, and concentrations,
different interactions are of relevance and often several of them are in a subtle
interplay: electrostatic repulsion, depletion forces, van der Waals attraction,
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hydrodynamic interaction, Brownian motion, and gravity are the most impor-
tant influences. The properties of the suspension strongly depend on the bal-
ance of the microscopic forces between the particles. Especially for industrial
processes, where one needs to optimize certain material properties a detailed
understanding of the relevant influences is needed. The stability of different
microstructures and especially the clustering process are key properties which
are of interest.

In our work we investigate these properties, focusing on Al2O3 particles
suspended in water. This is a widely used material in ceramics [37]. We have
developed a simulation code for a Brownian suspension [20] and have adjusted
the simulation parameters so that the simulation corresponds quantitatively
to a real suspension such that experimental data can be compared directly.
The diffusion coefficient, sedimentation velocity [20], and the viscosity of the
suspension can be reproduced [17]. We also have tested the influence of poly-
dispersity and found that its influence on the results is small. It is much more
important to choose the correct mean size of the particles [17]. For Al2O3

suspensions attractive van der Waals forces are important for the behavior
of this material. Electrostatic repulsion of the charged particles counteracts
the attraction and can prevent clustering depending on the particle surface
charge. In [17] we have presented how one can relate parameters of DLVO
potentials [11, 52] with experimental conditions. In the experiment one can
control the pH-value and the salt concentration. The latter can be expressed
by the ionic strength I, which is an effective concentration of all ions present
in the solution. Both, the pH-value and the ionic strength, influence the charge
of the colloidal particles. We have shown that for not too strongly attractive
forces one can obtain reasonable quantitative agreement with experimental
results.

Three regimes can be identified and plotted in a stability diagram [17],
which we want to investigate here in more detail: A clustered regime, in which
particles aggregate to clusters, a fluid-like and stable stable suspension and
a repulsive region, for which the microstructure is similar to the ones known
from glassy systems. From our previous work we know that our model works
well, even quantitatively, in the suspended regime of the stability diagram and
close to the borders between the different microstructures. Here we extend our
investigations to different pH-values, deeper in the clustered regime, and to
the repulsive structure. We expect to gain insight to the microscopic structure
on a qualitative level.

On these grounds we have explored the stability diagram of Al2O3 suspen-
sions. The particles are uncharged close to the so called “isoelectric point” at
pH = 8.7. There, for all ionic strengths the particles form clusters. For lower
pH-values particles can be stabilized in solution by the electrostatic repulsion
due to the charge the particles carry in this case. For low pH-values, low salt
concentrations, and high volume fractions a repulsive structure can be found.

In the following section we shortly describe our simulation method. After
that we discuss the properties which can be found in our suspensions and how
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different regimes of the stability diagram are distinguished. In the section
thereafter we describe our simulation setup. Then, we present our results and
discuss the criteria we apply to characterize the microstructures. We utilize the
pair correlation function and the structure factor to characterize the clustering
behavior. Both of them in principle contain the same information, but we
concentrate on certain peaks in either of them. Each peak in the correlation
function and in the structure factor corresponds to a certain length scale and
we chose either the correlation function or the structure factor, depending
on which of the two quantities is more suitable under numerical criterions
to observe on a given length scale. To characterize the repulsive region we
evaluate the mean squared displacement (MSD), which shows a plateau, if
the particle motion consists of different processes acting on well separated
time scales. Finally, the results are summarized in a stability diagram for
our Al2O3-suspension. It shows the behavior of the suspension in an intuitive
way and helps to design industrial processes using this material. After that,
we turn to dilute suspensions of only 5% volume fraction and study cluster
growth at low shear rates in these suspensions. Finally, we shortly summarize
our results. The results which we present in this report have been accepted
for publication in [18, 19].

