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Foreword

Centered on materials, this book explores the full scope 
of products inspired by nature. The process of learning 
from biological structures and principles for the devel­
opment of advanced and multifunctional materials as 
novel resources that revolutionize human life is dis­
cussed, presenting fundamental concepts and methods 
of biofabrication. Examples are offered that showcase 
currently trending compounds and macromolecules 
with their properties, their potential, and their contribu­
tion to the fabrication of bioinspired materials. Concrete 
applications are discussed as well with an accent on bio­
medically engineered materials, that will take the reader 
into the realm of such seductive biomaterials.

With currently captivating topics such as biotem­
plating, microfluidics, self‐assembly, mussel‐inspired 
surface modification, 3D biofabrication and more, this 
book represents a source of inspiration for the design 
of novel materials, and an important tool for updating 
active researchers. Additionally, its comprehensive 
approach will be of great interest to the beginner in 
the field who will discover the concept of bioinspi­
ration from its fundamentals to its applications. 
Although the book emphasizes biomedical engineering, 

the multidisciplinary aspect of the subject will make it 
appeal to many research areas, such as biologists and 
engineers, while not leaving out chemists, physicists, 
and technicians.

Although an old concept, by proposing natural materi­
als with superior features and low cost as models, bioin­
spiration has re‐emerged as an essential tool for 
overcoming various limitations in current materials sci­
ence and engineering, thereby solving many of mankind’s 
substantial problems, such as the shortage of resources 
and the environmental concerns. Hence, this book deals 
with an important topic of the moment, which concerns 
numerous researchers across the world and should also 
be of interest to the general public. As illustrated by the 
authors, many different talents need to come together to 
make this approach a reality, and this book will inspire, 
instruct, and involve both current and the next genera­
tions in advancing the field.

Lei Jiang
Technical Institute of Physics and Chemistry

Chinese Academy of Sciences, China

April 13, 2017





xix

Bioinspiration is an old concept which can be described 
as the process of learning from nature and its biological 
principles. Taking advantage of the properties and nano-
structures of natural compounds, the science of bioin-
spired materials aims at developing new and formerly 
non‐existent materials, which exhibit novel and multi-
functional properties, in the attempt of meeting the 
current requirements of human well‐being. The idea is 
to take inspiration from natural mechanisms and the 
problems they are set to solve, in order to design 
advanced materials which are solutions to problems 
encountered in human life. Indeed, the focus of materials 
science is being increasingly shifted towards the devel-
opment of bioinspired materials, prompted by the short-
age of resources, the low cost and superior characteristics 
of natural materials, and the environmental and climatic 
concerns. The first step to engineering bioinspired mate-
rials is understanding biological materials and the pro-
cesses involved in their production, and thence, develop 
biofabrication or bioinspired fabrication approaches. 
This leads to the highly interdisciplinary character of this 
field, which brings together natural scientists (biologists, 
chemists, and physicists), engineers, and technicians. 
Thus, an active interaction across disciplines is the key to 
the real development of this old research area, which is 
now attracting many researchers worldwide. However, 
as underlined by several recent reviews on the subject, 
this condition is yet to be fully met, due to the rather 
limited understanding of the building principles of living 
entities which are numerous and complex, and because 
the definition of the scope and novel applications remain 
to be further clarified. Hence, approaches for conveying 
information in the field and storing the bioinspired solu-
tions already uncovered are of real importance, and 
would contribute significantly in propelling this promis-
ing research area.

Biofabrication approaches are developed by studying 
and exploiting unique and basic biological aspects, 
including evolution, growth, and structure (formation 
and performance), which are non‐existent in engineer-
ing materials. Based on the “growth and functional 

adaptation” concepts, the strategies adopted aim at 
creating hierarchical structures and self‐assemblies 
(dynamic strategies), while those associated with the 
“damage repair and healing” principles design self‐repair 
or self‐healing materials.

