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Preface

Increasing computing power in the last decades has given mathematical mod-
eling an ever greater impulse and made it a very important tool to solve
problems coming from industry. The European Consortium for Mathematics
in Industry (ECMI) was founded 20 years ago by mathematicians from ten
European universities to foster the use of mathematics to help European in-
dustry and commerce to pose and solve their problems. The aims of ECMI are
to (a) promote the use of mathematical models and mathematics in industry,
(b) form applied mathematicians capable of working effectively in industry
and (c) work for these goals at the European scale. Efficient problem solving
often requires the use of results in different mathematical fields, yet no single
applied mathematician may be able to cover the whole subject. By providing
a European research network, ECMI can bring together experts from a wide
geographical range.

Since 1986, ECMI has incorporated many more institutions and indus-
tries throughout Europe and it has been consolidated as a brand name for
Industrial Mathematics. Twenty years later, the biannual ECMI conference
was celebrated for the first time in Spain, at the Universidad Carlos III de
Madrid. This is a young university created in 1989. Technological studies and
departments are located at the Leganés campus where the conference was
held. Moreover, University Carlos III participates in the Leganés Scientific
and Technological Park, together with the Autonomous Region of Madrid
and the city of Leganés. They contribute to place Madrid at the forefront of
research and development in Spain.

The scientific program covered a wide variety of topics related to techno-
logical sectors (aerospace and automotive industry, materials and electronics,
information and telecommunication technologies, energy and environment,
biology, biotechnology, life sciences, imaging) and to finances and economics.
The different origin of participants helped making the conference multi-
disciplinary. Active participation of industry was intended, with reasonable
success. The present volume includes a part of the contributions to the con-
ference, selected after a refereeing process. It is a pleasure to see that six



Preface VII

plenary speakers have submitted papers for this volume. Vincenzo Capasso
in his “Alan Tayler” lecture, besides presenting his scientific work on sta-
tistical geometric measure applied to medicine and materials science, recalls
some of the challenges for Mathematics in Industry listed in the first ECMI
brochure produced by Alan Tayler and himself in 1994, relates them to the
present situation of an enlarged Europe, and tells us how these challenges re-
main important and pressing for us today. Antonio Barrero (Seville), Alfredo
Bermúdez (Santiago), Russel Caflisch (UCLA), Luis Campos (Lisbon) and
Pierre Degond (Tolouse) illustrate with their contributions the breadth of
applications and variety of techniques that are embraced by ECMI. ECMI’s
commitment to educating students in Industrial Mathematics is reflected in
the fact that many papers were given by students. The Wacker Prize, of-
fered for a Master’s Level thesis on an industrial problem was awarded to
Filippo Terragni, in line with the tradition of excellent work by previous win-
ners. Many of the minisymposia and special sessions included the activities
of ECMI Special Interest Groups. Of the 35 minisymposia organized for the
conference, many are gathered in this book, usually preceded by a short ex-
planation about their contents. A number of contributed papers complete the
volume. I hope that these proceedings will contribute both to show inter-
esting and relevant mathematical problems and methods, and to strengthen
cooperation between academia and industry, the absence of which is a major
weakness of the European Science-Technology system.

As President of ECMI and on behalf of the ECMI Council, I wish to thank
all those who have contributed to the success of the Conference. Among them
the participants, the speakers, the International Scientific Committee and the
National and Local Organizing Committees. Organizing this meeting has been
possible thanks to the efforts of many people both at the Spanish national
and local level to whom we are very grateful. In particular all the members
of the Modeling, Simulation and Industrial Mathematics Group at Universi-
dad Carlos III worked hard to run a smooth and successful conference which
would not have been possible without their help. The dedication of our univer-
sity congress bureau, Congrega, was also essential for the conference success.
Ms. Bárbara Tapiador’s help was very important to process the manuscripts
that are gathered in the present book. I am grateful to my co-editors, Gloria
Platero, Miguel Moscoso and José Manuel Vega for their invaluable help.

Lastly, the support of our sponsors is gratefully acknowledged: Minis-
terio de Educación y Ciencia (grant MTM-2005-24569-E), Comunidad de
Madrid (grant S-0505/ENE/0229), Universidad Carlos III de Madrid, Univer-
sidad Politécnica de Madrid, Consejo Superior de Investigaciones Cient́ıficas
(CSIC), Instituto de Tecnológico de Qúımica y Materiales “Álvaro Alonso
Barba”, Ayuntamiento de Leganés and Springer.

Madrid, May 2007 Luis L. Bonilla, President of ECMI
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S. Jiménez and J. Ballester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Minisymposium “Mathematical Problems in Oil Industry”
A. Fasano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

An Asphaltene Precipitation Model Using a Lattice Approach
S. Correra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Formation and Growth of Wax Deposit in the Pipelining
of Crude Oils
S. Correra, D. Merino-Garcia, A. Fasano, and L. Fusi . . . . . . . . . . . . . . . . 307

Simulations of the Spurt Phenomenon for Suspensions
of Rod-Like Molecules
C. Helzel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Minisymposium “Flow in Porous Media”
N. Svanstedt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Multiscale Stochastic Homogenization
of Convection-Diffusion Equations
N. Svanstedt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Numerical Approximation of Boundary Layers
for Rough Boundaries
N. Neuss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323



XII Contents

Upscaling in Nonlinear Thermal Diffusion Problems
in Composite Materials
C. Timofte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Effective Two-Phase Flow Models Including Trapping Effects
at the Micro Scale
C.J. van Duijn, H. Eichel, R. Helmig, and I.S. Pop . . . . . . . . . . . . . . . . . . 333

Minisymposium “Shallow Water and Simulation
of Environmental Flows”
C. Parés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

ADER DG and FV Schemes for Shallow Water Flows
C.E. Castro and E.F. Toro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Numerical Simulation of Bedload Sediment Transport
Using Finite Volume Schemes
M. Castro Dı́az, E.D. Fernández Nieto, and A. Ferreiro Ferreiro . . . . . . . 346

New Trends and Applications in Oceanographic Numerical
Modelling
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R. Pinnau and M. Seäıd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Minisymposium “Nonlinear Charge and Spin Transport
in Semiconductor Nanostructures”
G. Platero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

Electronic Transport in Nanowires at Different Length Scales
A.-P. Jauho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

SU(4) Kondo Effect in a Mesoscopic Interferometer
R. López . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Josephson Effect and Magnetic Interactions
in Double Quantum Dots
F.S. Bergeret, A. Levy Yeyati, and A. Mart́ın-Rodero . . . . . . . . . . . . . . . . . 426

Quantum Shuttle: Physics of a Numerical Challenge
A. Donarini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Microscopical Model for Hyperfine Interaction in Electronic
Transport Through Double Quantum Dots: Spin Blockade
Lifting
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T. Götz, A. Klar, and A. Unterreiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697

Three-Dimensional Elastica for Modelling Fibre Assemblies
R.B. Ramgulam and P. Potluri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703

Effective Properties of Nonwoven Textiles
from Microstructure Simulations
A. Wiegmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

Minisymposium “Approximate Algebraic Techniques
for Curves and Surfaces”
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A. Bermúdez, L.M. Garćıa Garćıa, P. Quintela, and J.L. Delgado . . . . . 790



Contents XIX

Optimal Management and Design of a Wastewater
Purification System
L.J. Alvarez-Vázquez, E. Balsa-Canto, and A. Mart́ınez . . . . . . . . . . . . . . . 795

Estimation of Fuzzy Anomalies in Water Distribution Systems
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J.C. Cortés, L. Jódar, and L. Villafuerte . . . . . . . . . . . . . . . . . . . . . . . . . . . 944

Cubic-Matrix Splines and Second-Order Matrix Models
M.M. Tung, L. Soler, E. Defez, and A. Hervás . . . . . . . . . . . . . . . . . . . . . . 949

Part IV Color Plates

Color Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957

Part V Contributor Index

List of Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985



Part I

Plenary Lectures



On the Mean Geometric Densities of Random
Closed Sets, and Their Estimation:
Application to the Estimation of the Mean
Density of Inhomogeneous Fibre Processes

Vincenzo Capasso and Alessandra Micheletti
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Dedicated to Alan Tayler

Preface [VC]

It has been a great honour for me to deliver the “Alan Tayler Lecture” in
this ECMI Conference, to honour one of the leading founders and Presidents
of ECMI. I have collaborated with Alan for many years, especially during
my term as Chairman of the Educational Committee, and later during the
first ECMI-HCM Project. While he was already very ill, he found the way to
participate (even though only for a couple of days) in a workshop in Milan,
opening ECMI to the Italian academic and industrial community, and highly
supported the birth of MIRIAM (the Milan Research Centre for Industrial
and Applied Mathematics).

I had a rewarding experience around the early 1990s producing, in a strict
collaboration with Alan, the first ECMI Brochure [CT94] (see the ECMI web
site) in order to advertise the specific role of ECMI within academia and
industry in Europe.

It was clear to me that he had a vision of how to establish in Europe a co-
operative action by the most active groups in the applications of mathematics
to real world problems; I wish to remind the key issues stated in the brochure,
since I may claim that these are still update.

“Realising the need of interaction between universities and research groups
in industry, the European Consortium for Mathematics in Industry (ECMI)
was founded in 1986 by mathematicians from ten European universities.

· · ·
Mathematics, as the language of the sciences, has always played an

important role in technology, and now is applied also to a variety of prob-
lems in commerce and the environment.
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European industry is increasingly becoming dependent on high technology
and the need for mathematical expertise in both research and development
can only grow.

· · ·
These new demands on mathematics have stimulated academic interest

in Industrial Mathematics and many mathematical groups world-wide are
committed to interaction with industry as part of their research activities.

In 1986 ten of these groups in Europe founded ECMI with the intention
of offering their collective knowledge and expertise to European Industry.

The experience of ECMI members is that similar technical problems are
encountered by different companies in different countries. It is also true that
the same mathematical expertise may often be used in differing industrial
applications.

If European industry is to compete in world markets it should take ad-
vantage of the competitive edge which may be gained from using European
mathematical expertise.

No single European country is likely to have sufficient expertise
of mathematical knowledge whereas ECMI can provide a compre-
hensive coverage of mathematical skills and their diverse applica-
tions.” [CT94]

We are now facing the challenge of a larger European Union.
Alan had anticipated this by promoting an ECMI “patronage”, financially

supported by the EU, of those countries usually called “Central Europe”, such
as Čekia, Hungary, Poland, Romania, Slovakia.

I am sure that he would have liked to participate in the process of complete
integration of all the new entries in the ECMI system.

Going back to the ECMI Brochure, a major scope of ECMI was identified
as follows.

“C. TO OPERATE ON A EUROPEAN SCALE
Academic resources in Mathematics for Industry are also scarce and dis-

tributed across Europe; industrial needs are widely spread. Exchange and
interactive programmes are necessary in training, research and industrial col-
laboration if there is to be an effective transfer of knowledge and skills. The
EC is encouraging ECMI to involve relevant groups in Eastern Europe as
Associate members.”

As part of this encouragement, the EC provided funds to ECMI for organ-
ising a series of workshops in those countries, in collaboration with recognised
colleagues at the local level. Thus anticipating the enlargement of the political
Europe.

In my opinion, having the EC approved a significant enlargement of Europe
towards East, listing soon 27 member states, ECMI, as an enlarged Consor-
tium, should find new ways to exploit the best of the scientific resources of
the old and the new member states together, to actively participate in the
building up of a common competitive Europe. As far as scientific competence
is concerned, there are excellencies in all regions of Europe, some of them well
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identifiable also in the new member states; a genuine will to sustain compe-
tence of Europe should go through ways to exploit all of them, with the usual
ECMI cooperative attitude.

Another anticipation envisaged by Alan has been the shift of meaning of
the key word “Industry” in the ECMI system.

“This collaboration may also be extended to developing math-
ematical models for the environment, earth sciences, biology and
finance.” [CT94]

We have already achieved the inclusion of what we call Economathemat-
ics, and today we are facing a further shift of attention towards Medicine
and Biotechnology.

All over the world leading experts of Mathematics for/in Industry,
are participating actively in the development of Mathematics for/in Medi-
cine, thus undertaking the further challenge of contributing to the develop-
ment of innovative methods for diagnosis and treatment of relevant diseases,
from cancer to infectious diseases.

My own presentation here is aimed to showing an example of how mathe-
matics, originally developed for mining industry or more in general for ma-
terial science and chemical industry, is now moving to deal with problems of
interest in medicine.

At first this research was motivated by polymer industry in Europe, and
constitutes one of the most important success stories of collaborative research
within ECMI, that was supported within the first HCM Project coordinated
by Alan Tayler. As a documentation of the cooperation between different
research teams in Europe within the ECMI Special Interest Group on “Poly-
mers”, the volume “Mathematical Modelling for Polymer Processing. Poly-
merization, Crystallization, Manufacturing”, edited by myself, was published
as Volume 2 in the ECMI Series on Mathematics in Industry by
Springer-Verlag, Heidelberg 2002, showing an additional success story
of ECMI: the start of the Springer Series on Mathematics in Industry.

1 Introduction

Many processes of biomedical or material science interest may be modelled as
birth-and-growth processes (germ–grain models), which are composed of two
processes, birth (nucleation, branching, etc.) and subsequent growth of spatial
structures (cells, vessel networks, etc.), which, in general, are both stochastic
in time and space. These structures induce a random division of the relevant
spatial region, known as random tessellation (see Fig. 1). A quantitative de-
scription of the spatial structure of a tessellation can be given, in terms of the
mean densities of interfaces (n-facets).

In applications to material science a main industrial interest is controlling
the quality of the relevant final product in terms of its mechanical properties;
as shown, e.g. in [FC98], these are strictly related to the final morphology
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Fig. 1. The spatial tessellation generated by vessels in a dragonfly wing

Fig. 2. Vascularization of an allantoid [Credit: Dejana et al. 2005]

of the solidified material, so that quality control in this case means optimal
control of the final morphology.

In medicine, an important area of application of birth-and-growth processes
and other models of stochastic geometry is tumour-induced angiogenesis. It
can be modelled as a fibre process of Hausdorff dimension 1 in the relevant
2D or 3D space.

Tumour-induced angiogenesis is believed to occur when normal tissue vas-
culature is no longer able to support growth of an avascular tumour. At this
stage the tumour cells, lacking nutrients and oxygen, become hypoxic. This
is assumed to trigger cellular release of tumour angiogenic factors (TAFs)
which start to diffuse into the surrounding tissue and approach endothelial
cells (ECs) of nearby blood vessels. ECs subsequently respond to the TAF
concentration gradients by forming sprouts, dividing, and migrating towards
the tumour. A summary of these mechanisms can be found in the recent paper
by Carmeliet [JK01] (see also Figs. 2–4 where examples of real or simulated
vascular networks are depicted).

Initially, the sprouts arising from a parent vessel grow essentially parallel
to each other. It is observed that once the finger-like capillary sprouts have
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Fig. 3. Left: Angiogenesis on a rat cornea [Credit: Dejana et al. 2005]. The white spot
is a pellet implanted in the cornea containing an angiogenetic substance, emulating
the effect of a tumour. Right: A simulation of an angiogenesis due to a localized
tumour mass (black region on the right) (from [CA99])

Fig. 4. Response of a vascular network to an antiangiogenic treatment (from [JK01])

reached a certain distance from the parent vessel, they tend to incline towards
each other, leading to fusions called anastomoses. Such fusions lead to a net-
work of vessels. On the other hand the sprout branching dramatically increases
while approaching the tumour mass, eventually resulting in vascularization.
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The coupling of the branching and growth process to the underlying chem-
ical gradients is limited by the local density of the existing capillary network,
thus leading to a mathematical strong coupling of this density and the kinetic
parameters of the branching and growth process.

The study of angiogenesis has such potential for providing new therapies
that it has received enthusiastic interest from the pharmaceutical and biotech-
nology industries. Indeed, dozens of companies are now pursuing angiogenesis-
related therapies, and approximately 20 compounds that either induce or
block vessel formation are being tested in humans. Although such drugs can
potentially treat a broad range of disorders, many of the compounds now un-
der investigation inhibit angiogenesis and target cancer. Intriguingly, animal
tests show that inhibitors of vessel growth can boost the effectiveness of tra-
ditional cancer treatments (chemotherapy and radiation). Preliminary studies
also hint that the agents might one day be delivered as a preventive measure to
block malignancies from arising in the first place in people at risk for cancer.

In developing mathematical models of angiogenesis, the hope is to be able
to provide a deeper insight into the underlying mechanisms which cause the
process. It is therefore essential that predictive mathematical models are de-
veloped, capable of producing precise quantitative morphological features of
developing blood vessels. Such models might be used for predicting the evolu-
tion of tumours (prognosis), and identifying optimal control strategies (med-
ical treatment).