2 Simulation Method

Our simulation method is described in detail in [17, 20] and consists of two
parts: a Molecular Dynamics (MD) code, which treats the colloidal particles,
and a Stochastic Rotation Dynamics (SRD) simulation for the fluid solvent.
In the MD part we include effective electrostatic interactions and van der
Waals attraction, known as DLVO potentials [11, 52], a lubrication force and
Hertzian contact forces. DLVO potentials are composed of two terms, the first
one being an exponentially screened Coulomb potential due to the surface
charge of the suspended particles
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[
2 + κd

1 + κd
· 4kBT

ze
tanh

(
zeζ

4kBT

)]2
× d2

r
exp(−κ[r − d]), (1)

where d denotes the particle diameter, r the distance between the particle
centers, e the elementary charge, T the temperature, kB the Boltzmann con-
stant, and z is the valency of the ions of added salt. ε0 is the permittivity of
the vacuum, εr = 81 the relative dielectric constant of the solvent, κ the in-
verse Debye length defined by κ2 = 8π�BI, with ionic strength I and Bjerrum
length �B = 7 . The effective surface potential ζ can be related to the pH-value
of the solvent with a 2pK charge regulation model [17]. The Coulomb term
competes with the attractive van der Waals interaction (AH = 4.76 · 10−20 J
is the Hamaker constant) [21]
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The attractive contribution VVdW is responsible for the cluster formation we
observe. However, depending on the pH-value and the ionic strength, it may be
overcompensated by the electrostatic repulsion. When particles get in contact,
the potential has a minimum. However, (2) diverges due to the limitations of
DLVO theory. We cut off the DLVO potentials and model the minimum by
a parabola as described in [20]. The particle contacts are modeled as Hertzian
contacts and for non-touching particles. Below the resolution of the SRD
algorithm short range hydrodynamics is corrected by a lubrication force, which
we apply within the MD framework, as we have explained in [17, 20]. For
the integration of translational motion of the colloidal particles we utilize
a velocity Verlet algorithm [5].

For the simulation of a fluid solvent, many different simulation methods
have been proposed: Stokesian Dynamics (SD) [6, 7, 41], Accelerated Stoke-
sian Dynamics (ASD) [45, 46], pair drag simulations [47], Brownian Dynamics
(BD) [21, 22], Lattice Boltzmann (LB) [27, 28, 29, 30], and Stochastic Rota-
tion Dynamics (SRD) [20, 26, 38]. These mesoscopic fluid simulation methods
have in common that they make certain approximations to reduce the com-
putational effort. Some of them include thermal noise intrinsically, or it can
be included consistently. They scale differently with the number of embedded
particles and the complexity of the algorithm differs largely.

We apply the Stochastic Rotation Dynamics method (SRD) introduced
by Malevanets and Kapral [33, 34]. It intrinsically contains fluctuations, is
easy to implement, and has been shown to be well suitable for simulations of
colloidal and polymer suspensions [4, 17, 20, 26, 38, 42, 53] and recently for
star-polymers in shear flow [44]. The method is also known as “Real-coded
Lattice Gas” [26] or as “multi-particle-collision dynamics” (MPCD) [43]. It
is based on so-called fluid particles with continuous positions and velocities.
A streaming step and an interaction step are performed alternately. In the
streaming step, each particle i is moved according to

ri(t+ τ) = ri(t) + τ vi(t), (3)

where ri(t) denotes the position of the particle i at time t and τ is the time
step. In the interaction step the fluid particles are sorted into cubic cells of
a regular lattice and only the particles within the same cell interact among
each other according to an artificial interaction. The interaction step is de-
signed to exchange momentum among the particles, but at the same time
to conserve total energy and total momentum within each cell, and to be
very simple, i.e., computationally cheap: each cell j is treated independently.
First, the mean velocity uj(t′) = 1

Nj(t′)

∑Nj(t
′)

i=1 vi(t) is calculated. Nj(t′) is
the number of fluid particles contained in cell j at time t′ = t+ τ . Then, the
velocities of each fluid particle in cell j are rotated according to

vi(t+ τ) = uj(t′) + Ωj(t′) · [vi(t) − uj(t′)]. (4)

Ωj(t′) is a rotation matrix, which is independently chosen at random for each
time step and each cell. We use rotations about one of the coordinate axes
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by an angle ±α, with α fixed. The coordinate axis as well as the sign of the
rotation are chosen at random, resulting in 6 possible rotation matrices. To
remove anomalies introduced by the regular grid, one can either choose a mean
free path of the order of the cell size or shift the whole grid by a random vector
once per SRD time step as proposed by Ihle and Kroll [24, 25].