The purpose of this book is to introduce a comprehen-
sive view of the bioinspired materials science and engi-
neering, discussing biofabrication approaches and 
applications of bioinspired materials as they are fed back 
to nature in the guise of biomaterials. Some biological 
compounds will also be brought up, as of what is learned 
from them, and how they can be useful in the engineer-
ing of bioinspired materials. Thus, this book will include 
3 main sections: biofabrication, biomacromolecules, and 
biomaterials. Illustrating the bioinspiration process from 
materials design and conception to application of bioin-
spired materials, this book will present the multidiscipli-
nary aspect of the concept, and represent a typical 
example of how knowledge is acquired from nature, and 
how in turn this information contributes to biological 
sciences, with an accent on biomedical applications. We 
anticipate that this book will be suitable for different 
classes of the scientific community including undergrad-
uate, graduate, and senior researchers in all areas of 
bioinspired materials. We hope that it will stimulate new 
thoughts and research in this field.
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I.1  Bioinspiration

Bioinspiration refers to the process of learning from 
nature and its biological principles. The science of bioin­
spired materials aims to develop novel functional materi­
als with advanced and multi‐functional properties by 
using the nano‐, micro‐, meso‐, and macro‐structures 
and features of natural materials with the aim to meet the 
requirements of human well‐being. Natural mechanisms 
and biological materials can be exploited to design 
advanced materials to solve the problems encountered in 
human life. Indeed, the focus of materials science is being 
increasingly shifted toward the development of bioin­
spired materials, prompted by the shortage of resources, 
the low cost, and the superior characteristics of natural 
materials, and the environmental and climatic concerns. 
To this end, understanding the biological phenomenon, 
natural biological materials, and the processes involved in 
their natural production is essential, and hence, develop­
ing biofabrication or bioinspired fabrication approaches.

I.2  Bioinspired Materials

Bioinspired materials are synthetic products fabricated to 
mimic the structure and mechanical features of natural 
biological materials [1]. Biological materials are inher­
ently multi‐functional in nature but may have evolved to 
optimize a principal mechanical function such as the 
impact of fracture resistance, for armor and protection, 
for sharp and cutting components, for a light weight for 
flight, or special chemical and mechanical extremities for 
reversible adhesive purposes. These functions are regu­
lated by the nano‐, micro‐, meso‐, and macro‐structures 
of the materials. Further, these structures determine the 

mechanism of the biological systems to adapt themselves 
to the external mechanical stimuli. These inherent func­
tions and structural properties are inspiring scientists 
and engineers to design novel multi‐functional synthetic 
materials with a wide range of structural features and a 
broad spectrum of potential applications. In the past few 
decades, several natural biological materials have been 
examined by researchers for various aspects to explore 
their potential in different fields. Studies reveal that the 
inherent multi‐scale structures of natural biological 
materials possess several functions. Nature as a school for 
scientists and engineers has served as a great source of 
inspiration to fabricate new materials [2]. At present, 
biomimetic and bioinspired approaches have been 
adopted for the fabrication of several biological materials 
with multi‐scale structures for function integration, as 
summarized in Table  I.1. An interdisciplinary colla­
boration of materials science and engineering, chemistry, 
biology, physics, and bioinformatics, etc. may lead to 
the  design and fabrication of novel multi‐functional 
bioinspired materials.

To date, several biofabrication approaches have been 
developed by studying and exploiting unique and basic 
biological aspects, including evolution, growth, and 
structure (formation and performance) which are not 
found in engineering materials. Based on the “growth and 
functional adaptation” concepts, the strategies adopted 
mainly aim at creating hierarchical structures and self‐
assemblies (dynamic strategies) and those associated 
with the “damage repair and healing” principle designs, 
and self‐repair or self‐healing materials. To achieve these 
objectives, several models have been presented by the 
researchers to describe the design, fabrication, and opti­
mization of properties of bioinspired materials. Modeling 
of biological materials helps in rational understanding of 
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the design principles which can lead to subsequent 
designing of bioinspired complements. For example, 
mechanical modeling of biological materials based on 
natural materials has attracted immense attention owing 
to their diverse applications in medicine and engineering. 
This can be attributed to the structurally hierarchical bio­
materials which possess a highly desirable structure‐
properties relationship and can serve as templates for the 
fabrication of bioinspired materials. Several approaches, 
such as single‐ and multi‐scale, micro‐structural and 
phenomenological, and continuum and discrete, etc. 
have been developed for the mechanical modeling of 

biological and bioinspired materials [37]. However, further 
extensive research is required to fabricate bioinspired 
materials due to their greater flexibility in design varia­
bles, such as the selection of material components, the 
varying degree of constraints among the different availa­
ble components, the variable boundary conditions, and 
the novel architectural conformations.

I.3  Biofabrication

Biofabrication is the combination of two words: “bio” 
means living and “fabrication” means to synthesize or 
design using templates etc., thus biofabrication refers to 
the synthesis of living structures using some standard 
templates or models. Precisely, biofabrication refers to 
the application principle of engineering and information 
science to produce an automated robotic assembly of 
living cells, tissues, and organs, etc. [38]. Further narrow­
ing down the concept, biofabrication refers to the biomed­
ical applications of rapid prototyping or computer‐aided 
additive technologies. It is closely related to tissue engi­
neering and is considered an integral part of it and uses 
engineering approaches in the assembly of complex tis­
sues and organs. Despite extensive developments in the 
field of tissue engineering, the transformation of this 
labor‐intensive technology into an automated industry 
still requires further innovative and creative strategies.