Unfortunately, a satisfactory modelling of angiogenesis requires a theory of
stochastic fibre processes, evolving in time, and strongly coupled with underly-
ing fields. In this case the theory of birth-and-growth processes (or branching-
and-growth processes), developed for volume growth, cannot be applied to
analyse realistic models, due to intrinsic mathematical difficulties, coming
from the dependence of the kinetic parameters from the geometric spatial
densities of the existing tumour, or capillary network itself [CM05,McDou06].

All these aspects induce stochastic time and space heterogeneities, thus
motivating a more general analysis of the stochastic geometry of the process.
The formulation of an exhaustive evolution model which relates all the relevant
features of a real phenomenon dealing with different scales, and a stochastic
domain decomposition at different Hausdorff dimensions, is a problem of high
complexity, both analytical and computational.

Anyway statistical methods for the estimation of geometric densities may
offer significant tools for diagnosis and dose/response analysis in medical treat-
ments.

In the modelling of the above-mentioned systems it is of great importance
to handle random closed sets of different (even though integer) Hausdorff
dimensions. Following a standard approach in geometric measure theory, such
sets may be described in terms of suitable measures. For a random closed set of
lower dimension with respect to the environment space, the relevant measures
induced by its realizations are singular with respect to the Lebesgue measure,
and so their usual Radon–Nikodym derivatives are zero almost everywhere.
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In Sect. 2 an original approach is reported, recently proposed by the re-
search group of the authors, who have suggested to cope with these difficulties
by introducing generalized densities (distributions) á la Dirac–Schwartz, for
both the deterministic case and the stochastic case. In this last one, mean
generalized densities are of interest.

These instruments may then help to formulate stochastic models (that is
solving direct problems) for the over-mentioned applications; they also suggest
methods for the solution of the related inverse problems, including methods
of statistical analysis for the estimation of geometric densities of a stochastic
fibre process that characterize the morphology of a real system. We apply
such methods to real data, taken from the literature, and to simulated data,
obtained by existing computational models of tumour-induced angiogenesis.

These methods can be used for validating computational models, and for
monitoring the efficacy of possible medical treatment.

1.1 Nomenclature

We remind that a random closed set (RACS) Ξ in Rd is a measurable map

Ξ : (Ω,F ,P) −→ (F, σF),

where F denotes the class of the closed subsets in Rd, and σF is the σ−algebra
generated by the so-called hit-or-miss topology (see [Mat75]).

The theory of Choquet–Matheron shows that it is possible to assign a
unique probability law associated with a RACS Ξ in Rd on the measurable
space (F, σF) by assigning its hitting functional TΞ.

This is defined as

TΞ : K ∈ K �−→ P (Ξ ∩K �= ∅),

where K denotes the family of compact sets in Rd.

Actually we may consider, equivalently, the restriction of TΞ to the family
of closed balls {Bε(x);x ∈ Rd, ε ∈ R+ − {0}}.

In dependence of its regularity, a random closed set Θn with Hausdorff
dimension n (i.e. dimHΘn(ω) = n for a.e. ω ∈ Ω), may induce a random
Radon measure

µΘn
(·) := Hn(Θn ∩ · )

on Rd (Hn is the n-dimensional Hausdorff measure), and, as a consequence,
an expected measure

E[µΘn
](·) := E[Hn(Θn ∩ · )]

(for a discussion about measurability of Hn(Θn) we refer to [BM97,Z82]).
In several real applications, it is of interest to study the density (said

mean density) of the measure E[µΘn
] [BR04], and, in the dynamical case, its

evolution in time [Mol92,Mol94]. Here we present a synthesis of a theory of
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random distributions as generalized densities of random measures, and mean
geometric densities as expected values of random generalized densities, as
proposed in [CV06c]. In particular we introduce a Delta formalism, á la Dirac–
Schwartz, for the description of random measures associated with random
closed sets of lower dimensions, such that the well known usual Dirac delta at
a point follows as a particular case (see, for instance, [Jones82,KF70,Vlad79]).

In dealing with mean densities, a concept of absolutely continuous random
closed set arises in a natural way in terms of the expected measure; indeed, an
interesting property of a random set in Rd is whether the expected measure
induced by the random set is absolutely continuous or not with respect to
the d-dimensional Lebesgue measure νd. Thus, it is of interest to distinguish
between random closed sets which induce an absolutely continuous expected
measure, and random closed sets which induce a singular one. To this aim we
introduce definitions of discrete, continuous, and absolutely continuous ran-
dom closed set, coherently with the classical 0-dimensional case, in order to
propose an extension of the standard definition of discrete, continuous, and ab-
solutely continuous random variable, respectively (see also [CV06a,CV06b]).

2 Generalized Densities

In the sequel we will refer to a class of sufficiently regular random closed sets
in the Euclidean space Rd, of integer dimension n.

Definition 1 (n-regular set). Given an integer n ∈ [0, d], we say that a
closed subset S of Rd is n-regular, if it satisfies the following conditions:

(i) Hn(S ∩BR(0)) <∞ for any R > 0

(ii) lim
r→0

Hn(S ∩Br(x))
bnrn

= 1 for Hn-a.e. x ∈ S

Here bn denotes the volume of the unit ball in Rn.

Remark 1. Note that condition (ii) is related to a characterization of the Hn-
rectifiability of the set A ([Fal85], p. 256, 267, [AFP00], p. 83).

We may observe that if An is an n-regular closed set in Rd, we have

lim
r→0

Hn(An ∩Br(x))
bnrn

=
{

1 Hn-a.e. x ∈ An,
0 ∀x �∈ An;

as a consequence (by assuming 0 · ∞ = 0), for 0 ≤ n < d we have

lim
r→0

Hn(An ∩Br(x))
bdrd

= lim
r→0

Hn(An ∩Br(x))
bnrn

bnr
n

bdrd

=
{
∞ Hn-a.e. x ∈ An,
0 ∀x �∈ An.



Estimation of Mean Geometric Densities of RACS’s 11

It is well known that every positive Radon measure µ on Rd can be
decomposed as

µ = µ� + µPerp,

where µ� and µPerp are the absolutely continuous, and the singular parts of
µ, respectively, with respect to νd, the usual Lebesgue measure on Rd.

It then follows that µ� admits a (nontrivial) Radon–Nikodym derivative
with respect to νd, which is known as its density; while the Radon–Nikodym
derivative of µPerp, with respect to νd, would be zero νd− a.e.

Anyhow in analogy with the usual Dirac delta function δx0(x) associated
with a point x0 ∈ Rd (a 0-regular closed set), a density can be introduced also
for µPerp, in a generalized sense, according to Definition 2 [KF70].

Definition 2 (Generalized density). We call δµPerp , the generalized density
(or, briefly, the density P) of µPerp, the quantity

δµPerp(x) := lim
r→0

µPerp(Br(x))
bdrd

,

finite or not.

Clearly, if An is an n-regular closed set in Rd with n < d, then the measure

µAn
(·) := Hn(An ∩ ·)

is a singular measure with respect to νd. Based on Definition 1, the quantity

δAn
(x) := lim

r→0

Hn(An ∩Br(x))
bdrd

,

(finite or not), can now be introduced as the (generalized) density associated
with An.

With an abuse of notations, we may introduce the linear functional δAn

associated with the measure µAn
, as follows:

(δAn
, f) :=

∫
Rd

f(x)µAn
(dx),

for any f ∈ Cc(Rd,R), having denoted by Cc(Rd,R) the space of all contin-
uous functions from Rd to R with compact support. In accordance with the
usual representation of distributions in the theory of generalized functions, we
formally write ∫

Rd

f(x)δAn
(x) dx := (δAn

, f).

Define the function

δ
(r)
An

(x) :=
Hn(An ∩Br(x))

bdrd
,

and correspondingly the associated measure
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µ
(r)
An

(B) :=
∫
B

δ
(r)
An

(x) dx, B ∈ BRd .

As above, we may introduce the linear functional δ(r)
An

associated with the

measure µ(r)
An

, as follows:(
δ
(r)
An
, f
)

:=
∫

Rd

f(x)µ(r)
An

(dx),

It can be proven (see [CV06c]) that the sequence of measures µ(r)
An

weakly*
converges to the measure µAn

; in other words, the sequence of linear function-
als δ(r)

An
weakly* converges to the linear functional δAn

, i.e. (δ(r)
An
, f) → (δAn

, f)
for any f ∈ Cc(Rd,R).

Consider now random closed sets.

Definition 3 (n-regular random set). Given an integer n, with 0 ≤ n ≤ d,
we say that a random closed set Θn in Rd is n-regular, if it satisfies the
following conditions:

(i) For almost all ω ∈ Ω, Θn(ω) is an n-regular set in Rd

(ii) E[Hn(Θn ∩BR(0))] <∞ for any R > 0

If Θn is a random closed set in Rd, the measure

µΘn
(·) := Hn(Θn ∩ ·)

is a random measure, and consequently δΘn
is a random linear functional (i.e.

(δΘn
, f) is a real random variable for any test function f).

By extending the definition of expected value of a random operator à la
Pettis (or Gelfand–Pettis) [AG80,Bosq00], we may define the expected linear
functional E[δΘn

] associated with δΘn
as follows:

(E[δΘn
], f) := E[(δΘn

, f)] (1)

and the mean generalized density E[δΘn
](x) of E[µΘn

] by the formal integral
representation: ∫

A

E[δΘn
](x) dx := E[Hn(Θn ∩A)],

with

E[δΘn
](x) := lim

r→0

E[Hn(Θn ∩Br(x))]
bdrd

.

It can be shown [CV06c] that an equivalent definition of (1) can be given in
terms of the expected measure E[µΘn

] by

(E[δΘn
], f) :=

∫
Rd

f(x)E[µΘn
](dx),

for any f such that the above integral makes sense.
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By using the integral representation of (δΘn
, f) and (E[δΘn

], f), (1)
becomes ∫

Rd

f(x)E[δΘn
](x) dx = E

[∫
Rd

f(x)δΘn
(x) dx

]
;

so that, formally, we may exchange integral and expectation.

Remark 2. When n = d, integral and expectation can be really exchanged
by Fubini’s theorem. Since in this case δΘd

(x) = 1Θd
(x), νd-a.s., it follows

that E[δΘd
](x) = P(x ∈ Θd). In particular, in material science, the density

VV (x) := P(x ∈ Θd) is known as the (degree of) crystallinity.
If n = 0 and Θ0 = X0 is an absolutely continuous random point with p.d.f.

pX0 , then E[H0(X0∩ · )] = P(X0 ∈ ·) is absolutely continuous, and its density
E[δX0 ](x) is just the probability density function pX0(x).

Thus, for any lower dimensional random closed set Θn in Rd, while it
is clear that µΘn(ω) is a singular measure, when we consider the expected
measure E[µΘn

], it may happen that it is absolutely continuous with respect
to νd, thus having a classical Radon–Nikodym derivative, so that E[δΘn

](x) is
a classical real-valued integrable function on Rd (see [CV06c], and [CV06a]).
It is then of interest to say whether or not a classical mean density can be
introduced for sets of lower Hausdorff dimensions, with respect to the usual
Lebesgue measure on Rd. In order to respond to this further requirement,
in [CV06a] we have proposed a concept of absolute continuity for random
closed sets.

To avoid pathologies, as discussed in [ACaV06] (see also [CV06d]), we
introduce now a class of random sets, which, in particular, include all random
sets we are interested in the sequel.

Definition 4 (R class). We say that a random closed set Θ in Rd belongs
to the class R if

dimH(PartialΘ) < d and P(HdimH(PartialΘ)(PartialΘ) > 0) = 1.

Definition 5 (Absolute continuity). We say that a random closed set Θ ∈
R is (strongly) absolutely continuous if

E[µPartialΘ] 
 νd (2)

on BRd .

Remark 3. Note that, if Θ ∈ R with dimH(Θ) = d is sufficiently regular so
that dimH(PartialΘ) = d− 1, then it is absolutely continuous if

E[Hd−1(PartialΘ ∩ · )] 
 νd(·).

Remark 4. In the particular case thatΘ = X is a random variable, Definition 5
coincides with the usual definition of absolute continuity of a random variable.
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In fact, dimHX = 0, PartialX = X, and E[H0(X)] = P(X ∈ Rd) = 1, so
X ∈ R and then Condition (2) is equivalent to

E[H0(X ∩ · )] = P(X ∈ · ) 
 νd.

To conclude this section, we may then claim that, if Θn, with 0 < n < d,
is an absolutely continuous random closed set, then E[µΘn

] 
 νd, so that
its local mean density E[δΘn

](x) is a classical real-valued integrable function
on Rd.

3 Approximation of Mean Densities

In many real applications, it is of interest the estimation of the local mean
density E[δΘn

] of an absolutely continuous lower dimensional random closed
set such as a fibre process of dimension n = 1 in a space of dimension d > 1
(see, e.g. [BR04] and [SKM95]).

For facing the problem of the zero ν2-measure for points or lines in R2 it
is natural to make use of a 2-D box approximation of points or lines. As a
matter of fact, a computer graphic representation of them is anyway provided
in terms of pixels, which can only offer a 2-D box approximation of points in
R2. This is the motivation of this and the following sections, which tend to
suggest estimators for local mean densities of absolutely continuous random
closed sets of lower dimensions in a given d-dimensional space [ACaV06].

Given a random closed set Θn with Hausdorff dimension n, we consider
the enlarged set Θn⊕r

, which is now of dimension d, and hence of nontrivial
measure νd. We observe that P(x ∈ Θn⊕r

) = TΘn
(Br(x)).

Proposition 1. [ACaV06] Let Θn be a random closed set with Hausdorff
dimension n, and A ∈ BRd such that P(Hn(Θn ∩ PartialA) > 0) = 0. If

lim
r→0

E[νd(Θn⊕r
∩A)]

bd−nrd−n
= E[Hn(Θn ∩A)], (3)

then

E[Hn(Θn ∩A)] = lim
r→0

∫
A

TΘn
(Br(x))

bd−nrd−n
dx.

Sufficient conditions for (3) have been given in [ACaV06].
As a consequence of Proposition 1, if we denote by µ⊕r the measure on

BRd defined by

µ⊕r(A) :=
∫
A

TΘn
(Br(x))

bd−nrd−n
dx,

then it follows that µ⊕r weakly* converges to E[µΘn
].

For every fixed r > 0, the measure µ⊕r is absolutely continuous with
respect to the d-dimensional Lebesgue measure with density
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δ⊕r
n (x) :=

TΘn
(Br(x))

bd−nrd−n
.

Such a function defines a linear functional, say δ⊕r
n , associated with the mea-

sure µ⊕r as follows

(δ⊕r
n , f) :=

∫
Rd

f(x)µ⊕r(dx).

Note that many kinds of random closed sets satisfy the proposition above,
like fibre processes, line and segment processes, Boolean models, etc. (see
[ACaV06]). As a consequence, estimating the probability that the random set
Θn intersects the ball Br(x) may suggest (global) estimators of E[µΘn

], and
possibly (local) estimators of the mean density E[δΘn

] (see, e.g. [BR04]).
If Θn is absolutely continuous, then there exists an integrable function λΘn

(the Radon–Nikodym derivative) such that, for all A ∈ BRd ,

E[Hn(Θn ∩A)] =
∫
A

λΘn
(x) dx.

So, in this case, we have that

lim
r→0

∫
A

TΘn
(Br(x))

bd−nrd−n
dx =

∫
A

λΘn
(x) dx. (4)

If Θn is a stationary random closed set, then δ⊕r
n (x) is independent of

x and the expected measure E[µΘn
] is motion invariant, i.e. it is absolutely

continuous with density λΘn
(x) = L ∈ R+ for νd-a.e. x ∈ Rd. It follows that

lim
r→0

∫
A

TΘn
(Br(x))

bd−nrd−n
dx = lim

r→0

TΘn
(Br(0))

bd−nrd−n
νd(A),

and ∫
A

λ(x) dx = Lνd(A);

and so, by (4),

lim
r→0

TΘn
(Br(0))

bd−nrd−n
= L.

Remark 5. When it is possible to exchange limit and integral in (4), by Propo-
sition 1 we may claim that

lim
r→0

TΘn
(Br(x))

bd−nrd−n
= λΘn

(x) νd-a.e. x ∈ Rd.

In the particular case n = d, we know that the measure E[µΘd
] is always

absolutely continuous with density λΘd
(x) = P(x ∈ Θd). We may notice that

δ⊕r
d = TΘn

(Br(x)) and by Monotone Convergence Theorem we can exchange
limit and integral, and so we have, as expected,
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lim
r→0

TΘd
(Br(x)) = P(x ∈ Θd) = λΘd

(x).

