Frank Gustrau

Angewandte Feldtheorie

Eine praxisnahe Einführung in die Theorie elektromagnetischer Felder

Gustrau Angewandte Feldtheorie

Bleiben Sie auf dem Laufenden!

Hanser Newsletter informieren Sie regelmäßig über neue Bücher und Termine aus den verschiedenen Bereichen der Technik. Profitieren Sie auch von Gewinnspielen und exklusiven Leseproben. Gleich anmelden unter

www.hanser-fachbuch.de/newsletter

Frank Gustrau

Angewandte Feldtheorie

Eine praxisnahe Einführung in die Theorie elektromagnetischer Felder

Mit 166 Bildern und 3 Tabellen

Prof. Dr.-Ing. Frank Gustrau Fachhochschule Dortmund

Alle in diesem Buch enthaltenen Programme, Verfahren und elektronischen Schaltungen wurden nach bestem Wissen erstellt und mit Sorgfalt getestet. Dennoch sind Fehler nicht ganz auszuschließen. Aus diesem Grund ist das im vorliegenden Buch enthaltene Programm-Material mit keiner Verpflichtung oder Garantie irgendeiner Art verbunden. Autor und Verlag übernehmen infolgedessen keine Verantwortung und werden keine daraus folgende oder sonstige Haftung übernehmen, die auf irgendeine Art aus der Benutzung dieses Programm-Materials oder Teilen davon entsteht.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <u>http://dnb.d-nb.de</u> abrufbar.

ISBN: 978-3-446-45671-6 E-Book-ISBN: 978-3-446-45699-0

Dieses Werk ist urheberrechtlich geschützt.

Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder ein anderes Verfahren), auch nicht für Zwecke der Unterrichtsgestaltung – mit Ausnahme der in den §§ 53, 54 URG genannten Sonderfälle –, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

© 2018 Carl Hanser Verlag München Internet: <u>http://www.hanser-fachbuch.de</u>

Lektorat: Manuel Leppert, M.A. Herstellung: Dipl.-Ing. (FH) Franziska Kaufmann Coverconcept: Marc Müller-Bremer, www.rebranding.de, München Coverrealisierung: Stephan Rönigk Druck und Bindung: Hubert & Co. GmbH & Co. KG BuchPartner, Göttingen Printed in Germany

Vorwort

Die Theorie elektromagnetischer Felder ist seit jeher wesentlicher Bestandteil ingenieurwissenschaftlicher Studiengänge im Bereich der Elektro- und Informationstechnik und fest in den Curricula verankert. Das Fach verbindet physikalische Grundlagen mit modernen Anwendungsfeldern.

Im Grundlagenbereich wird das Fach *Elektromagnetische Feldtheorie* und in höheren Semestern die Fortführung und Vertiefung des Themas als *Theoretische Elektrotechnik* von Studierenden häufig als schwieriges Fach angesehen, weil es intensiv auf mathematische Zusammenhänge aus den Bereichen Vektoranalysis sowie Differential- und Integralrechnung zurückgreift und gleichermaßen abstraktes und räumliches Denken fordert. Die ernsthafte Auseinandersetzung mit diesen physikalischen Grundlagen ist allerdings von großem und dauerhaften Nutzen. Einerseits verankert es die vereinfachenden Modelle der Netzwerkanalyse in der komplexeren physikalischen Betrachtung und hält damit den Modellcharakter und die Grenzen der Methoden bewusst. Andererseits ist der komplexe Ansatz unumgänglich, wenn es darum geht, moderne technische Entwicklungen in der Informations- und Elektrotechnik zu verstehen und voranzutreiben.

Wesentliche Themenbereiche wie die *klassische Hochfrequenztechnik* mit ihren Wellenleiterstrukturen und Antennen, sowie der Bereich der *Elektromagnetischen Verträglichkeit*, der sich mit parasitären Kopplungen sowie Störaussendungen und -einkopplungen beschäftigt, sind ohne feldtheoretisches Verständnis seit jeher undenkbar.

In anderen Bereichen ist die Feldsimulation weniger etabliert. War zum Beispiel bis vor kurzem der Entwurf von elektronischen Schaltungen noch mit Schaltplänen für die Funktionalität und dem Leiterplatten-Layout mit Designregeln für die Herstellung zu bewerkstelligen, so ist aufgrund der steigenden Packungsdichten und der sich immer weiter erhöhenden Taktraten digitaler Schaltungen die konkrete Umsetzung oft nur mit feldtheoretischen Betrachtungen und Optimierungen des Layouts zu beherrschen.

Um den gestiegenen Anforderungen beim Entwurf von Komponenten, Schaltungen und Systemen zu begegnen, stehen dem Entwickler mittlerweile umfangreiche und anwendungsfreundliche Softwarewerkzeuge zur Verfügung, die sehr unterschiedliche methodische Ansätze unter einer Oberfläche vereinen. Die *elektromagnetische Co-Simulation* bringt dabei Schaltungssimulation und Feldsimulation zusammen. Kritische Subsysteme können genauer mit einem Feldsimulator untersucht und weniger kritische Schaltungsteile mit dem klassischen Schaltungssimulator berechnet werden. Der Schaltungsentwickler muss also zunehmend auch Feldsimulationen durchführen.

Das vorliegende Buch erlaubt dem Studierenden den Einstieg in das Themengebiet der Feldtheorie und Simulation. Dreh- und Angelpunkt für die analytischen Betrachtungen sind die *Maxwell'schen Gleichungen* in Differential- und Integralform. Dabei wird auf Anschauung und mathematische Berechenbarkeit gleichermaßen geachtet. Analytische Berechnungen und numerische Beispiele in den einzelnen Kapiteln vertiefen das Verständnis und verknüpfen Theorie und praktische Anwendung. Die Simulationen werden mit modernen kommerziellen Simulationswerkzeugen durchgeführt, wie sie auch in der täglichen Praxis des Ingenieurs verwendet werden. Anhand von numerischen Berechnungen werden die analytischen Betrachtungen nachvollzogen. Ziel ist es einen klaren Blick auf die Möglichkeiten und Grenzen der analytischen und numerischen Ansätze zu gewinnen. Am Ende des Buches schauen wir noch auf einige Anwendungsbeispiele aus den Bereichen Hochfrequenztechnik und Elektromagnetische Verträglichkeit.

Dieses Buch enthält zunächst selbst keine Übungsaufgaben für Studierende. Zur Vertiefung der Lehrinhalte ist das eigene Rechnen aber sehr wichtig. Es wurde daher eine Website mit Aufgaben und Lösungen zum Themengebiet eingerichtet.

http://www.fh-dortmund.de/gustrau_angewandte_feldtheorie

An dieser Stelle bedanke ich mich bei allen Kollegen und Studierenden, die durch ihre Anregungen – sei es durch ihre Fragen in Lehrveranstaltungen, sei es durch das Probelesen einzelner Kapitel – zu diesem Buch beigetragen haben. Meiner Familie, die mich über die Entstehungszeit dieses Buches unterstützt hat, gilt mein ganz besonderer Dank.

Dortmund, im Frühjahr 2018

Frank Gustrau

Inhalt

1	Ein	Einleitung 13			
_	1.1	Netzwerk- und Feldtheorie			
	1.2	Anwendungsbereiche der Feldsimulation			
	1.3	Aufba	u der nachfolgenden Kapitel	17	
2	Ele	ktror	nagnetische Feldtheorie	19	
	2.1	Physi	kalische Grundlagen	19	
		2.1.1	Elektrostatische Feldgrößen	19	
			2.1.1.1 Ladung und Coulomb-Kraft	19	
			2.1.1.2 Elektrische Feldstärke	20	
			2.1.1.3 Spannung und elektrisches Potential	22	
			2.1.1.4 Polarisation und relative Dielektrizitätszahl	26	
			2.1.1.5 Verhalten bei Wechselstrom	28	
			2.1.1.6 Dielektrische Verschiebungsdichte	28	
			2.1.1.7 Elektrische Feldenergie und Kapazität	29	
		2.1.2	Stationäre elektrische Strömungsfelder und magnetische Felder	30	
			2.1.2.1 Stromdichte, Leistungsdichte und Widerstand	30	
			2.1.2.2 Magnetische Feldstärke und magnetische Flussdichte	32	
			2.1.2.3 Magnetische Feldenergie und Induktivität	33	
			2.1.2.4 Lorentz-Kraft	34	
		2.1.3	Vektoranalytische Operatoren	34	
			2.1.3.1 Divergenz	34	
			2.1.3.2 Rotation	35	
			2.1.3.3 Quellen- und Wirbelfelder	35	
			2.1.3.4 Laplace-Operator	36	
	2.2	Maxw	vell'sche Gleichungen	39	
		2.2.1	Differentialform für allgemeine Zeitabhängigkeit	39	
		2.2.2	Differentialform für harmonische Zeitabhängigkeit	40	
		2.2.3	Integralform	41	
		2.2.4	Materialgleichungen	43	
		2.2.5	Verhalten an Materialgrenzen	45	

