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Šebojka Komorsky-Lovrić
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Preface

This is the first monograph in a series devoted to electrochemistry. Although the
market is rich in books and series on electrochemical themes, it is surprising that
a number of serious topics are not available. With the series “Monographs in Elec-
trochemistry” an attempt will be made to fill these gaps. I am very thankful to the
publishing house of Springer for agreeing to publish these books, and for the great
freedom given to me in choosing the topics and the most competent authors, and
generally for the fantastic cooperation with the publisher. I am especially thankful
to Mr. Peter W. Enders.

Square-wave voltammetry is a technique that is readily available to anyone apply-
ing modern electrochemical measuring systems. Its use can be beneficial in analyt-
ical applications as well as in fundamental studies of electrode mechanisms. Upon
first glance, it seems that the analytical application of square-wave voltammetry is
rather simple and does not afford a deep knowledge of the background, however,
this is certainly not the case. For an optimal exploitation of the potential of square-
wave voltammetry, it is essential to know how the signal is generated and how its
properties depend on the kinetics and thermodynamics of the electrode processes.
For a detailed analysis of electrode mechanisms, this is indispensable, of course,
in any case. I am very happy that three leading experts in the field of square-wave
voltammetry have agreed to write the present monograph, which in fact is the first
complete book on that technique ever published in English. All three authors have
a long and distinguished publishing record in electroanalysis, and especially in the
theory and application of square-wave voltammetry. I hope that this monograph will
make it much easier for potential users in research, industrial, and environmental
laboratories, etc., to apply square-wave voltammetry for their benefit.

Fritz Scholz
– Editor of the series “Monographs in Electrochemistry” –
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Chapter 1
Introduction

1.1 From Square-Wave Polarography
to Modern Square-Wave Voltammetry

Square-wave voltammetry (SWV) is a powerful electrochemical technique that can
be applied in both electrokinetic and analytic measurements [1–5]. The technique
originates from the Kalousek commutator [6] and Barker’s square-wave polaro-
graphy [7]. Kalousek constructed an instrument with a rotating commutator that
switched the potential of the dropping mercury electrode between two voltage lev-
els with the frequency of five cycles per second [8, 9]. Three methods for program-
ming the voltages have been devised and designated as types I, II, and III, and
these are shown in Fig. 1.1. Type I polarograms were recorded by superimposing
a low-amplitude square-wave (20 – 50 mV peak-to-peak) onto the ramp voltage of
conventional polarography. The current was recorded during the higher potential
half-cycles only. Figure 1.2 shows the theoretical response of a simple and electro-
chemically reversible electrode reaction:

Om+ + ne− � R(m−n)+ (1.1)

obtained by the type I program. Only the reactant Om+ is initially present in the bulk
of the solution. The starting potential is −0.25 V vs. E1/2, where E1/2 is a half-wave
potential of dc polarogram of electrode reaction (1.1). The response is character-
ized by a maximum oxidation current appearing at 0.034 V vs. E1/2. In the vicinity
of the half-wave potential, the reactant is reduced during the lower potential half-
cycle (which is not recorded) and the product is oxidized during the higher potential
half-cycle, which is recorded. This is illustrated in Fig. 1.3, which shows theoretical
concentrations of the reactant and product near the electrode surface at the end of the
last cathodic (A) and anodic (B) half-cycles applied to the same drop. The method
was improved by Ishibashi and Fujinaga, who introduced the differential polarog-
raphy by measuring the difference in current between successive half-cycles of the
square-wave signal [10–12]. The frequency of the signal was 14 Hz. It was super-
imposed on a rapidly changing potential ramp and applied to the single mercury

V. Mirčeski, Š. Komorsky-Lovrić, M. Lovrić, Square-Wave Voltammetry 1
doi: 10.1007/978-3-540-73740-7, c©Springer 2008



2 1 Introduction

Fig. 1.1 Potential-time relationships realized by the Kalousek commutator

Fig. 1.2 Type I Kalousek polarogram of electrode reaction (1.1) on dropping mercury electrode.
Ψ = I/nFAmc∗O(D f )1/2, frequency = 5 Hz, amplitude = 30 mV, drop life time = 1 s, dE/dt =
2 mV/s and Est = −0.25 V vs. E1/2. For the meaning of symbols, see below (1.9) and (1.24)

