
Konstruktionselemente der Feinmechanik

4., vollständig überarbeitete und erweiterte Auflage

HANSER

Konstruktionselemente der Feinmechanik

Hrsg.
Prof. Dr.-Ing. habil. Dr. h. c. Werner Krause

Konstruktionselemente der Feinmechanik

4., vollständig überarbeitete und erweiterte Auflage

Federführung:

Prof. Dr.-Ing. habil. Dr. h. c. Werner Krause

Gesamtkonzeption:

Prof. Dr.-Ing. habil. Dr. h. c. Werner Krause

Prof. Dr.-Ing. habil. Manfred Schilling

Dr.-Ing. Gunhild Chilian, TU Ilmenau (Mitarbeit Abschnitt 2)

Prof. Dr.-Ing. habil. Gerald Gerlach, TU Dresden (Abschnitt 14)

Prof. Dr.-Ing. habil. Dr. h.c. Günter Höhne, TU Ilmenau (Abschnitt 1, 2, 4.1, 4.5)

Prof. Dr.-Ing. Dr. paed. Alfons Holfeld (†), TU Dresden (Abschnitt 3.3, 8.1, 8.2, 8.4)

Prof. Dr.-Ing. habil. Dr. h.c. Werner Krause, TU Dresden (Abschnitt 1, 3.1 bis 3.4, 3.6, 4.2 bis 4.4,

7, 10, 13.1 bis 13.12, Mitarbeit 8.2, 11)

Priv.-Doz. Dr.-Ing. habil. Manfred Meissner, TU Ilmenau (Abschnitt 6)

Priv.-Doz. Dr.-Ing. Thomas Nagel, TU Dresden (Abschnitt 13.9.4, Mitarbeit 13.9.2, 13.9.3)

Prof. Dr.-Ing. Günter Röhrs, TU Dresden (Abschnitt 5)

Prof. Dr.-Ing. habil. Manfred Schilling, TU Ilmenau (Abschnitt 1, 8.3, 9, 12, Mitarbeit 10.1)

Prof. Dr.-Ing. Wolfgang Schinköthe, Universität Stuttgart (Abschnitt 3.5, 11)

Prof. Dr.-Ing. habil. Elke Simmchen, TU Dresden (Abschnitt 3.6)

Priv.-Doz. Dr.-Ing. habil. Horst Sperlich, TU Ilmenau (Abschnitt 2.1.3)

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie, detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN 978-3-446-44796-7

E-Book-ISBN 978-3-446-44992-3

Dieses Werk ist urheberrechtlich geschützt.

Alle Rechte, auch die der Übersetzung, des Nachdrucks und der Vervielfältigung des Buches oder Teilen daraus, vorbehalten. Kein Teil des Werks darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder einem anderen Verfahren), auch nicht für Zwecke der Unterrichtsgestaltung, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

© 2018 Carl Hanser Verlag München

Lektorat: Dipl.-Ing. Volker Herzberg, Julia Stepp

Herstellung: Der Buch*macher*, Arthur Lenner, München

Umschlagkonzept: Marc Müller-Bremer, www.rebranding.de, München

Umschlagrealisation: Stephan Rönigk Satz: Kösel Media GmbH, Krugzell Druck und Bindung: Kösel, Krugzell

Printed in Germany www.hanser-fachbuch.de

Vorwort

Zur Feinwerktechnik gehören vorwiegend informationsverarbeitende Geräte und Anlagen der Mess- und Automatisierungstechnik, Datenverarbeitung und Rechentechnik, der Nachrichtentechnik, der Elektromechanik, Feinmechanik und Optik sowie Geräte der Produktionstechnik. Das Spektrum reicht von Produkten der Konsumgüterindustrie bis hin zu hochkomplizierten Anlagen in oft nur einmaliger Spezialausführung. Der Aufbau dieser Erzeugnisse erfolgt mit mechanischen, elektrischen, optischen, mikroelektronischen und optoelektronischen Bauelementen und Funktionsgruppen. Ständig wachsen die Anforderungen bezüglich Leistungsfähigkeit, Zuverlässigkeit, Lebensdauer und Geräuschminderung bei steigenden Arbeitsgeschwindigkeiten und zunehmender Präzision.

In der Informationsverarbeitung werden mechanische Bauelemente mehr und mehr durch mikroelektronische verdrängt. Die Gerätefunktion wird damit programmierbar, und es steigen Flexibilität, Universalität, Funktionsumfang und Automatisierungsgrad. An der Geräteperipherie benötigt man zunehmend Baugruppen mit miniaturisierten und leistungsfähigen mechanischen Bauelementen; generell erzwingen die digitalen Verarbeitungsprinzipe der Mikroelektronik neue funktionelle Lösungen im mechanischen Bereich. Gemäß diesen Trends wurde in den letzten Jahren eine Vielzahl von Konstruktionselementen weiterentwickelt und deren Betriebsverhalten optimiert. Es entstanden Gestaltungsrichtlinien, die auch den Erfordernissen einer automatisierten Montage entsprechen, und die rechnerunterstützte Dimensionierung rückt in den Vordergrund. Insgesamt verlangt die veränderte Bedeutung der feinmechanischen Konstruktionselemente auch ein neues, umfassendes Buch über dieses Gebiet. Das vorliegende Werk erfasst das gesamte Spektrum von der meist an große Stückzahlen gebundenen Miniaturmechanik bis hin zu Einzelelementen der Präzisions-Großmechanik. Durch die stark verdichtete, z. T. tabellarische Aufbereitung soll ein schneller und zuverlässiger Zugriff zu Informationen und Fakten gesichert und der Einsatz von Rechnern für Auswahl, Berechnung und Entwurf der Elemente unterstützt werden. Berechnungsbeispiele am Ende der Hauptabschnitte ermöglichen ein rasches Einarbeiten in komplizierte Sachverhalte und tragen zugleich zum besseren Verständnis des Stoffes bei.

Das vorliegende Buch hat eine Reihe von Vorgängern, die kurz genannt und gewürdigt werden sollen.

Erste Schritte in Richtung einer Gesamtdarstellung unternahm im Jahre 1922 ein Ausschuss unter Leitung von *Otto Richter*; Ergebnis war der Atlas "Konstruktionselemente der Feinmechanik", der 1928 als Loseblattsammlung gedruckt wurde. Er war eine Zusammenfassung erprobter Beispiele und bildete zugleich die Grundlage für das erstmalig 1929 von *Otto Richter* und *Richard von Voß* herausgegebene Buch "Bauelemente der Feinmechanik". Es erschien über einen Zeitraum von nahezu 40 Jahren in vielen Ausgaben in deutscher und anderen Sprachen und ist in seiner Bedeutung für die Feinmechanik kaum zu überschätzen.

Die Feinmechanik entwickelte sich weiter; vor nunmehr 50 Jahren ließ sich eine Neubearbeitung des gesamten Gebietes nicht mehr aufschieben. Ziel war, neue Erkenntnisse zu berücksichtigen und vor allem eine stärkere mathematische Durchdringung der Bauelemente-Dimensionierung zu erreichen. Ein Autorenkollektiv unter Leitung von Prof. Dr.-Ing. Siegfried Hildebrand übernahm diese anspruchsvolle Aufgabe, so dass im Jahre 1967 das Lehr- und Fachbuch "Feinmechanische Bauelemente" im Verlag Technik Berlin erscheinen konnte. Es wurde später durch die Aufgabensammlung "Einführung in die feinmechanischen Konstruktionen" ergänzt.