I.3.1  Summary of Part I Biofabrication

In Part I, “Biofabrication,” we discuss various biotemplat­
ing principles and recent advances in the one‐dimensional 
and two‐dimensional biotemplated formation of inor­
ganic functional materials using natural templates. The 
chapters in Part I (Chapters 2–6) also discuss microbial‐
mediated material manufacturing techniques for the 
fabrication of a variety of functional materials. Recently 
developed tubular structures are discussed, which serve 
as templates for in vitro recapitulating of highly complex 
tissues such as blood vessels, etc. and microfluidics‐based 
cell manipulation and development of tubular tissues. 
This Part also illustrates the fabrication of three‐dimen­
sional (3D) tissues with capillary networks by controlling 
the cell microenvironment with emphasis on 3D‐tumor 
invasion models with blood‐ and lymph‐capillary net­
works. Furthermore, biofabrication of ordered cellulose 
scaffolds (nematic ordered) to mediate 3D cell culturing 
and biomineralization is discussed. As an example of 
bioinspiration, the preparation and application of biomi­
metic materials inspired by muscle adhesive proteins 
are  overviewed in detail. Finally, the self‐assembly of 
poly(lactic acid)‐based amphiphilic diblock copolymers 
and their applications in biomedical field are presented.

Table I.1  Typical biological materials with function integration. 

Biological 
materials Functions Ref.

Butterfly wing Superhydrophobicity, directional 
adhesion, structural color, self‐
cleaning, chemical sensing capability, 
fluorescence emission functions

[3–7]

Brittlestar Mechanical and optical functions [8]
Cicada wing Anti‐reflection, 

superhydrophobicity
[9]

Fish scale Drag reduction, superoleophilicity 
in air, superoleophobicity in water

[10]

Gecko foot Reversible adhesive, 
superhydrophobicity, self‐cleaning

[11]

Lotus leaf Superhydrophobicity, low adhesion, 
self‐cleaning

[12]

Mosquito 
compound eye

Superhydrophobicity, anti‐
reflection, anti‐fogging

[13]

Nacre Mechanical property, structural 
color

[14, 15]

Peacock 
feather

Structural color, 
superhydrophobicity

[16]

Polar bear fur Optical property, thermal insulation [17]
Rice leaf Superhydrophobicity, anisotropic 

wettability
[12]

Rose petal Superhydrophobicity, structural 
color, high adhesion

[18–20]

Shark skin Drag reduction, anti‐biofouling [21]
Spicule Mechanical and fiber‐optical 

properties
[22–24]

Spider capture 
silk

Water collection ability, mechanical 
property, elasticity, stickiness

[25–27]

Spider 
dragline silk

Mechanical property, 
supercontraction, torsional shape 
memory

[28–35]

Water strider 
leg

Durable and robust 
superhydrophobicity

[36]

Source: Reproduced from [2] with permission from Elsevier.
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I.4  Biofabrication Strategies

Biofabrication strategies mainly aim to improve the 
existing strategies and develop reliable biomaterials‐
based cell culturing strategies for advances in tissue 
engineering and regenerative medicines. To achieve 
such goals, scaffolds have been developed from vari­
ous biocompatible materials. A scaffold refers to a 
temporary structure made of biocompatible material 
and provides support to the growing cells. A scaffold 
is declared biocompatible when it remains in direct 
contact with living host tissues without causing any 
toxic, allergic, or side effects. Scaffolds with well‐
defined 3D topologies and geometries have been 
fabricated to introduce various biological molecules 
with various shapes and sizes. Tissue engineering 
applications of scaffolds require high porosity, tunable 
pore sizes, and better mechanical features. For example, 
scaffolds with large pore sizes allow easy penetration 
of the impregnating materials, the diffusion of nutri­
ents, the removal of wastes, and the exchange of gases, 
etc. Further, an ideal scaffold supports adhesion, pro­
liferation, and migration of cells [39]. The following 
sections describe a few conventional and advanced 
biofabrication strategies.

