

Ioannis Hatzilygeroudis and Jim Prentzas (Eds.)

Combinations of Intelligent Methods and Applications

Smart Innovation, Systems and Technologies 8

Editors-in-Chief

Prof. Robert J. Howlett
KES International
PO Box 2115
Shoreham-by-sea
BN43 9AF
UK
E-mail: rjhowlett@kesinternational.org

Prof. Lakhmi C. Jain
School of Electrical and Information Engineering
University of South Australia
Adelaide, Mawson Lakes Campus
South Australia SA 5095
Australia
E-mail: Lakhmi.jain@unisa.edu.au

Further volumes of this series can be found on our homepage: springer.com

Vol. 1. Toyoaki Nishida, Lakhmi C. Jain, and Colette Faucher (Eds.)
Modeling Machine Emotions for Realizing Intelligence, 2010
ISBN 978-3-642-12603-1

Vol. 2. George A. Tsihrintzis, Maria Virvou, and Lakhmi C. Jain (Eds.)
Multimedia Services in Intelligent Environments –
Software Development Challenges and Solutions, 2010
ISBN 978-3-642-13354-1

Vol. 3. George A. Tsihrintzis and Lakhmi C. Jain (Eds.)
Multimedia Services in Intelligent Environments –
Integrated Systems, 2010
ISBN 978-3-642-13395-4

Vol. 4. Gloria Phillips-Wren, Lakhmi C. Jain,
Kazumi Nakamatsu, and Robert J. Howlett (Eds.)
Advances in Intelligent Decision Technologies –
Proceedings of the Second KES International
Symposium IDT 2010, 2010
ISBN 978-3-642-14615-2

Vol. 5. Robert J. Howlett (Ed.)
Innovation through Knowledge Transfer, 2010
ISBN 978-3-642-14593-3

Vol. 6. George A. Tsihrintzis, Ernesto Damiani,
Maria Virvou, Robert J. Howlett,
and Lakhmi C. Jain (Eds.)
Intelligent Interactive Multimedia Systems
and Services, 2010
ISBN 978-3-642-14618-3

Vol. 7. Robert J. Howlett, Lakhmi C. Jain, and
Shaun H. Lee (Eds.)
Sustainability in Energy and Buildings, 2010
ISBN 978-3-642-17386-8

Vol. 8. Ioannis Hatzilygeroudis and Jim Prentzas (Eds.)
Combinations of Intelligent Methods and Applications, 2010
ISBN 978-3-642-19617-1

Ioannis Hatzilygeroudis and Jim Prentzas (Eds.)

Combinations of Intelligent
Methods and Applications

Proceedings of the 2nd International Workshop,
CIMA 2010, France, October 2010

123

Ioannis Hatzilygeroudis
Graphics, Multimedia & GIS Lab

Department of Computer Engineering &

Informatics
University of Patras

26500 Patras, Hellas, Greece

E-mail: ihatz@ceid.upatras.gr

Jim Prentzas
Democritus University of Thrace

School of Education Sciences

Dept. of Education Sciences in
Pre-School Age, Nea Chili

68100 Alexandroupolis, Greece

E-mail: dprentza@psed.duth.gr

ISBN 978-3-642-19617-1 e-ISBN 978-3-642-19618-8

DOI 10.1007/978-3-642-19618-8

Smart Innovation, Systems and Technologies ISSN 2190-3018

Library of Congress Control Number: 2011924477

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typesetting: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

The combination of different intelligent methods is a very active research area in
Artificial Intelligence (AI). The aim is to create integrated or hybrid methods that
benefit from each of their components. It is generally believed that complex
problems can be easier solved with such integrated or hybrid methods.

Some of the existing efforts combine what are called soft computing methods
(fuzzy logic, neural networks and genetic algorithms) either among themselves or
with more traditional AI methods such as logic and rules. Another stream of
efforts integrates case-based reasoning or machine learning with soft-computing
or traditional AI methods. Yet another integrates agent-based approaches with
logic and also non-symbolic approaches. Some of the combinations have been
quite important and more extensively used, like neuro-symbolic methods, neuro-
fuzzy methods and methods combining rule-based and case-based reasoning.
However, there are other combinations that are still under investigation, such as
those related to the Semantic Web. In some cases, combinations are based on first
principles, whereas in other cases they are created in the context of specific
applications.