Drei Nachauflagen der "Feinmechanischen Bauelemente" und vier Teilauflagen beim Carl Hanser Verlag sind Zeichen der weitreichenden Anerkennung, die dieses Buch fand.

Vorliegender Titel wurde für Studierende an Universitäten, Hoch- und Fachhochschulen mit konstruktiven Studienrichtungen in feinwerktechnisch orientierten und angrenzenden Fachgebieten konzipiert; außerdem ist er als Fachbuch für Entwicklungs- und Konstruktionsingenieure, Technologen und Fertigungsmittelkonstrukteure gedacht, aber auch als Nachschlagewerk für Facharbeiter, Teilkonstrukteure und technische Zeichner geeignet.

Bei der Systematisierung und Aufbereitung der umfangreichen Stoffgebiete konnten die Erfahrungen namhafter Hochschullehrer und Wissenschaftler der TU Dresden, der TU Ilmenau, der TU Chemnitz und der Universität Stuttgart berücksichtigt werden. Den Herren Prof. Dr.-Ing. habil. *G. Höhne* und Prof. Dr.-Ing. habil. *M. Schilling* bin ich zu besonderem Dank verpflichtet. Für die Unterstützung bei der Ergänzung einer Reihe von Teilgebieten gebührt darüber hinaus den Herren Dr.-Ing. *U. Buhrand* (Abschnitt 13.10), Ing. *E. Frankenstein* (Abschnitt 13.3.3), Dr.-Ing. *P. Merbach* (Abschnitt 12), Dr.-Ing. *D. Metzner* und Dr.-Ing. *T. Nagel* (Abschnitt 13.9.4) sowie Dr.-Ing. *R. Nönnig* (Abschnitt 8.3.4) Dank und Anerkennung. Die zeichnerische Ausführung der Bilder lag in den bewährten Händen von Frau *R. Schmidt* und Frau *H. Weise*, deren engagierte Mitarbeit eine besondere Würdigung verdient.

Seit seinem Erscheinen im Jahre 1989 hatte die im Verlag Technik Berlin und im Carl Hanser Verlag München/Wien herausgegebene 1. Auflage des Buches ein weithin positives Echo gefunden. Viele Einschätzungen von Fachkollegen der Industrie sowie von Universitäten und Hochschulen bestätigten, dass mit der Neufassung des Gesamtgebiets der Konstruktionselemente der Feinmechanik eine gute Synthese von Lehr- und Fachbuch gelungen ist.

Die 1. Auflage war bald vergriffen, so dass eine 2. stark bearbeitete Auflage erforderlich wurde. Sie trug vor allem den Bedingungen Rechnung, die sich aus der 1990 vollzogenen Vereinigung Deutschlands ergaben und die nunmehr einheitliche Orientierung aller Stoffgebiete auf DIN- und DIN-ISO-Normen sowie auf VDI/VDE-Richtlinien erforderte. Diese Auflage war nun ebenfalls vergriffen, so dass sich Verlag und Herausgeber im Jahr 2004 zu einer 3. Auflage entschlossen hatten. Wegen der raschen Entwicklung wurden darin die Kapitel zum Rechnereinsatz sowie zur Mikromechanik neu bearbeitet, weitere inhaltliche Ergänzungen vorgenommen und in den Literaturverzeichnissen aktuelle Bücher und Zeitschriftenaufsätze hinzugefügt. Darüber hinaus fanden neue DIN- und DIN ISO-Normen Berücksichtigung.

Die anhaltende Nachfrage nach diesem Buch, vor allem aber die Ablösung vieler bisher geltender DIN-Normen durch europäische EN-Normen erforderte eine 4. Auflage. In dieser wurden über das Kapitel 3.6 Konstruktionswerkstoffe hinaus alle Gebiete bezüglich der Werkstoffangaben und -bezeichnungen auf den neuesten Stand gebracht. Dies ergab unter anderem bei Weichloten, Hartloten und Klebstoffen ebenso wie bei Federn, Gleitlagern und Zahnrädern wesentliche inhaltliche Veränderungen. Aber auch eine ganze Reihe von Verbindungselementen sowie Riemen- und Zahnriemengetriebe waren an neue Normen anzupassen. Insgesamt führte dies zugleich dazu,

die zugehörigen und in tabellarischen Übersichten aufgeführten Normen und VDI/VDE-Richtlinien generell neu zu fassen. Außerdem wurden die Ausführungen zum Entwerfen und Gestalten von Konstruktionselementen, speziell zum Rechnereinsatz und zur Mikromechanik, nochmals aktualisiert, gleichermaßen auch die jedem Kapitel beigefügten Literaturverzeichnisse. Wesentliche, ältere Veröffentlichungen blieben aber bewusst erhalten, um zugleich den Erkenntnisfortschritt auf den einzelnen Gebieten zu dokumentieren. Dank vielfältiger Erfahrungen beim Einsatz dieses Buches in Lehre und Praxis gelang es nicht zuletzt, eine Reihe von inhaltlichen Ergänzungen zur Berechnung und Gestaltung von Verbindungs- und Funktionselementen sowie methodisch verbesserte Darstellungen einzuarbeiten.

Vor allem aber wurde es durch die Verfügbarkeit leistungsfähiger OCR-Software möglich, das ursprünglich im Lichtsatz hergestellte Buch zu digitalisieren und in einem neuen größeren Handbuchformat zu setzen. Dadurch ist es zugleich gelungen, den doch sehr umfangreichen und komplexen Inhalt noch übersichtlicher zu gestalten. Aber auch bei weiteren Auflagen eröffnet sich jetzt die Möglichkeit, Änderungen und Erweiterungen viel einfacher einzuordnen. Insgesamt liegt damit nun eine vollständig neu bearbeitete 4. Auflage vor.

Allen Mitautoren danke ich für die bewährte kollegiale Zusammenarbeit bei der Vorbereitung dieser 4. Auflage. In erster Linie aber gilt mein Dank dem Leiter des Hanser-Fachbuchverlages, Herrn Dr. Hermann Riedel und dem Lektor für den Bereich Technik, Herrn Volker Herzberg. Auf Grund ihres unermüdlichen Einsatzes sowie auch dem bemerkenswerten Engagement der Herstellungsabteilung ist es gelungen, dass das Buch in dieser neuen Form erscheinen konnte.