drop. Barker and Jenkins introduced three important innovations: (i) the frequency
of square-wave signal was 225 Hz, (ii) the current was measured during the last
280 μs of each half-cycle and the difference between two successive readings was
recorded, and (iii) the measurement was performed only once in the life of each drop
250 ms before its end [13,14]. Figure 1.5 shows the theoretical square-wave polaro-
gram of the electrode reaction (1.1) under the same conditions as in Fig. 1.2. The
response is a bell-shaped current-voltage curve with its maximum at −0.016 V vs.
E1/2. Each current-voltage step corresponds to a separate mercury drop. The objec-
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Fig. 1.3 Concentrations of the reactant and product of the electrode reaction (1.1) near the elec-
trode surface at the end of the last cathodic (a) and anodic (b) Kalousek type I half-cycles applied
to the same drop. E = 0.004 (a) and 0.034 V vs. E1/2 (b). All other data are as in Fig. 1.2

tive of Barker’s innovations was to minimize the influence of capacity current, i.e.,
to discriminate that current with respect to the faradaic current. During each half-
cycle, the double layer charging current decreases exponentially with time, while
the faradaic current is inversely proportional to the square-root of time. Under cer-
tain conditions, the charging current at the end of half-cycle may be smaller than the
faradaic current. A theoretical example is shown in Fig. 1.6. Generally, the charg-
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Fig. 1.4 Portraits of Mirko Kalousek (left) and Geoffrey Barker (right) (reprinted from [66]
and [67] with permission)

Fig. 1.5 Barker square-wave polarogram of electrode reaction (1.1) on dropping mercury elec-
trode. Ψ = I/nFAmc∗O(D f )1/2, frequency = 225 Hz, amplitude = 30 mV, drop life time = 1 s,
dE/dt = 2 mV/s and Est = −0.25 V vs. E1/2

ing current is partly eliminated by the subtraction of currents measured at the end
of two successive half-cycles. This is because the charging current depends on the
difference between the electrode potential and its potential of zero charge. If the
square-wave amplitude is small, the difference between the charging currents of
the cathodic and anodic half-cycles is also small, and for this reason, square-wave
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Fig. 1.6 A scheme of a double layer charging current (IC) and the Faradaic current (IF) during the
second half of the last half-cycle of square-wave signal applied to the dropping mercury electrode.
E − E1/2 = −0.016 V, E − Epzc = 0.1 V, C = 40 μF/cm2, R = 10 Ω, Am = 0.01 cm2, D = 9×
10−6 cm2/s, n = 1, c∗O = 5×10−4 mol/L and f = 225 Hz

voltammetry and differential pulse polarography and voltammetry are discriminat-
ing against a capacitive current [1, 3, 15–19].

This method was developed further by superimposing the square-wave signal
onto a staircase signal [20, 21]. Some of the possible potential-time waveforms
are shown in Fig. 1.7. Usually, each square-wave cycle occurs during one stair-

Fig. 1.7 Potential-time waveforms obtained by superimposing the square-wave signal onto a stair-
case signal: square-wave voltammetry (a), differential pulse voltammetry (b) and multiple square-
wave voltammetry (c)
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case period, which is sometimes called Osteryoung SWV [20–23], but in multiple
square-wave voltammetry, several cycles are applied on the single tread [24,25]. The
asymmetric signal (b) in Fig. 1.7 is a general form of differential pulse voltamme-
try [22,23]. These complex excitation signals were applied to stationary electrodes,
or a single mercury drop. More details can be found in several reviews [26–40].

1.2 Square-Wave Voltammetry:
Calculations and Instrumentation

Figure 1.8 shows the potential-time waveform of the modern SWV [41]. Comparing
to curve (a) in Fig. 1.7, the starting potential is a median of extreme potentials of
the square-wave signal. To each tread of the staircase signal a single square-wave
cycle is superimposed, so the waveform can be considered as a train of pulses to-
wards higher and lower potentials added to the potential that changes in a stepwise
manner. The magnitude of each pulse, Esw, is one-half of the peak-to-peak ampli-
tude of the square-wave signal. For historical reasons, the pulse height Esw is called
the square-wave amplitude [1]. The duration of each pulse is one-half the staircase
period: tp = τ/2. The frequency of the signal is the reciprocal of the staircase period:
f = 1/τ . The potential increment ΔE is the height of the staircase waveform. Re-
lative to the scan direction, ΔE , forward and backward pulses can be distinguished.
The currents are measured during the last few microseconds of each pulse and the
difference between the current measured on two successive pulses of the same step