Further, for n = 0, if Θ0 = X is a random point in Rd, we have E[H0(X∩ ·)] =
P(X ∈ ·). So, if X is absolutely continuous with probability density function
f , we know that E[µX ] = PX is absolutely continuous with density f . In
this case it can be shown that (3) holds, so that the sequence {δ⊕r(x)} con-
verges to f(x), as expected, which leads to the usual histogram estimation of
f(x) [ACaV06].

Example 1. As an additional example of applicability of the results above, let
us consider the case in which Θn is given by a random union of absolutely
continuous random closed sets of dimension n < d:

Θn =
Φ⋃

i=1

Ei,

where Φ is a nonnegative discrete random variable with E[Φ] < ∞, and the
Ei’s are IID as E and independent of Φ. Then it follows that [ACaV06]

lim
r→0

TΘn
(Br(x))

bd−nrd−n
= E[Φ] lim

r→0

TE(Br(x))
bd−nrd−n

,

provided that at least one of the two limits exists.
As a consequence, when it is possible to exchange limit and integral in (4),

and so in particular when E is a stationary random closed set (which implies
Θn stationary as well), we have

λΘn
(x) = E[Φ] lim

r→0

TE(Br(x))
bd−nrd−n

= E[Φ]λE(x),

where λΘn
and λE are the Radon–Nikodym derivatives of µΘn

and µE , re-
spectively. The above model may be used as a preliminary one for angiogene-
sis [CM05], but also for the earthworm burrow system in a soil [BR04, p.73].

4 Statistical Methods for Fibre Systems

We will here consider random fibre systems generated by Boolean models
having a fibre as primary grain, that is a RACS Γ such that

Γ = ∪i∈NΓi ⊕ xi,

where

– {xi}i∈N is a spatial Poisson point process, possibly inhomogeneous, with
intensity α(x), x ∈ R2
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– {Γi}i∈N is a family of i.i.d. random fibres (i.e. random, a.s. bounded,
1-regular sets), passing a.s. through the origin

The resulting Boolean model is thus in general nonstationary and non-
isotropic. The source of nonstationarity comes essentially from the nonsta-
tionarity of the germ process, i.e. from the location of the fibres, and not from
intrinsic geometric irregularities of the fibres themselves. In fact the grains are
assumed geometrically regular (1-regular) and with “good” statistical proper-
ties (i.i.d.). The main source of anisotropy instead comes from the distribution
of fibres (grains) orientation, which may be nonuniform.

Note now that

TΘn
(Br(x)) = P(x ∈ Θn⊕r

) = P(Θn ∩Br(x) �= ∅)

thus we may rewrite Equality (4) in the following way∫
A

λn(x)dx = lim
r→0

∫
A

P(Θn ∩Br(x) �= ∅)
bd−nrd−n

dx (5)

= lim
r→0

∫
A

TΘn
(Br(x))

bd−nrd−n
dx (6)

= lim
r→0

∫
A

P(x ∈ Θn⊕r
)

bd−nrd−n
dx. (7)

Equalities (5)–(7) provide a way to introduce estimators of λn(x) when
Θn is a random fibre, or fibre system Γ , provided that the limit and the
integrals in the right-hand terms of (5)–(7) can be exchanged, by estimating
the quantities

TΓ (Br(x))
bd−1rd−1

=
P(x ∈ Γ⊕r)
bd−1rd−1

=
P(Γ ∩Br(y) �= ∅)

bd−1rd−1
.

We will call them histogram-like estimators, since the “enlargement” Γ⊕r of
the set Γ via the Minkowski addition of a d-dimensional ball, which approx-
imates the fibre with a d-dimensional set, imitates the procedure used when
we estimate the p.d.f. of a real random variable from an i.i.d. sample us-
ing moving histograms (see [Hard91,Pest98] for details), where we “enlarge”
the Dirac-delta’s measures concentrated on the sample points, approximating
them with classical and sufficiently regular functions.

In the following we will provide two estimators for the mean geometric
density of length, also called intensity, of the random fibre system Γ . The
intensity can be used to characterize the mean geometric properties of the fibre
system. Accordingly with the definitions introduced in the previous sections,
the intensity of Γ is defined by

λ(x) : = E[δΓ ](x) = lim
r→0

E(H1(Γ ∩Br(x)))
rdbd

.
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4.1 Basic Assumptions for the Estimation Procedure

Suppose to have one or more images of the random fibre system Γ under
study and that the window W ⊆ Rd where Γ is observed can be divided in a
partition of subwindows {Ak}k=1,...,K such that:

A1 Aj ∩Ak = ∅, ∀j �= k

A2
⋃K

k=1 Ak = W
A3 in each window Ak limit and integral in (4) can be exchanged when

Θn = Γ . This is the case for example if in Ak the fibre system is
(locally) stationary

A4 the intensity λ(x) is sufficiently “smooth” to be locally well approximated
by piecewise constant functions, assuming different constant values in each
window Ak

We will now introduce a (nonstationary!) example where the previous assump-
tions are satisfied. The example will be used in the following as a case study
for the properties of our estimators.

4.2 An Example of Inhomogeneous Poisson Segment Process

Let d = 2 and consider the Boolean model Γ formed by:

– Germs: A spatial nonhomogeneous Poisson point process {xi}i∈N, xi ∈ R2

having intensity α(x) = α(x1, x2) = cx2
1, and c is a constant.

– Grains: A family {Si}i∈N of (deterministic) closed sets all distributed like
the segment S = [0, l]× {0} of fixed length l.

The resulting Boolean model is

Γ =
⋃
i∈N

Si ⊕ xi

(see Fig. 5 where a realization is depicted). Note that since the germ intensity
α(x) is a function of class C∞, Assumption A4 is trivially satisfied.

Let us assume that the following equality holds

λ(x) : = lim
r→0

E
(
ν1(Γ ∩Br(x))

)
2r

= lim
r→0

E
(
ν1(Γ ∩Qr(x))

)
2r

, 0 (8)

where Qr(x) is a square centred at x with side 2r. This assumption is reason-
able, since both cubes and spheres form a system of generators of the Borel
σ-algebra in Rd. Then Assumption A3 is satisfied thanks to the following.

Proposition 2. Let Γ be the random segment system described above, λ(x) be
the mean intensity of length of the system, and suppose that Assumption (8)
is satisfied, i.e.

λ(x) = lim
r→0

E
(
ν1(Γ ∩Qr(x))

)
2r

.
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Fig. 5. A realization of the Boolean model in the example. The point process {xi}
of germs is formed by the left-hand extremes of the segments

Then, the quantity

λ̄(x) : = lim
r→0

P(Γ ∩Qr(x) �= ∅)
2r

. (9)

exists and is finite and we have, a.s.

λ̄(x) = λ(x)

for ν2− almost all x ∈ R2.

For the proof of this proposition see [CM06]. Let us remark that, in the
proof, the particular functional form of λ̄(x) is not relevant.

5 Estimators of the Intensity

In the assumptions stated in Sect. 4.1, for all x ∈ Ak, let us denote by

λk : = lim
r→0

E(ν1(Γ ∩Br(x)))
bdrd

= lim
r→0

P(x ∈ Γ⊕r ∩Ak)
2r

= lim
r→0

TΓ (Br(x))
2r
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the (constant) intensity of the random fibre system in the subwindow Ak.
We have explicited all the previous equalities since we will obtain different
estimators, based on the estimate of the quantities:

1. P(x ∈ Γ⊕r ∩Ak)
2. TΓ (Br(x)),

respectively.
Let us build first an estimator based on the estimate of P(x ∈ Γ⊕r ∩Ak).

Let us overlap to Ak a grid of points z1, . . . , zp ∈ Ak and build the set Γ⊕r∩Ak.
Then a first estimator of λk is

λ̂1
k,r,p : =

1
2rp

p∑
i=1

1zi∈Γ⊕r∩Ak
, (10)

where 1zi∈Γ⊕r∩Ak
are i.i.d. Bernoulli random variables assuming value one

with probability P(x ∈ Γ⊕r ∩Ak) which is independent of x ∈ Ak in our
assumptions. Since estimator (10) is the arithmetic mean of these variables,
by applying the strong law of large numbers (SLLN) and Slutsky Theorem
(see, e.g. [Pest98]) we obtain

E(λ̂1
k,r,p) =

P(x ∈ Γ⊕r ∩Ak)
2r

−→ λk, for r → 0 (11)

Var(λ̂1
k,r,p) =

(P(x ∈ Γ⊕r ∩Ak))(1− P(x ∈ Γ⊕r ∩Ak))
4r2p

−→0, (12)

for r → 0, p→∞, rp→∞

that is the asymptotic unbiasedness and weak consistency of the estimator,
when r → 0, p→∞ with rp→∞.

Note that this estimator is not much affected by edge effects, if the “en-
largement” of Γ is performed correctly. If the fibres go across the whole
window or have extremes internal to the window but far from the window
border, edge effects are not present. For fibres having extremes close to the
window border, edge effects can be reduced by reducing also the width r of
the enlargement (see Fig. 6).

Let us now introduce an estimator based on the estimate of TΓ (Br(x)), x ∈
Ak. Let us again consider a grid of points z1, . . . , zp overlapped on the window
Ak, such that Br(zi) ⊆ Ak for all i = 1, . . . , p (this assumption has again the
aim of reducing the edge effects). We then define

λ̂2
k,r,p : =

1
2rp

p∑
i=1

1Γ∩Br(zi) �=∅. (13)

where again 1Γ∩Br(zi) �=∅ is a Bernoulli random variable assuming value 1 with
probability
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Fig. 6. Examples of edge effects: If the extreme of the fibre is internal and too close
to the window border, a piece of enlargement is not considered in the estimator λ̂1

k,r

P(Γ ∩Br(zi) �= ∅) = TΓ (Br(zi)) = TΓ (Br(x)),

∀x ∈ Ak. Thus again by using the SLLN and Slutsky Theorem we obtain the
asymptotic unbiasedness and weak consistency of this estimator, in fact, for
any x ∈ Ak,

E(λ̂2
k,r,p) =

TΓ (Br(x))
2r

=
P(x ∈ Γ⊕r ∩Ak)

2r
−→ λk, for r → 0 (14)

Var(λ̂2
k,r,p) =

(TΓ (Br(x)))(1− TΓ (Br(x)))
4r2p

(15)

=
(P(x ∈ Γ⊕r ∩Ak))(1− P(x ∈ Γ⊕r ∩Ak))

4r2p
→0, (16)

for r → 0, p→∞, rp→∞.

6 Application of the Estimators to the Simulated
Inhomogeneous Poisson Segment Process

In this section we will apply the estimators λ̂1
k,r,p and λ̂2

k,r,p introduced in
Sect. 5 to the working example introduced in Sect. 4.2 and we will also derive
the rate of convergence to 0 of the variance, in order to assess a method for
choosing an “optimal bandwidth” of enlargement r, depending on p. Since the
true intensity of this process is known, we use first this example to test empir-
ically the properties of our estimators. In Sect. 7 we will apply the estimators
to real or simulated processes where the true intensity is unknown.
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Fig. 7. The regions where a germ must appear in order that a segment hits Br(x)

Assume that r < l, where l is the length of the segments forming the
Boolean model, consider the quantities which have been estimated in Sect. 5
in the specific case of our example, where x = (x1, x2) ∈ R2 and refer to Fig. 7
for the definition of the regions Q and D.

P(x∈Γ⊕r) = P(Br(x) ∩ Γ �= ∅)
= 1− P(Br(x) ∩ Γ = ∅)

= 1− P(no germs fall in Q ∪D)

= 1− exp
[
−
∫
Q

α(x)dx−
∫
D

α(x)dx
]

= 1−exp

[
−2r
∫ x1

x1−l

cx̄2
1dx̄1−

∫ x1+r

x1

∫ x2+
√

r2−(x̄1−x1)2

x2−
√

r2−(x̄1−x1)2
cx̄2

1dx̄1dx̄2

]

= 1− exp
[
− 2

3
rc
(
x3

1 − (x1 − l)3
)

(17)

−
∫ x1+r

x1

2cx̄2
1

√
r2 − (x̄1 − x1)2dx̄1

]
. (18)

Now by computing a Taylor series expansion of (17)–(18) in a right neighbor-
hood of r = 0, we obtain

P(x ∈ Γ⊕r) = 2rλ(x)− 2r2(λ(x))2 + o(r2).

By substituting this expansion in the expressions of the expected value and
variance of the estimators λ̂1

k,r,p and λ̂2
k,r,p, which are the same, given by

(11), (12), and (14), (16), we get, for all x ∈ Ak and i = 1, 2
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E(λ̂i
k,r,p) = λ(x)− rλ2(x) + o(r) (19)

Var(λ̂i
k,r,p) =

λ(x)
2rp

− 3λ2(x)
2p

+ o

(
1
p

)
. (20)

The optimal enlargement or bandwidth r can then be computed by minimizing
the mean square error, which (by neglecting infinitesimal terms of higher
order) is given by

MSE(λ̂i
k,r,p) = Var(λ̂i

k,r,p) + Bias2(λ̂i
k,r,p)

=
λ(x)
2rp

− 3λ2(x)
2p

+ r2λ4(x).

By minimization one obtains

roptimal = arg min
r

MSE(λ̂i
k,r,p) = [4pλ(x)]−1/3

.

Note that the optimal bandwidth can be computed only if the true intensity
λ(x) is known, which is obviously not the case in general. The problem can
be overcome in various ways, for example assuming that λ belongs to a given
family of functions depending on parameters which can be estimated from the
data, or with iterative methods, via the use of an initial guess for λ(x) or for
roptimal. A discussion for the case of kernel density estimators of the p.d.f. of
real-valued random variables can be found in [Hard91, Chap. 4].

7 Experimental Results

We applied estimators λ̂1
k,r,p and λ̂2

k,r,p to simulated data coming from the
model described in Sect. 4.2. The simulation has been performed in the window
[0, 1] × [0, 1]; the constant c appearing in the intensity of germs has been
assumed c = 400, and the length of segments was fixed to l = 0.2. The
window [0, 1] × [0, 1] was divided into ten vertical stripes of equal width.
The two estimators have been computed on each subwindow both by using
a deterministic grid of p points zi, coinciding with the grid of pixels of the
image, and by overlapping a random grid of p uniformly distributed points
zi, i = 1, . . . , p. The second method is less affected by correlation problems
which may arise from points which have a spatially close location, but has
higher computational costs. The optimal bandwidth r has been computed via
the true value of λ(x) in the centroid of each subwindow. The results are
reported in Fig. 8. Since the estimators are biased, with first order bias given
in (19), we corrected the estimators by subtracting −rλ2(x). The corrected
estimators are reported in Fig. 9, and show a good agreement with the true
value of the intensity of the process.

We also computed confidence bands for the estimators, both corrected and
uncorrected for bias, by simulating 100 processes with the same intensity, per-
forming on each simulated pattern the estimation procedure and taking the
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Fig. 8. Left: estimate with a deterministic grid; right: estimate with a random grid.
Dashed line = λ̂1

k,r,p, dotted-dashed line = λ̂2
k,r,p, continuous line = true value of

λ(x). The random grid used for the right-hand picture was formed by p = 2, 000
uniformly distributed points. The number of pixels in each subwindow, used for the
deterministic grid, is 11, 628

Fig. 9. Left: estimate with a deterministic grid; right: estimate with a random
grid. dashed line = λ̂1

k,r,p, dotted-dashed line = λ̂2
k,r,p, continuous line = true value

of λ(x). The estimators have been corrected for bias using the true value of the
intensity. The random grid used for the bottom picture was formed by p = 2, 000
uniformly distributed points. The number of pixels in each subwindow, used for the
deterministic grid, is 11, 628

minimum and maximum values of the estimated intensity in each subwindow.
The results are reported in Figs. 10 and 11. From the experimental results the
estimators obtained by overlapping to the subwindows a deterministic equally
spaced grid seem not to be equivalent to the ones obtained by overlapping a
random grid of uniformly distributed points. The deterministic ones seem to
have a larger variance than the random ones, and the random ones still show
some negative bias, even after the correction, probably due to the terms of
higher order which we neglected. The difference in the variance is due to the
fact that in the derivation of the expected value and variance of the two esti-
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Fig. 10. Dashed line min–max confidence band computed by estimating the inten-
sity over 100 simulations of the process; continuous line true value of λ(x). For the
estimation we used a deterministic equally spaced grid of points (coinciding with
the pixels of the image) overlapped to each subwindow

mators, we assumed that the indicator functions appearing in their definition
were i.i.d. Unfortunately the indicators are not independent if the points zi
are located on a regular grid, of width dx comparable with the length l of the
segments of the Boolean model or with the “enlargement bandwidth” r. Note
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Fig. 11. Dashed line min–max confidence band computed by estimating the inten-
sity over 100 simulations of the process; continuous line true value of λ(x). For the
estimation we used a random grid of 2, 000 uniformly distributed points overlapped
to each subwindow

that the results obtained using a random grid could be improved by augment-
ing the number of random points of the grid, with a consequent increase of
the computational costs.