Dresden Werner Krause

Inhaltsverzeichnis

			_	d Systematik der Konstruktionselemente
2	Entw	erfen u	nd Gestal	ten von Konstruktionselementen
	2.1	Arbeit	sschritte ı	ınd Methoden
		2.1.1	Ermittelı	n und Präzisieren von Konstruktionsaufgaben
		2.1.2		estimmung für Konstruktionselemente
		2.1.3	Gestalter	n von Konstruktionselementen
			2.1.3.1	Grundsätze
			2.1.3.2	Auswahl der Form
			2.1.3.3	Auswahl der Werkstoffe
			2.1.3.4	Festlegen der Zustandseigenschaften
			2.1.3.5	Einflussfaktoren auf die Gestalt
			2.1.3.6	Vorgehensweise beim Gestalten
		2.1.4	Bewerter	n und Auswählen von Konstruktionselementen
	2.2	Rechn	eruntersti	itztes Konstruieren
		2.2.1	Rechnere	einsatz in der Produktentwicklung
		2.2.2	Rechner	ınterstützter Entwurf
		2.2.3	Rechner	ınterstützte Dimensionierung
		Literati	ur zum Ab	schnitt 2
}	Grun	dlagen	zur Dimei	nsionierung von Konstruktionselementen
	3.1	Normz	ahlen und	l Normmaße
		3.1.1	Normzah	ılen
		3.1.2	Normma	ße
		3.1.3	Berechni	ıngsbeispiele
		Literati	ur zum Ab	schnitt 3.1
	3.2	Tolera	nzen und	Passungen
		3.2.1		en
			3.2.1.1	Grundbegriffe
			3.2.1.2	ISO-Toleranzen
			3.2.1.3	Maße ohne Toleranzangabe, frei tolerierte Maße
			3.2.1.4	Form- und Lagetoleranzen
			3.2.1.5	Oberflächenrauheit und deren Kennzeichnung
		3.2.2	Passunge	en
			3.2.2.1	Grundbegriffe
			3.2.2.2	Passungsauswahl

	3.2.3	Einfluss der Temperatur auf Toleranz und Passung
	3.2.4	Maß- und Toleranzketten
	3.2.5	Toleranz- und passungsgerechtes Gestalten
	3.2.6	Berechnungsbeispiele
	Literati	ur zum Abschnitt 3.2
3.3	Statik	
	3.3.1	Kräfte an starren Körpern
	3.3.2	Reibung
		3.3.2.1 Ruhereibung (Haftreibung)
		3.3.2.2 Reibungszustände
		3.3.2.3 Gleitreibung
		3.3.2.4 Rollreibung
		3.3.2.5 Bohrreibung
		3.3.2.6 Umschlingungsreibung (Seilreibung)
	3.3.3	Berechnungsbeispiele
2.4	Drmon	
3.4	-	nik 122
	3.4.1 3.4.2	Kinematik
	3.4.2	
	3.4.3	9 9
		3.4.3.1 Torsionsschwingungen 125 3.4.3.2 Biegeschwingungen 126
		3.4.3.3 Gedämpfte und getilgte Schwingungen
		3.4.3.4 Erzwungene Schwingungen
3.5	Festigl	keitslehre 129
	3.5.1	Grundbegriffe
	3.5.2	Ermittlung der Nennspannungen
		3.5.2.1 Beanspruchung durch Kräfte
		3.5.2.2 Beanspruchung durch Momente
		3.5.2.3 Zusammengesetzte Beanspruchung
	3.5.3	Ermittlung der zulässigen Spannungen
		3.5.3.1 Werkstoffkenngrößen
		3.5.3.2 Einflussfaktoren auf die Werkstofffestigkeit
	0.5.4	3.5.3.3 Festigkeitsnachweis
	3.5.4	Berechnungsbeispiele
	Literati	ur zu den Abschnitten 3.3 bis 3.5
3.6	Konstr	ruktionswerkstoffe
	3.6.1	Kriterien für die Werkstoffauswahl
	3.6.2	Metallische Werkstoffe
		3.6.2.1 Eisenwerkstoffe
		3.6.2.2 Nichteisenmetall-Werkstoffe
		3.6.2.3 Metallische Sinterwerkstoffe
	3.6.3	Nichtmetallische Werkstoffe
		3.6.3.1 Kunststoffe
		3.6.3.2 Silicatische Werkstoffe
		3.6.3.3 Naturstoffe
	3.6.4	Halbzeuge und Normteile, technologische Innovationen
	Litopota	un zum Absahnitt 2.6

Mec	hanisch	e Verbind	ungen
4.1	Eigens	chaften, I	Einteilung und Auswahl
			Abschnitten 4.1 und 4.5
4.2	Stoffso	hlüssige \	Verbindungen
	4.2.1	Schweiß	verbindungen
		4.2.1.1	Schweißverfahren, Eigenschaften und Anwendung
		4.2.1.2	Werkstoffe
		4.2.1.3	Berechnung
		4.2.1.4	Konstruktive Gestaltung
		4.2.1.5	Berechnungsbeispiele
		Literatur	zum Abschnitt 4.2.1
	4.2.2	Lötverbi	ndungen
		4.2.2.1	Lötverfahren, Eigenschaften und Anwendung
		4.2.2.2	Werkstoffe
		4.2.2.3	Berechnung
		4.2.2.4	Konstruktive Gestaltung
		4.2.2.5	Berechnungsbeispiele
		Literatur	zum Abschnitt 4.2.2
	4.2.3		elzverbindungen
		4.2.3.1	Verfahren, Eigenschaften und Anwendung
		4.2.3.2	Werkstoffe
		4.2.3.3	Berechnung
		4.2.3.4	Konstruktive Gestaltung
			zum Abschnitt 4.2.3
	4.2.4		pindungen
		4.2.4.1	Klebverfahren, Eigenschaften und Anwendung
		4.2.4.2	Werkstoffe
		4.2.4.3	Berechnung
		4.2.4.4	Konstruktive Gestaltung
		4.2.4.5	Berechnungsbeispiel
			zum Abschnitt 4.2.4
	4.2.5		indungen
		4.2.5.1	Verfahren, Eigenschaften und Anwendung
		4.2.5.2	Werkstoffe
		4.2.5.3	Berechnung
		4.2.5.4	Konstruktive Gestaltung
			zum Abschnitt 4.2.5
1.3		_	Verbindungen
	4.3.1		indungen
		4.3.1.1	Verfahren, Eigenschaften und Anwendung
		4.3.1.2	Nietformen
		4.3.1.3	Berechnung
		4.3.1.4	Konstruktive Gestaltung
		4.3.1.5	Berechnungsbeispiel
	4.3.2		d Bolzenverbindungen
		4.3.2.1	Eigenschaften und Anwendung
		4.3.2.2	Stiftformen
		4.3.2.3	Berechnung
		4.3.2.4	Konstruktive Gestaltung
		4.3.2.5	Berechnungsbeispiel