I.4.1  Conventional Biofabrication Strategies

To date, a multitude of fabrication strategies have been 
devised to fabricate 3D scaffolds using various natural 
and synthetic materials, mainly polymers. These strate­
gies aim to design scaffolds in such a way as to mimic the 
natural environment of a living cell. To achieve this goal, 
earlier scaffolds were fabricated followed by the seeding 
of viable cells. The following overviews some of these 
strategies.

I.4.1.1  Solvent Casting Strategy
In this strategy, a polymer solution prepared in an appro­
priate solvent with uniformly distributed salt particles 
(i.e. porogen) of known size is poured into a mold and 
the solvent is allowed to evaporate, leaving behind a 
composite with uniformly distributed salt particles [40]. 
Thereafter, the composite is immersed in water to allow 
the leaching out of the salt particles, leaving behind pores 
according to the size and shape of the salt particles. Thus, 
a highly porous uniform 3D scaffold is formed on which 
different types of cells can be seeded. It is worth men­
tioning here that the size and shape of the pores are 
directly related to the size and shape of the salt particles, 
respectively. The size and shape of the pore can be opti­
mized according to the type of cells and specific applica­
tion. Further, the solvent used should be non‐toxic to the 
seeding cells.

I.4.1.2  Freeze‐drying or the Lyophilization 
Method
In this strategy, the temperature of a polymer solution is 
lowered well below its freezing point which results in the 
solidification of the solvent molecules and leads to the 
aggregation of the polymer within the interstitial spaces 
of the scaffold matrix. Thereafter, the solvent molecules 
are allowed to evaporate via sublimation, leaving behind 
a highly porous polymeric structure containing well‐dis­
tributed interconnected pores on the surface and within 
the matrix of scaffold [41]. Different types of cells can be 
seeded with the formed interconnected pores. It is worth 
mentioning here that the pore size of the scaffold 
depends upon the freezing regime, the concentration of 
the polymeric material, the size of the ice crystals formed, 
and the pH of the solution [42].

I.4.1.3  Gas Foaming
Gas foaming is another biofabrication strategy where a 
polymeric scaffold is first completely saturated using a 
foaming agent at high pressure, followed by the release of 
pressure, which results in the solubility of the gas in the 
polymer. The gas bubbles are formed which grow in 
the polymer due to the thermodynamic instability [43]. 
Different types of foaming agents such as CO2 [44], N2 
[45], or H2O [46] are used for such purposes, which 
results in highly porous structures with varying pore size 
in the range of 100–500 µm [47].

I.4.2  Advanced Biofabrication Strategies

Advanced biofabrication strategies are classified into 
bioprinting and photolithographic techniques.

I.4.2.1  Bioprinting
Bioprinting is one of the most advanced and innovative 
technology of this century which has received growing 
interest worldwide and revolutionized the medical tech­
nology and pharmaceutical industries [48]. It refers to 
the use of 3D printing technology to print various bio­
materials with incorporated viable cells to engineer tis­
sue construct applications in tissue engineering and 
regenerative medicines. Currently, this technology has 
received immense attention and is widely used for broad 
spectrum applications, such as regenerative medicines, 
tissue engineering and transplantation, screening of 
drugs, and cancer research, etc. It offers several advan­
tages, such as the precise and controlled deposition of 
cells, hormones, drugs, and growth factors, etc., thus 
directing improved tissue formation. Further, it provides 
a base for the development of tissue constructs, organs 
and organoids, and organ‐on‐a‐chip mimicking the nat­
ural ones [49]. Bioprinting is carried out using a 3D 
printer, which has the ability to print 3D structures such 
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as tissues and organs, etc. using various bioink solutions. 
A bioink solution refers to a mixture of biomaterial and 
live cells. A general bioprinting process is shown in 
Figure  I.1. A typical 3D bioprinter has the ability to 
simultaneously dispense various biomaterials to fabri­
cate structures with high resolution and accuracy and 
maintain high degree of freedom motion and ensure suf­
ficient motion speed. These 3D printers are user‐friendly, 
fully automatic, easily sterilized, affordable, durable, ver­
satile, and compact instruments [50]. Bioprinting tech­
nology is advancing rapidly, however, the technological 
modalities are based on three fundamental strategies 
including the inkjet or droplet, extrusion, and laser‐
based bioprinters, which are described as follows.

I.4.2.1.1  Droplet‐based Bioprinting
The droplet‐based bioprinting strategy is based on the 
thermal, piezo, or acoustic‐driven mechanisms and 
uses  heat energy, electrical energy, and sound energy, 

respectively for the generation of droplets of cell suspen­
sion in a high‐throughput fashion. These bioprinters 
have received immense attention owing to their simplic­
ity, versatility, agility, and high‐throughput potential to 
dispense a variety of biologics, such as viable cells, 
growth factors, genes, and pharmaceutics, etc. [51]. 
These types of printers have a high speed of fabrication 
of scaffolds, however, this high speed make the strategy 
difficult to apply to most of the polymer systems as it 
requires the gelation time to be in accordance with the 
drop deposition time.