Three different methods to couple the SRD and the MD simulation have
been introduced in the literature. Inoue et al. proposed a way to implement no
slip boundary conditions on the particle surface [26]. Padding and Louis very
recently came up with full slip boundaries, where the fluid particles interact
via Lennard-Jones potentials with the colloidal particles [39]. Falck et al. [14]
have developed a “more coarse grained” method which we use for our simula-
tions and which we descibe shortly in the following.

To couple the colloidal particles to the fluid, the colloidal particles are
sorted into the SRD cells and their velocities are included in the rotation
step. One has to use the mass of each particle –colloidal or fluid particle –as
a weight factor when calculating the mean velocity

uj(t′) =
1

Mj(t′)

Nj(t
′)∑

i=1

vi(t)mi, (5)

with Mj(t′) =
Nj(t

′)∑
i=1

mi, (6)

where we sum over all colloidal and fluid particles in the cell, so that Nj(t′) is
the total number of both particles, fluid plus colloidal ones. mk is the mass of
the particle with index i and Mj(t′) gives the total mass contained in cell j at
time t′ = t+ τ . To some of our simulations we apply shear. This is realized by
explicitly setting the mean velocity uj to the shear velocity in the cells close
to the border of the system. Both, colloidal and fluid particles, are involved in
this additional step. A thermostat is applied to remove the energy introduced
to the system by the shear force. We have described the simulation method
in more detail in [17, 20].

A single simulation run as presented in these papers took between one
and seven days on a 3GHz Pentium CPU. However, for strongly clustering
systems we easily end up with only a single cluster inside the simulation vol-
ume. In order to be able to gather statistics on cluster growth and formation,
as well as to minimize finite size effects, we parallelized our code. While MD
codes have been parallelized by many groups, only few parallel implementa-
tions of a coupled MD and SRD program exist. This is in contrast to the
number of parallel implementations of other mesoscopic simulation methods
like for example the lattice Boltzmann method. A possible explanation is that
SRD is a more recent and so far not as widely used algorithm causing the
parallelization to be a more challenging task.

We utilize the Message Pasing Interface (MPI) to create a C++ code
based on domain decomposition for both involved simulation methods. In
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the MD code the position of neighbouring particles is needed to compute
the interactions. Since the intractions have a limited range, and a linked cell
algorithm is already used in the serial code, we apply linked cells here as
well. Particle positions at the border of the domain of each processor are
communicated to the neighbouring processors for the calculation of the forces.
Then, the propagation step is performed and particle positions are updated,
whereby the particles crossing a domain boundary are transferred from one
processor to the other one.

Since (in principle), fluid particles can travel arbitrary large distances in
one time step, one either has to limit the distance they can move, or one needs
all-to-all communication between the processors. Even though the mean free
path in our systems is small enough to limit communication to nearest neigh-
bours only, the current version of our code tries to be as general as possible
and allows fluid particles to move to any possible position in the total simula-
tion volume within a single timestep. First, we determine locally which fluid
particles have to be sent to which destination CPU and collect all particles
to be sent to the same destination into a single MPI message. If no parti-
cles are to be sent, a zero dummy message is transmitted. On the receiving
side, MPI_Probe with the MPI_ANY_SOURCE option is utilized to determine the
sender’s rank and the number of particles to be accomodated. Now, MPI_Recv
can be used to actually receive the message. All processors send and receive
in arbitrary order, thus waiting times are kept at a minimum allowing a very
efficient communication. The standard MPI all-to-all communication proce-
dure should be less efficient since the size of every message would be given
by the size of the largest message. However, we still do find a substantial
communication overhead from our benchmark tests of the scalability of the
code. Due to this overhead, we are currently limited to 32 CPUs. In order to
achieve Gallilean invariance, a random shift of the SRD lattice is performed
for every rotation step [24, 25]. Since the domains managed by each CPU do
not move, this would include the borders between the processors to cross SRD
cells, which is undesirable. Therefore, we keep the position of the lattice fixed
and shift the fluid particle positions before sorting them into the cells instead.
After the rotation step they are shifted back.