		2.2.6	Ladungserhaltung	47
	2.3 Einteilung elektromagnetischer Feldprobleme			
	2.4	Statis	che Felder	49
		2.4.1	Elektrostatische Felder	49
			2.4.1.1 Poisson-Gleichung	50
			2.4.1.2 Green'sche Funktion	51
		2.4.2	Magnetostatische Felder	52
			2.4.2.1 Magnetisches Vektorpotential	52
			2.4.2.2 Biot-Savart'sches Gesetz	54
		2.4.3	Statisches Strömungsfeld	57
	2.5	Quasi	istatische Felder	58
	2.6	Stron	nverdrängung (Skineffekt)	61
		2.6.1	Eindringtiefe	62
		2.6.2	Äquivalente Leitschichtdicke	64
	2.7	Elektı	romagnetische Wellen	66
		2.7.1	Wellengleichung	66
		2.7.2	Homogene ebene Wellen	68
		2.7.3	Polarisationsrichtung	71
			2.7.3.1 Lineare Polarisation	72
			2.7.3.2 Zirkulare Polarisation	72
			2.7.3.3 Elliptische Polarisation	73
		2.7.4	Reflexion und Brechung an ebenen Grenzflächen	74
			2.7.4.1 Senkrechter Einfall	74
			2.7.4.2 Schräger Einfall	76
		2.7.5	Kugelwellen	81
		2.7.6	Wellen in verlustbehafteten Medien	82
	2.8	Energ	gieerhaltung	86
	2.9	Elektı	romagnetische Potentiale	88
		2.9.1	Potentiale und Feldgrößen	88
		2.9.2	Lorenz-Eichung und Wellengleichungen	89
		2.9.3	Harmonische Zeitabhängigkeit und Green'sche Funktion	90
	2.10	Leistı	ingsumsatz und Temperaturfelder	92
3	Nu	meris	sche Feldberechnung	95
	3.1	Überl	blick	95
	3.2	Meth	ode der Finiten Differenzen im Zeitbereich (FDTD)	97
		3.2.1	Maxwell'sche Gleichungen	97
		3.2.2	Diskretisierung des Problems	98
			0	

	3.2.3	Stabilität und Dispersion 103			
	3.2.4	Randbedingungen 104			
	3.2.5	Tore und Netzwerkgrößen 104			
	3.2.6 Zeitsignale				
3.3	Meth	ode der Finiten Elemente (FEM) 107			
	3.3.1	Variationsrechnung 107			
	3.3.2	Finite Elemente 108			
	3.3.3	Formfunktionen 108			
	3.3.4	Elementmatrix 110			
	3.3.5	Gesamtmatrix 111			
	3.3.6	Lösung des linearen Gleichungssystems 112			
3.4	Mom	entenmethode (MoM) 113			
	3.4.1	Grundidee des Verfahrens 113			
	3.4.2	Linienförmige Leiter 114			
	3.4.3	Geschichtete Strukturen 116			
3.5	Weite	re Verfahren 118			
3.6	Simul	ationssoftware 118			
	3.6.1	Aufbau und Workflow 119			
		3.6.1.1 Prä-Prozessor 119			
		3.6.1.2 Problemlöser (Solver) 120			
		3.6.1.3 Post-Prozessor 121			
		3.6.1.4 Parametervariation und Optimierung 122			
	3.6.2	Aufbau der Geometrie 122			
		3.6.2.1 Interaktive Geometrieeingabe 122			
		3.6.2.2 Import von CAD-Daten 124			
		3.6.2.3 Overmodeling vermeiden 124			
	3.6.3	Anregungen und Tore 124			
		3.6.3.1 Konzentrierte Tore 125			
		3.6.3.2 Wellenleitertore 125			
		3.6.3.3 Feldanregungen 126			
		3.6.3.4 Anregungssignale 126			
	3.6.4	Randbedingungen 127			
	3.6.5	Diskretisierung 129			
	3.6.6	Resourcebedarf 132			
	3.6.7	Auswahl der numerischen Methode 134			
		3.6.7.1 Momentenmethode 134			
		3.6.7.2 Finite-Elemente-Methode 135			
		3.6.7.3 Methode der Finiten Differenzen im Zeitbereich 135			
	3.6.8	Nach der Simulation 136			
3.7	Zusar	ammenfassung 137			

Sta	Statische magnetische Felder			
4.1	Lang	gestreckter Linienleiter	138	
4.1.1		Berechnung mit dem Durchflutungsgesetz	139	
	4.1.2	Feldsimulation	140	
4.2	Zweic	drahtleitung	143	
	4.2.1	Anwendung des Superpositionsprinzips	144	
	4.2.2	Feldsimulation	146	
4.3	Ringspule		149	
	4.3.1	Berechnung mit dem Biot-Savart'schen Gesetz	149	
	4.3.2	Feldsimulation	152	
	4.3.3	Helmholtzspule	154	
4.4	Koaxi	iale Anordnung	158	
	4.4.1	Berechnung mit dem Durchflutungsgesetz	158	
	4.4.2	Rückrechnung auf die Ursachen des magnetischen Feldes	164	
		4.4.2.1 Berechnung der Quellendichte	164	
		4.4.2.2 Berechnung der Wirbeldichte	164	
	4.4.3	Berechnung der Induktivität	166	
	4.4.4	Feldsimulation	168	
4.5	Lang	gestreckte Zylinderspule	171	
	4.5.1	Magnetisches Feld und Induktivität	171	
	4.5.2	Feldsimulation	173	
Sta	tisch	ne elektrische Felder	177	
51	Platte	enkondensator		
0.1	511	Flektrisches Feld und Spannung	178	
	512	Kanazität als Systemgröße	179	
	513	Flektrische Feldenergie und Kanazität	180	
	514	Berechnung des elektrischen Strömungsfeldes	180	
	5.1.5	Feldsimulation mit der FDTD-Methode	181	
	0.1.0	5.1.5.1 Berechnung der Feldstärke und der Kanazität	183	
		5.1.5.2 Berechnung des Strömungsfeldes und des Widerstandes	185	
		5.1.5.3 Blick über den Tellerrand	187	
	5.1.6	Feldsimulation mit der Momentenmethode.	189	
	5.1.7	Feldsimulation mit der Finite-Elemente-Methode	190	
5.2	Koaxi	iale Anordnung	192	
	5.2.1	Elektrisches Feld und Spannung	193	
5.2.1 F		Elektrische Feldenergie und Kapazität	195	
	5.2.3	Berechnung des elektrischen Strömungsfeldes im Leitermaterial	196	
	Sta 4.1 4.2 4.3 4.4 4.5 Sta 5.1	Statisch 4.1 4.12 4.12 4.12 4.2 4.2 4.2 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.4 4.4.2 4.3 4.4.3 4.4.1 4.4.2 4.4.3 4.4.4 4.5.1 4.5.2 Statisch 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.2 5.2.1 5.2.2 5.2.3	Statische magnetische Felder 4.1 Langgestreckter Linienleiter 4.1.1 Berechnung mit dem Durchflutungsgesetz 4.1.2 Zweidrahtleitung 4.2.1 Anwendung des Superpositionsprinzips 4.2.2 Feldsimulation 4.3.1 Berechnung mit dem Biot-Savart'schen Gesetz 4.3.2 Feldsimulation 4.3.3 Helmholtzspule 4.4 Koaxiale Anordnung 4.4.1 Berechnung mit dem Durchflutungsgesetz 4.4.2 Rückrechnung auf die Ursachen des magnetischen Feldes 4.4.2 Rückrechnung dur Guellendichte 4.4.2.1 Berechnung der Induktivität 4.4.4 Feldsimulation 4.5.1 Magnetisches Feld und Induktivität 4.5.2 Feldsimulation 4.5.3 Berechnung des lektrischen Strömungsfeldes 5.1 Plattenkondensator 5.1.1 5.1.2 Kapazität als Systemgröße	

		5.2.4	Feldsimulation	196
			5.2.4.1 Berechnung der Kapazität	197
			5.2.4.2 Berechnung des Ohm'schen Widerstandes	200
C	140	a na ati		101
0	Ma	gneti		201
	6.1	Induk	ctionsgesetz	201
	6.2	Offen	e Leiterschleife neben einer Zweidrahtleitung	202
		6.2.1	Berechnung der induzierten Spannung	203
		6.2.2	Feldsimulation	204
			6.2.2.1 Berechnung der magnetischen Feldstärke	204
			6.2.2.2 Berechnung der induzierten Spannung	204
	6.3	Wirbe	elströme in einem elektrisch leitfähigen Zylinder	207
		6.3.1	Berechnung der induzierten Stromdichte	207
		6.3.2	Umgesetzte Leistung und Erwärmung	208
		6.3.3	Simulationsmodell	210
			6.3.3.1 Erzeugung eines homogenen magnetischen Feldes	210
			6.3.3.2 Berechnung der Verteilung der Stromdichte	213
7	er:	noffo	kt und Wallanausbraitung	015
	JKI	Chine	dichte im milie deischen Leiten	215
	7.1	Stron		215
		7.1.1	Stromverdrangung (Skineffekt) und Ohmscher Widerstand	215
		7.1.2	Feldsimulation	217
	7.2	Welle	nausbreitung	219
		7.2.1	Homogene ebene Wellen, Kugel- und Zylinderwellen	219
		7.2.2	Wellenausbreitungsphänomene	221
			7.2.2.1 Reflexion und Brechung	221
			7.2.2.2 Beugung	222
			7.2.2.3 Absorption	222
			7.2.2.4 Streuung	222
		7.2.3	Feldsimulation	224
			7.2.3.1 Homogene ebene Welle (HEW)	224
			7.2.3.2 Kugelwelle	225
			7.2.3.3 Hindernis im Wellenfeld	228
8	۸n	wond	unden	220
0	A II 8 1	Cohö	ungen	220
	0.1	0 1 1	Uselesullanzell	229
		ŏ.1.1		229
		8.1.2	verkopplung zwischen Schaltungsteilen in einem metallischen Gehäuse	231