Since in real applications the true intensity of the fibre process is unknown,
we also applied an iterative method to compute the intensity. The method
starts by enlarging of the same quantity rstart (initial guess) the fibres in all
the subwindows; then the estimate procedure is applied and the estimate of
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Fig. 12. Estimates with an iterative method. Left figure: estimate with a determin-
istic grid. The number of pixels in each subwindow, used for the deterministic grid,
is 11, 628. Right figure: Estimate with a random grid. The random grid used for the
estimate was formed by p = 2, 000 uniformly distributed points. The estimators have
been corrected for bias; dashed line = λ̂1

k,r,p, dotted-dashed line = λ̂2
k,r,p, continuous

line = true value of λ(x)

λ(x) is computed in each subwindow. The estimated intensity is then used to
compute the optimal enlargement bandwidth r in the next iteration and an
update of λ̂k,r,p is computed. A given tolerance constant tol is fixed and the
procedure is iterated up to when

sup
x
|λ̂i(x)m+1 − λ̂i(x)m| < tol,

where λ̂i(x)m is the intensity function estimated at iteration m (i = 1, 3 for
the two considered estimators). The study of the termination of the iterative
procedure is left to subsequent papers.

The results are reported in Fig. 12. Also in this case the estimators have
been corrected for bias, using the estimated intensity for the correction instead
of the true value of λ(x). From the experimental results the termination and
the results of the algorithm does not seem to depend strongly on the initial
guess. The convergence looks faster for λ̂1

k,r,p if we use a deterministic grid,
and for λ̂2

k,r,p if we use a random grid.
Min–max confidence bands have been computed over 100 simulations of

the process also with the iterative method, using both a deterministic and a
random grid; the results are reported in Figs. 13 and 14.

Remark 6. In this case estimator λ̂1
k,r,p computed with a random grid seems to

behave badly with respect to the others, in particular when the true intensity
is high. Nevertheless this estimator has many computational advantages when
applied to subwindows which have not a rectangular shape, since overlapping
a random grid of points to a window having any shape and counting what
points are falling inside the enlarged fibres, is much easier than selecting ran-
dom points which have a spherical neighbourhood of fixed width r entirely
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Fig. 13. Confidence bands for λ(x) using λ̂1
k,r,p (left figure) and λ̂2

k,r,p (right figure).
Dashed line = min–max confidence band computed by estimating the intensity over
100 simulations of the process; continuous line = true value of λ(x). For the esti-
mation we used a deterministic equally spaced grid of points (coinciding with the
pixels of the image) overlapped to each subwindow
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Fig. 14. Confidence bands for λ(x) using λ̂1
k,r,p (left figure) and λ̂2

k,r,p (right figure).
Dashed line = min–max confidence band computed by estimating the intensity over
100 simulations of the process; continuous line = true value of λ(x). For the estimate
we used a random grid formed by p = 2, 000 uniformly distributed points
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contained in the subwindow. Thus estimator λ̂1
k,r,p will be more often used in

the real applications which need a nonrectangular division in subwindows for
a good analysis.

The estimators have then been applied to some simulations of real fibre
processes, where the true intensity is not known. In Fig. 15a simulation of the
generation and branching of vessels driven by a chemotactic field generated
by a tumour is reported. The tumour is located on the right-hand side of the
window and the vessels start growing and branching from the left-hand side
of the window in the right direction. The chemotactic field has a gradient in
the x direction and influences both the speed of growth and the branching of
the vessels. The intensity has been estimated both with a deterministic and
a random grid, by dividing the observation window into ten vertical stripes
of the same width. The estimators have been corrected for bias. The results
are reported in Fig. 15. In Fig. 16 two simulations are reported where the
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Fig. 15. Estimate of the fibre intensity of an angiogenetic process with a chemotactic
field having a gradient in the x direction. Bottom left: estimate with a deterministic
grid; bottom right: estimate with a random grid of 2,000 points. The estimators have
been corrected for bias. Dashed line = λ̂1

k,r,p, dotted-dashed line = λ̂2
k,r,p
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Fig. 16. Comparison between the two simulated angiogenetic processes depicted
in the top line. Bottom left: comparisons of λ̂1

k,r,p for the two processes estimated

with a deterministic grid; bottom right: comparisons of λ̂1
k,r,p for the two processes

estimated with a random grid. In both cases the first process reveals an intensity
lower than the second, and this was really the case in the performed simulation

intensities of branching where different. The difference is not much evident by
simply looking at the patterns, but the estimate of the intensity reveals that
the pattern on the left has a lower intensity than the pattern on the right for
any value of x, and this was really the case, since the frequency of branching
and speed of growth was settled higher in the right-hand pattern. This is thus
an example where quantitative analysis is essential for the characterization
and differentiation of the geometry.

In Fig. 17 an analogous process but driven by a chemotactic field with a
spherical symmetry around a point-shaped tumour is reported. Because of the
observed symmetry, in this case the window of observation has been divided
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Fig. 17. Estimate of the fibre intensity of an angiogenetic process driven by a
chemotactic field with a spherical symmetry. Top line: the fibre process and an esti-
mate of λ̂1

k,r,p using a random grid and dividing the window into ten spherical shells
centred at the tumour; bottom: plot of λ̂1

k,r,p with respect to the radial coordinate,
centred at the tumour

into 10 spherical shells centred at the tumour location. Both the estimated
values in each subregion in a 2D visualization and the plot of the estimated
intensity with respect to the radial coordinate are reported. In this case, since
the subwindows are not rectangular, only estimator λ̂1

k,r,p has been computed
(see Remark 6).

In Fig. 18 an estimator λ̂1
k,r,p has been computed on three images of a

vascular networks generated in allantoids (see [CM05] for a discussion of the
relevance of these studies in tumour treatment). Two of the three allantoids
have been treated with two different doses of an antiangiogenic substance,
which should inhibit the formation of vessels. The figure on the left refers
to an untreated control allantoid. Because of the spherical symmetry of the
images, also in this case the observation window has been divided into spher-
ical shells centred at the centroid of the allantoid. The results of the estimate
reveal, in a quantitative way, that the increase of the dose of the substance
results in a less widespread network and in a lower intensity of length of the
vessels.
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Fig. 18. Vascularization in allantoids. First line, from left to right: control experi-
ment (untreated), treated with 0.75 mg of antiangiogenetic substance, treated with
1 mg of antiangiogenic substance. Second line: scheletonization of the upper images.
Third line: 2D representation of the intensity estimate of the fibres in the skele-
tons; the space has been divided into ten spherical concentric shells. Bottom line:
comparison of the radial estimates of the intensities of the three allantoids
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1 Escuela Técnica Superior de Ingenieros, Universidad de Sevilla, 41092 Sevilla,
Spain
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Summary. The use of electrohydrodynamic (EHD) forces to generate highly
charged coaxial jets of immiscible fluids, with diameters in the micro and nanoregime,
has unravel itself as a quite interesting choice for producing complex nanostructures
from a vast variety of precursors, provided they can solidify, polymerize or gel, in
times comparable or shorter than the living time of the coaxial nanojet. For time
ratios larger than one, the result of the process are micro or nanocapsules, while for
time ratios smaller than one coaxial nanofibres are produced. We show examples of
both situations, with organic and inorganic precursors. On the other hand, realiza-
tion of the process in a liquid bath opens the door to production of controlled micro
and nanosized complex emulsions.

1 Introduction

It is well known that the physical properties of a piece of a given substance
(thermal and electrical conductivity, strength, toughness, etc.) depend not
only on the substance itself but also on its characteristic size. In effect, let us
consider an ideal experiment consisting of a material piece whose character-
istic length L can be shortened in a controlled way by an external observer.
The observer would find out that the values of the physical properties of the
material piece undergone a dramatic change when L reaches values sufficiently
small. The explanation for such an anomalous behaviour lays on the fact that
the surface of a piece of matter decreases with L much more slowly than
its volume does and, contrarily to what happens in our familiar macroscopic
world, the atomic and molecular interactions of the surface becomes dominant
compared to those in the volume once the nanoscopic limit is reached. The
length at which the change of properties takes place is, roughly speaking, of
the order of 100 nm so this length may be thought as the boundary below
which nanotechnology and nanoscience apply. Therefore, its application do-
main ranges from isolated atoms/molecules to bulk materials, where length
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and timescales of the phenomena become comparable to those of the structure.
Nanotechnology implies the ability to generate and to use structures, compo-
nents, and devices with a size range from about 0.1 nm (atomic and mole-
cular scale) to about 100 nm (or larger in some situations) by control at
atomic, molecular, and macromolecular levels. Nanotechnology is a major
breakthrough that will yield new tools for fundamental discoveries with broad
impact on technology, materials, biomedical, energy, and environment. More-
over, their interdisciplinary character allows for unparalleled synergy between
previously unrelated fields and therefore their applications are extremely di-
verse. Some few examples of potential applications that are being actively
investigated are: advanced drug delivery via nanoparticles in medicine and
pharmaceutics fields; chemical and biodetectors for security and other civil-
ian uses; nanostructured catalysts in chemical and fuel industries; metallic
and ceramic nanostructured materials with engineered properties, molecu-
lar manipulation of polymeric macromolecules, and nanostructured coatings,
among others, in material science; nanofabrication of electronic products in
electronics, etc. Commercially viable technologies are already available for
some ceramic, metallic, and polymeric nanoparticles, nanostructured alloys,
colorants and cosmetics, tissue engineering, electronic components such as
those for media recording, and hard-disk reading, to name a few. In biomedi-
cine, tissue engineering, for example, applies to regeneration of bones, arteries,
and other organs by using biocompatible polymers: polycaprolactone (PCL)
and polylactide-co-glycolide acid (PLGA). Basically, it is based on the fact
that cells get together and rearrange faster around fibres with smaller diam-
eters (500 nm) than the cells. These scaffolds made of woven fibres, which
have proved to be a very efficient growing environment, are being used as bio-
compatible films to cover prostheses to avoid rejection. This stimulating tissue
growth also applies in the cicatrization of wounds and burns. Another example
of synergy between nanotechnology and medicine is the use of nanoparticles
in drug delivery. The technique involves binding a therapeutic compound to
a nanoparticle, or encapsulating it within a nanoshell. A key advantage of
nanoshells is that they can be targeted to specific cell populations through
conjugation with a monoclonal antibody. When the nanoshells reach the target
site, their therapeutic contents are released by breaking them using a low in-
tensity light source such as a laser; shells with controlled porous wall could be
also used for the appropriate outflow of the drug. Drug delivery using nanopar-
ticles provides high target specificity, with high potential for treatment of lo-
calized neurological disorders and cancer with therapeutic compounds which
have side effects in the rest of the body. An alternative, noninvasive procedure
for tumour ablation, which has been tested in mice, consists in the intravenous
injection of nanoparticles with a dielectric core coated by a thin gold shell,
Loo (2005). Based on the relative dimensions of the shell thickness and core
radius (typical diameter of the shell is in 100 nm range), nanoshells may be de-
signed to scatter and/or absorb light over a broad spectral range including the
near-infrared (NIR), a wavelength region that provides maximal penetration
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of light through tissue. Immunotargeted nanoshells are engineered to absorb
light, allowing selective destruction of targeted carcinoma cells through pho-
tothermal therapy. Production of micrometer- or even nanometer-sized parti-
cles and fibres can be tackled from two different approaches: bottom-up and
top-down methods. Bottom-up refers to methods where materials and devices
are built from molecular components which assemble themselves chemically
using principles of molecular recognition. Bottom-up should broadly speak-
ing be able to produce devices in parallel and much cheaper than top-down
methods, but getting control over the methods is difficult when nanostruc-
tures become larger and more bulky than what is normally made by chemical
synthesis. On the contrary, in top down methods, nanoobjects are obtained
from the appropriate splitting of much larger physical systems without atomic
level control along the process.

Top-down methods to produce micro- and nanoparticles require the divi-
sion of a macroscopic (i.e. millimetric) piece of matter, generally a liquid, into
tiny offsprings of micro- or nanometric size. Surface tension strongly opposes
the huge increase of area inherent to this dividing process. Thus, to produce
such small particles, energy must be properly supplied to the interface. This
energy is the result of a mechanical work done on the interface by any exter-
nal force field, i.e. hydrodynamic forces, electrical forces, etc. Two kinds of
approaches can be distinguished, depending on how the energy is supplied.
In one approach, such as in the mechanical emulsification techniques, the
force fields (extensional and shear flows) employed to break up the interface
between two immiscible fluids are so inhomogeneous that, in general, the off-
spring droplets present a very broad size distribution. Nevertheless, a good
degree of monodispersity might be achieved for a particular combination of
the emulsification parameters (shear rate, rotation speeds, temperature, etc.)
and a given combination of substances. However, such a desirable condition
might not exist if one of the substances is changed, if a new one is added,
or if a different size is desired. The same occurs if capsules must be formed.
Furthermore, in many instances, the formation of the structure depends on
chemical interactions, usually preventing the process from being applicable to
a broad combination of substances.

In the other approach, which has the advantage of being based on purely
physical mechanisms, the force field stretches, steadily and smoothly, the fluid
interface without breaking it until at least one of its radii of curvature reaches
a well-defined micro or nanoscopic dimension d; at this point, the spontaneous
break up of the stretched interface by capillary instabilities yields monodis-
perse particles with a size of the order of d, Barrero and Loscertales (2007).
These types of flows are known as capillary flows due to the paramount role of
the surface tension. For example, the formation and control of single and coax-
ial jets with diameters in the micrometer/nanometer range, and their eventual
varicose breakup, lead to particles without structure (single jets) or compound
droplets (coaxial jets), with the outer liquid encapsulating the inner one. On
the other hand, if the liquid solidifies before the jet breaks, one obtains fibres
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(single jet) or coaxial nanofibres or hollow nanofibres (coaxial jets). The mean
size of the particles obtained with these methods ranges from hundreds of
micrometers to several nanometers, although the nanometric range is gener-
ally reached when electric fields are employed. The particles obtained using
this approach are, in general, nearly monodisperse and its employment en-
ables, in the case of capsules, a precise tailoring of both the capsule size and
the shell thickness.

2 Capillary Flows Driven by Electrical Forces

2.1 Electrospray

The interaction of an intense electrical field with the interface between a con-
ducting liquid and a dielectric medium has been known to exist since William
Gilbert (1600) reported the formation of a conical meniscus when an electrified
piece of amber was brought close enough to a water drop. The deformation of
the interface is caused by the force that the electrical field exerts on the net
surface charge induced by the field itself. Experiments show that the inter-
face reaches a motionless shape if the field strength is below a critical value,
whereas for stronger fields the interface becomes conical, issuing mass and
charge from the cone tip in the form of a thin jet of diameter d. In the latter
case, the jet becomes steady if the mass and charge it emits are supplied to the
meniscus at the same rate. Taylor (1964) explained the conical shape of the
meniscus as a balance between electrostatic and surface tension stresses; since
then the conical meniscus has been referred to as the Taylor cone. The thin jet
eventually breaks up into a stream of highly charged droplets with a diameter
of the order of d. This electrohydrodynamic (EHD) steady-state process is the
so-called steady cone-jet electrospray after Cloupeau and Prunet-Foch (1989),
or just electrospray, see Fig. 1, Pantano et al. (1994).

The electrospray has been applied for bioanalysis (Fenn et al. 1989), fine
coatings (Siefert 1984), synthesis of powders (Rullison and Flagan 1994), and
electrical propulsion (Martinez-Sanchez et al. 1999), among other technolog-
ical applications. Recently, the electrosprays in cone–jet mode were also sta-
bilized inside dielectric liquid baths, Barrero et al. 2004; hence, the technique
could be applied to the production of simple and double emulsions of the type
water in oil, oil in water, and oil–water–oil.