3 Background

We examine the microstructures obtained in our simulations for different con-
ditions. We vary the pH-value and the ionic strength I. The shear rate γ̇ as an
external influence is varied as well. We classify the microstructures in three
categories: suspended, clustered, and repulsive. In the suspended case, the
particles can move freely in the fluid and do not form stable clusters. In the
clustered regime the particles form clusters due to attractive van der Waals
forces. These clusters can be teared apart if shear is applied. In some of our
simulations the clusters are very weakly connected and at small shear rates
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they are not only broken up into smaller pieces, but they dissolve to freely
moving individual particles. In this case, we assign the microstructure to the
suspended region, although in complete absence of the shear flow clusters are
formed. At the borders between the different regimes in fact no sharp transi-
tions can be observed. The DLVO forces rather steadily increase and compete
with the hydrodynamic interactions. Accordingly, in experiments one cannot
observe a sudden solidification, but a steadily increasing viscosity when leav-
ing the suspended regime [17].

Similarly as for attractive forces, repulsive interactions can restrict the
mobility of the particles. If this happens, the mean squared displacement
of the particles shows a pronounced plateau, as it can be found in glassy
systems. However, we speak of a “repulsive structure”, because the change of
the viscosity is not as strong as in glasses, where it often changes by many
oders of magnitude, when the glass transition is approached. In addition,
to claim a system shows a glassy behavior would require to investigate the
temperature dependence of a typical time (e.g. particle diffusion time) and to
show its divergence as the glass temperature is approached. This is difficult
to do in the framework of our simulation model [20] and therefore we prefer
to speak about a “repulsive structure” which might be identified as a colloidal
glass in future work.

Here we would like to emphasize the analysis of the microstructure for
different conditions. Our aim is to reproduce a so-called stability diagram
by simulations. The stability diagram depicts the respective microstructure
depending on the pH-value and the ionic strength I. We apply different numer-
ical tools to analyze the microstructure in our simulations and finally arrive
at a stability diagram shown in Fig. 7, which summarizes the results which
we present in the following sections.

4 Simulation Setup

In this study the colloidal particles are represented by three dimensional
spheres of d = 0.37 µm in diameter. This is the mean diameter of the particles
used in the experiments to which we refer in [17]. We have simulated a small
volume, 24 d = 8.88 µm long in x-direction, which is the shear direction, and
12 d = 4.44 µm long in y- and z-direction. We have varied the volume fraction
between Φ = 10 % (660 particles) and Φ = 40 % (2640 particles). Most of the
simulations were performed at Φ = 35 % (2310 particles). To study low volume
fractions Φ = 5 % we have enlarged the simulation volume to 24 d = 8.88 µm
in each direction and we have further scaled up the system in each dimesion
by a factor of 2 or 4, resulting in a cube of 48d = 17.76µm. For selected
pH-values and ionic strengths we have studied the cluster growth of dilute
suspensions at low shear rates (γ̇ = 20/s).

We use periodic boundaries in x- and y-direction and closed boundaries
in z-direction [17]. Shear is applied in x-direction by moving small zones of
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particles and fluid close to the wall with a given shear velocity. The xy-plane
is our shear plane. For simulations without shear, to achieve the best com-
parability, we use the same boundary conditions and just set the shear rate
to γ̇ = 0. In addition we have performed simulations with two different shear
rates: with γ̇ = 100/s and with γ̇ = 500/s.