Fig. 1.8 Scheme of the square-wave voltammetric excitation signal. Est starting potential,
Esw pulse height, ΔE potential increment, τ staircase period, t0 delay time and If and Ib denote
the points where the forward and backward currents are sampled, respectively
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is recorded as a net response (ΔI = If − Ib). For analytical purposes, several insta-
ntaneous currents can be sampled at certain intervals during the last third, or some
other portion of the pulse, and then averaged. This is done because the response
appears less noisy if the sampling window is wider [42,43]. The two components of
the net response, If and Ib, i.e., the currents of the forward and the backward series
of pulses, respectively, are also displayed. The currents are plotted as a function of
the corresponding potential of the staircase waveform. The delay period, t0, which
may precede the signal, is used for the accumulation of the reactant on the working
electrode surface in order to record the stripping process.

SWV experiments are usually performed on stationary solid electrodes or static
mercury drop electrodes. The response consists of discrete current-potential points
separated by the potential increment ΔE [1, 20–23]. Hence, ΔE determines the ap-
parent scan rate, which is defined as ΔE/τ , and the density of information in the
response, which is a number of current-potential points within a certain poten-
tial range. The currents increase proportionally to the apparent scan rate. For bet-
ter graphical presentation, the points can be interconnected, but the line between
two points has no physical significance, as there is no theoretical reason to inter-
polate any mathematical function between two experimentally determined current-
potential points. The currents measured with smaller ΔE are smaller than the values
predicted by the interpolation between two points measured with bigger ΔE [3].
Frequently, the response is distorted by electronic noise and a smoothing procedure
is necessary for its correct interpretation. In this case, it is better if ΔE is as small as
possible. By smoothing, the set of discrete points is transformed into a continuous
current-potential curve. Care should be taken that the smoothing procedure does not
distort the square-wave response.

A solution of the diffusion equation for an electrode reaction for repetitive
stepwise changes in potential can be obtained by numerical integration [44]. For
a stationary planar diffusion model of a simple, fast, and reversible electrode re-
action (1.1), the following differential equations and boundary conditions can be
formulated:

∂cO/∂ t = D(∂ 2cO/∂x2) (1.2)

∂cR/∂ t = D(∂ 2cR/∂x2) (1.3)

Initially, only the reactant Om+ is present in the solution and its concentration is
uniform:

t = 0: cO = c∗O , cR = 0 (1.4)

At the infinite distance from the electrode surface, the concentrations of the reactant
and product do not change:

t > 0 , x → ∞ : cO → c∗O , cR → 0 (1.5)
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The current is proportional to the gradient of concentration of product at the elec-
trode surface:

x = 0: D(∂cO/∂x)x=0 = −I/nFA (1.6)

D(∂cR/∂x)x=0 = I/nFA (1.7)

The concentrations of reactant and product at the electrode surface are connected by
the Nernst equation:

(cO)x=0 = (cR)x=0 exp(ϕ) (1.8)

ϕ = (nF/RT )(E −Eθ ) (1.9)

Here cO and cR are the concentrations of the reactant and product, respectively,
D is a common diffusion coefficient, c∗O is the bulk concentration of the reactant,
I is the current, n is the number of electrons, F is the Faraday constant, A is the
electrode surface area, E is electrode potential, Eθ is the standard potential, R is the
gas constant, T is absolute temperature, x is the distance from the electrode surface
and t is the time variable [45].

Using the Laplace transformations of the reactant concentration and its derivative
on time [46]:

L cO =
∞∫

0

cO exp(−st)dt (1.10)

L (∂cO/∂ t) = sL cO − (cO)t=0 (1.11)

the differential equation (1.2) can be transformed into:

∂ 2u/∂x2 − (s/D) u = 0 (1.12)

where u = L cO − c∗O/s and s is the transformation variable. The boundary condi-
tions are:

x → ∞ : u → 0 (1.13)

x = 0: (∂u/∂x)x=0 = −L I/nFAD (1.14)

The general solution of (1.12) is:

u1,2 = K1 exp(−(s/D)1/2x)+ K2 exp((s/D)1/2x) (1.15)