			8.1.2.1 Schaltungen ohne	e Gehäuse im freien Raum 232
			8.1.2.2 Schaltungen umg	eben von einem metallischen Gehäuse 233
			8.1.2.3 Schaltungen umg	eben von einem metallischen Gehäuse mit Ab-
			sorbermaterial	
	8.2	Vierte	wellen-Monopol	
		8.2.1	Antennen	
			8.2.1.1 Antennenkenngrö	ößen 238
			8.2.1.2 Fußpunktimpeda	nz und Anpassung 240
			8.2.1.3 Lineare Antenner	
			8.2.1.4 Monopolantenne	
		8.2.2	Berechnung und Anpassu	ng einer Monopolantenne 244
			8.2.2.1 Feldverteilung un	d Impedanzverlauf der Monopolantenne 244
			8.2.2.2 Anpassschaltung	
	8.3	Grup	enantenne mit Patchelem	enten 249
		8.3.1	Einzelne Patchantenne	
		8.3.2	Gruppenantenne mit Bea	mforming 252
_				
A	Anl	hang		
Α	Anl A.1	hang Mathe	matische Grundlagen	
Α	Anl A.1	hang Mathe A.1.1	matische Grundlagen Ableitungsregeln	
Α	Anl A.1	hang Matho A.1.1 A.1.2	matische Grundlagen Ableitungsregeln Ableitungen elementarer	257
Α	An A.1	hang Mathe A.1.1 A.1.2 A.1.3	matische Grundlagen Ableitungsregeln Ableitungen elementarer Vektoralgebra	257 257 257 Funktionen
Α	Anl A.1	hang Matho A.1.1 A.1.2 A.1.3 A.1.4	matische Grundlagen Ableitungsregeln Ableitungen elementarer Vektoralgebra Zusammenhänge aus der	257 257 257 Funktionen
Α	Ani A.1 A.2	hang Matho A.1.1 A.1.2 A.1.3 A.1.4 Koord	matische Grundlagen Ableitungsregeln Ableitungen elementarer Vektoralgebra Zusammenhänge aus der natensysteme	257 257 257 Funktionen 258 259 Vektoranalysis 261 262
Α	Anl A.1 A.2	hang Matho A.1.1 A.1.2 A.1.3 A.1.4 Koord A.2.1	matische Grundlagen Ableitungsregeln Ableitungen elementarer Vektoralgebra Zusammenhänge aus der natensysteme Kartesisches Koordinaten	257 257 Funktionen
Α	Ani A.1 A.2	Mathon A.1.1 A.1.2 A.1.3 A.1.4 Koord A.2.1 A.2.2	matische Grundlagen Ableitungsregeln Ableitungen elementarer Vektoralgebra Zusammenhänge aus der natensysteme Kartesisches Koordinaten Zylinderkoordinatensyste	257 257 257 Funktionen 258 259 Vektoranalysis 261 262 system 263 m 264
Α	Ani A.1 A.2	Matha A.1.1 A.1.2 A.1.3 A.1.4 Koord A.2.1 A.2.2 A.2.3	matische Grundlagen Ableitungsregeln Ableitungen elementarer Vektoralgebra Zusammenhänge aus der natensysteme Kartesisches Koordinaten Zylinderkoordinatensystem Kugelkoordinatensystem	257 257 Funktionen
Α	Ani A.1 A.2	Mathe A.1.1 A.1.2 A.1.3 A.1.4 Koord A.2.1 A.2.2 A.2.3	matische Grundlagen Ableitungsregeln Ableitungen elementarer Vektoralgebra Zusammenhänge aus der natensysteme Kartesisches Koordinaten Zylinderkoordinatensystem	257 257 Funktionen
For	Anl A.1 A.2 mel	Mathe A.1.1 A.1.2 A.1.3 A.1.4 Koord A.2.1 A.2.2 A.2.3 zeich	matische Grundlagen Ableitungsregeln Ableitungen elementarer Vektoralgebra Zusammenhänge aus der natensysteme Kartesisches Koordinaten Zylinderkoordinatensystem Kugelkoordinatensystem	257 257 257 Funktionen
For	Anl A.1 A.2 mel	Matha A.1.1 A.1.2 A.1.3 A.1.4 Koord A.2.1 A.2.2 A.2.3 Zeich	matische Grundlagen Ableitungsregeln Ableitungen elementarer Vektoralgebra Zusammenhänge aus der natensysteme Kartesisches Koordinaten Zylinderkoordinatensyste Kugelkoordinatensystem	257 257 Funktionen 258 259 Vektoranalysis 261 262 system 263 m 264 265 n 267
A For Lite	Ani A.1 A.2 mel	Mathe A.1.1 A.1.2 A.1.3 A.1.4 Koord A.2.1 A.2.2 A.2.3 zeich	matische Grundlagen Ableitungsregeln Ableitungen elementarer Vektoralgebra Zusammenhänge aus der natensysteme Kartesisches Koordinaten Zylinderkoordinatensystem Kugelkoordinatensystem	257 257 257 Funktionen 258 259 Vektoranalysis 261 262 system 263 m 264 265 n 267

Einleitung

Die Theorie elektromagnetischer Felder ist eine der Grundsäulen der Elektro- und Informationstechnik. Sie beschreibt mathematisch die physikalischen Zusammenhänge zwischen den elektrischen und magnetischen Feldgrößen und ist notwendig, wenn man die Wirkungsweise technischer Komponenten, wie zum Beispiel elementarer Bauelemente, komplexer Maschinen oder Antennen, verstehen will.

Die elektromagnetische Feldtheorie knüpft dabei an grundlegende Phänomene der Mechanik an wie Kraft, Arbeit und Leistung. Zur detaillierten mathematischen Beschreibung werden dann elektrische und magnetische Vektorfelder eingeführt, die sich sehr gut veranschaulichen und damit begreifen lassen. Der strenge mathematische Formalismus und die visuelle Darstellung und *Greifbarkeit* geben dem Fach eine gewisse Eleganz, der man sich kaum entziehen kann, wenn man einmal die ersten Verständnisschwierigkeiten überwunden hat, die jede neue Materie mit sich bringt.

Der Ingenieur ist im Arbeitsalltag in der Regel eher Problemlöser als Wahrheitssucher. Er interessiert sich in der industriellen Praxis weniger für elegante und geschlossene Lösungen als vielmehr für effiziente Werkzeuge und Hilfsmittel. Was kann die elektromagnetische Feldtheorie also für ihn tun? Moderne Feldsimulationsprogramme erlauben es, praxisrelevante Strukturen numerisch zu berechnen. Diese Programme liefern *Näherungslösungen* und ersetzen zunehmend aufwendigere Messungen in einem frühen Entwurfsstadium. Sie vereinfachen und beschleunigen damit die Entwurfsphase technischer Komponenten und Schaltungen.

Ingenieure sind *visuell orientiert*, sie erfassen Zusammenhänge häufig durch Veranschaulichungen. Die elektromagnetische Feldtheorie bietet genau diese Anschauung durch die grafische Darstellung von Feldgrößen in Form von Feldlinienbildern oder Vektorplots. Moderne Feldsimulationsprogramme liefern somit einen Einblick in die Wirkungsweise von Schaltungsteilen und Komponenten. Hierdurch lässt sich oft unmittelbar erkennen, wo Probleme zu erwarten sind und Verbesserungspotential beim Entwurf liegt.

