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Preface

Background

Autonomous vehicles, or more precisely, autonomous vehicle systems, have received
much attention from the public, thanks to well publicized products and product
prototypes. Self-driving cars, drones and humanoid robots, are popular in exhibitions
and shows. Some have even seen successful commercial applications. The smart,
self-navigating iRobotTM is no longer a curiosity from the research laboratory. Instead,
iRobot products are already on the shelves of mainstream retailers, offering consumers
their services, from vacuuming to mopping. In research and development, autonomous
vehicle systems (AVSs) are receiving close attention, not only because of the wide
range of their potential applications, but also because of the wide variety of vehicle
configurations and platforms: cars, robots, spacecraft, and unmanned aerial vehicles
(UAVs), to name just a few.

Even though different vehicle systems may have different configurations, they do
share some common characteristics. For example, they must have some motion
mechanism to enable movement; they are equipped with multiple sensory components
to measure and collect vehicular and environmental information; they have “brains”
(computer processors) to make automatic decisions to generate or regulate their
motion based on the collected information, giving them a certain level of autonomy
in accomplishing their missions. The enabling technologies behind these vehicles or
vehicle systems – for example, the guidance, control and navigation technologies,
the sensors and sensing technologies, and the communication protocols – represent
state-of-the-art capabilities and highlight the current challenges and limitations in
the field. Their capabilities and challenges make AVSs an exciting, almost ideal field
to work in. As a result, AVSs have exhibited rapid progress in terms of research and
development, from design to deployment.

Naturally, if we treat each vehicle as a self-regulating system, a fleet of vehicles will
form a network of systems, or a system of systems. Such a macro viewpoint definitely
broadens the horizon of AVSs to a new level. One may recognize the potential when a
network of AVSs is considered. Imagine a single autonomous mobile robot is dispatched
to survey and map a particular terrain, or an autonomous UAV flies over an area on
an aerial photography mission: a coordinated group of mobile robots or a fleet of UAVs
in formation can increase the scope of coverage dramatically. In another scenario, an
individual robot or UAV has limited payload capacity, yet such tasks may be carried
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out by a team of cooperative robots or UAVs. In space applications, satellites stay in
formation, to offer a wider coverage in telecommunications. Examples go on and on.
If we group multiple autonomous vehicle systems together, we can significantly enhance
performance and capacity, and multiple vehicle systems in coordination accomplish
missions or tasks that a single vehicle cannot handle. The benefits are obvious.

We introduce a general term, formation in motion, for the phenomenon of multiple
AVSs moving in coordination. One critical technology behind successful formation in
motion is the control strategy that commands, coordinates, and adjusts the vehicles
autonomously. As such, the formation control of multiple autonomous vehicle systems
is the topic of interest to which this book is dedicated.

Contents of the Book

First of all, let us clarify what “formation control” or “formation in motion” refers to in
this book. The concept of formation in motion can be intuitively described as a group of
vehicle systems in motion that stays in a fixed pattern (e.g. a geometric shape). We may
extend the concept to allow these vehicles to follow a dynamic pattern (e.g. spinning
in a geometric fashion). Accordingly, formation control refers to control actions that
ensure the group of vehicles stays in fixed or dynamic formation during its movement.
It is worth pointing out that formation control is relevant to several associated concepts,
such as coordinated control and cooperative control. Coordination, by definition, refers
to the the harmonious functioning of parts for effective results. Cooperative control
is a more general term, to address control and communication mechanisms that work
together for control of large-scale dynamic systems. It is obvious that formation con-
trol demonstrates distinctive features of shape-keeping and, by implication, of motion
synchronization. In this book, we assume we are dealing with formation control unless
otherwise specified.

Formation control of AVSs involves the dynamics and control aspects of the dynamic
behaviour of multi-vehicle systems, the design of proper control techniques to reg-
ulate the formation motion of these vehicles, and the development of system-level
decision-making strategies to increase the level of autonomy for the whole group
of vehicles, enabling them to carry out their missions. The fundamental concepts of
dynamics and control are the main focus presented in this book. Formation control
involves communication protocols, network frameworks, and information technology.
Covering these associated technologies goes beyond the scope of this book, but the
relevant concepts will be introduced at suitable points in the text.

In terms of dynamics, attention is focused on multi-vehicle systems dynamics. The
intention is to develop a uniform paradigm for describing vehicle systems’ dynamic
behaviour, addressing both individual vehicle motion and overall group movement.
Interactions between vehicles are also covered. Considering various vehicle configu-
ration possibilities and even heterogeneous vehicles, it is important to have a unified
platform so as to provide a foundation for analysis.

Similarly, regarding control, the intention is to focus on formation control, in other
words the control strategy and its implementation in each individual vehicle so that it
remains in fixed or dynamic formation while in motion. We shall cover fundamental
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Part I
Fundamental formation dynamics and control

Chapters 1–3

Part II
Advanced formation control

Chapters 4–5

Part III
Formation control case studies and applications

Chapters 6–8

1. Formation kinematics

2. Formation dynamics

3. Fundamental formation control

 (including velocity/attitude
 synchronization, formation via
 synchronized tracking)

4. Output feedback

 (including disturbance estimation)

5. Robust and adaptive control

  

6. Application in space systems

7. Application in aerial systems

8. Application in robotic systems

Part IV
Formation control laboratories

Chapter 9

Including three control experiments:

• Integral control
• Disturbance estimation and compensation
• Sliding-mode control

Figure 1 The roadmap of the book.

formation control concepts, as well as more advanced topics relating to special cases or
applications.

In addition, several formation control application case studies are presented in this
book. These cases cover descriptions, design, and control of different vehicle systems,
including robotics, space applications, and UAVs. A dedicated section covers design
of laboratory experiments. These exercises will give readers opportunities to further
enhance their learning experience.

The roadmap of the rest of the book is shown in Figure 1.
After the Preface, the rest of the book is organized into four parts and nine

chapters. Part I covers the fundamental topics, including vectorial formation dynamics
(Chapter 2) and fundamental formation control (Chapter 3). Part II addresses advanced
topics, including output feedback formation control (Chapter 4) and robust and adap-
tive formation control (Chapter 5). Part III focuses on formation control application
case studies in a wide range of areas. Chapter 6 describes formation control for space
systems, Chapter 7 presents formation control for aerial systems, Chapter 8 describes
formation control for robotic systems. Part IV presents a unique laboratory, a system
of three degree-of-freedom (DOF) desktop “helicopters”, which is an excellent platform
to investigate formation dynamics and control issues experimentally.



xvi Preface

Curriculum

As mentioned before, in this book, we focus on specific formation behaviours and
explore a unified dynamic behaviour description with various formation control
strategies. The book is intended to be used as a textbook for a graduate-level course. It
can certainly serve as a reference book or textbook for a senior undergraduate course.
In North America, a standard graduate course for one semester typically consists of
2-hour lectures. A suggested course syllabus is provided in Table 1 as the recommended
template for the course delivery.

Table 1 Suggested syllabus.

Week Topic Lab work

1 Chapter 1: Introduction
2 Chapter 2: Formation Dynamics
3 Chapter 2 (cont’d) Lab: 3DOF modelling
4 Chapter 3: Fundamental Formation Control
5 Chapter 3 (cont’d) Lab: 3DOF Control
6 Chapter 4: Output Feedback
7 Chapter 5: Robust and Adaptive Formation Control Lab: 3DOF Advanced Control
8 Chapter 6: Space Systems
9 Chapter 7: Aerial Systems Lab: 3DOF UAV Control

10 Chapter 8: Robotic Systems
11 Course Review
12 Laboratory Project Demonstration
13 Exam
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