	4.3.3	Feder- und Profilwellenverbindungen
		4.3.3.1 Einteilung, Eigenschaften und Anwendung
		4.3.3.2 Berechnung
		4.3.3.3 Konstruktive Gestaltung
		4.3.3.4 Berechnungsbeispiel
	4.3.4	Bördelverbindungen
	4.3.5	Sickenverbindungen
	4.3.6	Lapp- und Schränkverbindungen
	4.3.7	Falz- und Einrollverbindungen
	4.3.8	Blechsteppverbindungen
	4.3.9	Einspreizverbindungen 307
	4.3.10	Einbettverbindungen
	Literatı	ur zum Abschnitt 4.3
4.4		chlüssige Verbindungen
	4.4.1	Einpressverbindungen
		4.4.1.1 Einteilung, Eigenschaften und Anwendung
		4.4.1.2 Berechnung
		4.4.1.3 Konstruktive Gestaltung
		4.4.1.4 Berechnungsbeispiel
	4.4.2	Verpress- und Quetschverbindungen
	4.4.3	Keilverbindungen
		4.4.3.1 Einteilung, Eigenschaften und Anwendung
		4.4.3.2 Berechnung
		4.4.3.3 Konstruktive Gestaltung
		4.4.3.4 Berechnungsbeispiel
	4.4.4	Schraubenverbindungen
		4.4.4.1 Gewindearten
		4.4.4.2 Berechnung
		4.4.4.3 Schrauben, Muttern, Zubehör
		4.4.4.4 Konstruktive Gestaltung, Schraubensicherungen
		4.4.4.5 Berechnungsbeispiele
	4.4.5	Klemmverbindungen
	4.4.6	Renkverbindungen
	Literati	ur zum Abschnitt 4.4
4.5	Schach	ntelverbindungen 366
		<u> </u>
Elek	trische l	Leitungsverbindungen
5.1	Funkti	ion und Aufbau
5.2	Stoffsc	chlüssige Verbindungen
5.3	Krafts	chlüssige Verbindungen
3.3	5.3.1	Quetsch- oder Crimp-Verbindungen
	5.3.2	Klemmverbindungen
	3.3.2	
	5.3.3	<u> </u>
		Wickelverbindungen
	Literati	ur zum Abschnitt 5
Fede	ern	
6.1	Grund	lagen des Federentwurfs
0.1	6.1.1	Vorgehen beim Entwurf
	0.1.1	.01000001 20001 20001 411

6

5

		6.1.2 6.1.3	Federkennlinie, Federarbeit Berechnungshilfen und Optimierung	38 39
	6.2	Berech: 6.2.1 6.2.2 6.2.3 6.2.4	Biegefedern Torsionsfedern Bimetallfedern (Thermobimetalle) Nichtmetallische Federn 6.2.4.1 Gummifedern 6.2.4.2 Kunststoff-, Glas-, Gas- und Flüssigkeitsfedern Federsysteme	39 39 40 40 40 40 40
	6.3	6.3.1 6.3.2 6.3.3	offe Anforderungen Beanspruchungsgrenzen Verarbeitung	40 40 40 40
	6.4	Konstr	uktive Gestaltung, Ausführungsformen	40
		6.4.1	Gestaltungsgrundsätze	40
		6.4.2	Ausführungsformen	40
	6.5	Betrieb	osverhalten von Feder-Masse-Systemen	41
		6.5.1	Belastungs-Zeit-Verhalten	41
		6.5.2	Schwingend belastete Feder, Eigenkreisfrequenz	41
		6.5.3	Feder unter Stoßbelastung	41
		6.5.4 6.5.5	Einflussgrößen	41 41
			Federantriebe	
	6.6		nungsbeispiele ur zum Abschnitt 6	41 3
7	Achs	en und \	Wellen, Wellendichtungen	42
	7.1	Beansp	oruchungen	42
	7.2	Entwur	rfsberechnung	42
		7.2.1	Überschlägliche Bestimmung des Achsendurchmessers	42
		7.2.2	Überschlägliche Bestimmung des Wellendurchmessers	42
	7.3	Nachre	chnung	42
		7.3.1	Nachrechnung der vorhandenen Spannungen	42
		7.3.2	Nachrechnung der Verformung	43
		7.3.3	Schwingungsberechnung	43
	7.4		uktive Gestaltung, Werkstoffe	43
		7.4.1	Konstruktive Gestaltung	43
			7.4.1.1 Grundform von Achsen und Wellen	43. 43.
		7.4.2	Werkstoffe	43
	7.5	Wollo N	Nabe-Verbindungen	43
	7.5	7.5.1	Formschlüssige Welle-Nabe-Verbindungen	43
		7.5.2	Kraftschlüssige Welle-Nabe-Verbindungen	43
			3	
	7.6	Wollon	dichtungen	43
	7.6		dichtungen Dichtungen für Drehbewegungen	43
	7.6	Wellene 7.6.1 7.6.2	dichtungen Dichtungen für Drehbewegungen Dichtungen für Längsbewegungen	43 43 44
	7.6	7.6.1	Dichtungen für Drehbewegungen	43

		7.6.4	_	en für Längs-, Winkel- und Drehbewegungen	
			_	ofbuchse (für Vakuum)	443
		Literatu	ır zum Abs	chnitt 7	444
_					447
8	Lage				447
	8.1	Grundl	agen zu R	eibung und Verschleiß	447
	8.2	Lager .			451
		8.2.1		namische Gleitlager	453
			8.2.1.1	Berechnung	455
			8.2.1.2	Konstruktive Gestaltung	458
			8.2.1.3	Werkstoffe	459
		8.2.2	Sintermet	tall-Lager	460
		8.2.3	Verschlei	ßlager mit zylindrischen Zapfen	462
			8.2.3.1	Berechnung	463
			8.2.3.2	Konstruktive Gestaltung	465
			8.2.3.3	Werkstoffe	468
			8.2.3.4	Kunststoffgleitlager	470
			8.2.3.5	Kunstkohlegleitlager	472
		8.2.4	Lager mit	kegelförmigen Zapfen	473
			8.2.4.1	Berechnung	474
			8.2.4.2	Konstruktive Gestaltung	474
		8.2.5	Axialgleit	tlager	476
			8.2.5.1	Planspurlager (Ringspurlager)	476
			8.2.5.2	Kugelspurlager	477
		8.2.6	Spitzenla	ger	478
			8.2.6.1	Berechnung	478
			8.2.6.2	Konstruktive Gestaltung	482
			8.2.6.3	Werkstoffe	484
		8.2.7	Stoßsiche	rungen	484
		8.2.8		r	486
			8.2.8.1	Aufbau und Eigenschaften	486
			8.2.8.2	Ausführungsformen, Anwendung	486
			8.2.8.3	Berechnung	492
			8.2.8.4	Einbaurichtlinien	496
		8.2.9	Schneider	nlager	499
			8.2.9.1	Berechnung	500
			8.2.9.2	Konstruktive Gestaltung	501
			8.2.9.3	Werkstoffe	503
		8.2.10	Federlage	er	503
			8.2.10.1	Biegefedergelenke	503
			8.2.10.2	Torsionsfedergelenke	505
		8.2.11	Strömung	gslager (Luftlager)	507
			8.2.11.1	Berechnung	510
			8.2.11.2	Konstruktive Gestaltung	513
			8.2.11.3	Werkstoffe	514
		8.2.12	Magnetla	ger	514
			8.2.12.1	Wirkprinzip	514
			8.2.12.2	Luftspaltlager	514
			8.2.12.3	Magnetisch entlastete Lager	517
			8.2.12.4	Magnetflüssigkeitslager	518
		8.2.13	Berechnu	ngsbeispiele	520
		Literatu		bschnitten 8.1 und 8.2	522