Although the equations (Navier–Stokes and Maxwell equations) and
boundary conditions governing the electrospray are known, the numerical
simulation of the electrospray is quite complex due to (a) the disparity of
length scales between the diameter of the jet and the needle diameter, or
aperture, through which liquid is being injected, which can vary more than
three orders of magnitude, (b) the existence of one (or more) free surface that
must be consistently determined as part of the solution of the problem, and
(c) the fact that the region where the interface breaks is time dependent in
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Fig. 1. Cone, jet, and spray in an electrospray; the electrosprayed liquid was
methanol. The size of the charged droplets ranged between 380 and 720 nm, which
are the wavelength of the blue and red radiation. As shown in the picture, droplets
scatter the blue component avoiding its pass throughout the spray while the other
components of the white light pass through the droplet cloud

spite of the steady character of the flow upstream of the breaking zone. For
these reasons most works on electrospray have focused on experiments, which
under the guide of the dimensional analysis have provided the widely accepted
relationship between the current I and the flow rate q transported through
the jet, Fernández de la Mora and Loscertales (1994),

I

I0
= g(β)

(
q

q0

)1/2

with I0 =
(
ε0
ρ

)1/2

q0 =
γε0
ρK

, (1)

where γ is the surface tension, ρ,K, and βεo are density, electrical conductivity
and permittivity of the liquid respectively, εo is the vacuum permittivity,
and g(β) ∼ β−1/4 is a dimensionless function that has been experimentally
determined (Gañán-Calvo et al. 1997). However, the scaling law for the jet
diameter d is still controversial because experimental errors in the reported
measurements of the mean droplet diameter do not allow one to distinguish
between the different proposed size laws. The scaling size laws that appear
most frequently in the literature can be cast in the form

d

d0
= f(β)

(
q

q0

)n

with d0 =
γε20
ρK2

, (2)

where f(β) is a dimensionless function of order of unity and exponent n takes
the values 1/3, 1/2, and 2/3 depending on the authors. For electrosprays,
the minimum flow rate at which it can operate in steady-state conditions is
approximately given by qmin ∼ q0, which for liquids with electrical conductiv-
ities of the order of 1 S m−1, the minimum jet diameter becomes of the order
of a few nanometers.
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Fig. 2. Nonagglomerated spherical titanium oxide nanoparticles were prepared using
an electrospray assisted chemical vapor deposition (ES-CVD) process. From Nakaso
et al. (2003)

Numerical simulation of the cone jet electrospray has been considered in a
recent paper, Higuera (2003); details of the equations and boundary conditions
can be found there. To avoid the numerical difficulty of dealing with two highly
disparate length scales, which appears in the case of liquids of relatively high
electrical conductivity. Higuera did not consider the full problem from the
needle to the final jet region (before breakup) but the cone-to-jet transition
region and used the cone and the jet as asymptotic boundary conditions. The
numerical analysis included the effect of the liquid viscosity, which had been
neglected in prior experiments, and he approximately recovered the I ∼ Q1/2

law. An excellent review on the physics of electrosprays may be found in
Fernandez de la Mora (2007).

The electrospray technique has proved its ability for the production of
single nanoparticles; the ones shown in Fig. 2 are an example.

2.2 Electrospinning

The EHD flow described above can be also used to obtain very thin fibres if
the jet solidifies before breaking into charged droplets. This process, known
as electrospinning, occurs when the working fluid is a complex fluid, such as
the melt of polymers of high molecular weight dissolved in volatile solvent,
Doshi and Reneker (1995), Fridrikh et al. (2003). The rheological properties
of these melts, sometimes enhanced by the solvent evaporation from the jet,
slowdown, and even prevent the growth of varicose instabilities. As is well
known, large values of liquid viscosity delay the jet breakup by reducing the
growth rate of axisymmetric perturbations, so longer jets may be obtained.
However, nonsymmetric perturbation modes can grow due to the net charge
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Fig. 3. Whipping instability in an electrified jet of glycerine in a bath of hexane.
Courtesy of Mr. A. Gomez-Maŕın

carried by the jet. Indeed, if a small portion of the charged jet moves slightly
off axis, the charge distributed along the rest of the jet will push that portion
farther away from the axis, thus leading to a lateral instability known as
whipping or bending instability. A picture capturing the development of the
whipping instability in a jet of glycerine in a hexane bath is shown in Fig. 3.

The chaotic movement of the jet under this instability gives rise to very
large tensile stresses, which lead to a dramatic jet thinning. The solidifica-
tion process, and thus the production of micro- or nanofibres, is enhanced
by the spectacular increase of the solvent evaporation rate due to the thin-
ning process. This technique is very competitive to produce nanofibres as
compared with other existing ones (i.e. phase separation, self-assembly, and
template synthesis, among others), and it is therefore the subject of intense
research.

2.3 Electrified Coaxial Jets

A new technique, which also uses EHD forces to generate coaxial jets of
immiscible liquids, with diameters in the nanometer range, has been recently
reported, Loscertales et al. 2002. The method is being used to synthesize
nanoparticles with core-shell structure. Basically, the technique consists of
the injection at appropriate flow rates of two immiscible liquids through two
concentrically located needles. The inner diameter of the inner needle ranges
from the order of 1 mm to tens of micrometers, whereas its outer diameter
sets limits to the cross-section of the outer needle.

The outer needle is connected to an electrical potential of several kilovolts
relative to a ground electrode. The inner needle is kept to an electrical po-
tential that, depending on the conductivity of the outer liquid, can be varied
from that of the outer needle to that of the extractor. For a certain range
of values of the electrical potential and flow rates, a structured Taylor cone
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Fig. 4. Picture on the left shows a structured liquid Taylor cone; a downstream
detail of the two coaxial jets emitted from the vertexes of the two menisci is given
in picture on the right

is formed at the exit of the needles with an inner meniscus surrounded the
inner one, see picture on the left in Fig. 4. A liquid thread is issued from the
vertex of each one of the two menisci, giving rise to a compound jet of two
coflowing liquids see picture on the right (Fig. 4). At the minimum jet section,
the two-layered jet has an outer diameter of 4 µm.

To obtain this compound Taylor cone, at least one of the two liquids must
be sufficiently conductive. Similarly to simple electrosprays, the electrical field
pulls the induced net electric charge located at the interface between the con-
ducting liquid and a dielectric medium and sets this interface into motion;
because this interface drags the bulk fluids, it may be called the driving inter-
face. The driving interface may be either the outermost or the innermost one;
the latter happens when the outer liquid is a dielectric. When the driving in-
terface is the outermost, it induces a motion in the outer liquid that drags the
liquid–liquid interface. When the drag overcomes the liquid–liquid interfacial
tension, a steady-state coaxial jet may be formed. On the other hand, when
the driving interface is the innermost, its motion is simultaneously diffused
to both liquids by viscosity, setting both in motion to form the coaxial jet.
Scaling laws showing the effect of the flow rates of both liquids on the current
transported by these coaxial jets and on the size of the compound droplets
were recently investigated (Lopez-Herrera et al. 2003).

3 Core-Shell Nanoparticles

3.1 Nanocapsules and Hollow Nanospheres

The last technique has been applied, upon coaxial jet breakup, to microencap-
sulate aqueous solutions. An outer jet of Somos 6120, a Du Pont photopolymer
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Fig. 5. Collection of near monodisperse capsules. Magnified views of two capsules
formed under different parametrical conditions are also given in the two pictures
on the right. In the upper one picture, the outer diameter is 10 µm, whereas the
diameter of the capsule shown in the lower one is 8 µm

and a coflowing water inner jet were generated as described before. Compound
droplets of water coated by Somos resulted from the jet breakup, so that a
spray of compound droplets was formed and collected on a plate damped with
water. In this case, the outer shell of the droplets was hardened with an ul-
traviolet light reactor. Before the hardening process, the charged aerosol was
neutralized by corona discharge, so that losses were minimized. The liquid flow
rates in this experiment were selected to obtain capsules in the micrometer
range, because capsules in this range can be optically recorded to allow for
visual observation, Fig. 5. Capsules of olive oil surrounding water of 150 nm
of mean diameter have been also obtained with this technique. Some examples
of applications of this approach to produce capsules include the encapsulation
of water-based flavours within oil-based substances, and the opposite (oil-
based flavours within water-based polymers) for food enrichment applications,
Bocanegra et al. (2005).

Also, combination with sol–gel chemistry has proven fruitful, Larsen et al.
(2003). In this case, the outer liquid was a sol–gel formulation, while the inner
one was a regular nonstructured or “regular” liquid (like oil, water, glycerine,
etc.). By adjusting the sol properties and the operating parameters, we have
been able of producing hollow spheres, with mean diameters ranging from
10 µm down to 0.4 µm, and with shell thickness between 1 µm and less than
50 nm. Some of these results are shown in Fig. 6. Although the capsules were
initially filled with the “regular” liquid, since the polymerization or gel transi-
tion forms porous solids, the inner liquid was easily solvent-extracted, so that
after solvent evaporation a void cavity was left. In any of the above cases,
the time of flight of the liquid capsules (that is the time from their formation
up to their collection on a collector) was controlled to allow for either phase
transition or polymerization (gelation). This can be easily done by reducing
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Fig. 6. Hollow spheres of SiO2. Both diameter and shell thickness can be controlled
by adjusting the flow rates

the charge level on the freshly formed capsules; this was accomplished in our
lab by setting up a corona discharge of opposite polarity in the surrounding
atmosphere.

3.2 Hollow Nanofibres and Coaxial Nanofibres

Another recent application of this technique relates to the production of
nanofibres, compound nanofibres and hollow nanotubes. There are many pro-
cedures to build nanotubes of different materials, other than the popular car-
bon nanotubes. In general, the vast majority of these procedures resort to
templates, Cepak and Mart́ın (1999). A solid nanotemplate (i.e. a nanofibre
or a pore membrane) is formed, around which nanotubes are grown. This
growth usually happens in liquid phase, and it resorts to self-assembly of the
proper molecules onto the surface of the template. The first complexity is due
to this self-assembly process, which unfortunately appears to be very chem-
istry dependant. Usually, the recipe that works for one particular precursor
does not work for another, even for very similar molecules. Once the shell
is built around the template, still the template itself must be removed. This
is typically done by degrading or decomposing the template thermically, or
chemically, etc. This necessarily requires the shell to be more “resistant” than
the template. In brief, the procedure is a multistep process, apart of the re-
striction imposed by the chemistry. One of the advantages of using compounds
nanojets to produce nanotubes resorts on the fact that self-assembly is not a
limiting step since the shape of the jet itself already constrain the material to
the proper cylindrical shape. But during the same process, the inner liquid,
which is also stretched to a cylindrical shape, plays the role of the template,
thus limiting the inner surface of the nanotube. Furthermore, the template is
not solid, but liquid, so that removing the template is much easier and much
less energy consuming. Therefore, if solidification (or polymerization, or gela-
tion) of the outer liquid occurs prior to the jet break up, then the nanotube
is form in just one step, Loscertales et al. (2004).
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Fig. 7. Examples of hollow nanotubes and compound nanofibres

Figure 7 shows some examples of hollow nanotubes and compound nanofi-
bres produced from electrified coaxial jets. Pictures have been taken with a
scanning electron microscope, except the right one, which was taken with
transmission electron microscope. The picture on the left shows nanotubes of
SiO2, with diameters of the order of 500 nm, and shell thickness of the order
of 70 nm. The one in the middle shows ZnO2 nanotubes, with diameters from
1 µm down to 400 nm; the wall thickness was of the order of 80 nm. Finally,
the right one shows a coaxial character compound nanofibre of poly-ethylene-
oxide (PEO) on the outside, and stained PEO in the inside. The outer and
inner diameters are of 100 and 15 nm, respectively.

3.3 Simple and Double Emulsions

Finally, another extension of the EHD atomization is that when the sur-
rounding atmosphere is not a gas nor vacuum, but a liquid insulator, Barrero
et al. (2004). The same atomization process is possible within a liquid, which
opens up the possibility of producing monodisperse micro- and nanoemulsions,
Maŕın et al. (2007). Although work is still on its way, we have investigated
the scaling laws for both the current and the size of the droplets. In this new
situation, the role of surfactants, emulsifiers, and polymers in solution may be
essential in order to stabilize such nanoemulsions. On top of that, the process
may be executed with a compound Taylor cone instead (Fig. 8), so that double
emulsions of nanometric size can be directly formed, still with a well controlled
mean size and small size dispersion. Finally, the charged nature of the dis-
persed phase can be an advantage to control their trajectories and to select
where to deposit them; this could be used to generate well controlled layers
of nanoparticles on top of macroscopic objects to emulate colloidosomes, see
for instance (Dinsmore et al. 2002).
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Fig. 8. Taylor cone of glycerol in a bath of hexane. The needle OD is 0.8 mm. The
hydrosol in this case is formed by droplets of two different sizes: the main droplets,
of 2 µm in diameter, and the satellite droplets, of about 0.8 µm in diameter

4 Conclusions

Some topdown methods to produce micro- and nanoparticles require one to
divide a macroscopic (i.e. millimetric) piece of liquid into tiny offsprings of
micro- or nanometric size. One of them uses electrical forces to generate coax-
ial jets with a diameter in the micro- and nanometric size ranges. Micro- or
nanocapsules are formed upon jet breakup, whereas if the jet solidifies coaxial
nanofibres or hollow nanofibres are obtained. This method can produce micro-
and nanoparticles with or without inner structure. Generally, it enables both
a precise control of the particle size and a narrow size distribution, which
makes it attractive and competitive with other existing techniques. A notice-
able feature of the method lies in the fact that the core-shell particles may be
obtained in just one step; this is a clear advantage over multistep processes
such as the emulsification techniques. However, the throughput of this EHD
method is usually too small for many industrial purposes, restricting their
use to some analytical applications. Increasing the production rate requires
the operation of parallel devices. The main problems when trying to operate
in parallel come from the shielding effect of the space charge created by the
highly charged aerosol and from the electric crosstalk between neighbouring
devices. Accordingly, the design of efficient approaches for operating paral-
lel devices will probably become a very active area of research in the near
future.
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A. Gómez (University of Seville) is also acknowledged.

References

1. Barrero A. and Loscertales I.G. Annual Rev. Fluid Mech. 39, 89-106, 2007.
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Summary. This paper deals with mathematical modelling and numerical simulation
of induction heating furnaces for axisymmetric geometries. The mathematical model
presented consists in a coupled thermo-magneto-hydrodynamic problem with phase
change. We propose a finite element method and an iterative algorithm to solve the
equations. Some numerical results for an industrial furnace used for silicon purifica-
tion are shown.

1 Introduction

Silicon (Si) is the second most abundant element in the earth crust after
oxygen. In natural form, it can be found mainly as silicon dioxide (Silica,
SiO2) and silicates. In particular, quartz and sand are two of the most common
forms. Silicon is produced industrially by reduction of silicon dioxide, as quartz
or quartzite, with carbon by a reaction which can be written in a simple way
as follows:

Si O2 + 2C = Si + 2CO. (1)

Silicon has a wide variety of applications depending on its purity. Indeed,
silicon is referred to by the approximate percentage of silicon contained in the
material and the maximum amount of trace impurities present. Thus, silicon
metal (or metallurgical grade silicon) refers to the silicon which contains about
1% of other elements. Its main application is as alloying of other metals like
aluminum to produce cast parts, mainly for automotive industry. It is also a
basic material in chemical industry for silicones. Ferrosilicon can contain more
than 2% of other materials and represents the largest application of silicon.
Almost all ferrosilicon products are consumed by the iron and steel industries.

Pure elementary silicon when doped with traces of elements such as boron
and phosphorus is one of the best semiconductors. These substances have a
myriad of applications in modern technology, because they are the core of any
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analog or digital electronic circuit. The use of silicon in semiconductor devices
demands a much greater purity than afforded by metallurgical grade silicon.
In fact, it is the purest silicon used in industry; it is known as the 9-nines
silicon (99,9999999% of purity).

With the growing of the photovoltaic industry, there is a great request
of solar silicon, name given to the silicon suitable for use in photovoltaic
applications, such as solar cells. Solar silicon must be extremely pure, even if
the specifications of purity are less strict than for semiconductor silicon.

Induction heating techniques have been widely applied in the last years
in the metallurgical and semiconductor industry for the purification of silicon
ingots. Figure 1 illustrates the basic components of an induction heating sys-
tem: a power supply, an induction coil and a workpiece, which is the piece to
be heated. The power supply sends alternating current through the coil that
circulates around the coil generating a magnetic field. When the workpiece is
placed in the coil, the magnetic field induces eddy currents in it that, by the
Joule effect, produce heat. It is this heat which warms up the workpiece.