The 2nd Workshop on “Combinations of Intelligent Methods and Applications”
(CIMA 2010) was intended to become a forum for exchanging experience and
ideas among researchers and practitioners who are dealing with combining
intelligent methods either based on first principles or in the context of specific
applications.

Important issues of the Workshop were (but not limited to) the following:

• Case-Based Reasoning Integrations
• Genetic Algorithms Integrations
• Combinations for the Semantic Web
• Combinations and Web Intelligence
• Combinations and Web Mining
• Fuzzy-Evolutionary Systems
• Hybrid deterministic and stochastic optimisation methods
• Hybrid Knowledge Representation Approaches/Systems
• Hybrid and Distributed Ontologies
• Information Fusion Techniques for Hybrid Intelligent Systems
• Integrations of Neural Networks
• Intelligent Agents Integrations

VI Preface

• Machine Learning Combinations
• Neuro-Fuzzy Approaches/Systems
• Applications of Combinations of Intelligent Methods to

o Biology & Bioinformatics
o Education & Distance Learning
o Medicine & Health Care

CIMA 2010 was held in conjunction with the 22nd IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2010). Also, we organized a special
track in ICTAI 2010, under the same title.

This volume includes revised versions of the papers presented in CIMA 2010
and one of the short papers presented in the corresponding ICTAI 2010 special
track. We have also included a paper of ours as invited paper.

We would like to express our appreciation to all authors of submitted papers as
well as to the members of CIMA-10 program committee for their excellent work.
We would like also to thank Prof. Eric Gregoire, the ICTAI-10 PC Chair for his
help and hospitality.

We hope that these proceedings will be useful to both researchers and
developers. Given the success of the first two Workshops on combinations of
intelligent methods, we intend to continue our effort in the coming years.

Ioannis Hatzilygeroudis
Jim Prentzas

Workshop Organization

Chairs-Organizers

Ioannis Hatzilygeroudis University of Patras, Greece
Jim Prentzas Democritus University of Thrace, Greece

Program Committee

Ajith Abraham MIR Labs, Europe
Plamen Agelov Lancaster University, UK
Emilio Corchado University of Salamanca, Spain
Ronald Denaux University of Leeds, UK
George Dounias University of the Aegean, Greece
Artur S. d’Avila Garcez City University, UK
Elpida Keravnou-Papailiou University of Cyprus, Cyprus
Constantinos Koutsojannis University of Patras, Greece
Rudolf Kruse University of Magdeburg, Germany
George Magoulas Birkbeck College, Univ. of London, UK
Toni Moreno University Rovira i Virgili, Spain
Ciprian-Daniel Neagu University of Bradford, UK
Vasile Palade Oxford University, UK
David Sanchez University Rovira i Virgili, Spain
Douglas Vieira Enacom-Handcrafted Technologies, Brazil

Contents

Defeasible Planning through Multi-agent Argumentation 1
Sergio Pajares, Eva Onaindia

Operator Behavior Modelling in a Submarine 21
Isabelle Toulgoat, Pierre Siegel, Yves Lacroix

Automatic Wrapper Adaptation by Tree Edit Distance
Matching . 41
Emilio Ferrara, Robert Baumgartner

Representing Temporal Knowledge in the Semantic Web:
The Extended 4D Fluents Approach . 55
Sotiris Batsakis, Euripides G.M. Petrakis

Combining a Multi-Document Update Summarization
System –CBSEAS– with a Genetic Algorithm 71
Aurélien Bossard, Christophe Rodrigues

Extraction of Essential Events with Application to Damage
Evaluation on Fuel Cells . 89
Teppei Kitagawa, Ken-ichi Fukui, Kazuhisa Sato,
Junichiro Mizusaki, Masayuki Numao

Detecting Car Accidents Based on Traffic Flow
Measurements Using Machine Learning Techniques 109
L.D. Tavares, G.R.L. Silva, D.A.G. Vieira, R.R. Saldanha,
W.M. Caminhas