	8.3	Führui	ngen
		8.3.1	Bauarten, Eigenschaften, Konstruktionsgrundsätze
		8.3.2	Gleitführungen
			8.3.2.1 Verkanten von Führungen 52
			8.3.2.2 Zwangfreie Führungen 53
			8.3.2.3 Bauarten von Gleitführungen
		8.3.3	Wälzführungen 53
			8.3.3.1 Grundlagen
			8.3.3.2 Bauarten von Wälzführungen
		8.3.4	Federführungen
			8.3.4.1 Bauarten und Eigenschaften 54
			8.3.4.2 Bewegungsverhalten
			8.3.4.3 Konstruktive Gestaltung
		8.3.5	Strömungsführungen (Luftführungen)
			8.3.5.1 Bauarten von Luftführungen 54
			8.3.5.2 Auslegung und Eigenschaften von Luftführungen
			8.3.5.3 Konstruktionshinweise
		8.3.6	Entlastete Führungen
		8.3.7	Geradführungen mit Hilfe von Getrieben
		8.3.8	Berechnung und Werkstoffwahl
			ur zum Abschnitt 8.3
	8.4		erung
		8.4.1	Schmierstoffe
			8.4.1.1 Schmieröle
			8.4.1.2 Schmierfette
			8.4.1.3 Festkörperschmierstoffe
		8.4.2	Reibungs- und verschleißmindernde Schichten 56
		8.4.3	Schmierverfahren 56
		Literatu	ır zum Abschnitt 8.4
9	Gehe	mme ui	nd Gesperre 57
	9.1	Gehem	me 57
		9.1.1	Formgehemme (Rastungen)
		,	9.1.1.1 Berechnung
			9.1.1.2 Konstruktive Gestaltung, Ausführungsformen
		9.1.2	Reibgehemme (Klemmungen)
		, <u></u>	9.1.2.1 Berechnung
			9.1.2.2 Konstruktive Gestaltung, Ausführungsformen
			<u>. </u>
	9.2	Gesper	rre 58
		9.2.1	Formgesperre
			9.2.1.1 Berechnung
			9.2.1.2 Konstruktive Gestaltung, Ausführungsformen
		9.2.2	Reibgesperre
			9.2.2.1 Berechnung
			9.2.2.2 Konstruktive Gestaltung, Ausführungsformen
			Literatur zum Abschnitt 9
10	Ansc	hläge, B	Bremsen und Dämpfer 59
	10.1	Angghl	äge 60
	10.1	10.1.1	Bauarten und Eigenschaften 60
		10.1.2	Berechnung 60

		10.1.3 Konstruktive Gestaltung, Ausführungsformen
		10.1.4 Betriebsverhalten
		10.1.5 Berechnungsbeispiele
	10.2	Bremsen
		10.2.1 Bauarten und Eigenschaften
		10.2.2 Berechnung
		10.2.3 Konstruktive Gestaltung, Ausführungsformen 613
		10.2.4 Betriebsverhalten
		10.2.5 Berechnungsbeispiele
	10.3	Dämpfer
		10.3.1 Bauarten und Eigenschaften
		10.3.2 Berechnung
		10.3.3 Konstruktive Gestaltung, Ausführungsformen
		10.3.4 Betriebsverhalten spezieller Dämpfer, Berechnungsbeispiel 630
		Literatur zum Abschnitt 10
11	Kupp	ungen
	11.1	Bauarten, Eigenschaften und Anwendung
	11.2	Feste Kupplungen 636 11.2.1 Berechnung 636
		11.2.1 Berechnung 636 11.2.2 Konstruktive Gestaltung, Ausführungsformen 637
		11.2.3 Betriebsverhalten
	11.3	Ausgleichskupplungen 640
		11.3.1 Berechnung
		11.3.2 Konstruktive Gestaltung, Ausführungsformen
		11.3.3 Betriebsverhalten
	11.4	Schaltbare Kupplungen
		11.4.1 Berechnung
		11.4.2 Konstruktive Gestaltung, Ausführungsformen
		11.4.3 Betriebsverhalten
	11.5	Selbstschaltende Kupplungen
		11.5.1 Berechnung
		11.5.2 Konstruktive Gestaltung, Ausführungsformen
		11.5.3 Betriebsverhalten
	11.6	Werkstoffe
	11.7	Berechnungsbeispiele
		Literatur zum Abschnitt 11
		0.1.111
12	Span	-, Schritt- und Sprungwerke
	12.1	Spannwerke
		12.1.1 Sperrspannwerke
		12.1.2 Kippspannwerke
	12.2	Schrittwerke
	12.3	Sprungwerke
		12.3.1 Sperrsprungwerke
		12.3.2 Kippsprungwerke

	12.4		se zur Dimensionierung, Beispieler zum Abschnitt 12
13	Getri	ebe	
	13.1	Einteilu	ıng der Getriebe
			r zum Abschnitt 13.1
	13.2	Zahnra	dgetriebe-Übersicht
		13.2.1	Übersetzung, Zähnezahlverhältnis, Momentenverhältnis
		13.2.2	Allgemeine Verzahnungsgeometrie
			13.2.2.1 Grundgesetze der Verzahnung
			13.2.2.2 Konstruktion von Gegenprofil und Eingriffslinie
			13.2.2.3 Zahnfußflanke, relative Kopfbahn und unbrauchbare
			Flankenabschnitte
			13.2.2.4 Bezeichnungen und Bestimmungsgrößen an Zahnrädern
		13.2.3	Bauformen von Zahnradgetrieben
	13.3	Stirnra	dgetriebe mit nichtevolventischer Verzahnung
		13.3.1	Zykloidenverzahnung
			13.3.1.1 Zahnform
			13.3.1.2 Eingriffsverhältnisse und Überdeckung
			13.3.1.3 Tragfähigkeit, Eigenschaften und Anwendung
		13.3.2	Triebstockverzahnung
			13.3.2.1 Zahnform
			13.3.2.2 Eingriffsverhältnisse und Überdeckung
		1000	13.3.2.3 Tragfähigkeit, Eigenschaften und Anwendung
		13.3.3	Kreisbogenverzahnung (Pseudozykloidenverzahnung,
			Uhrwerkverzahnung)
			13.3.3.1 Zahnformen
			13.3.3.3 Tragfähigkeit, Eigenschaften und Anwendung
			Literatur zum Abschnitt 13.3
	13.4	Stirnra	dgetriebe mit Evolventenverzahnung
	10.1	13.4.1	Zahnform
		13.4.2	Bezugsprofil und Verzahnungsgrößen
		13.4.3	Eingriffsverhältnisse und Überdeckung
		13.4.4	Unterschnitt und Grenzzähnezahl
		13.4.5	Profilverschobene Verzahnung
		13.4.6	Schrägverzahnung
		13.4.7	Innenverzahnung
		13.4.8	Grenzen der Verzahnungsgeometrie, extrem kleine Zähnezahlen
		13.4.9	Hochübersetzende Stirnradgetriebe, Umlaufrädergetriebe
			13.4.9.1 Stirnradstandgetriebe
		10 4 10	13.4.9.2 Umlaufrädergetriebe
		13.4.10	Verzahnungstoleranzen und Getriebepassungen, Zeichnungsangaben
			13.4.10.1 Verzahnungstoleranzen
			13.4.10.2 Getriebepassungen
		13 / 11	13.4.10.3 Zeichnungsangaben
		10.4.11	13.4.11.1 Begriffe der Tragfähigkeit
			13.4.11.2 Zahnkräfte
			13.4.11.3 Entwurfsberechnung
			13.4.11.4 Nachrechnung der Zahnfußtragfähigkeit