Based on the induction heating technique, various kinds of induction fur-
naces are employed for different purposes, such as metal smelting ([CETAL,
CRST93]), metal hardening ([CSL04, WKN94]) or crystal growing ([MR97,
KP03]). In this work we consider an induction melting furnace as the one rep-
resented in Fig. 2. It consists of a cylindrical vessel (usually called the crucible)

Fig. 1. Induction system

Fig. 2. Induction furnace
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made from a material such as graphite which is surrounded by an inductor coil
made of a very conductive material (copper, for instance). Silicon is placed
inside the crucible and the coil is supplied with an alternating current. The
goal is to melt the silicon that initially is introduced in solid state.

The idea for the purification process is based on the fact that if silicon is
melted and resolidified, the last parts of the mass to solidify contain most of
the impurities. Thus, in zone melting, the first silicon purification method to
be widely used industrially, rods of metallurgical grade silicon are heated to
melt at one end. Then, the heater is slowly moved down the length of the rod,
keeping a small length of the rod molten as the silicon cools and resolidifies
behind it. Since most impurities tend to remain in the molten region, when the
process is complete most of the impurities in the rod will have been moved into
the end that was the last to be melted. This end is then cut off and discarded,
and the process repeated if a still higher purity is needed. Usually, these
methods are combined with chemical ones which involve the injection of gasses
into (or onto) a molten silicon bath and are chosen to remove undesirable
elements through formation of solid of gaseous reaction products.

An important advantage of induction heating is that the melt is very
well stirred, since the Lorentz forces generated by the induced fields cause a
movement in the liquid material.

The inductive system can be designed to maintain the silicon in a liquid
state, control the shape of its free surface and to provide a strong electromag-
netic stirring, ensuring a rapid transfer of pollutants from the bulk liquid to
its surface. This stirring also aids in melting the charge since the moving fluid
transfers heat from the crucible wall to the solid. The numerical simulation
is used to control the design of the induction system, discussing, for instance,
the effect of the power and the frequency on the process. One of the important
items is the crucible.

From the mathematical point of view, the overall process is rather complex,
involving thermal, electromagnetic, hydrodynamic and mechanical phenom-
ena. In order to perform a numerical simulation of the furnace, the physi-
cal process is expressed as a coupled nonlinear system of partial differential
equations arising from the thermo-magneto-hydrodynamic problem. In the
last years several papers have been published which deal with the thermo-
electromagnetic problem ([BGMS1, BGMS2, CETAL, CRST93, KP03]), with
the magneto-hydrodynamic problem ([HSSH93,NEK99]) or with the thermo-
magneto-hydrodynamic problem, but not fully coupled ([HO94,KHT96]). The
authors have already dealt with the thermo-electromagnetic problem with
phase change, using a finite element method [BGMS1]. The present work starts
from the problem and the algorithms proposed in [BGMS1] and introduces the
hydrodynamic problem and the convective heat transfer in the heat equation.

The outline of this chapter is as follows. In Sect. 2 we present the cou-
pled mathematical model, assuming cylindrical symmetry. The equations of
the electromagnetic model are expressed in terms of the magnetic vector po-
tential. Moreover, the heat equations are written in terms of the enthalpy,
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to take into account the phase change. The hydrodynamic model is described
by the incompressible Reynolds-averaged Navier–Stokes equations, to handle
the effects of turbulence. In Sect. 3 we propose an iterative algorithm to solve
the coupled problem. Finally, in Sect. 4 we present some numerical results for
an industrial furnace devoted to the purification of silicon.

2 Statement of the Problem: Mathematical Modelling

We consider an induction furnace consisting of an induction coil surrounding a
workpiece as the one sketched in Fig. 3. The goal is to compute the distribution
of heat in the workpiece caused by the eddy currents, considering phase change
and convective heat transfer.

Let Ω0 be the radial section of the workpiece, and Ω1, Ω2, . . . , Ωm the
radial sections of the windings of the coil. In fact, to be able to consider
the problem in an axisymmetric setting, the induction coil is replaced by
m rings with toroidal geometry. Moreover, Ωa will denote the air around the
conductors, so that Ω = Ωa∪Ω0∪Ω1∪· · ·∪Ωm will denote the two dimensional
domain of the model (see Fig. 4). In principle, Ω is a half-plane and we should
impose “boundary conditions” at infinity. For the sake of simplicity, we cut
the domain far from the conductors and impose boundary conditions on the
artificial boundary (see [BGMS2] for a BEM–FEM method to deal with the
unbounded domain).

2.1 The Electromagnetic Model

Since we are considering alternating currents, all of the fields have the form:

F(x, t) = Re [eiωt F(x)], (2)

Symmetry
axis

Metal

Air

Coil section

Crucible

Fig. 3. Sketch of the induction furnace and diametral section
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where t is time, x ∈ R3 is the space position, ω is the angular frequency, i the
imaginary unit and F(x) is the complex amplitude of the field. Moreover, as
the induction furnace we are interested in works in a low-frequency regime,
the Maxwell’s equations can be reduced to the so-called eddy current model:

curlH = J, (3)

iωB + curlE = 0, (4)

div B = 0, (5)

div D = �, (6)

to which we have to add the equation imposing the intensity current, I, flowing
along the coil. In (3)–(6) H, J, B, E and D are the complex amplitudes as-
sociated with the magnetic field, the current density, the magnetic induction,
the electric field and the electric displacement, respectively, while � denotes
the charge density.

The system (3)–(6) needs to be completed by the constitutive relations

B = µH, (7)
D = εE, (8)

where µ is the magnetic permeability and ε is the electric permittivity. We
also need the Ohm’s law

J =
{
σE inside conductors,
0 in air, (9)

where σ is the electric conductivity.

Remark 1. In fact, the current density in the conductors is given by

J = σ(E + u×B), (10)

where u is the velocity field. In our problem the second term is only important
when the furnace works at low frequencies and very high intensities, so we are
neglecting it, for the sake of simplicity.

Due to the symmetry of the problem, we are interested in using a cylindri-
cal coordinate system (r, θ, z), with the z-axis coinciding with the symmetry
axis of the domain. Hereafter we denote er, eθ and ez the local orthonormal
basis associated with this system of coordinates. Now we assume cylindrical
symmetry, which means that no field depends on the angular variable θ. We
further assume that the current density field has nonzero component only in
the tangential direction eθ, namely

J(r, θ, z) = Jθ(r, z)eθ.
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A well-known result allows us to conclude from (5) that B is the curl of a
magnetic vector potential, denoted by A:

B = curlA. (11)

For the sake of uniqueness we take A to be divergence-free (Coulomb gauge),
and we can also conclude that A is of the form

A(r, θ, z) = Aθ(r, z)eθ. (12)

From (3), (4), (9) and (11) we deduce that there exist constants Ck ∈
C, k = 0, . . . ,m, such that

iωAθ + σ−1Jθ =
Ck

r
in Ωk, (13)

recalling that Ωk, k = 1, . . . ,m denotes each connected component of the
conductor, and thatΩ0 is the workpiece (see [BGMS1] or [BGMS2] for details).

The expression of the curl of a vector field in cylindrical coordinates and
equations (3), (7), (12) and (13) combined together yield

−
(
∂

∂r

(
1
µr

∂(rAθ)
∂r

)
+

∂

∂z

(
1
µ

∂Aθ

∂z

))
+ iωσAθ =

σ

r
Ck, (14)

in any connected component of the conducting domain, and

−
(
∂

∂r

(
1
µr

∂(rAθ)
∂r

)
+

∂

∂z

(
1
µ

∂Aθ

∂z

))
= 0 (15)

in the air.
To be able to solve equations (14)–(15) we assume that the current

intensities flowing in each ring are given data. Thus we add to the model
the following equations∫

Ωk

Jθ drdz = Ik, k = 1, . . . ,m,

Ik being the intensity traversing Ωk. For a further discussion about the model
one can see [BGMS1], [BGMS2] or [CETAL]. An explanation about the phys-
ical meaning of the constants Ck can be seen in [CETAL] or [RS96]. An
important result is that Ck must be zero in any simply connected region, in
particular C0 = 0 in the workpiece. From the mathematical point of view,
these constants can be considered as Lagrange multipliers associated with the
intensity constraints above.

Electromagnetic Boundary Conditions

As we have already said, the unbounded domain is cut far from the conductors
to have a bounded domain. We shall denote by ΓA the boundary of this
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AΩ1

Ωa

Ωm

Ω0
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A

Symmetry
axis

Metal

Fig. 4. Computational domain for the electromagnetic problem

computational domain and set ΓA = ΓA
R ∪ ΓA

N ∪ ΓA
D (see Fig. 4). Following

[CETAL] the boundary conditions we impose are

∂(rAθ)
∂r

+Aθ = 0 on ΓA
R , (16)

∂(rAθ)
∂z

= 0 on ΓA
N , (17)

Aθ = 0 on ΓA
D . (18)

2.2 The Thermal Model

The above model must be coupled with the heat equation to study the ther-
mal effects of the electromagnetic fields in the workpiece. As the furnace is
designed to reach temperatures higher than the melting point of the metal we
shall use the heat transfer equation in transient state with change of phase.
Furthermore, since the molten metal is subject to electromagnetic and buoy-
ancy forces, we also need to consider convective heat transfer. Let us suppose
that we already know the velocity field u which is null in the solid part of the
workpiece, then the equation for energy conservation is(

∂e

∂t
+ u · grad e

)
− div(keff(x, T ) gradT ) =

|J|2
2σ

in Ω0, (19)

where e is the enthalpy, T is the temperature and keff is the effective thermal
conductivity, which is the sum of the turbulent and molecular conductivities,
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keff = k + kt. The turbulent thermal conductivity is computed by using the
formula

kt =
ηt

σt
, (20)

where ηt is the turbulent dynamic viscosity given by (39) below, and σt is the
turbulent Prandtl’s number, which is taken to be equal to 0.9.

We remark that the thermal conductivity k depends on temperature. We
also assume that other material properties as the electric conductivity σ, the
magnetic permeability µ and the dynamic viscosity η may depend on temper-
ature.

The coupling between the thermal and the electromagnetic submodels is
made by the heat released in the workpiece due to the Joule effect. This heat
is represented in (19) by the term on the right-hand side, involving J which is
obtained from (13). In fact, since the electromagnetic equations are expressed
in the frequency domain, the heat source is determined by taking the mean
value in a cycle (see [BGMS1]).

In (19) the terms between parenthesis on the left-hand side can be rewrit-
ten as the material time derivative of enthalpy, which we shall denote by ė.
Moreover, assuming cylindrical symmetry and the fact that T does not depend
on the angular coordinate θ, the heat equation becomes

ė− 1
r

∂

∂r

(
rk(r, z, T )

∂T

∂r

)
− ∂

∂z

(
k(r, z, T )

∂T

∂z

)
=
|Jθ|2
2σ

. (21)

Notice that, from (13), we obtain

Jθ = −iωσAθ in Ω0, (22)

because C0 = 0 in Ω0.

Thermal Boundary Conditions

The computational domain for the thermal problem is the workpiece, i.e. Ω0.
We shall denote its symmetry axis by ΓS, and by ΓT

R the part of the boundary
that is not on the symmetry axis (see Fig. 5). Then, (21) is completed with
the following radiation–convection condition on the boundary ΓT

R :

k(x, T )
∂T

∂n
= α(Tc − T ) + γ(T 4

r − T 4), (23)

where α is the coefficient of convective heat transfer, Tc and Tr are the external
convection and radiation absolute temperatures, respectively, the coefficient
γ is the product of emissivity by Stefan–Boltzmann constant, and n is the
outward unit normal vector to the boundary. Besides, on the axis ΓS we set

k(x, T )
∂T

∂n
= 0.
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Metal
to heat

Symmetry axis

ΓR
T

ΓR
T

ΓR
T

ΓS

Fig. 5. Computational domain for the thermal problem

2.3 The Hydrodynamic Model

Let Ωl(t) be the radial section of the molten metal, and Γx(t), Γd(t) and
Γn(t) the different parts of the boundary at time t (depicted in Fig. 6). We
assume that the fluid motion is governed by the incompressible Navier–Stokes
equations:

ρ(x, T )
(
∂u
∂t

+ u · ∇u
)
− div(η(x, T )D(u)) +∇p = f in Ωl(t), (24)

div u = 0 in Ωl(t), (25)

where ρ denotes the density, u is the velocity field, η is the dynamic viscosity,
p is the pressure and D(u) denotes the symmetric part of gradu, namely

D =
gradu + gradut

2
.

We remark that the hydrodynamic domain is the molten region of the
metal, which varies as the metal melts or solidifies, so it depends on time.
Moreover, both density and viscosity are material properties which depend
on temperature, so for the solution of the thermal problem is essential to
solve the hydrodynamic problem.

The right-hand side term f contains the forces supported by the fluid due
to natural convection (buoyancy forces) and those due to the electromagnetic
field (Lorentz force):

f = ρ(x, T )g + J×B, (26)

where g is the acceleration of gravity.
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Solid
metal

Molten metal

Γn

Γx

Γd

Ω l

Γd

Γd

Fig. 6. Computational domain for the hydrodynamic problem

The term representing the Lorentz force is obtained from the solution of
the electromagnetic problem. Since in the electromagnetic model we work in
the frequency domain, the Lorentz force is determined by taking the mean
value in a cycle, namely

ω

2π

∫ 2π/ω

0

J (x, t)×B(x, t) dt, (27)

where J and B denote the current density and the magnetic induction,
respectively, and ω is the angular frequency.

In (24) we can rewrite the terms into the parenthesis as the material time
derivative of the velocity. If we do so, and use cylindrical coordinates, we
obtain the equations we will use in our model:

ρu̇r −
1
r

[
∂

∂r

(
ηr
∂ur

∂r

)
+
r

2
∂

∂z

(
η

(
∂ur

∂z
+
∂uz

∂r

))
− ur

r2

]
+
∂p

∂r
= fr, (28)

ρu̇z −
1
r

[
∂

∂r

(
η
r

2

(
∂ur

∂z
+
∂uz

∂r

))
+ r

∂

∂z

(
η
∂uz

∂z

)]
+
∂p

∂z
= fz, (29)

1
r

∂

∂r
(rur) +

∂uz

∂z
= 0, (30)

where we recall that ρ = ρ(r, z, T ) and η = η(r, z, T ).

Initial and Boundary Conditions for the Hydrodynamic Model

Equations (28)–(30) are completed with the following initial and boundary
conditions
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u = 0 on Γd(t) , (31)
Sn = 0 on Γn(t) , (32)
Sn = 0 on Γx(t) , (33)
u = 0 in Ωl(0) , (34)

where S denotes the Cauchy stress tensor, S = 2ηD(u) − pI, and n is the
outward unit normal vector to the boundary.

An Algebraic Turbulence Model: Smagorinsky’s Model

We recall that the Reynolds number is a dimensionless quantity which gives
the ratio of inertial forces to viscosity forces. It is given by

Re =
ρVL

µ
.

When this number goes beyond a threshold the flow becomes turbulent, and
it makes practically impossible to model its behaviour using the Navier–
Stokes equations, due to the extremely fine required computational mesh.
For numerical simulation purposes the Navier–Stokes equations are replaced
with the so-called Reynolds-averaged Navier–Stokes equations (see [MP94]):

ρ(x, T )
(
∂ū
∂t

+ ū · ∇ū
)
−div(η(x, T )D(ū))− divR +∇p̄ = f in Ωl(t), (35)

div ū = 0 in Ωl(t), (36)

where ū denotes the mean velocity and p̄ the mean pressure. The tensor R
is called the Reynolds stress tensor, and it represents the contribution of the
turbulent part to the mean flow.

The Boussinesq assumption consists in taking the Reynolds tensor as

R = −1
3
tr(R)I + 2ηtD(ū), (37)

where I is the identity tensor and ηt is the turbulent viscosity. Using this
assumption we can now rewrite equation (35) as

ρ(x, T )
(
∂ū
∂t

+ ū · ∇ū
)
− div(ηeff(x, T )D(ū)) +∇p̄∗ = f in Ωl(t), (38)

where p∗ = p − 1
3 tr(R) and ηeff is the effective viscosity, which is given by

ηeff = η + ηt. Different models are obtained depending on the way in which
the turbulent viscosity ηt is computed. A very simple and easy to implement
model is the one proposed by Smagorinsky (see [MP94]), which consists in
taking

ηt = ρch2|D(ū)|, c ∼= 0.01 (39)

where h(x) is the mesh size of the numerical method around point x.
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3 Numerical Approximation

To obtain a suitable discretization of the material time derivative in (21) and
(28) we have used the characteristics method (see [PIR82]).

Electromagnetic and thermal problems have been spatially discretized by
a piecewise linear finite elements associated with a triangular mesh. The elec-
tromagnetic problem is solved in the workpiece, the inductors and the air,
while the heat transfer equation is only solved in the workpiece.