Next Generation Environments for Context-Aware
Learning Design . 125
Patricia Charlton, George D. Magoulas

Neurules-A Type of Neuro-symbolic Rules: An Overview 145
Jim Prentzas, Ioannis Hatzilygeroudis

Author Index . 167

Defeasible Planning through Multi-agent
Argumentation

Sergio Pajares and Eva Onaindia

Abstract. The work reported here introduces DefPlanner, an argumentation-based
partial-order planner where different agents that have a partial, and possibly con-
tradictory, knowledge of the world articulate arguments for and against supporting
preconditions of the actions to be included in a plan. In this paper, we introduce
an extension to multiple agents of the defeasible argumentation formalism that has
been proposed to address the task of planning in a single agent environment.

1 Introduction

Planning is the art of building control algorithms that synthesize a course of action to
achieve a desired set of goals. The mainstream in planning is that of using heuristic
functions to evaluate goals and choices of action or states on the basis of their ex-
pected utility to the planning agent [7]. In classical planning, intelligent agents must
be able to set goals and achieve them, they have a perfect and complete knowledge
of the world, and they assume their view of the world can only be changed through
the execution of the planning actions. However, in many real-world applications,
agents often have contradictory information about the environment and their deduc-
tions are not always certain information, but plausible, since the conclusions can be
withdrawn when new pieces of knowledge are posted by other agents.

On the other hand, argumentation, which has recently become a very active re-
search field in computer science [2], can be viewed as a powerful tool for reason-
ing about inconsistent information through a rational interaction of arguments for
and against some conclusion. Systems that build on defeasible argumentation ap-
ply theoretical reasoning for the generation and evaluation of arguments, and they

Sergio Pajares · Eva Onaindia
Universidad Politécnica de Valencia, Camino de Vera s/n 46022 Valencia, Spain
e-mail: spajares@dsic.upv.es,onaindia@dsic.upv.es

I. Hatzilygeroudis and J. Prentzas (Eds.): Comb. of Intell. Methods and Appl., SIST 8, pp. 1–19.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

spajares@dsic.upv.es, onaindia@dsic.upv.es

2 S. Pajares and E. Onaindia

are used to build applications that deal with incomplete and contradictory infor-
mation in dynamic domains ([11][5][10][12]). Particularly, the application of an
argumentation-based formalism to deal with the defeasible nature of reasoning dur-
ing the construction of a plan has been addressed by Garcia and Simari [13][6].

This paper extends the work of [6] and presents DefPlanner, a defeasible argu-
mentation planner developed for multi-agent environments. We explicitly consider
several entities (agents) in the argumentative process for the support of the condi-
tions of a planning action. Some recent works like [16][15] realize argumentation
in multi-agent systems using defeasible reasoning but they are not particularly con-
cerned with the task of planning. Specifically, we consider propositional STRIPS
planning representation augmented with the incorporation of different sources of
defeasible information (agents). Defplanner is a partial-order planner ([1][9]) that
invokes an argumentation process where many different agents with different opin-
ions exchange arguments and counterarguments in order to determine whether a
given precondition of an action is supported or not, i.e. it can be defeasibly derived
or not.

This paper is organized as follows. Next section summarizes the main notions
on defeasible logic and partial-order planning. Section 3 elaborates on the use of
argumentation during the construction of a partial-order plan. Section 4 presents the
defeasible argumentation process in a multi-agent system, and section 5 presents an
example of application. Finally, section 6 concludes and presents some future work.

2 Background

2.1 Defeasible Logic

In this section, we summarize the main concepts of the work on Defeasible Logic
Programming (DeLP), a formalism that combines Logic Programming and Defea-
sible Argumentation [5]. The basic elements in DeLP are facts and rules. Let L
denote a set of literals, where a literal h is a fact A or a negated fact ∼A, and, the
symbol � represents the strong negation. The set of rules is divided into strict rules,
i.e. rules encoding strict consequences, and defeasible rules, which derive uncertain
or defeasible conclusions. A strict rule is an ordered pair head← body, and a de-
feasible rule is an ordered pair head−� body, where head is a literal, and body is
a finite non-empty set of literals. For example, the strict rule animal← bird is de-
noting the piece of information ”a bird is an animal”. However, a defeasible rule is
used to describe tentative knowledge that may be used if nothing else can be posed
against it, e.g. ”birds fly” (fly −� bird).