		13.4.11.5 Nachrechnung der Zahnflankentragfähigkeit	778
		9	779
	12 / 12	(nach VDI-Richtlinie 2736, Bl. 2)	
		Zahnradwerkstoffe, Schmierung	784
		Konstruktive Gestaltung, spielfreie Verzahnung	786
	13.4.14	Betriebsverhalten	795
		13.4.14.1 Drehwinkelübertragungsabweichung	795
		13.4.14.2 Verlustleistung und Wirkungsgrad	799
		13.4.14.3 Geräuschverhalten	803
		Herstellung der Zahnräder	805
		Berechnungsbeispiele	810
		r zu den Abschnitten 13.2 und 13.4	818
13.5		benstirnradgetriebe	821
	13.5.1	Geometrische Beziehungen	823
	13.5.2	Eingriffsverhältnisse und Überdeckung	826
	13.5.3	Profilverschiebung	827
	13.5.4	Tragfähigkeitsberechnung	828
	13.5.5	Werkstoffe, Schmierung, Gestaltung, Toleranzen	830
	13.5.6	Verlustleistung und Wirkungsgrad	830
	13.5.7	Berechnungsbeispiel	831
	Literatu	r zum Abschnitt 13.5	834
13.6	Schnec	kengetriebe	835
	13.6.1	Paarungsarten und Flankenformen	836
	13.6.2	Geometrische Beziehungen	841
	13.6.3	Eingriffsverhältnisse und Überdeckung	844
	13.6.4	Tragfähigkeitsberechnung	845
	13.6.5	Werkstoffe, Schmierung, Gestaltung, Toleranzen	846
	13.6.6	Verlustleistung und Wirkungsgrad	848
	13.6.7	Berechnungsbeispiel	850
	Literatu	r zum Abschnitt 13.6	852
13.7	Kegelra	nd- und Kronenradgetriebe	853
	13.7.1	Kegelradgetriebe mit Geradverzahnung	856
		13.7.1.1 Geometrische Beziehungen	857
		13.7.1.2 Profilverschiebung	859
		13.7.1.3 Eingriffsverhältnisse und Überdeckung	860
		13.7.1.4 Tragfähigkeitsberechnung	861
		13.7.1.5 Werkstoffe, Schmierung, Gestaltung, Toleranzen	861
		13.7.1.6 Verlustleistung und Wirkungsgrad	862
	13.7.2	Kronenradgetriebe	862
		r zum Abschnitt 13.7	863
13.8	Reibkö	rpergetriebe	864
	13.8.1	Bauarten, Eigenschaften und Anwendung	866
	13.8.2	Berechnung	867
		13.8.2.1 Geometrische Beziehungen und Geschwindigkeiten	867
		13.8.2.2 Kräfte und Tragfähigkeit	870
	13.8.3	Werkstoffe, Schmierung	872
	13.8.4	Konstruktive Gestaltung, Ausführungsformen	874
	13.8.5	Betriebsverhalten	881
	13.8.6	Berechnungsbeispiel	882
		r zum Abschnitt 13.8	883

13.9	Zugmit	telgetriebe	·					
	13.9.1	Bauarten						
	13.9.2	Seil-, Band- und Flachriemengetriebe						
		13.9.2.1	Eigenschaften und Anwendung					
		13.9.2.2	Berechnung 8					
		13.9.2.3	Zugmittelarten, Werkstoffe					
		13.9.2.4	Konstruktive Gestaltung, Ausführungsformen					
		13.9.2.5	Verlustleistung und Wirkungsgrad					
	13.9.3	Keilrieme	n- und Rundriemengetriebe					
		13.9.3.1	Eigenschaften und Anwendung					
		13.9.3.2	Berechnung					
		13.9.3.3	Zugmittelarten, Werkstoffe					
		13.9.3.4	Konstruktive Gestaltung, Ausführungsformen					
		13.9.3.5	Verlustleistung und Wirkungsgrad					
	13.9.4	Zahnriem	engetriebe					
		13.9.4.1	Eigenschaften und Anwendung					
		13.9.4.2	Werkstoffe, Geometrie und Aufbau					
		13.9.4.3	Profilgeometrien					
		13.9.4.4	Allgemeingültige Hinweise zur Dimensionierung					
		13.9.4.5	Dimensionierung entsprechend der Belastung					
		13.9.4.6	Vorspannung					
		13.9.4.7	Betriebsverhalten					
	13.9.5		iebe					
	10.7.0	13.9.5.1	Eigenschaften und Anwendung					
		13.9.5.2						
		13.9.5.3	9					
		13.9.5.4	, , , , , , , , , , , , , , , , , , , ,					
			9, 9					
	1204	13.9.5.5	Verlustleistung und Wirkungsgrad					
	13.9.6		ngsbeispiel					
	Literatu	r zum Abso	chnitt 13.9					
13.10	Schraul	bengetrieb	e 9					
	13.10.1	.1 Bauarten, Eigenschaften und Anwendung						
	13.10.2	Berechnur	ng					
		13.10.2.1	Kinematik und geometrische Beziehungen					
		13.10.2.2	Kräfte und Tragfähigkeit					
	13.10.3		e, Schmierung					
			ive Gestaltung, Ausführungsformen					
		13.10.4.1	Gleitschraubengetriebe					
			Wälzschraubengetriebe					
			Wälzmutter					
	13 10 5		grad					
		_	ngsbeispiel					
			Chnitt 13.10					
13.11								
	13.11.1		Eigenschaften und Anwendung					
		13.11.1.1	Koppelgetriebe mit vier Gliedern					
		13.11.1.2	Mehrgliedrige Koppelgetriebe					
	13.11.2	Berechnur	ng					
	13.11.3	Konstrukt	ive Gestaltung, Werkstoffe					
	13.11.4	Betriebsve	erhalten					
	13.11.5	Berechnui	ngsbeispiele					

	13.12	2 Kurven	getriebe .		980		
		13.12.1	Bauarten	, Eigenschaften und Anwendung	980		
		13.12.2	Berechnu	ng, konstruktive Gestaltung, Betriebsverhalten	982		
		Literatu	ır zu den A	bschnitten 13.11 und 13.12	987		
4	Mikr	romechanik					
	14.1	Charak	teristik de	er Mikromechanik	991		
	14.2	2 Werkstoffe der Mikromechanik					
	14.3	Mikron	nechanisc	he Fertigungsverfahren	995		
		14.3.1	Spezielle	Verfahrensschritte und Standardtechnologien	996		
			14.3.1.1	Zweiseitenzuordnung	997		
			14.3.1.2	Tiefenätzverfahren	998		
			14.3.1.3	Herstellung isolierender Schichten	1003		
			14.3.1.4	Verbindungsverfahren (Wafer-Bonden)	1005		
	14.3.2 Mikromechanische Formgebungsverfahren						
			14.3.2.1	Ätzverfahren (Volumenmikromechanik)	1007		
			14.3.2.2	Oberflächenmikromechanik (Surface Micromachining,			
				Opferschichtverfahren)	1008		
			14.3.2.3	Oberflächennahe Volumenmikromechanik	1009		
			14.3.2.4	LIGA-Verfahren	1009		
			14.3.2.5	Mikromechanische Grundformen	1010		
	14.4	Entwic	klung mik	cromechanischer Funktionsgruppen	1011		
	14.5	Mikron	nechanisc	he Konstruktionselemente	1012		
		Literatu	ır zum Abs	chnitt 14	1014		
Sar	chwör	terverze	aichnis		1010		

1

Charakterisierung und Systematik der Konstruktionselemente

Feinmechanische Konstruktionselemente sind Bestandteile eines jeden Geräts; sie bestimmen in entscheidendem Maße dessen Funktion, Zuverlässigkeit, Lebensdauer und Kosten [1.2].