A particular solution is obtained by using (1.13) and (1.14):

K2 = 0 (1.16)

K1 = s−1/2L I/nFAD1/2 (1.17)

(L cO)x=0 = c∗O/s+ s−1/2L I/nFAD1/2 (1.18)
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By the inverse Laplace transformation of (1.18) an integral equation is obtained [46]:

(cO)x=0 = c∗O +(nFA)−1(Dπ)−1/2

t∫

0

I(τ)(t − τ)−1/2 dτ (1.19)

Within each time interval from 0 to t, the current I depends on the variable τ . The
integral

∫
f (τ)g(t − τ)dτ is called the convolution of functions f and g.

The solution of (1.3) is obtained by the same procedure:

(cR)x=0 = −(nFA)−1(Dπ)−1/2

t∫

0

I(τ)(t − τ)−1/2 dτ (1.20)

The convolution integral in (1.19) and (1.20) can be solved by the method of nu-
merical integration proposed by Nicholson and Olmstead [47]. The time t is divided
into m time increments: t = md. It is assumed that within each time increment the
function I can be replaced by the average value I j:

t∫

0

I(τ)(t − τ)−1/2 dτ =
m

∑
j=1

I j

jd∫

( j−1)d

(md − τ)−1/2 dτ (1.21)

The integral in (1.21) is solved by the substitution p = md− τ:

jd∫

( j−1)d

(md − τ)−1/2 dτ = 2d1/2[(m− j + 1)1/2− (m− j)1/2] (1.22)

Each square-wave half-period is divided into 25 time increments: d = (50 f )−1. By
introducing (1.19) and (1.20) into (1.8), the following system of recursive formulae
is obtained:

Ψ1 = −5(π/2)1/2(1 + exp(ϕ1))−1 (1.23)

Ψm = −5(π/2)1/2(1 + exp(ϕm))−1 −
m−1

∑
j=1

ΨjSm− j+1 (1.24)

where Ψ = I/nFAc∗O(D f )1/2, S1 = 1, Sk = k1/2 − (k − 1)1/2, ϕm = (nF/RT )
(Em −Eθ ), m = 2, 3, . . .M and M = −50 (Efin −Est)/ΔE . The potential Em changes
according to Fig. 1.8.

If the electrode reaction (1.1) is kinetically controlled, (1.8) must be substituted
by the Butler–Volmer equation:

I/nFA = −ks exp(−αϕ)[(cO)x=0 − (cR)x=0 exp(ϕ)] (1.25)



10 1 Introduction

where ks is the standard rate constant and α is the cathodic transfer coefficient. In
this case, the following recursive formulae are obtained [44, 48–50]:

Ψ1 = − κ exp(−αϕ1)

1 + κ exp(−αϕ1)
√

2
5
√

π [1 + exp(ϕ1)]
(1.26)

Ψm = −Z1 −Z2

m−1

∑
j=1

ΨjSm− j+1 (1.27)

Z1 =
κ exp(−αϕm)

1 + κ exp(−αϕm)
√

2
5
√

π [1 + exp(ϕm)]
(1.28)

Z2 =
κ exp(−αϕm)

√
2

5
√

π [1 + exp(ϕm)]

1 + κ exp(−αϕm)
√

2
5
√

π [1 + exp(ϕm)]
(1.29)

where κ = ks(D f )−1/2 is a dimensionless kinetic parameter and the meanings of
other symbols are given below (1.24).

The developments of instrumentation for Kalousek [31, 51, 52] and square-wave
polarography [53–58] and square-wave voltammetry [59–65] are mainly of histor-
ical interest. Today, many computer-controlled potentiostats/galvanostats providing
SWV signal generation are available from numerous manufacturers, such as Eco-
Chemie (models PGSTAT 10, 12, 20, 30, 100 and 302 and μAutolab I, II, and III),
Metrohm (models VA 646 and 797 Computrace), Princeton Applied Research (mod-
els 263A, 273A, 283, 2263, 2273, and 384B), Bioanalytical Systems (models 100A,
100B/W and Epsilon), Cypress Systems (models CS 1090 and 1200 and CYSY-2),
Amel Srl (models 433, 7050 and 7060), Gamry Instruments (models PCI 4/300 and
4/750), Analytical Instrument Systems (models LCP-200 and DLK-100), Uniscan
Instruments (model PG 580), Palm Instruments (model Palmsens), Rudolph Instru-
ments (model GATTEA 4000 AS) and IVA Company (model IVA-5).
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Chapter 2
Electrode Mechanisms