5 Results and Discussion

First, we focus on simulations without shear, where one can predict intu-
itively, what should happen. Qualitatively the results are similar to our earlier
work [20], but the quantitative relation between the pH-value and the poten-
tials is new. The relation was presented in [17], but here we apply it to different
cases and we focus more on the characterization of the microstructure. How-
ever, given the particle particle interaction potentials, the microstructure in
equilibrium can be predicted easily, at least on a qualitative level. But, the
matter changes and gets more sophisticated, when shear is applied and an
interplay between shear flow and particle particle interactions becomes re-
sponsible for the resulting microstructure. At the end of this section we move
on to dilute suspensions and study the growth of clusters at low shear rates.

5.1 Correlation Function

For constant ionic strength I = 3 mmol/l the local microstructure can be
examined using the correlation function. Depending on the pH-value the be-
havior of the system changes from a repulsive structure around pH = 4 to
a stable suspension around pH = 6 towards a clustered region if the pH-value
is further increased, until the isoelectric point is reached at pH = 8.7. There
clustering occurs in any case, independent on the ionic strength. This can be
seen in the structure of the correlation function

g(r) =
V

N2

〈∑
i

∑
j �=i

δ(r − rij)

〉
, (7)

(see [5] p. 55), where V is the volume, N the number of particles and rij the
distance of two particles i and j.

At pH = 4 electrostatic repulsion prevents clustering: Particles are sus-
pended, and there is no fixed long range ordering in the system. The cor-
relation function (Fig. 1) shows a maximum at a typical nearest neighbor
distance slightly above r

d = 1 with d denoting the particle diameter, then in
the layer of next neighbors small correlations can be found (at r

d = 2). For
larger distances the correlation function is rather constant.

When the pH-value is increased, the surface charge is lower, which at first
causes the particles to approach each other more closely. The maximum of the
correlation function is shifted to smaller distances (see Fig. 1, note that the
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curves are shifted vertically in the plot by a factor of 3 for better visibility.).
Then, van der Waals attraction becomes more important and clustering be-
gins. One can see this in the correlation function where a sharp structure at
particle distances between 1.5 and 2 particle diameters occurs. There is a near-
est neighbor peak, and more complicated structures at larger distances, which
we have assigned to typical particle configurations for small distances [20]. In
a solid like cluster the position of the next neighbor is fixed more sharply than
in the suspension, consequently the nearest neighbor peak becomes sharper,
and its height is increased. Close to the isoelectric point (pH = 8.7) the bar-
rier between primary and secondary minimum disappears. The particles, once
clustered, cannot rearrange anymore, and therefore the correlations to the
next neighbors become less sharp again (compare the cases of pH = 8.7 and
pH = 7.7 in Fig. 1 at the positions denoted by the arrows).

Instead of varying the pH-value, one can also vary the ionic strength to
achieve similar effects. Increasing the ionic strength, experimentally speaking
“adding salt” decreases the screening length 1/κ and therefore the attractive
forces become more important: the particles start to form clusters.

The effects described up to here can be observed with or without shear
qualitatively in an analogous manner. If the suspension is sheared clustering
occurs at higher pH-values and the peaks found in the correlation function are
slightly broadened, because the relative particle positions are less fixed. But
a new feature appears, if a stable suspension of not too high volume fraction is
sheared. Induced by the shear particles arrange themselves in layers. Regular
nearest neighbor distances in the shear plane cause the correlation function to

Fig. 1. Dependence of the particle correlation function on the pH value, I = 3 mmol,
γ̇ = 0/s Φ = 35%. The plots for four different pH-values are shifted against each other
for better visibility by a factor of 3. For pH = 4 the particles are not clustered. Hence
the structure at r

d
= 2 is less sharp than in the other three curves of the plot and

the nearest neighbor peak (at r
d

= 1) is broad. For pH = 6.5 slight clustering starts,
the structures become sharper. For pH = 7.7 strong cluster formation is reflected
in very sharp structures. For pH = 8.5 electrostatic repulsion nearly disappears
so that no barrier between primary and secondary minimum exists anymore. The
particles cannot rearrange anymore, and therefore the structures labeled by the
arrows become smoothened compared to the case of pH = 7.7 (source: [19])
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Fig. 2. Nearest neighbor peak (primary and secondary minimum of the potential)
of the correlation function I = 3 mmol/l, Φ = 35 %: For low pH-values clustering
is prevented by the electrostatic repulsion. For high pH-values the particles form
clusters, which is reflected by an increased nearest neighbor peak. First, shear pre-
vents clustering, then depending on the shear rate, cluster formation takes place.
Low shear rates even support cluster formation at high pH-values (source: [19])