In vielen Fällen sind die kleinen Abmessungen durch die i. Allg. kleinen äußeren Kräfte bedingt, werden aber oft auch gefordert, um durch kleine Massen hohe Arbeitsgeschwindigkeiten und große Genauigkeiten, z.B. bei Bewegungsabläufen zu erreichen.

Ein weiteres Merkmal ist die Vielfalt der Lösungswege und Ausführungsformen wegen des breiten Spektrums der Forderungen. Oft ist ein besonderes Anpassen an die Gegebenheiten der Gerätefunktion und damit eine Neukonstruktion der Elemente notwendig. Dabei sind die spezifischen Eigenheiten der feinmechanischen Fertigung zu berücksichtigen; bei sehr großen Stückzahlen wird die Wirtschaftlichkeit nur durch Massenfertigung und somit durch Anwendung spezieller Fertigungsverfahren erreicht [1.3].

Zusätzlich spielt die Werkstoffwahl eine entscheidende Rolle; hier sind in erster Linie Formgebung und Bearbeitungsverfahren maßgebend. Es werden vorrangig solche Werkstoffe eingesetzt, die sich leicht und ohne viele Arbeitsgänge bearbeiten lassen. Zunehmend finden genormte Halbzeuge und vor allem auch Kunststoffe Verwendung; die Palette der funktionsbedingten Werkstoffe ist jedoch in keinem Technikbereich so groß wie in der Feinwerktechnik. Je nach Funktion der Elemente haben auch thermische, klimatische und weitere Anforderungen ausschlaggebende Bedeutung, und es müssen deshalb zugleich die physikalischen und chemischen Eigenschaften der Werkstoffe Berücksichtigung finden.

Die Feinwerktechnik mit ihrer Vielfalt von Erzeugnissen (Bild 1.1) wird in Zukunft den Leistungszuwachs in allen Bereichen der Volkswirtschaft entscheidend bestimmen [1.2] [1.26] [1.27].

Durch den Einsatz von mikroelektronischen Bausteinen wird der Wertanteil mechanischer Bauteile in einer Vielzahl von Geräten zwar reduziert (1950: 60%, 1975: 50%, 2010: < 40% [1.2]), aber an der Geräteperipherie und vor allem auch in automatisierten Produktionseinrichtungen und im Elektronikmaschinenbau werden die Anforderungen an Leistungsfähigkeit, Arbeitsgeschwindigkeit, Präzision, Zuverlässigkeit und Lebensdauer mechanischer Bauteile erhöht. So ist u. a. Mikroelektronik ohne mechanische Präzision nicht denkbar (Bild 1.2).

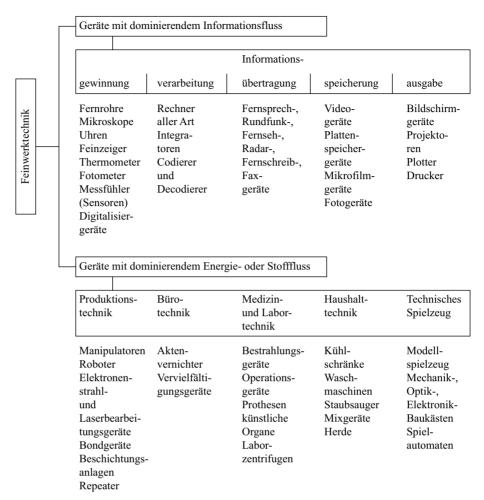
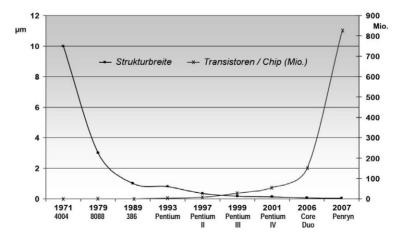



Bild 1.1 Einteilung der Geräte

Bild 1.2 Steigerung der Präzision in der Feinmechanik am Beispiel der Leiterstrukturbreite und der Anzahl der Transistoren je Chip (nach *Shopbell*) [1.50]

Eine qualitativ neue Situation entsteht durch den Übergang zur Serien- und Massenproduktion von Präzisionsmechanik. Bereits heute weisen international etwa 25% aller gefertigten Maße bei mechanischen Bauteilen die Qualität IT 6 auf, und etwa 5% verlangen die Qualität IT 4. Im Zeitraum der nächsten zehn Jahre werden etwa 25% der Teile die Qualität IT 5 und etwa 5% die Qualität IT 3 aufweisen. Bei ausgewählten Erzeugnissen der Feinwerktechnik liegen diese Forderungen sogar noch höher (Tabelle 1.1).

Tabelle 1.1 Toleranzanforderungen bei präzisionsmechanischen, optischen und elektronischen Geräten

Baugruppen und Geräte	Durchschn	zulässige				
Bauelemente (Auswahl und Beispiele)	Länge	Winkel	Geradheit	Ebenheit	Rundheit	Schwingungs- amplitude
Durchschnittliche Präzision: Konsumgütergeräte, Schreib- und Bürotechnik, Unterhaltungselektronik, Zahnräder, Gewindespindeln, Teile für Schreibmaschinen und mechanische Uhren, Kameraverschlüsse, elektronische Baugruppen, Transistoren, Dioden	> 50 μm	> 10′1°	> 500 μm/m	> 500 μm/m ²	> 50 μm	> 10 µm
Mittlere Präzision: Werkstattmessgeräte, Bearbeitungsmaschinen, Automatisierungseinrichtungen, Präzisionszahnräder, Wälzschraubengetriebe, Plattenspeicher, Plotter, Lichtleiter-Kopplungselemente, Mikromotoren, Relais, Linsen, Prismen, Kondensoroptik, Masken für Farbbildröhren	5 μm	10"10'	50 μm/m	50 μm/m ²	5 μm	1 μm
Hohe Präzision: Messgeräte, Feinbearbeitungsmaschinen, Mikromechanik, feinmechanisch-optische Messgeräte, technologische Spezialaus- rüstungen, Feinverstellungen, Wälzlager, Präzisionsmaßstäbe, CCD-Elemente, Magnetköpfe, Quarzschwinger, Servoventile, Linsen, Prismen	0,5 μm	0,1"10"	5 μm/m	5 μm/m²	0,5 μm	0,1 μm
Höchste Präzision: Metrologie, Mikroelektroniktechnologie, Endmaße, Koordinatenmessmaschinen, spezielle x-y-Positioniertische, aero- und hydrostatische Lager und Führungen, Videoplatten, LSI und VLSI, Planglasplatten, Beugungsgitter	< 0,05 μm (< 0,01 μm bis 0,2 m Länge)	< 0,1 "	< 0,5 μm/m	< 0,05 μm/m ²	< 0,05 μm	< 0,01 μm