I.4.2.1.2  Extrusion‐based Bioprinting
The extrusion‐based bioprinting system is a hybrid of a 
fluid‐dispensing system and an automated robotic sys­
tem for extrusion and bioprinting, respectively. These 
bioprinting systems use mechanical or pneumatic‐driven 
systems and deposit the viable cells in the form of a fila­
ment [52]. In this system, the bioink is dispensed using a 
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Figure I.1  Illustration of isolation of viable cells, bioprinting of tissue constructs, and implantation into the patient. Source: Reproduced 
from [148] with permission from “Cell‐press.”



Introduction to Principles of Bioinspired Materials 5

deposition in a computer‐aided design (CAD) system 
which ensures the precise dispensing of viable cells 
encapsulated in a cylindrical filament. During the print­
ing process, a stage or a surface is moved in a directed 
pattern controlled by CAD, which ensures the spatial 
deposition of bioink from a nozzle to fabricate materials 
of specific structural conformations [53].

I.4.2.1.3  Laser‐based Bioprinting
Compared to extrusion‐based bioprinting, the viable 
cells from a donor‐slide to a receiver‐slide are dispensed 
without the assistance of a nozzle, using laser energy in a 
laser‐based bioprinting system. This modality offers sev­
eral advantages in dispensing a variety of biologics such 
as live cells, biomaterials, growth factors, genes and vec­
tors, and drugs, etc. [54].

I.4.2.2  Photolithographic Strategies 
of Biofabrication
The photolithography bioprinters have been modified 
from laser‐assisted printers. Similar to a laser‐assisted 
bioprinter, the stereolithography modality uses light or 
photons for the selective solidification of bioink in a 
layer‐by‐layer pattern during the fabrication of a scaf­
fold. Usually, these bioprinters use a digital projector 
that ensures the same printing time even for the com­
plex planes in a structure and thus this system is more 
advantageous than conventional bioprinters. Further, 
such printers are simpler in operation, offer high resolu­
tion (100 µm) printing in a short time, and maintain 
high cell viability [55]. These strategies are used for the 
fabrication of 2D scaffolds for the growth of cells [56] or 
the encapsulation of cells in a 3D network of polymers 
[57]. Photolithographic strategies are further classified 
into mask‐based photolithography, stereolithography, 
and multiphoton lithography. The mask‐based photo­
lithographic strategies of biofabrication use a patterned 
mask to illuminate selected regions of a polymer. For 
this purpose, the prepolymer solution is exposed to UV 
light, which results in the polymerization of the exposed 
regions of the polymer and thus prevents the formation 
of a network of 3D porous scaffolds. The unnecessary 
unpolymerized solution is washed out by immersing in 
a buffer [58]. Similarly, the stereolithography is a mask‐
less photopatterning CAD strategy used for the fabrica­
tion of prototypes. In this strategy, the design of the 
desired scaffold is first developed using a 3D computer 
drawing software, which is then processed by software 
and sliced into a number of layers (25–100 µm thick). 
The information is then passed to the SL apparatus 
which prints one layer at a time using a UV laser. 
Similarly, the multiphoton lithography is also a mask‐
less lithographic strategy which uses a focused laser or a 
confocal microscope [59–61]. This lithographic strategy 

offers high lateral (x–y) resolution but little to no con­
trol over the axial (z) direction. To solve this issue, 
several photochemistries have been expanded to 
multiphoton‐based approaches with the potential to 
confine photochemical reactions in 3D orientation. A com­
parative analysis of various bioprinters in use is shown 
in Table I.2.

I.5  Part II Biomacromolecules

Part II of the book deals with biomacromolecules. The 
term “biomacromolecules” refers to the biological mole­
cules with high relative molecular masses whose struc­
ture is essentially comprised of multiple repeated units 
derived from low molecular mass molecules. Generally, 
a biomacromolecule is synthesized through the polym­
erization of smaller subunits generally referred to as 
monomers. Compared to monomers, the macromole­
cules have exceptionally different physical properties. 
Similarly, these biomacromolecules are relatively insolu­
ble in water and other common solvents compared to 
their smaller units and instead form colloids. In general, 
there are three classes of biomacromolecules discussed 
in this book: carbohydrates, proteins, and nucleic acids.