2.1 Electrode Reactions of Dissolved Species
on Stationary Planar Electrodes

2.1.1 Reversible Electrode Reactions

Figure 2.1 shows computed square-wave voltammogram of the simple, fast and elec-
trochemically reversible electrode reaction (1.1), i.e., Om+ + ne− � R(m−n)+. The
response was calculated by using (1.23) and (1.24). The dimensionless net response
(ΔΨ = −ΔI/nFAc∗O(D f )1/2), where ΔI = If − Ib, and its forward (reductive) (Ψf),
and backward (oxidative) (Ψb) components are shown. The meanings of other sym-
bols are given below (1.9). The voltammogram is characterized by the maximum net
response, which is also called the net peak current, ΔIp. The corresponding staircase
potential is the net peak potential Ep. Other characteristics are the minimum of the
reductive component, the maximum of the oxidative component and their potentials.
The net peak potential and the peak potentials of both components are independent
of SW frequency. This is one of various indications that the electrode reaction is
electrochemically reversible within the range of applied frequencies [1–6].

Both the dimensionless net peak current ΔΨp and the peak width at half-height,
or the half-peak width, ΔEp/2 depend on the products “the number of electrons
times the SW amplitude”, i.e., nEsw, and "the number of electrons times the po-
tential increment", i.e., nΔE . This is shown in Table 2.1 and Fig. 2.2 (curve 1), for
the constant product nΔE . With increasing nEsw the slope ∂ΔΨp/∂nEsw continu-
ously decreases, while the gradient ∂ΔEp/2/∂nEsw increases. The maximum ratio
ΔΨp/ΔEp/2 appears for nEsw = 50 mV, as can be seen in Fig. 2.2. This is the op-
timum SW amplitude for analytical measurement [7]. At higher amplitudes the re-
solution of two peaks is diminished. The ratio of peak currents of the forward and
backward components, and the peak potentials of the components are also listed in
Table 2.1. If nEsw > 10 mV, the backward component indicates the reversibility of
the electrode reaction, and if nEsw > 5 mV, the net peak potential Ep is equal to the
half-wave potential of the reversible reaction (1.1). If Esw = 0, the square-wave sig-
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Fig. 2.1 Theoretical square-wave voltammogram of fast and reversible electrode reaction (1.1).
Esw = 50 mV, n = 1, Est −Eθ = 0.3 V, t0 = 0 s and ΔE =−2 mV. The dimensionless net response
(ΔΨ ) and its forward (Ψf) and backward (Ψb) components

Table 2.1 Square-wave voltammetry of fast and reversible electrode reaction (1.1). The dimen-
sionless net peak current, the ratio of peak currents of the forward and backward components,
the peak potentials of the components and the half-peak width as functions of SW amplitude;
nΔE = −2 mV

nEsw/mV ΔΨp Ip,f/Ip,b Ep,f −Ep/mV Ep,b −Ep/mV ΔEp/2/mV
10 0.1961 −10.35 −12 26 92
20 0.3701 −2.78 −8 10 96
30 0.5206 −1.94 −6 6 104
40 0.6432 −1.63 −4 4 112
50 0.7383 −1.47 −2 2 124
60 0.8093 −1.37 −2 2 139
70 0.8608 −1.31 0 0 152
80 0.8975 −1.27 2 −2 168
90 0.9231 −1.23 4 −2 186

100 0.9409 −1.21 6 −4 204

nal turns into the signal of differential staircase voltammetry [8–10], and ΔΨp does
not vanish [4]. To establish an additional criterion of the reversibility of the reac-
tion (1.1), the standard SW amplitudes Esw = 50, 25 and 15 mV, for n = 1, 2 and 3,
respectively, and the common potential increment ΔE = −2 mV are proposed. The
characteristic data of responses of simple and electrochemically reversible electrode
reactions under standard conditions are listed in Table 2.2.

The net peak current depends linearly on the square root of the frequency [5,11]:

ΔIp = −nFAD1/2ΔΨp f 1/2c∗O (2.1)