1.1 Netzwerk- und Feldtheorie

Die *elektromagnetische Feldsimulation* ist sehr nah an der physikalischen Realität. Die dreidimensionale Struktur und die verwendeten Materialien werden im Detail berücksichtigt. Die meisten Ingenieure der Elektro- und Informationstechnik sind hingegen mit der *Schaltungssimulation* vertraut, z. B. mit dem Programm PSpice. In der Schaltungssimulation befinden wir uns auf einer höheren Abstraktionsstufe und beschreiben Bauteile und Schaltungen nicht durch elektromagnetische Feldgrößen, sondern durch *Netzwerkgrößen*. Der Schaltungssimulation übergeordnet gibt es noch die Ebene der *Systemsimulation*, die sich auf einem noch höheren Abstraktionsniveau befindet. Bild 1.1a zeigt uns eine planare Spule. Ein flacher Leiter ist spiralförmig auf einem dielektrischen nichtleitenden Material geführt. Aus dem Innenbereich der kreisförmigen Anordnung wird der Leiter über eine Brücke zur Speisestelle zurückgeführt. Wird die Anordnung von einem Strom *I* durchflossen, so entstehen in der Umgebung der Leiter magnetische Felder $\vec{H}(\vec{r})$, die sich im Innenbereich konstruktiv überlagern. Bezüglich der beiden Anschlussklemmen ergibt sich in erster Näherung das Verhalten einer Induktivität. Schaut man genauer hin, so wird klar, dass der Leiter in der Praxis immer eine endliche Leitfähigkeit besitzt. Im Netzwerkmodell erscheint daher ein Ohm'scher Widerstand *R* in Reihe zur Induktivität *L*. Längs des spiralförmigen Leiters gibt es einen Spannungsabfall, infolgedessen sich ein elektrisches Feld zwischen den Leitern einstellt. Vereinfachend kann dies durch eine parallel geschaltete Kapazität *C* im Netzwerkmodell berücksichtigt werden.

Bild 1.1b zeigt das resultierende Netzwerkmodell oder *Ersatzschaltbild* der Anordnung, das für viele Anwendungsfälle ausreichend genau ist. In diesen Anwendungsfällen liefert das Modell

Bild 1.1 (a) Feldmodell und (b) Netzwerkmodell einer realen Spule

mit sehr wenigen Parametern einen sehr effizienten Ansatz, und es lassen sich Schaltungen mit sehr vielen solcher konzentrierter Elemente berechnen. Wir befinden uns dann im Bereich der *Schaltungssimulation*. Für die integralen Größen Strom und Spannung gelten dann die *Kirchhoff'schen Gesetze*, also Maschen- und Knotenregel. Bei linearem Verhalten kann mithilfe der komplexen Wechselstromrechnung ein Gleichungssystem für die Unbekannten aufgestellt und eine Lösung ermittelt werden. Dieser Ansatz ist innerhalb seines Gültigkeitsbereiches sehr effizient.

In einer *Feldsimulation* der in Bild 1.1a gezeigten Spulenanordnung können die für die Schaltungssimulation notwendigen Größen (Impedanzverhalten) bezüglich der Anschlussklemmen ermittelt werden. Darüber hinaus kann aber zusätzlich die Wechselwirkung mit der Umgebung (Nahfeld, Abstrahlung) bestimmt werden. Dies ist bei ansteigender Packungsdichte in integrierten Schaltungen in zunehmendem Maße notwendig. Die Feldsimulation basiert auf den *Maxwell'schen Gleichungen* und ist deutlich aufwendiger in der Durchführung als eine Schaltungssimulation. Der Vorteil der Feldsimulation liegt darin, dass der feldtheoretische Ansatz *universellere Gültigkeit* besitzt, denn er berücksichtigt deutlich mehr reale Aspekte.

In der Praxis nun besteht der Königsweg in der intelligenten Verknüpfung beider Ansätze. Kritische Komponenten und Geometrien werden mit dem Feldsimulator behandelt, weniger kritische Strukturen im Schaltungssimulator. So lassen sich effiziente Modelle mit einer dem Problem angepassten Genauigkeit erstellen. Bild 1.2a zeigt ein einfaches Beispiel für eine elektromagnetische Co-Simulation: Eine Antenne wird im Feldsimulator berechnet und die Anpassschaltung aus konzentrierten und als ideal angenommenen Elementen im Schaltungssimulator.

Bild 1.2 (a) Beispiel für eine elektromagnetische Co-Simulation: Berechnung der Anpassschaltung aus konzentrierten Elementen im Schaltungssimulator und Berechnung der Dipolantenne im Feldsimulator. (b) Darstellung des die Dipolantenne umlaufenden magnetischen Feldes

Während in einer Schaltungssimulation Strom und Spannung ermittelt werden, liegen nach einer Feldsimulation umfangreiche Informationen über die räumlichen Verteilungen der elek-

trischen und magnetischen Feldgrößen vor. Bild 1.2b zeigt das die Dipolantenne umlaufende magnetische Feld in einer horizontalen Darstellungsebene.

1.2 Anwendungsbereiche der Feldsimulation

Die elektromagnetische Simulation ist mittlerweile ein in der Praxis etabliertes Verfahren und wird in sehr unterschiedlichen Anwendungsbereichen eingesetzt. In der folgenden Aufzählung nennen wir einige Anwendungsbeispiele, die zeigen, wie breit das Einsatzgebiet für die elektromagnetische Feldtheorie und ihre Simulationswerkzeuge mittlerweile ist.

- Hochfrequenztechnik: In der Hochfrequenztechnik haben wir es mit Strukturen zu tun, deren Abmessungen im Bereich der Wellenlänge liegen. Es kommt somit zu Wellenausbreitung und Abstrahlung. Feldsimulationsprogramme wurden entsprechend in der Antennenentwicklung sehr frühzeitig eingesetzt. Mit der Steigerung der Rechenleistung hat sich die Feldsimulation auf alle Bereiche der Hochfrequenztechnik ausgedehnt, wie zum Beispiel Hohlleiter, dielektrische Wellenleiter, Filter, Koppler, IC-Gehäuse, Leitungsübergänge, Wellenausbreitung in Gebäuden und Spulen für RFID-Tags.
- Elektromagnetische Verträglichkeit: Ziel der Elektromagnetischen Verträglichkeit ist der störungsfreie Betrieb zwischen elektrischen Geräten und Systemen. Zu Störungen kann es kommen, wenn sich Signale auf parasitären Kopplungspfaden ausbreiten. Diese unerwünschten Kopplungspfade sind im Schaltplan nicht direkt ersichtlich. Mit Feldsimulationen können diese *parasitären Kopplungspfade* jedoch untersucht und durch Gegenmaßnahmen vermindert werden. Die Möglichkeit der Programme Feld- und Stromdichteverteilungen grafisch darzustellen ist äußerst hilfreich bei der Suche nach technischen Lösungen.
- Schaltungsentwurf: Immer höhere Takt- und Datenraten in modernen Digitalschaltungen (High speed digital) stellen neue Herausforderungen an das Design von Schaltungslayouts. Reflexionen, Überkopplungen und Laufzeitdifferenzen vermindern die Signalqualität und müssen hinreichend klein gehalten werden. Die Untersuchung und Optimierung der Signalintegrität (*Signal Integrity*) gelingt mit Schaltungs- und Feldsimulationen. Ein anschauliches Werkzeug zur Darstellung ist hierbei das Augendiagramm. Neben dem Trend zu höheren Taktraten finden wir auch zunehmend reduzierte Versorgungsspannungen. Ziel der Simulationen ist es somit, auch die Qualität des Versorgungsnetzes sicherzustellen (*Power Integrity*).
- **Biomedizinische Technik:** Die in der Magnet-Resonanz-Tomografie verwendeten Spulensysteme erzeugen magnetische Felder im Körper. Mithilfe elektromagnetischer Feldsimulation kann eine Bauform ermittelt werden, die die erforderliche Homogenität der Felder gewährleistet. Andererseits können im menschlichen Körper hervorgerufene Stromdichten und Leistungsdichteverteilungen berechnet werden, um die Einhaltung gesetzlicher Grenzwerte für die Patientensicherheit zu garantieren. Ein weiteres Beispiel ist die Hyperthermieplanung. Durch Berechnung der Leistungsdichteverteilung gekoppelt mit einem thermischen

Berechnungsprogramm kann die erforderliche Sendeleitung für optimalen Therapieerfolg ermittelt werden.

Elektrische Maschinen: Im Bereich der Antriebstechnik werden numerische Feldsimulationen eingesetzt, um wichtige mechanische und elektrische Kenngrößen wie zum Beispiel Drehmomentenverlauf und Verluste zu optimieren. Bei Elektromotoren – wie auch bei anderen Systemen der Energietechnik, zum Beispiel Transformatoren – ist das Verhalten der magnetischen Materialien (Permanentmagnete) von großer Bedeutung. Wichtig ist die Ankopplung der elektromagnetischen Simulationssoftware an benachbarte physikalische Bereiche (Multiphysics): zum Beispiel eine Ankopplung an die Mechanik für Untersuchungen mechanischer Schwingungen und Festigkeit und eine Ankopplung an die Thermik für Fragen der Erwärmung der Systeme.