I.5.1  Summary of Part II Biomacromolecules

In Part II, “Biomacromolecules,” details of the synthesis 
approaches and applications of electroactive bioartifi­
cials are provided. Further, chemical modification of 
starch and the conformational properties of various lin­
ear and cyclic polysaccharide derivatives are discussed. 
Thereafter, structure, basic properties, and fabrication 
strategies of silk‐based materials with a special emphasis 
on biomimetic structures are described. Finally, recent 
developments in polypeptides synthesis by ring‐opening 
polymerization, micro‐ and nano‐structures through the 
self‐assembly of polypeptides, and their applications are 
presented.

I.5.2  Carbohydrates

Carbohydrates are biological molecules consisting of 
three main components: carbon, hydrogen, and oxygen. 
These are represented by an empirical formula Cm(H2O)n, 
where m and n can have the same or different values. 
Chemically, carbohydrates are polyhydroxy aldehydes, 
ketones, alcohols, acids, their simple derivatives, or their 
polymers with linkages of the acetal‐type. These are cat­
egorized according to their degree of polymerization 
into three main classes: sugars, oligosaccharides, and pol­
ysaccharides. Sugars include monosaccharides (e.g. glu­
cose, fructose, galactose, and xylose, etc.), disaccharides 



 Table I.2     Comparison of four types of bioprinting techniques. 

Parameters Inkjet Laser‐assisted Extrusion Stereolithography Reference    

Cost Low High Moderate Low   [62–65]    
Cell viability >85% >95% 40%–80% >85%   [66, 67]    
Print speed Fast Medium Slow Fast   [68–70]    
Supported viscosities 3.5–12 mPa/s 1–300 mPa/s 30 mPa/s to above 6 × 10 7  mPa/s No limitation   [70–72]    
Resolution High High Moderate High   [63]    
Quality of vertical 
structure

Poor Fair Good Good   [73]    

Cell density Low <10 6  cells/mL Medium < 10 8  cells/mL High (cell spheroids) Medium <10 8  cells/mL   [70]    
Representative 
materials for bioinks

Alginate, PEGDMA, 
Collagen

Collagen, Matrigel Alginate, GelMA, Collagen GelMA, GelMA‐PEGDA 
hybrid hydrogel

  [65, 73–77]    

Reported applications Tissue engineering (blood 
vessel, bone, cartilage, and 
neuron)

Tissue engineering (blood 
vessel, bone, skin, and 
adipose)

Tissue engineering (blood vessel, 
bone, cartilage, neuron, muscle, tumor) 
Controlled release of biomacromolecules 
Organ‐on‐a‐chip

Tissue engineering (blood 
vessel and cartilage) 
Organ‐on‐a‐chip

  [78–81]  

  Source:  Reproduced from   [147]   with permission from Elsevier. 
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(e.g. sucrose, lactose, maltose, and trehalose, etc.), and 
polyols (e.g. sorbitol and mannitol, etc.). Similarly, 
oligosaccharides include malto‐oligosaccharides (e.g. 
maltodextrins) and others (e.g. raffinose, stachyose, and 
fructo‐oligosaccharides, etc.). Similarly, the polysaccha­
rides include starches (e.g. amylose, amylopectin, and 
modified starches, etc.) and non‐starches (e.g. cellulose, 
hemicellulose, pectins, and hydrocolloids, etc.). 
Common examples of carbohydrates used in biomedical 
research are briefly described here.

I.5.2.1  Starch
Starch, also known as amylum, is a polymeric carbohy­
drate comprised of repeated glucose units linked via gly­
cosidic linkages. Generally, it is produced by green plants 
where it serves as an energy storage material. Chemically, 
it consists of two types of molecules: the linear and the 
helical‐shaped amylose that accounts for 20–25% of the 
total starch content, and the branched amylopectin 
accounting for 75–80% of the total starch content. 
Amylose is a comparatively long linear chain of α‐glu­
cans containing about 99% (1 → 4)‐α‐linkages and around 
1% (1 → 6)‐α‐linkages. Similarly, amylopectin contains 
about 95% (1 → 4)‐α‐linkages and 5% (1 → 6)‐α‐linkages 
[82]. Its insolubility in cooled water limits its various 
applications. This issue has been resolved to great extent 
by chemical modification, by introducing different func­
tional groups onto its back bone [83]. It possesses several 
properties which are significant from a biomedical per­
spective, such as high biocompatibility, biodegradability, 
and non‐toxicity, etc. It has been extensively used for 
various applications, such as tissue engineering, drug 
delivery, and enzyme immobilization, etc. [84]. Starch 
and its derivatives serve as promising materials for vari­
ous tissue engineering applications, such as artificial 
skin, scaffolds, bone and cartilage, vascular regeneration, 
and teeth, etc. owing to its biocompatible, biodegrada­
ble, non‐toxic, non‐immunogenic, and porous structure. 
Starch has the potential to form nanofibers, highly 
porous scaffolds, and injectable hydrogels, etc.