Using facts, strict and defeasible rules, an agent is able to satisfy some literal h
as in other rule-based systems. Let X be a set of facts in L , STR a set of strict rules,
and DEF a set of defeasible rules. A defeasible derivation for a literal h from X ,
denoted as X |∼ h, consists of a finite sequence h1, . . . ,hn = h of literals such that hi

is a fact (hi ∈L), or there is a rule in STR ∪ DEF with head hi and body b1, . . . ,bk,
and every literal of the body is an element h j of the sequence appearing before hi

Defeasible Planning through Multi-agent Argumentation 3

(j < i). A set X is contradictory, denoted X |∼ ⊥, if two contradictory literals, eg. h
and � h, can be derived from X .

In our planning framework, the agent’s knowledge base is formed by a consistent
set of facts Ψ , and a set of defeasible rules Δ .

Definition 1. Let h be a literal, and let K = (Ψ ,Δ) be the knowledge base of an
agent. We say that 〈A ,h〉 is an argument structure for h, or simply argument for
h, if A is a set of defeasible rules of Δ , such that:

• there exists a defeasible derivation of h from Ψ ∪A ,
• the set Ψ ∪A is non-contradictory, and
• A is minimal, i.e., there is not a A

′ ⊂A , such that A
′

satisfies the above two
conditions.

The literal h is called the conclusion of the argument, and A the support of the
argument.

Definition 2. Two literals h1 and h2 disagree iff the setΨ ∪{h1,h2} is contradictory.
Two complementary literals h and ∼h disagree because for any set Ψ , Ψ ∪{h,∼h}
is contradictory. We say that the argument 〈A1,h1〉 is in conflict or counter-argues
the argument 〈A2,h2〉 at the literal h, if and only if there exists a sub-argument
〈A ,h〉 of 〈A2,h2〉, that is A ⊆ A2, such that h and h1 disagree. If 〈A1,h1〉 is a
counterargument for 〈A2,h2〉 at literal h, then h is called a counter-argument point,
and the subargument 〈A ,h〉 is called the disagreement subargument [5].

In short, two arguments are in conflict if they support contradictory conclusions, or
one of the arguments is in conflict with an inner part of the other argument. That
is, if the head of a defeasible rule in one of the arguments contradicts the head of a
defeasible rule in the other argument.

In order to deal with counterarguments, a central aspect is to establish a formal
comparison criterion among arguments. A possible preference relation among ar-
guments is the so-called generalized specificity [14]. We consider an argument A 1
is preferred to an argument A 2 if A 1 is more precise (it is based on more infor-
mation), or more concise (it uses fewer rules in the conclusion derivation). In such
a case, it is said A 1 is more specific than A 2. For example, 〈{c−�a,b},c〉 is more
specific than 〈{∼c−�∼a},∼c〉. We use 〈A 1,h1〉 � 〈A 2,h2〉 to denote 〈A 1,h1〉 is
more specific than 〈A 2,h2〉 The preference criterion is needed to decide whether
an argument defeats another or not, as disagreement does not imply preference.

Definition 3. The argument 〈A1,h1〉 is a defeater for 〈A2,h2〉 iff there is a subargu-
ment 〈A,h〉 of 〈A2,h2〉 such that 〈A1,h1〉 is a counterargument of 〈A2,h2〉 at literal
h, and 〈A1,h1〉 � 〈A,h〉.
Definition 4. An argumentation line for 〈A0,h0〉 is a sequence of arguments, de-
noted Λ = [〈A0,h0〉, . . . ,〈Am,hm〉], where each element of the sequence 〈Ai,hi〉,
i > 0, is a defeater of its predecessor 〈Ai−1,hi−1〉. Certain constraints over Λ are
considered in [5] in order to avoid several problematic and undesirable situations
that may arise in Λ .