The hydrodynamic problem has been spatially discretized by the finite
element couple P1-bubble/P1, which is known to satisfy the inf–sup condition
(see [BF91]). We remark that the hydrodynamic problem is only solved in the
liquid domain Ωl, which must be determined at each time step.

We also notice that, at each time step, the three problems form a coupled
nonlinear system. Indeed, in the thermal problem the heat source depends on
the solution of the electromagnetic problem, while the convective heat transfer
needs from the hydrodynamic problem. Moreover, the Lorentz force in the
hydrodynamic problem needs the solution of the electromagnetic problem.
On the other hand, parameters k, σ, µ, ρ and η depend on temperature, and
so does enthalpy. Furthermore, the radiation–convection boundary condition
in the thermal problem depends on T 4. To handle the coupling between the
three problems we propose a fixed point algorithm which is schematized in
Fig. 7 below.

Loop (iterations 
in the nonlinear terms)

Loop (iterations 
of the coupled problem)

Time step 
loop

Program initialization

Resolution of the 
electromagnetic problem

Resolution of the 
thermal problem

Computation of the 
hydrodynamic domain

Resolution of the 
hydrodynamic problem

Post-processing and 
results writing

End

Fig. 7. Scheme of the algorithm
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Remark 2. As we have seen in Remark 1 the velocity term in the Ohm’s law
is not considered, so the electromagnetic problem does not need the solution
of the hydrodynamic problem. Moreover, in the thermal problem, the velocity
field comes from the solution at the previous time step. Thus, we are allowed
to solve the hydrodynamic problem segregated from the two other problems,
which saves much computational time.

4 Numerical Results

In this section we present some numerical results obtained by using the algo-
rithm introduced above, which has been implemented in a computer Fortran
program. More precisely we have applied the algorithm to simulate an indus-
trial furnace used for silicon purification.

We consider a workpiece consisting of a graphite crucible surrounded by an
alumina layer and containing silicon. Since solid silicon is not very conductive,
a graphite susceptor is required to heat the silicon charge; heating the silicon is
then done by conduction and radiation from the graphite until the silicon melts
and it conducts electric current. All of materials are initially at 30◦C. The
induction coil is made of water-cooled copper. The geometrical data of this
furnace are summarized in Fig. 8 and Table 1. A detail of the computational
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Fig. 8. Sketch of the geometry
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Table 1. Geometrical data

A – Height of silicon: 0.45 m
B – Inner radius of crucible: 0.125 m
C – Outer radius of crucible: 0.225 m
D – Crucible height: 1.05 m
E – Crucible width: 0.05 m
F – Alumina layer width: 0.05 m
G – Turn diameter: 0.05 m
H – Turn height: 0.05 m
I – Distance between coil and crucible: 0.025 m
J – Distance between the turns: 0.01 m
Number of coil turns: 12
P, Q – Measure points

Fig. 9. Detail of the mesh

mesh can be seen in Fig. 9. The physical properties of the three materials in
the workpiece depend on temperature and have been obtained from literature.
Since we are not considering the thermal model in the coil, the electromagnetic
properties of copper are supposed to be constant. Several simulations have
been carried out, considering values of 100 Hz for the frequency and 5,500 Å for
the intensity.

Figure 10 shows the temperature field in the workpiece, for 30 min and
180 min, respectively. In Fig. 11 we represent the temperature in the silicon
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Fig. 10. Temperature field for t = 30 min (left) and t = 180min (right)

Fig. 11. Silicon temperature for t = 30 min (left) and t = 180min (right)

for the same times. During the first 30 min, the temperature of the workpiece
increases and the silicon begins to melt (the melting point is 1,412 ◦C) and
after 180 min the silicon is completely liquid. Figure 12 shows the modulus of
current density also for 30 min and 180 min, respectively. Notice that, since
solid silicon is not an electric conductor, the induced current density concen-
trates in the graphite. As silicon temperature increases, so does its electrical
conductivity and the induced current density on its surface.
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Fig. 12. Modulus of current density for t = 30min (left) and t = 180 min (right)

Fig. 13. Temperature with and without convection term (t = 180 min)

Figures 13 and 14 illustrate the importance of considering convective heat
transfer when computing the temperature field. In Fig. 13 one can check how
neglecting the convection term in the heat equation could cause the materials
to reach very high and unrealistic temperatures that, in particular, would
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Fig. 14. Evolution of temperature at points P and Q
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Fig. 15. Velocity field t = 90min (left) and t = 180 min (right)

cause the crucible to melt. The same conclusions can be obtained from Fig. 14,
that shows the evolution in time of the temperature of two different points in
the silicon: a point P close to the symmetry axis and another point Q close
to the graphite crucible, considering or not the convection term.

We complete these results by representing, in Fig. 15, the velocity field for
times t = 90 and t = 180 min, respectively. We can appreciate the swirls due
to Lorentz forces.
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Summary. Epitaxy is the growth of a thin film by attachment to an existing sub-
strate in which the crystalline properties of the film are determined by those of
the substrate. In heteroepitaxy, the substrate and film are of different materials,
and the resulting mismatch between lattice constants can introduce stress into the
system. We have developed an island dynamics model for epitaxial growth that is
solved using a level set method. This model uses both atomistic and continuum scal-
ing, since it includes island boundaries that are of atomistic height, but describes
these boundaries as smooth curves. The strain in the system is computed using
an atomistic strain model that is solved using an algebraic multigrid method and
an artificial boundary condition. Using the growth model together with the strain
model, we simulate pattern formation on an epitaxial surface.

1 Introduction

Epitaxy is the growth of a thin film on a substrate in which the crystal proper-
ties of the film are inherited from those of the substrate. Since an epitaxial film
can (at least in principle) grow as a single crystal without grain boundaries
or other defects, this method produces crystals of the highest quality.

The geometry of an epitaxial surface consists of step edges and island
boundaries, across which the height of the surface increases by one crys-
tal layer, and adatoms which are weakly bound to the surface. Epitaxial
growth involves deposition, diffusion, and attachment of adatoms on the
surface. Deposition is from an external source, such as a molecular beam.
The principal dimensionless parameter (for growth at low temperature) is
the ratio D/(a4F ), in which a is the lattice constant and D and F are the
adatom diffusion coefficient and deposition flux. It is conventional to refer
to this parameter as D/F , with the understanding that the lattice constant
serves as the unit of length. Typical values for D/F are in the range of
104–108.
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2 Island Dynamics

Burton, Cabrera, and Frank [2] developed the first detailed theoretical descrip-
tion for epitaxial growth. In this “BCF” model, the adatom density solves a
diffusion equation with an equilibrium boundary condition (ρ = ρeq), and
step edges (or island boundaries) move at a velocity determined from the
diffusive flux to the boundary. Modifications of this theory were made, for
example in [11], to include line tension, edge diffusion, and nonequilibrium
effects. These are “island dynamics” models, since they describe an epitaxial
surface by the location and evolution of the island boundaries and step edges.
They employ a mixture of coarse graining and atomistic discreteness, since
island boundaries are represented as smooth curves that signify an atomistic
change in crystal height.

Adatom diffusion on the epitaxial surface is described by a diffusion equa-
tion of the form

∂tρ−D∇2ρ = F − 2dNnuc/dt (1)

in which the last term represents loss of adatoms due to nucleation, and des-
orption from the epitaxial surface has been neglected. Attachment of adatoms
to the step edges and the resulting motion of the step edges are described by
boundary conditions at an island boundary (or step edge) Γ for the diffusion
equation and a formula for the step-edge velocity v. The simplest of these is

ρ = ρ∗ (2)
v = D[∂ρ/∂n]

in which the brackets indicate the difference between the value on the upper
side of the boundary and the lower side. Two choices for ρ∗ are ρ∗ = 0,
which corresponds to irreversible aggregation in which all adatoms that hit the
boundary stick to it irreversibly, and ρ∗ = ρeq for reversible aggregation. For
the latter case, ρeq is the adatom density for which there is local equilibrium
between the step and the terrace [2]. Numerical details on implementation of
the level set method for thin film growth are provided in [5].

2.1 Nucleation

For the case of irreversible aggregation, a dimer (consisting of two atoms) is
the smallest stable island, and the nucleation rate is

dNnuc

dt
= Dσ1〈ρ2〉, (3)

where 〈·〉 denotes the spatial average of ρ(x, t)2 and

σ1 =
4π

ln[(1/α)〈ρ〉D/F ]
(4)
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is the adatom capture number as derived in [1]. The parameter α reflects the
island shape, and α � 1 for compact islands. Expression (3) for the nucleation
rate implies that the time of a nucleation event is chosen deterministically.
Whenever NnucL

2 passes the next integer value (L is the system size), a new
island is nucleated. Numerically, this is realized by raising the level set function
to the next level at a number of grid points chosen to represent a dimer.

The choice of the location of the new island is determined by probabilistic
choice with spatial density proportional to the nucleation rate ρ2. This proba-
bilistic choice constitutes an atomistic fluctuation that must be retained in the
level set model for faithful simulation of the epitaxial morphology. For growth
with compact islands, computational tests have shown additional atomistic
fluctuations can be omitted [16].

Additions to the basic level set method, such as finite lattice constant
effects and edge diffusion, are easily included [17]. The level set method with
these corrections is in excellent agreement with the results of kinetic Monte
Carlo (KMC) simulations.

2.2 The Level Set Method

Within the level set approach, the union of all boundaries of islands of height
k + 1, can be represented by the level set ϕ = k, for each k. For example, the
boundaries of islands in the submonolayer regime then correspond to the set
of curves ϕ = 0. The function φ is the level set function that evolves according
to

∂φ

∂t
+ v|∇φ| = 0. (5)

All the physical information is in the normal component v of the velocity
function. Islands grow because atoms diffuse toward and attach to island
boundaries, and shrink because they can detach from an island boundary.

3 Discrete Elasticity

In heteroepitaxy, strain is introduced into the epitaxial system due to the
lattice mismatch between the two constituents of the material. Because of
the strain, atoms are displaced by a vector u from their lattice position. The
following discussion of atomistic strain and stress follows that in [19].

To describe the strain energy at each atom, i = (i, j, k), introduce the
translation operators, T±

k , and the discrete difference operators, D±
k , D0

k,
defined as follows:

T±
k f(i) = f(i± ek),

D+
k f(i) =

(T+
k − 1)f(i)

h
,
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D−
k f(i) =

(1− T−
k )f(i)
h

,

D0
kf(i) =

(T+
k − T−

k )f(i)
2h

,

where h is the lattice constant and ek is the vector in the kth direction for k =
1, 2, 3 with ‖ek‖ = h. Throughout this paper, we assume the lattice constant
h = 1 for simplicity. We use i for the depth-like index, with −∞ < i ≤ n.
Here n is the maximum height of the material. An ABC is sought at i = 0,
assuming that there is no force for i < 0.

Let u(i) = (uk(i))k=1,...,d be the displacement at the discrete point i
relative to an equilibrium lattice. The discrete strain components defined be-
low ((6) and (7)) can be used to describe the discrete elastic energy. For
k, � = 1, 2, 3 and p, q = ±,

S±
k	(u(i)) = D±

	 uk(i), (6)

Spq
k	 (u(i)) =

1
2
(Dq

	uk(i) +Dp
ku	(i)). (7)

The discrete energy density at a point i is then given by

E(i)(u,u) =
∑
k,p

αp
k(S

p
kk(u))2 +

∑
k �=	,p,q

{
2βpq

k	 (S
pq
k	 (u))2 + γpq

k	S
p
kk(u)Sq

		(u)
}
.

The total energy is the sum

E =
∑
i

E(i). (8)

The atomistic strain is determined by minimizing this energy with respect to
variations in u.

An effective numerical method for solving the atomistic strain equations
using an algebraic multigrid method was developed in [4]. Moreover an artifi-
cial boundary condition can be imposed in the substrate close to the interface
with the film, to greatly accelerate the computation [10].

4 Directed Self-Assembly

Regular patterns of nanoscale features, such as quantum dots [6,7,12], on an
epitaxial surface are of considerable interest for possible applications, ranging
from memory and logical devices to lasers. Features of this size are difficult to
obtain by standard “top-down” approaches, such as lithography. The sponta-
neous growth of quantum dot arrays is a promising “bottom-up” approach,
but it has proved difficult to control the size and spacing of quantum dots
obtained in this way. Directed self-assembly is an intermediate approach, in
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which formation of the desired patterns is guided by prepatterning of the
epitaxial system. For example, subsurface dislocation arrays have been sug-
gested as a prepatterning method [8,18]. These buried dislocations introduce
a long-range strain field, which alters the potential energy surface (PES) of
the system. Similarly, islands that are capped by a buffer layer of a different
material introduce a long-range strain field. It has been shown by density-
functional theory (DFT) calculations for metal systems [15] and semiconduc-
tor systems [14] that both the adsorption energy Ead and the transition energy
Etrans of the PES change upon strain.

We model epitaxial growth on a surface with a spatially varying, anisotropic
PES, using the following modification of the adatom diffusion equation (1)

∂ρ

∂t
= F +∇ · (D∇ρ)− 2

dN
dt

+∇ ·
(

ρ

kBT
D(∇Ead)

)
. (9)

In (9), D is a diffusion tensor where the diagonal entries are labeled Di(x)
and Dj(x), and correspond to diffusion along the two directions i and j.
For simplicity no other direction for diffusion is included (but could easily
be incorporated). The last term is the thermodynamic drift, where kB is the
Boltzmann constant, and T is the temperature. We enforce a boundary condi-
tion ρ(x) = ρeq(Ddet(x),x), where Ddet(x) is a (spatially varying) detachment
rate [3].

We assume a simple sinusoidal variation of Ead and Etrans. Figure 1 shows
the resulting patterns for PES with spatial variation that is one dimensional
(left) and two dimensional (right). These simulation results bear a striking
resemblance to the quantum dot patterns obtained in the experimental results
of [8].

Fig. 1. Pattern formation for monolayer height islands due to a spatially varying
PES, with sinusoidal variation in 1D (left) and 2D (right)
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Fig. 2. Morphologies at coverages Θ = 0.1 ML (left) and Θ = 0.3 ML (right) obtained
with a PES that has a much narrower variation

The morphologies shown so far were all obtained at a submonolayer
precoalescence coverage of Θ = 0.2 ML and with a PES that varies sinu-
soidally. Figure 2 shows the patterns that are obtained by a function that has
sharper peaks that those of a sine function. The resulting islands at coverage
Θ = 0.1 monolayer (ML) are highly aligned. Moreover, at Θ = 0.3 ML, all the
islands that are aligned along the j-direction have coalesced in this direction,
forming monolayer height “wires.” For more details on these computations,
see [13].

5 Conclusions

The island dynamics/level set method is capable of simulating epitaxial
growth with processes such as adatom detachment from islands that would
slow down other approaches. It can also be effectively combined with an atom-
istic strain code to simulate heteroepitaxial growth. The combined method can
be used to study pattern formation due to strain in self-assembly and directed
self-assembly.
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Summary. The subject of waves in fluids is addressed from three complementary
points-of-view: (Sect. 2) 60 mathematical forms of the acoustic wave equation in
fluids, applying to linear and non-linear, non-dissipative and dissipative, sound waves
in homogeneous or inhomogeneous, steady or unsteady media, at rest or in motion,
e.g. potential and vortical flows; (Sect. 3) the physical interactions between (i) sound
waves due to pressure fluctuations in a compressible fluid, with (ii) magnetic waves
in an ionized fluid under external magnetic fields, (iii) internal waves in a stratified
fluid under gravity and (iv) inertial waves due to Coriolis forces on a rotating fluid,
viz. magneto-acoustic-gravity-inertial waves; (Sect. 4) some engineering problems in
the area of aerocoustics, which has applications to aircraft, helicopters, rockets and
other aerospace vehicles, including acoustic fatigue, sonic boom, interior noise and
airport noise, concentrating on the last aspect.

1 Introduction

The classical wave equation describes the propagation of (i) linear (ii) non-
dissipative sound waves in a (iii) homogeneous and steady medium (iv) at
rest. There are many practical situations in which one or more of the assump-
tions (i)–(iv) do not hold, hence the importance to extend the acoustic wave
equation to (i) inhomogeneous and unsteady media, for which mean state
properties (such as mass density and sound speed), may depend, respectively,
on position and time; (ii) moving media, e.g. potential mean flows, or vortical
mean flows, such as shear flows or swirling flows; (iii) dissipation by thermal
conduction and bulk and shear viscosity and (iv) non-linear effects, either
weak or strong, depending on whether only second-order or also higher-order
non-linearities are included.