1.3 Aufbau der nachfolgenden Kapitel

Nach dieser kurzen Einleitung steigen wir im *zweiten Kapitel* ein in die physikalischen Grundlagen. Wir erläutern zunächst für den statischen, d. h. zeitunabhängigen Fall die elektrischen und magnetischen Feldgrößen und Feldenergien und zeigen den Zusammenhang mit den Netzwerkgrößen Strom, Spannung, Kapazität, Widerstand und Induktivität auf. Über die Maxwell'schen Gleichungen in Differential- und Integralform stellen wir dann mithilfe mathematischer Grundlagen einen allgemeinen Zusammenhang zwischen allen elektromagnetischen Feldgrößen her. Um die Maxwell'schen Gleichungen und ihre Aussagen und Lösungen besser zu verstehen, betrachten wir danach einige praxisrelevante Spezialfälle. Wir schließen das Kapitel ab über die elektromagnetischen Potentiale und die Green'schen Funktionen, die beim Auffinden von Lösungen in der Praxis hilfreich sein können und in wichtigen Anwendungsbereichen fest verankert sind, z. B. in der Antennentechnik.

Die Maxwell'schen Gleichungen sind nur für sehr einfache Szenarien analytisch lösbar. Zur Lösung praktischer Probleme müssen mithilfe von mathematischen Verfahren, die sich mit Computerunterstützung umsetzen lassen, Näherungslösungen gefunden werden. Der erste Teil des *dritten Kapitels* gibt daher einen kurzen Einblick in die zugrunde liegenden numerischen Verfahren. Etwas genauer schauen wir auf die Methode der Finiten Differenzen im Zeitbereich (FDTD), da diese direkt von den Maxwell'schen Gleichungen ausgeht. Zwei weitere Verfahren, die eine tiefergehende Beschäftigung mit der Mathematik notwendig machen würden, wollen wir nur kurz behandeln: die Finite-Elemente-Methode (FEM) und die Momentenmethode (MoM). Im zweiten Teil des dritten Kapitels lernen wir dann die wesentlichen Schritte bei der Umsetzung eines realen Problems in ein Simulationsmodell kennen. Wir werden dabei sehen, dass die Umsetzung viele technische Überlegungen erfordert und es einen fachkundigen Anwender braucht, der die zugrunde liegenden Phänomene verstanden hat und so durch sinnvolle Vereinfachungen zu einem aussagekräftigen und effizienten Simulationsmodell kommt.

Im *vierten Kapitel* beschäftigen wir uns dann ausschließlich mit statischen magnetischen Feldern. Bei einfachen Geometrien nutzen wir das Durchflutungsgesetz und das Biot-Savart'sche Gesetz, um, ausgehend von einer vorgegebenen Stromverteilung, die magnetische Feldstärke im Raum zu berechnen. Aus der Verteilung des magnetischen Feldes können wir dann über die Energiedichte Netzwerkgrößen wie die Induktivität ermitteln. Den analytischen Ergebnissen stellen wir jeweils numerische Berechnungen gegenüber. Die idealisierten Gedankenmodelle hinter den analytischen Berechnungen lassen sich dabei selten eins zu eins in ein Simulationsmodell überführen. Wir müssen also jeweils überlegen, welche Anpassungen und Veränderungen für die Überführung in ein vergleichbares Simulationsmodell notwendig und sinnvoll sind.

Thema des *fünften Kapitels* sind die statischen elektrischen Felder sowie die elektrischen Strömungsfelder in leitfähigen Medien. Mithilfe des Gauß'schen Gesetzes des elektrischen Feldes berechnen wir die Verteilung der elektrischen Feldstärke für einfache Geometrien. Über die Energie sowie Strom und Spannung können wir schließlich Netzwerkgrößen wie die Kapazität und den Ohm'schen Widerstand ermitteln. Wie im vorangegangenen Kapitel stellen wir auch hier den analytischen Ergebnissen numerische Modelle gegenüber. Wir nutzen beim Plattenkondensator auch die Möglichkeiten der Feldsimulation, um einfach einmal die Frequenz zu erhöhen und somit einen Blick über den Tellerrand zu werfen. Hierbei erkennen wir eine Verkopplung der elektrischen und magnetischen Feldgrößen und die Phänomene der Resonanz und Abstrahlung, welche uns später im Anwendungskapitel noch einmal begegnen werden.

Induktionsvorgänge, die in der Technik eine große Bedeutung besitzen, werden im *sechsten Kapitel* näher betrachtet. Mithilfe des Induktionsgesetzes berechnen wir ausgehend von magnetischen Wechselfeldern induzierte Wirbelströme und Spannungen. Wie im Kapitel über statische elektrische und magnetische Felder werden in den Abschnitten dieses Kapitels den analytischen Berechnungen numerische Lösungen zur Seite gestellt.

Das *siebte Kapitel* widmet sich dann zunächst der Stromverdrängung (Skineffekt) in guten Leitern. Mit zunehmender Frequenz verdrängt sich der Strom aufgrund der Verkopplung elektrischer und magnetischer Felder an den Rand des Leiters. Wir untersuchen die Auswirkungen auf den Widerstand und die Induktivität bei einem zylindrischen Leiter. Im weiteren Verlauf des Kapitels betrachten wir elektromagnetische Wellen im freien Raum. Wir wollen dabei zunächst die wesentlichen Wellenausbreitungsphänomene beschreiben und anschaulich die physikalischen Zusammenhänge verdeutlichen. Danach beschäftigen wir uns mit numerischen Modellen der Abstrahlung und Ausbreitung von Wellen im freien Raum und der Interaktion der Wellenfelder mit Objekten.

Das *achte Kapitel* zeigt exemplarisch Simulationsmodelle aus praktischen Anwendungsgebieten. Wir beginnen mit einem Beispiel aus dem Bereich der Elektromagnetischen Verträglichkeit (EMV), bei dem durch Gehäuseresonanzen parasitäre Verkopplungen zwischen getrennten Schaltungsteilen auftreten. Weiterhin betrachten wir eine Monopolantenne mit einer Anpassschaltung aus konzentrierten Elementen, um das Konzept der elektromagnetischen Co-Simulation, eine Verbindung aus Schaltungs- und Feldsimulation, deutlich zu machen. Abschließend kommen wir auf die technisch wichtigen Patchantennen zu sprechen und geben einen Ausblick auf das Gebiet der Hochfrequenztechnik, indem wir uns mit den Möglichkeiten der Strahlschwenkung und des Beamformings beschäftigen.

Elektromagnetische Feldtheorie

In diesem Kapitel werden zunächst die elektromagnetischen Feldgrößen vorgestellt, wie sie für den statischen – also zeitunabhängigen – Fall definiert sind. Es wird der Zusammenhang zwischen den Feldgrößen und den Netzwerkgrößen wie Strom und Spannung verdeutlicht. Die Maxwell'schen Gleichungen in Verbindung mit den Stetigkeitsbedingungen dienen dann der vollständigen Beschreibung des elektromagnetischen Verhaltens für zeit- und ortsvariante Feldgrößen.

Bei der mathematischen Behandlung und dem Auffindung von Lösungen der Maxwell'schen Gleichungen hat es sich als vorteilhaft herausgestellt, bestimmte Problemklassen, wie Elektrostatik, Magnetostatik, quasistatische Felder und schnell veränderliche Felder, zu unterscheiden. Die Betrachtung gewinnt dabei an Komplexität, und das Verständnis für die feldtheoretischen Zusammenhänge wächst Schritt für Schritt.

2.1 Physikalische Grundlagen

Zunächst stellen wir in den folgenden Abschnitten grundlegende feldtheoretische und mathematische Zusammenhänge dar, um eine erste anschauliche Vorstellung des elektrischen und magnetischen Feldes zu gewinnen.

2.1.1 Elektrostatische Feldgrößen

Wir beginnen mit den *elektrischen* Feldgrößen für den zeitunabhängigen (statischen) Fall und erklären die Bedeutung der Netzwerkgrößen Spannung und Kapazität.

2.1.1.1 Ladung und Coulomb-Kraft

Historisch hat man schon früh die Bedeutung von elektrischen *Ladungen Q* erkannt und festgestellt, dass sich Ladungen durch ihre Kraftwirkungen aufeinander auszeichnen. Man unterscheidet *positive* und *negative* Ladungen, wobei sich gleichnamige Ladungen abstoßen (Bild 2.1a) und ungleichnamige Ladungen anziehen (Bild 2.1b). Ladungsmengen werden in der Einheit Coulomb angegeben ([Q] = C).

Die *Coulomb*-Kraft \vec{F}_{C} beschreibt die Kraftwirkung zwischen zwei Ladungen Q_1 und Q_2 , die sich im Abstand *r* zueinander befinden. Die Ladungen werden als punktförmig angenommen (Punktladung). Der Betrag der Kraft in der Einheit Newton ([*F*] =N) kann mit nachfolgender

Gleichung (2.1) berechnet werden.

$$F_{\rm C} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1 Q_2}{r^2} \qquad \text{(Coulomb-Kraft)} \tag{2.1}$$

Die Dielektrizitätskonstante ε_0 besitzt den Wert 8,854 · 10⁻¹² As/(Vm). Die Richtung der Kraft ergibt sich auf einer gedachten Verbindungsgeraden zwischen den Punktladungen, wobei die Kräfte bei ungleichnamigen Ladungen aufeinander zu zeigen und bei gleichnamigen Ladungen voneinander weg zeigen (Bild 2.1a und 2.1b). Falls mehr als zwei Landungen vorhanden sind, so können paarweise die Kräfte ermittelt und nach dem *Superpositionsprinzip* vektoriell überlagert werden. Bild 2.1c zeigt die paarweise Wechselwirkung und die vektorielle Addition der Teilkräfte zu den Gesamtkräften.