4 S. Pajares and E. Onaindia

Definition 5. A dialectical tree for the argument 〈A0,h0〉, denoted T〈A0,h0〉, is de-
fined by the root of the tree, labeled with 〈A0,h0〉, and a set of argumentation lines
from the root, where every node (except the root) represents a defeater of its parent,
and leaves correspond to non-defeated arguments, arguments with no defeaters.

Some examples of dialectical trees can be found in [5]. In order to decide whether
the argument at the root of a given dialectical tree is defeated or not, it is necessary
to perform a bottom-up analysis of the tree. Every leaf of the tree is marked un-
defeated and every inner node is marked defeated, if it has at least one child node
marked undefeated. Otherwise, it is marked undefeated. Let T ∗

〈A ,h〉 denote a marked
dialectical tree of the argument 〈A ,h〉. A literal h is said to be warranted, if and
only if there is an argument 〈A ,h〉 for h such that the root of the marked dialectical
tree T ∗

〈A ,h〉 is marked undefeated. In such a case, 〈A ,h〉 is a warrant for h. If a lit-
eral h is a fact then h is also warranted as there are no counterarguments for 〈 /0,h〉.
Otherwise, if all arguments for h are marked as defeated then the literal h is said to
be not warranted.

2.2 Partial-Order Planning

Planning is the art of building control algorithms that synthesize a course of action
to achieve a desired set of goals. We consider planning problems encoded in a for-
mal, first-order language such as STRIPS [4], particularly in a propositional version
of STRIPS. We will denote the set of all propositions by P (ground facts or liter-
als). A planning state s is defined as a finite set propositions s ⊆P . A (grounded)
planning task is a triple T = 〈O, i,G 〉, where O is the set of deterministic ac-
tions of the agent’s model that describes the state changes, and i ⊆P (the initial
state) and G ⊆P (the goals) are sets of propositions. An action a ∈ O is a tuple
a = (pre(a),add(a),del(a)), where pre(a)⊆P is the set of propositions that rep-
resents the action’s preconditions, and add(a)⊆P and del(a)⊆P are the sets of
propositions that represent the positive and negative effects, respectively. We will
represent an action a as follows:

{q1, . . . ,qn,∼r1, . . . ,∼rm} id←− {p1, . . . , pk} (1)

where id is the action name, ∀k
i=1 pi ∈ pre(a), ∀n

i=1qi ∈ add(a), and ∀m
i=1ri ∈ del(a).

An action a is executable in state s if pre(a)⊆ s. The state resulting from executing
a is defined as s′ = (s\del(a))∪add(a). That is, we delete any proposition in s that
belongs to del(a), and add the propositions in add(a). A solution plan (Π) for a
planning task T is a set of actions Π = {a1, . . . ,an} ⊆ O such that when applied
to i, it leads to a final state in which the goals G are satisfied. A planning task T is
solvable if there exists at least one plan for it.

In what follows, we provide a brief introduction to the Partial-Order Planning
(POP) paradigm ([1][9]). A more detailed tutorial can be found in [17]. In POP,
search is done through the space of incomplete partially-ordered plans as opposite
to state-based planning. Thus, a key concept in POP is that of partial-order plan.

Defeasible Planning through Multi-agent Argumentation 5

Definition 6. A partial-order plan is a tuple Π = 〈A P,OR,C L,OC,U L〉, where:

• A P⊆ O is the set of ground actions1 in Π .
• OR is a set of ordering constraints (≺) over O
• C L is a set of causal links over O . A causal link is of the form (ai, p,a j), and

denotes that the precondition p of action a j will be supported by an add effect of
action ai.

• OC is the set of open conditions of Π . Let ai ∈ O; if ∃p ∈ pre(ai)∧ � ∃a j ∈
O/(a j, p,ai)⊆CL, then p is said to be an open condition.

• U L is the set of unsafe causal links of Π , also called the threats. Let (ai, p,a j)⊆
C L; (ai, p,a j) is unsafe if there exists an action ak ∈ O such that p ∈ del(ak)
and OR∪{ai ≺ ak ≺ a j} is consistent.