I.5.2.2  Cellulose
Cellulose is the most abundant polysaccharide available 
on Earth and consists of chain of glucose monomers. The 
molecular formula of cellulose is (C6H10O5)n and is an 
unbranched homopolysaccharide composed of α‐D‐glu­
copyranose units linked by β‐(1 → 4) glycosidic bonds 
(Figure I.2). The linear glucan chain forms highly stable 
regular intra‐ and inter‐molecular hydrogen bonds which 
stabilize its reticulate structure  [85]. It is produced by 
various sources such as plants, microbial cells 
(Acetobacter, Rhizobium, Agrobacterium, Aerobacter, 
Achromobacter, Azotobacter, Salmonella, Escherichia, 
and Sarcina, etc.) [86], and enzymes (the cell‐free system) 

[87]. Compared to microbial cellulose, also known as 
bacterial cellulose (BC), and bio‐cellulose produced by 
cell‐free enzymes system [85], which represent the purest 
forms, the plant cellulose contains several impurities in 
the form of lignin and hemicellulose, which necessitate its 
further treatment by various chemical methods. However, 
BC and bio‐cellulose are directly used in various applica­
tions without further pretreatment. Further, these possess 
unique structural, physico‐chemical, mechanical, and 
biological features, such as high water‐holding capacity 
(WHC) (100–200 times its dry weight), slow water release 
rate (WRR), higher crystallinity (60–90%), high tensile 
features (with elastic modulus 1 to 15 MPa and elongation 
at break 10–30%), an ultrafine fiber network, and molda­
bility into 3D structures. which bestow BC with high 
potential value [85, 88–90] and broaden its applications 
in different fields, such as biomedicine, opto‐electronics, 
food technology, and separation processes, etc. [91]. BC 
is rarely soluble in common solvents such as water and 
organic and inorganic solvents, owing to its highly 
extended hydrogen bonding [92, 93]. However, several 
solvents systems have been developed such as LiCl/
dimethylacetamide (DMAc) [94], N‐methylmorpholine‐ 
N‐oxide (NMMO) [40], ionic liquids (ILs) [95], and alkali/
urea (or thiourea) aqueous, which can dissolve BC [96]. 
BC has mainly found applications in the biomedical field 
where it is used as wound dressing material, for burns, 
artificial skin, vascular grafts, scaffolds for tissue engineer­
ing, tissue regeneration, and artificial blood vessels, etc. 
[89, 97, 98]. Also, it has been used for the preparation of 
several commercial products such as tires, headphone 
membranes, high performance speaker diaphragms, high‐
grade paper, makeup pads, diet food, and textiles, etc. [98]. 
Furthermore, it is used as carrier in drug delivery systems, 
enzyme immobilization, and ion exchange membrane, 
and as biodegradable and biocompatible sensors and actu­
ators [99, 100].

I.5.2.3  Chitosan
Chitosan is an abundant polysaccharide present in 
nature. Chemically, it is composed of randomly arranged 
β‐(1 → 4)‐linked D‐glucosamine and N‐acetyl‐D‐glu­
cosamine, representing deacetylated and acetylated 
units, respectively. Its chemical structure is similar to 
that of cellulose except for the replacement of the –NH2 
group instead of –OH moieties in the glucose units of 
cellulose backbone. It is synthesized through deacetyla­
tion of chitin shells of crustaceans, such as shrimps, 
using an alkaline solvent such as sodium hydroxide 
(NaOH) in excess as a reagent and water as a solvent. 
The chemical reactions are completed in two steps under 
first‐order kinetic control where activation energy 
(48.76 kJ/mol) of the first step is higher than the second 
and yields about 98% chitosan as the final product. 
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The  degree of deacetylation (% DD) is determined via 
nuclear magnetic resonance (NMR) spectroscopy, where 
it ranges from 60–100% for commercial chitosan. The 
molecular weight of commercial chitosan ranges 
between 3.8–20 KDa.