Acoustic waves occur in the low atmosphere and in the ocean, are impor-
tant in speech, hearing, music and high-fidelity sound reproduction and have
applications in ultrasonics (e.g. crack detection), as well as unwanted effects
(noise and acoustic fatigue). They are one (i) of the four types of waves in
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fluids, viz.: (ii) internal waves, in a stratified fluid under gravity occur in the
ocean and in the atmosphere of the earth and other planets; (iii) inertial waves
associated with the Coriolis force on rotating fluids, affect weather and climate
on the earth and occur on other rotating celestial bodies like planets and stars
and (iv) magnetic waves in an ionized fluid under an external magnetic field
occur in fusion reactors and magnetohydrodynamic generators, in the earth’s
molten core and high atmosphere (ionosphere) and in the plasma which con-
stitutes stars and permeates the interstellar medium. Their coupling leads to
magneto-acoustic-gravity-inertial waves.

Aeroacoustics is a major area of application of acoustics, since it is relevant
to many problems of aeronautics and astronauts e.g. (i) the noise of jet and
propeller engines at take-off and climb is a major contributor to airport noise;
(ii) at approach to land, with the engines at idle, the aerodynamic noise may
by comparable; (iii) the sonic boom of supersonic aircraft has so far restricted
commercial flight to subsonic speeds overland; (iv) the noise level of rockets
is high enough to cause acoustic fatigue of launcher structures and satellite
payloads and (v) the helicopter, due to the rotor and gearbox mechanisms it
uses, poses noise and vibration problems which limit the exploitation of its
ability to hover and fly low and slow near populated areas.

2 Sixty Acoustic Wave Equations

There are at least 60 forms of the acoustic wave equation in fluids (thus
excluding solids), which may be grouped in nine classes. The derivation of
the most general wave equation in each class can be made by elimination
among the equations of fluid mechanics; in some cases variational and other
methods can be used as alternatives. Thus, together with overlaps between
different classes, there may be several derivations of the same wave equation
and multiple cross-checks. In the present account one wave equation in each
class is indicated, often but not always the most general [1, 2]. The acoustic
wave equation has the same form for all acoustic variables (e.g. potential, gas
pressure, mass density and velocity perturbations) for linear non-dissipative
sound in an homogeneous steady medium, e.g. for the classical wave equation
in a medium at rest or convected wave equation in a uniform flow. In more
general conditions this is not usually the case and different acoustic variables
satisfy different wave equations, so it is reasonable to aim for the simplest.
Note also that non-linear waves are those with steep waveforms, viz. large am-
plitude waves are non-linear, but small amplitude waves with steep wavefronts
(‘ripples’) are also non-linear.

2.1 Nine Classes of Acoustic Wave Equations

The classical wave equation

c−2
0 φ̈−∇2φ = 0, (1)
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where φ is the acoustic potential, c0 the sound speed and dot denotes time
derivative φ̈ = ∂2φ/∂t2 assumes (i) an homogeneous and steady medium; (ii)
medium at rest; (iii) linear perturbations and (iv) no dissipation. Next will
be presented nine classes of acoustic wave equations, which generalize the
classical wave equation.

2.2 Class I: Linear, Non-dissipative Sound in a Potential
Mean Flow

The medium in assumed to be a potential flow of velocity v0, gas pressure p0,
mass density ρ0 and sound speed c0 which may depend on position (inhomo-
geneous medium) and/or on time (unsteady medium). Note that a potential
flow is homentropic; in this case there is an acoustic potential φ. The wave
equation can be deduced from equations of fluid mechanics [3, 4] or a varia-
tional method [5, 6]. The variational method uses the acoustic velocity and
pressure perturbations:

v = ∇φ, (2a)
p = −ρ0dφ/dt, (2b)

where d/dt is the material derivative for the mean flow:

d/dt = ∂/∂t+ v0 · ∇. (3)

The difference of the kinetic energy per unit volume (4a) and compression
energy (4b) in the quadratic approximation:

Ev = ρ0v
2 =

1
2
ρ0(∇φ)2, (4a)

Ep =
p2

2ρ0c20
=

1
2
ρ0c

−2
0 (dφ/dt)2, (4b)

specifies the acoustic Lagrangian:

£(φ, φ̇,∇φ;x, t) =
1
2

[
(∇φ)2 − c20(φ̇+ v0 · ∇φ)2

]
, (5)

which satisfies the principle of stationary action:

0 = δ

∫
d3x

∫
dt £(φ, φ̇,∇φ;x, t), (6)

leading to the Euler–Lagrange equation:

∂

∂t

∂£
∂φ̇

+∇ ·
[

∂£
∂(∇φ)

]
= 0. (7)

The substitution of (5) in the latter (7) specifies the wave equation in a po-
tential flow (W1–W9 – there are nine particular cases):
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d
dt

(
1
c20

dφ
dt

)
− 1
ρ0
∇ · (ρ0∇φ) = 0. (8)

In the case of an homogeneous, steady uniform flow it reduces to the convected
wave equation:

c−2
0 d2φ/dt2 −∇2φ = 0 (9)

and in the general case it has ten terms

φ̈− c20∇2φ− c20∇φ · ∇(log ρ0)− 2φ̇c−1
0 ċ0 + 2(v0 · ∇φ̇)

+(v̇0 · ∇φ)− 2φ̇v0 · ∇(log c0)− 2(v̇0 · ∇φ)c−1
0 ċ0

+(v0 · ∇)(v0 · ∇φ)− 2(v0 · ∇φ)v0 · ∇(log c0) = 0 (10)

as follows (i) the first two terms form the classical wave equation (1); (ii) the
third and fourth terms correspond to an inhomogeneous, unsteady medium
at rest; (iii) the fifth term accounts for uniform low Mach number convection;
(iv) the sixth to eighth terms includes inhomogeneous, unsteady low Mach
number mean flow; (v) the ninth term represents uniform high Mach number
convection and (vi) the tenth term includes non-uniform high Mach number
mean flow.

2.3 Class II: Non-linear, Non-dissipative Sound in a Potential
Mean Flow

The starting point is the exact continuity equation:

∇2Φ = ∇ ·V =
1
Γ

DΓ

dt
=

1
ΓC2

DP
dt

, (11)

where is Φ total potential, V the total velocity, P the total pressure, Γ the
total mass density and C the total sound speed:

C2 = c2∗ − (γ − 1)
[
Φ̇+

1
2
(∇Φ)2

]
, (12)

where c∗ denotes the stagnation sound speed. For homentropic flow with en-
thalpy H:

1
Γ

DP
dt

=
DH
dt

= Ḣ + V · ∇H = Ḣ +∇Φ · ∇H, (13)

the Bernoulli equation

H + Φ̇+
1
2
(∇Φ)2 = const, (14)

leads to the exact potential equation

Φ̈−
{
c2∗ − (γ − 1)

[
Φ̇+ (∇Φ)2/2

]}
∇2Φ +2Φ ·∇Φ̇+∇Φ · [(∇Φ · ∇)∇Φ] = 0,

(15)
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which includes non-linear terms up to the fourth-order. Assuming that the
mean flow is non-uniform but steady (it is not possible to distinguish non-
linear waves from a non-uniform, unsteady mean state), the exact wave equa-
tion is:

D
dt

(
δφ

δt

)
−
[
c2∗ − (γ − 1)

δφ

δt

]
∇2φ− c2∗∇φ · ∇(log ρ0) = 0, (16)

where the exact (17a) and self-convected (17b) material derivatives are used:

D
dt

=
∂

∂t
+ v0 · ∇+∇φ · ∇, (17a)

δ

δt
=

∂

∂t
+ v0 · ∇+

1
2
∇φ · ∇. (17b)

There are six particular cases (W10–W15) of the wave equation (16); it has
15 terms:

0 = φ̈− c20∇φ− c20∇φ · ∇(log ρ0) + 2(v0 · ∇φ̇)− 2φ̇v0 · ∇(log c0)
+(v0 · ∇)(v0 · ∇φ)− 2(v0 · ∇φ̇)v0 · ∇(log c0) + (γ − 1)∇2φ+ 2∇φ̇ · ∇φ
+∇φ [(v0 · ∇)∇φ] + v0 [(∇φ · ∇)∇φ] +∇φ [(∇φ · ∇)v0]

−(∇φ)2v0 · ∇(log c0) +
γ − 1

2
(∇φ)2∇2φ+∇φ · [(∇φ · ∇)∇φ] (18)

(i) the first three coincide with the classical wave equation for linear waves
in a steady inhomogeneous medium at rest; (ii) the fourth to seventh terms
apply to a linear waves, in a moving medium (10); (iii) the eighth to eleventh
terms account for quadratic non-linearities in a homogeneous medium; (iv) the
twelfth and thirteenth terms include quadratic non-linearities in an inhomo-
geneous medium and (v) the 14th and 15th terms show that the highest-order
non-linearities are cubic [7, 8].

2.4 Class III: Linear, Non-Dissipative Sound
in a Quasi-one-Dimensional Duct

Consider (Fig. 1) a straight duct with longitudinal coordinate x, non-uniform
cross-section A(x), steady shape (no coupling to elastic walls), containing a
one-dimensional mean flow (which is always potential).

The Lagrangian per unit length:

£∗ = A£ =
1
2
ρ0A

[
φ′2 − c−2

0 (φ̇+ v0φ
′)2
]
, (19)

where prime denotes derivative with regard to x, viz. φ′ ≡ ∂φ/∂x, leads to
the high-speed wave equation

d
dt

(
1
c20

dφ
dt

)
− 1
ρ0A

(ρ0Aφ
′)′ = 0, (20)
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Fig. 1. Quasi-one-dimensional propagation in duct of varying cross-section

which is similar to a one-dimensional form of Class I, replacing in (10) the
mass density ρ0 per unit volume by the mass of fluid per unit length ρ0A; it
has nine particular cases (W16–W24). It consists of 11 terms:

0 = φ̈− c20 [φ′′ + φ′(A′/A+ ρ′0/ρ0)]− 2φ̇ċ0/c0 + 2v0φ
′ + v̇0φ

′

−2φ̇v0c
′
0/c0 − 2v0φ

′c′0/c0 + v0(v0φ
′)− 2v2

0φ
′c′0/c0, (21)

namely (i) the first five apply to a horn [9–12] i.e. a duct of non-uniform
cross-section without flow and (ii) the last six to a nozzle [13–17], i.e. a duct
of non-uniform cross-section with mean flow.

2.5 Class IV: Non-Linear, Non-Dissipative Sound
in a Quasi-One-Dimensional Duct

The combination of non-linearity (Class II) with a duct of non-uniform cross-
section (Class III), leads to (Class IV) which has six particular cases (W25–
W30). The most general is non-linear high-speed nozzle wave equation:

D
dt

(
δφ

δt

)
−
[
c20 − (γ − 1)

δφ

δt

](
φ′′ + φ′A

′

A

)
− c20φ

′ ρ
′
0

ρ
, (22)

where (i) the first term involves the non-linear (17a) and self-convected (17b)
material derivatives; (ii) the second term has as a factor (12) the non-linear
sound speed; (iii) the remaining factor in the second term is the Laplacian
replaced by duct wave operator [9–12] and (iv) the last term applies to an
inhomogeneous medium. The most general wave equation (W30) of Class
IV is

0 = φ̈− c20φ
′′ − c20φ

′A′/A− c20φ
′ρ′0/ρ0 − 2φ̇v0c

′
0/c0 + v0(v0φ

′)′

−2v2
0φ

′c′0/c0 + 2φ̇φ̇′ + (γ − 1)φ′φ′′ + (γ − 1)φ̇φ′A′/A

+φ′(v0φ
′)′v0 + φ′φ′′ + (γ − 1)v0φ

′2A′/A− φ′2v0c
′
0/c0

+
γ − 1

2
φ̇φ′2 +

γ − 1
2

φ′2φ′′ +
γ − 1

2
φ′3A

′

A
, (23)

has 17 terms (i) the first four apply to linear waves in an inhomogeneous horn;
(ii) the terms five to seven concern linear waves in an inhomogeneous nozzle;
(iii) the terms eight to ten specify quadratic non-linearities in a horn; (iv) the
terms 11–14 represent quadratic non-linearities in a nozzle and (v) the terms
15–17 represent cubic non-linearities. Note that all all cases of potential flows
have been covered as shown in Table 1.
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Table 1. Acoustics of potential flows

Waves Free-space 1-D ducts

Linear Class I Class III
Non-linear Class II Class IV

2.6 Class V: Acoustic Waves in a Unidirectional Shear Flow

The acoustics of vortical flows is considered next, in the particular cases of
(Sect. 2.5) shear flows [18–24]; (Sect. 2.6) rotating flows [25–27]. In both cases,
since the mean flow is vortical, there is no acoustic potential; the scalar wave
equation is obtained for the acoustic pressure perturbation. In a potential
mean flow the are two acoustic modes plus decoupled vorticity (by Kelvin’s
theorem); in a vortical mean flow the sound couples to vorticity leading to a
third-order wave equation. The simplest shear flow is unidirectional (24a) and
leads to a material derivative (24b):

v0 = U(y, z)ex, (24a)
d/dt = ∂/∂t+ U(y, z)∂/∂x. (24b)

The acoustic wave equation, for acoustic pressure in unidirectional shear flow,
has four (W31–W34) particular cases and consist of four terms:

0 =
d
dt

[
1
c20

d2p

dt2
−∇2p

]
+

d
dt

[∇p · ∇(log ρ0)]

+2ρ0

(
∂U

∂y

∂2p

∂x∂y
+
∂U

∂z

∂2p

∂x∂y

)
(25)

as follows (i) the first two coincide with the convected wave equation (9) for
homentropic flow without shear; (ii) the third term applies to isentropic, non-
homentropic flow [compare with (10)] without shear and (iii) the fourth term
shows that the presence of shear in the mean flow leads to a third-order wave
equation.

2.7 Class VI: Acoustics of Sheared and Swirling Axisymmetric
Mean Flow

For a rotating fluid, assuming an axisymmetric mean flow and using cylindrical
coordinates, the mean flow velocity:

v0(r) = U(r)ez + rΩ(r)eθ, (26)

consists of an axial shear and azimuthal rotation. There are 12 forms of the
acoustic wave equation (W36–W60); the most general (W50) reduces in the
low Mach number swirl and shear approximation:

(Ω + dU/dr)2 
 r2[c0(r)]2 (27)
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to the form:

0 =
d
dt

[
1
c20

d2p

dt2
− 1
r

∂

∂r

(
r
∂p

∂r

)
− 1
r2

∂2p

∂θ2
− ∂2p

∂z2

]
+2

dU
dr

∂2p

∂z∂r
+ 2

dΩ
dr

(
∂2p

∂θ∂r
− 1
r

∂p

∂θ

)
+

d
dt

[
∂p

∂r

∂

∂r
(log ρ0)

]
+

2Ω
r

∂p

∂θ

∂p

∂r

∂

∂r
(log ρ0) (28)

consisting of five terms (i) the first term corresponds to the convected wave
operator (9) in cylindrical coordinates; (ii) the second term accounts for
sheared mean flow [compare with (25)]; (iii) the third term corresponds to
swirling mean flow and (iv) the fourth and fifth terms represent isentropic,
non-homentropic mean flow.

2.8 Class VII: Viscous and Resistive Dissipation of Linear Sound

The magnitude of the viscous dissipation of sound is comparable to that for
thermal conduction so both must be considered. The vorticity decouples and
satisfies diffusion equation

Ω ≡ ∇× v, (29a)
Ω̇ = ν∇2Ω, (29b)

showing that it is dissipated only by shear viscosity ν; thus it is sufficient
to consider a wave equation only for the dilatation Ψ = ∇ · v; the latter
is dissipated by shear viscosity ν, bulk viscosity β and thermal conductive
diffusivity α. There are two particular cases (W51 and W52) of the linear dis-
sipative acoustic wave equation in an homogeneous medium at rest; it consists
of five terms:

...

Ψ −c20∇Ψ̇ = (4ν/3 + β + α)∇2Ψ̈ − c20(α/γ)∇4Ψ − α(4µ/3 + β)∇4Ψ̇ (30)

(i) the first two correspond to the classical wave equation (1) differentiated
to the third-order in time; (ii) the third term corresponds to small diffusities
and is of the second-order in space and time; (iii) the fourth term is of the
fourth-order in space and involves the adiabatic exponent γ and (iv) the last
term involves the product of diffusivities, so it applies to large diffusivities
and is of the fourth-order in space and first-order in time.

2.9 Class VIII: One-dimensional Viscous Non-Linear Waves
in a Quasi-One-Dimensional Duct of Variable Area

The quadratic non-linearities are sufficient to lead to wave front steeping and
shock formation; the linear dissipation opposes this, leading to shock widening