Ladungen sind naturgemäß gequantelt und kommen nur in ganzzahligen Vielfachen der *Elementarladung e* = $1,602 \cdot 10^{-19}$ C vor. Diese Quantelung spielt aber makroskopisch – also bei Vorhandensein einer ausreichend großen Anzahl von Ladungsträgern – keine Rolle, sodass wir im Folgenden von einer kontinuierlichen Ladungsmenge ausgehen wollen.

Bild 2.1 Coulomb-Kräfte zwischen (a) zwei gleichnamigen Ladungen, (b) zwei ungleichnamigen Ladungen und (c) drei Ladungen

Bei den bislang betrachteten Ladungen handelte es sich um Punktladungen, bei denen die Ladungsmenge in einem singulären Raumpunkt angenommen wird. Bei kontinuierlich im Raum verteilten Ladungen verwendet man zur Beschreibung die *Raumladungsdichte* ρ (Einheit [ρ] = C/m³). Die Gesamtladung Q erhalten wir dann durch die Integration über das ladungserfüllte Volumen V.

$$Q = \iiint_{V} \rho \,\mathrm{d}\nu \tag{2.2}$$

2.1.1.2 Elektrische Feldstärke

Im Folgenden wollen wir uns vom Begriff der Kraft lösen, indem wir eine neue physikalische Größe einführen. Hierzu beziehen wir die auf die Ladung Q_2 wirkende Kraft \vec{F}_2 auf die Ladung Q_2 selbst. Wir erhalten damit die *elektrische Feldstärke* \vec{E}_1 der Ladung Q_1 am Ort der Ladung Q_2 .

$$\vec{E}_1 = \frac{\vec{F}_2}{Q_2}$$
 (2.3)

Die elektrische Feldstärke (in der Einheit [E] = V/m) gibt also die Richtung der Kraftwirkung auf eine Probeladung Q_2 an, die sich in der Nähe einer Ladung Q_1 befindet. Das elektrische Feld \vec{E}_1 einer Punktladung Q_1 im Ursprung ist damit in Kugelkoordinaten durch folgende Gleichung gegeben:

$$\vec{E}_1(r) = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1}{r^2} \vec{e}_r$$
 (Elektrische Feldstärke einer Punktladung im Ursprung) (2.4)

Obgleich in Gleichung (2.3) rechentechnisch nur eine Quotientenbildung vorgenommen und damit eine von Q_2 unabhängige Größe geschaffen wird, bedeutet die neue Größe doch mehr als die Normierung einer Kraft. Bei der anfänglichen Beschreibung über die Coulomb-Kräfte existieren im Raum verteilte Ladungen, die direkt – über eine Distanz hinweg – Kräfte aufeinander ausüben (*Fernwirkungsprinzip*).

Nun mit der Einführung des Begriffs des elektrischen Feldes wird zunächst von der Ladung Q_1 ein elektrisches Feld \vec{E}_1 erzeugt. Mathematisch stellt die elektrische Feldstärke \vec{E} nun ein *Vektorfeld* dar, welches jedem Raumpunkt einen Vektor zuweist. Das elektrische Feld \vec{E}_1 der Ladung Q_1 existiert dabei auch ohne die Anwesenheit der Ladung Q_2 . Wird nun eine Ladung Q_2 in des Feld \vec{E}_1 der Ladung Q_1 gebracht, so interagiert die Ladung Q_2 mit dem *lokalen* elektrischen Feld der Ladung Q_1 am Ort der Ladung Q_2 (*Nahwirkungsprinzip*). Die Ladung Q_2 erzeugt nun aber auch ihrerseits ein elektrisches Feld \vec{E}_2 , und so ergibt sich schließlich auch eine Kraftwirkung auf die Ladung Q_1 .

Ein ortsabhängiges elektrisches Vektorfeld $\vec{E}(\vec{r})$ kann durch sogenannte *Feldlinienbilder* anschaulich dargestellt werden. Bild 2.2a zeigt das Feldlinienbild einer positiven Punktladung. Dem Feldlinienbild kann anschaulich die Richtung und der Betrag entnommen werden: Die vektorielle Größe \vec{E} ist dabei immer tangential zu den Feldlinien gerichtet, und die Liniendichte deutet die Amplitude der Feldstärke an. Wie in Gleichung (2.4) mathematisch formuliert erkennt man im Feldlinienbild, dass das elektrische Feld radial von der Ladung fortgerichtet ist und der Betrag mit steigendem Abstand sinkt.

In Bild 2.2b und Bild 2.2c finden wir die Feldlinienbilder von zwei gleichnamigen bzw. ungleichnamigen Ladungen. Bild 2.2d zeigt die Feldverteilung in einem Plattenkondensator, bei dem sich zwei parallele Flächen mit entgegengesetzter Ladung gegenüberstehen. Zwischen den Platten ist das elektrische Feld in guter Näherung *homogen*. An den Rändern entsteht ein Streufeld, und das Feld im Außenraum ist in erster Näherung zu vernachlässigen.

Wenn man sich den Verlauf der Feldlinien und damit die Richtung der Kraftwirkung auf eine positive Ladung in den Bildern ansieht, so fällt auf, dass diese immer von den positiven Ladungen weg- und zu den negativen Ladungen hinführen. Man könnte auch sagen, dass die positiven Ladungen die *Quellen* des elektrostatischen Feldes darstellen (hier entspringen die Feldlinien) und dass die negativen Ladungen die *Senken* sind (hier enden die elektrischen Feldlinien).

Die Feldlinien des elektrostatischen Vektorfeldes besitzen Anfang und Ende. Ein Vektorfeld, welches Quellen entspringt und in Senken endet, bezeichnet man als *Quellenfeld*.

Bild 2.2 Elektrische Feldlinienbilder (a) einer positiven Punktladung, (b) zwischen zwei gleichnamigen Ladungen, (c) zwischen zwei ungleichnamigen Ladungen und (d) in einer Plattenkondensatoranordnung

2.1.1.3 Spannung und elektrisches Potential

Bewegen wir eine Ladung Q_2 nun im Feld einer anderen Ladung Q_1 , so geschieht diese Bewegung unter Einfluss einer Kraft. Die Physik lehrt uns, dass hierbei *Arbeit* verrichtet wird. Für den Fall der Verschiebung einer Ladung vom Punkt \vec{r}_A zum Punkt \vec{r}_B kann die Arbeit $W_{\vec{r}_A\vec{r}_B}$ berechnet werden.

$$W_{\vec{r}_{A}\vec{r}_{B}} = \int_{\vec{r}_{A}}^{\vec{r}_{B}} \vec{F}_{2} \cdot d\vec{s} = \int_{\vec{r}_{A}}^{\vec{r}_{B}} Q_{2}\vec{E}_{1} \cdot d\vec{s} = Q_{2} \int_{\vec{r}_{A}}^{\vec{r}_{B}} \vec{E}_{1} \cdot d\vec{s} = Q_{2} U$$
(2.5)

Zwischen der Kraft \vec{F} und dem Wegelement d \vec{s} steht das Skalarprodukt, sodass also stets nur der Kraftanteil in Richtung des Weges einen Beitrag liefert. In Gleichung (2.5) kann die konstante Ladung Q_2 aus dem Integral gezogen werden. Das Linienintegral über die elektrische Feldstärke \vec{E} liefert nun ein neue Größe, die wir als *Spannung* bezeichnen und in der Einheit Volt angeben.

$$U = \int_{\vec{r}_{A}}^{\vec{r}_{B}} \vec{E} \cdot d\vec{s}$$
 (Spannung zwischen den Raumpunkten \vec{r}_{A} und \vec{r}_{B}) (2.6)

Die Spannung U ist im Gegensatz zur elektrischen Feldstärke E nun *keine Feldgröße* mehr, denn die Spannung ist zwischen zwei Punkten definiert und nicht an einem Raumpunkt. Wir haben es also mit einer integralen Größe zu tun.

Man kann nun aber in Anlehnung an den Spannungsbegriff eine neue Feldgröße definieren, indem man den Anfang oder den Endpunkt des Integrals als Referenzpunkt festhält. Dies führt zum Begriff des *elektrischen Potentials* ϕ . Das Potential ϕ bezogen auf den Referenzpunkt \vec{r}_0 können wir mithilfe folgender Gleichung schreiben:

$$\phi_{\vec{r}_0}(\vec{r}) = \int_{\vec{r}}^{\vec{r}_0} \vec{E} \cdot d\vec{s} \qquad (Potential am Ort \vec{r})$$
(2.7)

Das Potential stellt ein *Skalarfeld* dar, welches jedem Raumpunkt einen skalaren Potentialwert zuweist. Das Potential entspricht damit im statischen Fall der Spannung zwischen dem Raumpunkt \vec{r} und dem Referenzpunkt \vec{r}_0 .