become more structured even for large distances. The long range structure of
the pair correlation function appears after a transient time the particles need
to arrange themselves in the layered structure. Shear induced layer formation
has been found in both, experiments [1, 2] and simulations [8, 9, 36]

We have integrated over the nearest neighbor peaks, both, the peaks of
the primary and the secondary minimum, and plotted the integral versus
pH-value in Fig. 2. We have chosen I = 3 mmol/l and Φ = 35 % and three
different shear rates: γ̇ = 0, 100 and 500/s. We have integrated the correlation
function for r < 1.215 d, where for all pH-values the potential in the secondary
minimum has a value of − 1

2kBT . In other words, we have captured the primary
and the secondary minimum of the potential for this plot. For low pH-values
clustering (in the secondary minimum) is only possible for low shear rates. For
high shear rates, the hydrodynamic forces do not allow the formation of stable
clusters. For rising pH-values the clustering increases, first for the un-sheared
suspension, at higher pH-values for low shear rates (γ̇ = 100/s) and finally
for high shear rates (γ̇ = 500/s). Remarkably, for pH > 7.5 the curve for
γ̇ = 100/s shows stronger cluster formation than the other ones. Particles are
brought together by the shear flow, so that compared to the case of no shear,
the clustering process is supported here. On the other hand, the shear stress
may not be too strong, because otherwise the clustering process is limited by
the shear flow again (for γ̇ = 500/s the clustering is less pronounced than for
γ̇ = 100/s).

5.2 Structure Factor

The pair correlation function can be used to characterize the local order of
the microstructure on the length scale of the particle size. However, to do the
characterization on the length scale of the system size, we use the structure
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factor defined by

S(k) =
1
N

N∑
l,m=1

exp(ik · rlm), (8)

where N is the number of particles, and rlm is the vector from particle l to
particle m. i denotes the imaginary unit here. The structure factor is related
to the pair correlation function in real space by a three dimensional Fourier
transform. In principle the structure factor contains the same information
as the pair correlation function. However, due to numerical reasons and our
implementation of shear boundary conditions it is easier to observe the long-
range structure in the structure factor than in the pair correlation function.

In Fig. 3 we have plotted several typical structure factors of our simula-
tions. For these plots the pH-value is fixed to pH = 6. The cases a) and b)
are sheared with γ̇ = 500/s at an ionic strength of I = 0.3 mmol/l. In case
a) the volume fraction Φ = 20% is relatively low. Therefore the particles can
arrange themselves in layers parallel to the shear plane, which move relatively
independently in the shear flow. They have a certain distance fixed in space
and time. This can be seen in a sharp peak at a dimensionless k-vector of
k = 5.2, which corresponds to a distance of 1.2 particle diameters. In fact,
this is exactly the distance between two neighboring layers, as one can easily
verify by counting the layers in a snapshot of the system (Fig. 4a)). The parti-
cles in the layers do not have a fixed distance and therefore no 2nd-order-peak
can be observed.