Chitosan is highly soluble in dilute acids, highly bio­
compatible, non‐toxic, biodegradable, does not provoke 
the immune system, is anti‐cancerous, and environmen­
tally friendly [101]. It biodegrades slowly to harmless 
products of oligomers and is absorbed slowly in the body. 
The biodegraded chitosan accelerates wound healing 
[102]. Owing to these features, it has found immense use 
in biomedical applications. It is used for drug delivery 
and wound care, both alone and in the form of compos­
ites with other materials such as BC, owing to its anti­
bacterial activity [103]. Also, it is heavily used in 
agriculture as a seed treatment and biopesticide against 
fungal invasion. In the wine industry, it is used as a fining 
agent and for the prevention of spoilage. Further, it is 
used as self‐healing polyurethane paint coating.

I.5.2.4  Alginate and Other Seaweed‐Derived 
Polysaccharides
Alginate is an anionic polysaccharide isolated from sea­
weed. Chemically, it is composed of mannuronic acid 
and guluronic acid units where mannuronic acid units 
form β (1 → 4) linkages while guluronic acid units are 
linked via α‐(1 → 4) linkages. Structurally, mannuronic 
acid units are distributed linearly and exhibit a flexible 
conformation while guluronic acid units display a steric 
hindrance in the vicinity of carboxyl groups. Besides alg­
inate, several other seaweed‐derived polysaccharides, 
such as carrageenan, fucoidan, laminaran, and ulvan 
have also been used for various biomedical applications 
owing to their high biocompatibility, easy availability, 
and simple isolation strategies [104]. Such polysaccha­
rides can form hydrogels through ionic interaction 
between carboxylic groups (–COOH) present on their 
surface with a cationic cross‐linking agent [105]. Besides, 
divalent cations such as Ca2+, Zn2+, Ba2+, or trivalent 
cations (e.g. Al3+) may also exist in these hydrogels. Of 

the various seaweeds, polysaccharides‐based hydrogels, 
alginate‐based hydrogels are extensively used as bioma­
terials for various biomedical applications including as 
scaffolds in tissue engineering, as carriers in drug deliv­
ery, and as model ECMs for biological studies [106]. 
Similarly, the carrageenan‐based hydrogels are exten­
sively used for the encapsulation of cells, the transforma­
tion of growth factors, and the formation of bone and 
cartilage tissues [107, 108]. The fucoidan and ulvan‐
based hydrogels are used in the culturing of cells and 
improving their activity [109, 110].

I.5.2.5  Hyaluronic Acid
Hyaluronic acid (HA), a non‐sulfated glycosamino‐gly­
can is constituted of repeated units of D‐glucuronic acid 
and D‐N‐acetylglucosamine linked together via alternat­
ing β‐1,4 and β‐1,3‐glycosidic linkages [111]. In nature, it 
is present in the form of a long straight chain of anioinc 
polysaccharide. It is extensively found in the human body 
where it is dispersed in different tissues. Generally, it has 
the ability to cross‐link by simple freeze‐thawing in the 
absence of any cross‐linker or organic solvent [112]. It 
can be potentially modified into different forms due to 
the presence of several functional groups in its chemical 
structure, such as –COOH, –OH, and N‐acetyl func­
tional group. It can form hydrogels through various 
cross‐linking methods, such as chemical, enzymatic, or 
photo‐cross‐linking which find different applications in 
the biomedical and electronics fields. It has been exten­
sively used for biomedical applications, such as cell 
motility, wound care and healing, cell signaling analysis, 
fabrication of different matrices, and angiogenesis, since 
it accounts for a major portion of ECM of skin, cartilage, 
and vitreous humors [91].

I.5.3  Proteins

Proteins are biomacromolecules comprised of one or 
more long chains of amino acids. Each amino acid is 
comprised of an α‐carbon, amino group (–NH2), carboxyl 
group (–COOH), and a variable side chain designated as 
R‐group (–R). The amino acid residues are linked 
together through a peptide bond between the –COOH 
and –NH2 groups of two consecutive amino acids 
(Figure I.3). The peptide bond has two resonance forms 
which contribute some double‐bond character and 
inhibit rotation around its own axis which lead to the 
coplanar conformation of α‐carbon. The protein synthe­
sis is carried out inside the living cells in a two‐stage pro­
cess: transcription and translation, which take place in 
the nucleus and the cytoplasm of the cell, respectively. 
During transcription, the information from the segment 
of DNA known as the gene encodes the information for 
the formation of messenger RNA (mRNA). The mRNA 
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Figure I.2  Chemistry of glycosidic bond formation in carbohydrates.