Given a planning task T = 〈O, i,G 〉, a POP algorithm starts with an empty partial
plan and keeps refining it until a solution plan is found. The initial empty plan
Π0 = 〈A P,OR,C L,OC,U L〉 contains only two dummy actions A P = {a0,a f },
the start action a0, and the finish action a f , where pre(a f) = G , add(a0) = i, {a0 ≺
a f } ⊆ OR, C L = /0, OC = G and U L = /0. The empty plan has no causal links
or threats, but, has open condition corresponding to the preconditions of a f (the
top-level goals G). A refinement step in a POP algorithm involves two things; first,
selecting a flaw (an open condition or a threat) in a partial plan Π , and then selecting
a resolver for the flaw. The different ways of solving a flaw are:

• Supporting an open condition with an action step. If p is an open condition, an
action a needs to be selected that achieves p. a can be a new action from O , or
any action that already exists in A P. Solving an open condition involves adding
a causal link to Π to record that p is achieved by the chosen action step.

• Solving a threat with an ordering constraint. When the flaw chosen is an unsafe
causal link (ai, p,a j) that is threatened by an action ak, it can be repaired either
by adding the ordering constraint ak ≺ ai, or the constraint a j ≺ ak, into OR. This
solving method involves reordering the action steps in Π .

Definition 7. A plan Π = 〈A P,OR,C L,OC,U L〉 is complete if it has no open
conditions (OC = /0).

Definition 8. A plan Π = 〈A P,OR,C L,OC,U L〉 is conflict-free if it has no unsafe
causal links (U L = /0).

Definition 9. A plan Π = 〈A P,OR,C L,OC,U L〉 is a solution if it is complete and
conflict-free.

1 Partial-order planners are capable of handling partially instantiated action instances and
hence, the definition of a partial order plan typically includes a set of equality constraints
on free variables in O [9]. We will, however, restrict our attention to ground action in-
stances without any loss of generality for our purposes.

6 S. Pajares and E. Onaindia

3 Argumentation in POP

The task of the agents in classical planning is to be able to set goals and achieve
them, i.e. finding a causal chain of actions that, when applied in the initial state, it
achieves the desired (sub)goals. In this sense, the set pre(a) of a planning action a
is interpreted as a set of achievable preconditions. However, actions can also have
preconditions whose predicates are not affected by any of the actions available to
the planning agent. Instead, the predicate’s truth value is the result of a derivation
obtained by forward chaining inference rules. More concretely, in our framework,
the agent is equipped with a set of planning actions, O , and a knowledge base K =
(Ψ ,Δ) where:

• Ψ is a consistent set of facts. Initially, Ψ = i, and this set will be updated accord-
ingly with the add and del effects of the applicable actions.

• Δ is a set of defeasible rules that will be used to derive plausible information,
tentative conclusions that might be withdrawn with new pieces of information.

In conclusion, a planning action a is a tuple a = (pre(a),add(a),del(a)), where the
set pre(a) is divided into two subsets:

• pre ach(a) denotes the set of achievable preconditions of the action a. The se-
mantics is the same as in classical planning; an achievable precondition p of an
action a is supported if it exists a set of actions from O that achieves the fact, and
p holds in the state in which a will be applied, i.e. p is not deleted by any action
before it holds in the state.

• pre der(a) denotes the set of derivable preconditions of the action a, the set of
preconditions that can be solved via a defeasible derivation. More particularly,
the semantics is that a derivable precondition p of an action a is supported if
there exists an argument 〈A, p〉 such that the root of a the tree T ∗

〈A ,p〉 is marked
undefeated, i.e. p is warranted in the state in which a will be applied.

Achievable preconditions are supported in a partial-order plan through action steps
(see section 2.2). On the other hand, derivable preconditions are supported through
argument steps as proposed in the argumentation-based formalism presented in [6].
Hence, we define a POP paradigm in combination with the argumentation formalism
described in section 2.1, and we analyze the interplay of arguments and actions when
constructing plans using POP techniques.

Definition 10. Let K = (Ψ ,Δ) be the knowledge base of an agent; and let 〈A , p〉,
A ⊆ Δ , an argument that supports a derivable literal p. The set f acts(A) contains
the facts that appear in the bodies of the rules in A .