Im Falle elektrostatischer Felder kann aus dem Potential auch direkt wieder die elektrische Feldstärke berechnet werden. Wir benötigen hierzu den Gradientoperator, der sich in kartesischen Koordinaten als Summe der partiellen Ableitungen in die drei kartesischen Raumrichtungen schreiben lässt.

$$\vec{E} = -\operatorname{grad}\phi = -\nabla\phi = -\left(\frac{\partial\phi}{\partial x}\vec{e}_x + \frac{\partial\phi}{\partial y}\vec{e}_y + \frac{\partial\phi}{\partial z}\vec{e}_z\right)$$
(2.8)

Die Gradientfunktion überführt das skalare Potentialfeld in ein Vektorfeld. Der Vektor grad ϕ zeigt dabei in jedem Raumpunkt stets in Richtung der *größten Änderung* (des steilsten Anstiegs) der Potentialfunktion. Aus diesem Grund wird der Gradientoperator auch bei Optimierungen verwendet, denn auf der Suche nach einem Maximum oder Minimum kommt man in der Regel am schnellsten voran, wenn man sich in einer Richtung bewegt, in der die Funktionswerte sich besonders rasch ändern. Durch das Minuszeichen in Gleichung (2.8) zeigt die elektrische Feldstärke stets von größeren zu kleineren Potentialwerten.

Bild 2.3 Elektrische Feldstärke und Potential (a) einer Punktladung im Ursprung und (b) im Plattenkondensator

Interessant ist, dass es im Prinzip unendlich viele Potentialfelder gibt, da der Referenzpunkt \vec{r}_0 frei wählbar ist. Eine Verschiebung des Referenzpunktes verändert den Integrationsweg und hebt damit das Potential insgesamt an oder senkt es ab, führt also zu einer additiven Konstante. Das elektrische Feld *E* ist aber durch seine Kraftwirkung auf Ladungen definiert und damit stets *eindeutig*. Bei der Gradientfunktion werden nun nur Ableitungen des Potentials berücksichtigt, sodass eine additive Konstante der Potentialfunktion keine Auswirkung auf das elektrische Feld hat.

Elektrostatische Probleme können mathematisch anstatt über das elektrische *Vektorfeld* $\vec{E}(\vec{r})$ alternativ über das *Skalarfeld* des Potentials $\phi(\vec{r})$ beschrieben werden. Zur Veranschaulichung dienen dann Flächen mit gleichen Potentialwerten (*Äquipotentialflächen*). Die Äquipotentialflächen (mit ϕ = const.) sind stets senkrecht zu den elektrischen Feldlinien orientiert, denn nach Gleichung (2.5) wird aufgrund des Skalarproduktes keine Arbeit verrichtet, wenn Kraft und Weg senkrecht zueinander verlaufen. Bild 2.3a zeigt eine Punktladung *Q* im Ursprung mit radial nach außen zeigenden elektrischen Feldvektoren \vec{E} . Die Äquipotentialflächen sind nun Kugelschalen. In Bild 2.3b sehen wir einen Plattenkondensator mit homogenem vertikal orientierten elektrischen Feld. Die Äquipotentialflächen sind nun horizontal verlaufende Flächen im Innern des Kondensators. In den Randbereichen ergeben sich aufgrund des Streufeldes abweichende Verläufe.

Beispiel 2.1 Berechnung der elektrischen Feldstärke aus dem Potentialverlauf

Gegeben sei das Potential einer Punktladung im Ursprung in Kugelkoordinaten:

$$\phi = \frac{Q}{4\pi\varepsilon_0}r \qquad \text{(Potential einer Punktladung im Ursprung)} \tag{2.9}$$

Mit Gleichung (2.8) wollen wir aus dem Potentialverlauf die elektrische Feldstärke \vec{E} berechnen. Hierzu benötigen wir zunächst einmal die Formulierung des Gradientoperators in Kugelkoordinaten. Im Anhang A dieses Buches finden wir die für die Berechnung notwendige Darstellung für unterschiedliche Koordinatensysteme. Gleichung (A.66) liefert uns den gesuchten Zusammenhang mit:

$$\operatorname{grad}\phi = \frac{\partial\phi}{\partial r}\vec{e}_r + \frac{1}{r}\frac{\partial\phi}{\partial\theta}\vec{e}_{\theta} + \frac{1}{r\sin\theta}\frac{\partial\phi}{\partial\varphi}\vec{e}_{\varphi}$$
(2.10)

Somit erhalten wir für das elektrische Feld:

$$\vec{E} = -\operatorname{grad} \phi = -\frac{\partial \phi}{\partial r} \vec{e}_r - \frac{1}{r} \underbrace{\frac{\partial \phi}{\partial \vartheta}}_{=0} \vec{e}_\vartheta - \frac{1}{r \sin \vartheta} \underbrace{\frac{\partial \phi}{\partial \varphi}}_{=0} \vec{e}_\varphi$$
(2.11)

Da das gegebene Potential $\phi = \phi(r)$ nur eine radiale Abhängigkeit aufweist, verschwinden die Ableitungen des Potentials in ϑ - und φ -Richtung. Uns bleibt:

$$\vec{E} = -\frac{\partial\phi}{\partial r}\vec{e}_r \tag{2.12}$$

$$= -\frac{Q}{4\pi\varepsilon_0} \frac{\partial}{\partial r} \left(\frac{1}{r}\right) \vec{e}_r \tag{2.13}$$

$$= -\frac{Q}{4\pi\varepsilon_0} \left(-\frac{1}{r^2} \right) \vec{e}_r \tag{2.14}$$

$$=\frac{Q}{4\pi\varepsilon_0 r^2}\vec{e}_r\tag{2.15}$$

Unser Endergebnis entspricht der elektrischen Feldstärke einer Punktladung im Ursprung, wie wir es schon in Gleichung (2.4) notiert haben.

Bild 2.3a zeigt den Verlauf der elektrischen Feldstärke \vec{E} und des Potentials ϕ . Das vektorielle elektrische Feld zeigt stets in radialer Richtung nach außen. Das skalare Potentialfeld kann durch Flächen gleichen Potentials (Äquipotentialflächen) veranschaulicht werden. Diese Äquipotentialflächen sind im Falle einer Punktladung Kugelschalen mit der Punktladung im Zentrum der Kugel.

Beispiel 2.2 Alternative Berechnung in kartesischen Koordinaten

Im vorangegangenen Beispiel haben wir den Gradientoperator sehr vorteilhaft in problemangepassten Kugelkoordinaten ausgewertet. Grundsätzlich ist es aber auch möglich, über die kartesischen Koordinaten zu gehen. Allerdings ist der Aufwand hier größer, wie wir rasch feststellen werden.

Zunächst einmal müssen wir die Potentialfunktion ϕ in kartesische Koordinaten umschreiben. Die radiale Vektor \vec{r} , der vom Ursprung zum Aufpunkt zeigt, kann folgendermaßen durch die kartesischen Koordinaten *x*, *y* und *z* ausgedrückt werden:

$$\vec{r} = x\vec{e}_x + y\vec{e}_y + z\vec{e}_z \tag{2.16}$$

Bild 2.4 verdeutlicht dies für einen Ortsvektor \vec{r}_0 .

Mit der Länge r des Ortsvektors

$$r = |\vec{r}| = \sqrt{x^2 + y^2 + z^2} \tag{2.17}$$

erhalten wir für die Potentialfunktion somit:

$$\phi = \frac{Q}{4\pi\varepsilon_0 r} = \frac{Q}{4\pi\varepsilon_0} \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
(2.18)

Das elektrische Feld erhalten wir mit dem Gradientoperator in kartesischen Koordinaten:

$$\vec{E} = -\operatorname{grad}\phi = -\frac{\partial\phi}{\partial x}\vec{e}_x - \frac{\partial\phi}{\partial y}\vec{e}_y - \frac{\partial\phi}{\partial z}\vec{e}_z$$
(2.19)

Exemplarisch betrachten wir die partielle Ableitung in *x*-Richtung:

$$\frac{\partial \phi}{\partial x} = \frac{Q}{4\pi\varepsilon_0} \cdot \frac{\partial}{\partial x} \left[\left(x^2 + y^2 + z^2 \right)^{-\frac{1}{2}} \right]$$
(2.20)

Durch Anwendung der Kettenregel [u(v(x))]' = u'(v(x))v'(x) erhalten wir:

$$\frac{\partial\phi}{\partial x} = \frac{Q}{4\pi\varepsilon_0} \cdot \left(-\frac{1}{2}\right) \left(x^2 + y^2 + z^2\right)^{-\frac{3}{2}} \cdot (2x) \tag{2.21}$$

$$= -\frac{Q}{4\pi\varepsilon_0} \cdot \frac{x}{\left(\sqrt{x^2 + y^2 + z^2}\right)^3}$$
(2.22)

$$= -\frac{Q}{4\pi\varepsilon_0} \cdot \frac{x}{r^3} \tag{2.23}$$

Die Ableitungen in y- und z-Richtung ergeben sich analog:

$$\frac{\partial\phi}{\partial y} = -\frac{Q}{4\pi\varepsilon_0} \cdot \frac{y}{r^3} \tag{2.24}$$

und

$$\frac{\partial \phi}{\partial z} = -\frac{Q}{4\pi\varepsilon_0} \cdot \frac{z}{r^3} \tag{2.25}$$

Wir führen die Teilergebnisse zusammen:

$$\vec{E} = \frac{Q}{4\pi\varepsilon_0 r^3} \underbrace{\left(x\vec{e}_x + y\vec{e}_x + z\vec{e}_z\right)}_{=\vec{r} = r\vec{e}_r}$$
(2.26)

$$=\frac{Q}{4\pi\varepsilon_0 r^2}\vec{e}_r \tag{2.27}$$

Es ergibt sich das gleiche Resultat, das zuvor – jedoch mit weniger Aufwand – in Kugelkoordinaten ermittelt wurde. Dieses Beispiel zeigt, dass das Rechnen mit problemangepassten Koordinaten effizienter ist.