Fig. 3. Structure factor for some selected examples, with pH = 6 fixed for all plots:
γ̇ = 500/s, I = 0.3 mmol/l: a) Φ = 20% and b) Φ = 35% , γ̇ = 0, I = 25 mmol/l:
c) Φ = 40% and d) Φ = 10% . The curves are shifted vertically for better visibility.
In case a) ten layers can be identified in the system, resulting in the strong peak
close to 5. But, since the particles in the layers can still move freely, there is no
2nd-order-peak. In case b) layers are formed, but particles are moving from one
layer to the other, disturbing the flow. As a result the nearest neighbor peak is much
broader. Due to the structure in the layers, a 2nd-order-peak appears. In case c) the
interaction is strongly attractive, hence the particles approach each other and the
nearest neighbor peak is shifted to higher k-vectors. In case d) the volume fraction
is much less. The slope of the low-k-peak is much flatter, which depicts that the
cluster is fractal (source: [19])
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For case b) the volume fraction is increased to Φ = 35%. The particle layers
are packed more densely and therefore the interactions between one layer and
the neighboring one become relevant. Particles jump from one layer to the
other, which disturbs the flow and therefore the distance between the layers
is not fixed anymore. The sharp peak on top of the nearest neighbor peak
disappears. Instead of that, in each layer a regular hexagonal order appears
and therefore the 2nd-order-peak is much more pronounced.

In case c) the ionic strength is increased to I = 25 mmol/l. The inter-
particle potentials are attractive enough that aggregation takes place. In this
simulation we did not apply shear, therefore one finds only one big cluster in
the system (compare Fig. 4c)). In the cluster the particles are packed more
densely and consistently the nearest neighbor peak in the structure factor is
shifted to larger k-vectors. The volume fraction is Φ = 40% in this case.

In case d) the volume fraction is decreased to Φ = 10%. The particles still
form clusters, but their mobility is not high enough to create one compact
cluster. The system has a fractal structure (see Fig. 4d)). This can be seen
in the structure factor as well: The slope for low k-vectors is flatter in this
case compared to cases a)–c). A flatter slope of the low-k-peak is typical for
structure factors of fractal objects. The fractal dimension of the cluster ex-
tracted from the slope of the low-k-peak is 2.5. In experiments this relation is
often used to determine the fractal dimension of a sample: Lattuada et al. [31]
have evaluated the fractal dimension of agglomerates of latex particles from
the slope of the structure factor. McCarthy et al. [35] give an introduction
to scattering intensities at fractal objects, without mentioning the structure
factor, but their arguments refer to the contribution of the structure factor
on the scattering intensity. The underlying mechanism which is responsible
for these structures is cluster cluster aggregation [48].

In Fig. 5 we show the dependence of the low-k-peak of the structure factor
on the pH-value. Here we have integrated over dimensionless k-vectors smaller
than 3 which means, we have captured structures larger than twice a particle
diameter. A large integral over the low-k-peak is due to a large inhomogeneity
in the system. In one part of the system particles are present and in the
other part not. In other words, we observe the process of cluster formation
on a length scale of the system size. Without shear, particles cluster in the
secondary minimum for all pH-values. If the system is slightly sheared (γ̇ =
100/s) clustering is suppressed for low pH-values. Starting at pH = 6 cluster
formation starts and is even supported by the shear flow for pH-values larger
than 7.5. For large shear rates (γ̇ = 500/s) cluster formation is suppressed
by the shear flow. By analyzing the low-k-peak of the structure factor one
observes on the length scale of the system size. The same behavior of the
system can be seen by analyzing the pair correlation function, as we have
already shown in Fig. 2. In that case one analyzes the number of nearest
neighbors, that means, one observes the length scale of a particle diameter.
Nevertheless, both graphs show the same behavior of the system, i.e., we have
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Fig. 4. Snapshots of the systems analyzed in Fig. 3: In case a) one can see the layers
resulting in the sharp peak in the structure factor. In case b) the layers are packed
closer due to the higher volume fraction. Collisions between particles of neighboring
layers happen more frequently. In case c) one big cluster is formed. The particles
are packed densely. In case d) the fractal nature of the system can be seen directly
(source: [19])

Fig. 5. low-k-peak for different pH-values and different shear rates. The ionic
strength I is kept constant at I = 3mmol/l and the volume fraction is always
Φ = 35%. For γ̇ = 0/s the particles tend to cluster in the secondary minimum
of the potential. This clustering can easily be broken up, if shear is applied. If the
pH-value is increased, shear cannot prevent cluster formation anymore. At low shear
rates (γ̇ = 100/s) clustering is even enhanced, since the particles are brought closer
to each other by the shear flow (source: [19])