In a partial-order plan Π , when an argument 〈A , p〉 is used to support a derivable
precondition p of an action ai, Π will contain a new element, a support link of
the form (A , p,ai). This refinement step for solving a derivable precondition of
an action is called argument step [6]. Like causal links, support links are used to
support a derivable precondition with the conclusion of an argument. Assuming an

Defeasible Planning through Multi-agent Argumentation 7

argument step A 1 = 〈A , p〉, we can interpret that add(A 1) = {p}, and pre(A 1)=
f acts(A 1). As can be observed, the introduction of argument steps does not imply
any changes in the POP algorithm.

Under this new perspective, we reformulate the definition 6 as follows: A partial-
order plan is a tuple Π = 〈A P∪A R,OR,C L∪S L,OC∪DP,U L〉, where A P,
OR, C L, OC and U L have the usual meaning, A R is the set of argument steps
included in Π , S L is the set of support links, and DP is the set of pending derivable
preconditions of the actions in Π . Note that the facts of an argument step are the
achievable preconditions of the argument and as such they are included as open
conditions in the set OC.

Unlike the approach presented in [6], DefPlanner is a defeasible argumentation-
based planner in which many different agents with different opinions argue with
each other on the warranty of a given argument. During the plan construction, at
the time of solving a derivable precondition p, DefPlanner invokes a procedure and
agents initiate a discussion in order to check whether p can be warranted or not.
This procedure builds a dialectical tree for each supporting argument of p and fi-
nally returns whether p is defeated or undefeated. This multi-agent discussion is
explained in detail in next section. Hence, in the case of DefPlanner, argument steps
are only inserted in a partial-order plan as long as it has been proven the argument
is undefeated. This contrasts with other approaches in which each supporting ar-
gument gives rise to a different alternative in the POP algorithm, and discussions
on the warranty of a given argument take place in case a counter-argument is in-
troduced in the plan. In conclusion, DefPlanner only inserts provably undefeated
arguments in a plan, and, consequently, no threats involving two argument steps
may appear in our approach. Let 〈A 1, p〉 be an argument step inserted in a plan Π ;
if argument 〈A 2,q〉 is later inserted in Π then DefPlanner guarantees A 2 is not a
counter-argument of A 1 and viceversa.

Additionally, in this first approach of DefPlanner, we assume a piece of infor-
mation can not be both derived and achieved. That is, a proposition p is either
defeasibly derived through a dialectical tree by using the rules in Δ , or achieved
through a course of actions in O . Thus, the predicates of defeasible information are
never affected by the available planning actions O and, consequently, no action-
argument threats exist. In section 6, we elaborate on this issue for future versions of
DefPlanner.

4 Defeasible Argumentation in a Multi-Agent System

DefPlanner implements a Multi-Agent System (MAS) (figure 1) to assist during the
construction plan. Agents can adopt one of the four different roles specified in this
MAS:

8 S. Pajares and E. Onaindia

• Client role: The user is represented by an agent playing this role, which is in
charge of requesting a plan for a given set of goals.

• POP role: The agent playing this role, that is, the planner takes as input the set of
goals and returns a solution plan that satisfies the client goals. There is only one
agent playing the POP role per MAS.

• Argumentative role: An agent agi which plays this role is associated with a set
of defeasible rules representing the tentative information of the agent about the
environment (Δi). The task of each argumentative agent agi is to participate as
far as possible in the multi-agent discussions for warranting a given literal. Each
agent has an associated utility function2 that is used to maximize its benefits.

• Mediator role: The agent which plays this role (only one per MAS) is in charge
of managing the multi-agent argumentation process.

A MAS, as defined in this paper, is formed by a POP agent which reasons about
which action step (for solving an open condition), or ordering constraint (for solving
a threat) should be chosen in the next iteration of the POP algorithm; a group of
non-self-interested argumentative agents, which join together to reason about the
argument step that should be chosen to satisfy/warrant a derivable precondition;

POP Agent

Argumentative Agent 2

Argumentative Agent 3

Client Agent

Mediator Agent

Argumentative Agent 1

De
fP
lan
ne
r

Fig. 1 An overview of DefPlanner.

2 For instance, in terms of less cost, time, resources or increased safety could be expressed
their utility functions.