2.1.1.4 Polarisation und relative Dielektrizitätszahl

Bislang haben wir Ladungen im freien Raum betrachtet. Kommen nun aber Materialien hinzu, so ist die Definition von weiteren Größen hilfreich. Betrachten wir gemäß Bild 2.5 einen Plattenkondensator, auf dessen Platten sich die Ladungsmengen +Q und –Q befinden. Zwischen den Platten bildet sich ein homogenes Feld \vec{E}_0 aus, und wir können die Spannung U_0 bestimmen. Bringen wir nun ein Isoliermaterial (*Dielektrikum*) in den Plattenkondensator, so zeigt sich, dass die veränderte Spannung U_M zwischen den Platten gegenüber dem Fall ohne Isoliermaterial verringert ist ($U_M < U_0$). Entfernen wir das Isoliermaterial wieder, so erhalten wir den ursprünglichen Spannungswert U_0 .

Durch Einbringen des Isolators in das elektrische Feld \vec{E}_0 richten sich polarisierte Teilchen im Isolator in Feldrichtung aus. Im Inneren gleichen sich nun die Ladungen jeweils wieder aus, an der Oberfläche ergibt sich jedoch eine resultierende Oberflächenladungsverteilung. Durch diese Ladungen entsteht im Dielektrikum ein *Gegenfeld* \vec{E}_P , welches sich dem ursprünglichen äußeren Feld \vec{E}_0 überlagert. In der Materie herrscht ein abgeschwächtes Feld \vec{E}_M mit dem Betrag:

$$E_{\rm M} = E_0 - E_{\rm P}$$
 (2.28)

Bild 2.5 Zum Verständnis der Polarisation: (a) luftgefüllter Plattenkondensator, (b) dielektrisches Material im Kondensator (Entstehung eines Gegenfeldes), (c) dielektrisches Material im Kondensator (reduziertes elektrisches Feld im Dielektrikum), (d) ungeordnete polarisierte Teilchen im Dielektrikum, (e) Orientierung von polarisierten Teilchen im Dielektrikum unter Einfluss eines äußeren elektrischen Feldes

Dieser Effekt wird als *Polarisation* bezeichnet. Wie gut Materie polarisierbar ist, hängt vom inneren Aufbau ab. Wie oben gezeigt, tritt der Effekt bei polarer Materie auf. Er ist aber ebenso bei nicht polarer Materie zu beobachten. Stellen wir uns hierzu ein einfaches Modell eines unpolaren Teilchens vor: Um einen positiven Kern liegt eine negativ geladene Elektronenhülle; die Ladungsschwerpunkte von Kern und Elektronenhülle fallen dabei zusammen. Nach außen ist das Teilchen elektrisch neutral. Unter dem Einfluss eines äußeren Feldes wirken auf Kern und Hülle Kräfte in unterschiedlicher Richtung. Die Ladungsschwerpunkte wandern auseinander, und es entsteht ein polares Teilchen.

Kehren wir zu unserem Gedankenexperiment mit dem Plattenkondensator zurück: Bei Füllung des Plattenkondensators mit dem Dielektrikum ergibt sich durch die verringerte elektrische Feldstärke im Medium eine reduzierte Spannung $U_{\rm M}$.

$$U_{\rm M} = \int_{\text{Untere Platte}}^{\text{Obere Platte}} \vec{E}_M \cdot d\vec{s} < U_0 \tag{2.29}$$

Am Anfang des Abschnitts haben wir beschlossen, uns nur mit makroskopischen Vorgängen zu beschäftigen, bei denen wir die Quantelung der Ladung vernachlässigen können und kontinuierliche Verteilungen annehmen. Nun beruht die vorherige anschauliche Interpretation der Polarisation auf mikroskopischen Überlegungen und ist somit wenig hilfreich, wenn wir den Effekt der Polarisation mathematisch einfach in einem makroskopischen Modell beschreiben wollen. Zur makroskopischen Beschreibung verwenden wir den Quotient zwischen der ursprünglichen und der reduzierten Spannung bzw. Feldstärke. Diese neue Größe nennen wir *relative Dielektrizitätszahl* ε_r .

$$\varepsilon_{\rm r} = \frac{E_0}{E_{\rm M}} = \frac{U_0}{U_{\rm M}} \tag{2.30}$$

Die relative Dielektrizitätszahl ε_r ist eine dimensionslose Größe und für die meisten Materialien durch einen einfachen Zahlenwert größer als eins gegeben. Tabelle 2.1 listet relative Dielektrizitätszahlen für technisch wichtige Dielektrika auf. In der Praxis werden für erste Abschätzungen in der Regel idealisierte Materialien verwendet. Statt Luft und anderer Gase kann häufig vereinfachend von *Vakuum* ($\varepsilon_r = 1$) ausgegangen werden.

Falls Materialien eine Richtungsabhängigkeit (Anisotropie) aufweisen, also für unterschiedliche Orientierungen des Materials im Kondensator sich verschiedene Spannungen ergeben, so erfolgt die Beschreibung durch eine Matrix.

2.1.1.5 Verhalten bei Wechselstrom

Bei Anlegen einer Wechselspannung wechselt die Ladung auf den Kondensatorplatten periodisch die Polarität. Die polaren Teilchen im Dielektrikum ändern daher mit der gleichen Frequenz ihre Lage. Mit zunehmender Frequenz sind die Teilchen nicht mehr in der Lage, dem anregenden Feld \vec{E}_0 zu folgen. Die *feldschwächende Wirkung* lässt nach, sodass mit steigender Frequenz im Allgemeinen mit einem Abfall der relativen Dielektrizitätszahl gerechnet werden muss. Die Frequenzabhängigkeit $\varepsilon_r(\omega)$ vieler Materialien kann mathematisch über sogenannte Debye-Beziehungen beschrieben werden [Detl12]. Hierin gehen die statische relative Dielektrizitätszahl $\varepsilon_r(0)$ sowie der Grenzwert für sehr hohe Frequenzen $\varepsilon_r(\infty)$ und eine materialcharakteristische Größe (Relaxationszeit) ein. Viele technisch wichtige Dielektrizitätszahlen (Tabelle 2.1).

Material	$\boldsymbol{\varepsilon}_{\mathrm{r}}$
Vakuum	1
Luft	≈ 1
Polytetraflourethylen (PTFE)	2,1
Glasfaserverstärktes Epoxidharz (FR4)	≈ 4
Aluminiumoxid (Al ₂ O ₃)	9,8
Glas	≈ 6
Wasser	≈ 80

Tabelle 2.1 Relative Dielektrizitätszahl ε_r verschiedener Materialien

Mit der bei Wechselspannungen auftretenden ständigen Umorientierung der Teilchen sind Wärmeverluste verbunden. Wie wir in Abschnitt 2.2.4 noch genauer sehen werden, wird dieser Verlustmechanismus mit einem Verlustfaktor tan δ_{ε} beschrieben.

2.1.1.6 Dielektrische Verschiebungsdichte

Eine weitere wichtige Größe zur Beschreibung elektrischer Felder ist die *dielektrische Verschiebungsdichte* \vec{D} , die auch als *elektrische Flussdichte* bezeichnet wird. Bei ihrer Definition taucht die zuvor eingeführte relative Dielektrizitätszahl wieder auf.

 $\vec{D} = \varepsilon_0 \varepsilon_r \vec{E}$ (Dielektrische Verschiebungsdichte) (2.31)

Im Vakuum ist die dielektrische Verschiebungsdichte bis auf den konstanten Faktor ε_0 gleich der elektrischen Feldstärke. In Materialien kommt noch die relative Dielektrizitätszahl ε_r hinzu. Die dielektrische Verschiebungsdichte besitzt die physikalische Einheit $[D] = C/m^2$, also Ladung pro Fläche.