Parallel vollzieht sich zunächst bei ausgewählten miniaturisierten mechanischen Bauelementen, Sensoren und Aktoren ein Qualitätsumschwung in Richtung *Mikromechanik*. In die Tiefe des Siliziumkristalls werden frei gestaltete mechanische Funktionselemente, wie Membranen, Zungen, Gitter usw., hineinmodelliert (s. Abschnitt 14). Diese neuartigen winzigen Elemente lassen sich direkt an elektronische Komponenten koppeln. Anwendungsmöglichkeiten liegen bei der Sensorik (Messung von Drücken, Schwingungen, Beschleunigungen usw.), bei peripheren Geräten der Datenverarbeitung (z. B. Tintenspritz- oder Thermodrucker) und im Wissenschaftlichen Gerätebau (u.a. Gaschromatographie und Isotopentrennung). Durch größere Präzision und Schärfentiefe bei der lithografischen Strukturübertragung mit Hilfe röntgenlithografischer Verfahren

sind zukünftig erhebliche innovative Impulse durch Erforschung des Verhaltens kleinster mechanischer Strukturen (sog. *Submikrontechnik*) zu erwarten.

Diese Innovation hat insgesamt großen Einfluss auf Prinzipwahl, Gestaltung und Berechnung von Konstruktionselementen. Zweck und Funktion der mechanischen Elemente sind von dieser Entwicklung jedoch unabhängig. Trotz wachsender Vielfalt ihrer Ausführungsformen werden die feinmechanischen Elemente in einem modernen Gerät keine grundsätzlich anderen Aufgaben übernehmen, als sie es bereits früher hatten:

Konstruktionselemente für den funktionellen Geräteaufbau ermöglichen Informations-, Energie- oder Stoffflüsse in Geräten (Verarbeitungsfunktion [1.2]); dabei sind stets mechanische Bewegungen auszuführen.

Konstruktionselemente für den geometrisch-stofflichen Geräteaufbau sichern unter den gegebenen Umwelteinflüssen die für die Funktion erforderliche Anordnung aller Elemente und halten äußere und innere Störungen in den zulässigen Grenzen (Sicherungsfunktion [1.2]). Sie sind in jedem Gerät vorhanden.

Tabelle 1.2 ordnet die Konstruktionselemente der Feinmechanik nach ihrer Funktion.

Den einzelnen Funktionen, charakterisiert durch Begriff, Parameter und eine kurze Definition (Funktionsmerkmale), sind Funktionselemente zugeordnet. Sie fassen jeweils eine Gruppe von Konstruktionselementen zusammen. Diese Zuordnung ist jedoch nicht eindeutig. Ein bestimmtes mechanisches Bauelement kann in verschiedenen Anwendungsumgebungen unterschiedliche Funktionen u. U. auch gleichzeitig erfüllen. Solche mehrdeutigen Beziehungen sind der Grund dafür, dass z. B. Getriebe in mehreren Zeilen der Tabelle 1.2 genannt sind. Der Begriff "Funktionselement" steht als Oberbegriff sowohl für Einzelteile (z. B. Massestück, Feder, Welle) als auch für Baugruppen (z. B. Getriebe, Kupplungen, Festhaltungen), da man beim Entwerfen von Geräten diese Elemente zunächst als unteilbare Synthesebausteine benutzt.

Innerhalb der zweiten Gruppe der Konstruktionselemente ordnet Tabelle 1.2 die feinmechanischen Elemente nach den Funktionen des Energieflusses. Da sowohl informations- als auch stoffverarbeitende Vorgänge in mechanischen Systemen Bewegungen erfordern und mit wenigen Ausnahmen die gleichen Elemente als Funktionsträger benutzen, ist die Einteilung ebenso für diese Bereiche zutreffend.

Die in der Systematik enthaltenen Elemente haben für die Konstruktion von Geräten unterschiedliche Bedeutung. Viele von ihnen werden ständig benötigt, und es gibt bewährte Lösungen für Gestaltung und Berechnung. Eine von Bedarf in Ausbildung und Praxis diktierte Auswahl der wichtigen Elemente stellen die Abschnitte 4 bis 14 zugriffsbereit zur Verfügung. Funktion und prinzipielle konstruktive Ausführung dieser Funktionselemente werden zu Beginn eines jeden Abschnitts durch ein Grundprinzip (einheitlich formuliert nach Tabelle 2.6a, Abschnitt 2.1.2) definiert, aus dem Einteilung und Gestaltungsvarianten folgen.

Die Konstruktionselemente der Feinmechanik haben viele Gemeinsamkeiten mit denen des Maschinenbaus. Neben den aus der gleichen physikalischen Wirkungsweise folgenden Berechnungsgrundlagen benutzen Maschinen- und Gerätebau für zahlreiche Elemente dieselben Standards und Normen (z.B. für Halbzeuge, Gewinde, Verzahnungen, Normteile, Zeichnungen u.a.). Ebenso sind das methodische Vorgehen sowie das Anwenden von CAD/CAM-Lösungen bei zahlreichen Aufgaben übertragbar, so dass die bekannte Literatur über Maschinenelemente und Konstruktionslehre wertvolle Ergänzungen bietet [1.8] bis [1.17] [2.7] [2.8]. Im Maschinenbau bewährte konstruktive Lösungen sind jedoch nicht ohne weiteres auf die Feinwerktechnik übertragbar; Ziele bzw. Anforderungen an die mechanischen Elemente unterscheiden sich z. T. deutlich.

 Tabelle 1.2
 Systematik feinmechanischer Konstruktionselemente

Zweck	Funktion	Parameter	Funktionsmerkmale		Funktionselem	ente	Konstruktionselemente
	Stützen	Raum	Übertragen von Kräften und	fester Relativlage	Stützelement		Stab, Balken, Gestell, Stativ
nenten			Momenten bei		Verbindung	fest	stoffschlüssig formschlüssig kraftschlüssig
ı von Eler				veränderlicher Relativlage	verbindung	beweglich	Lagerung Führung Gelenke ($f \ge 2$)
Anordnen von Elementen	Abgrenzen		Umhüllen und Schützen eines Raumes		Schutzelement		Gehäuse Gefäß Deckel Dichtung
mischer	Speichern	Zeit	Aufnehmen von mechanischer Energie und Abgeben nach bestimmter Zeit		Speicher		Massestück Schwungmasse Pendel, Feder Luftfeder
len mecha					Startwerk		Spannwerk Sprungwerk Schrittwerk
Bereitstellen mechanischer Energie	Wandeln	Qualität	Wandeln nicht-mechan in mechanische	Wandler		Motor Elektromagnet Bimetall Piezoelement	
	Umsetzen		Verändern	der Charakte- ristik	Getriebe		Zahnrad-, Reibrad-,
Energie	Verstärken	Quantität	einer motorischen Funktionsgröße	des Betrages			Zugmittel-, Schrauben-, Koppel-, Kurven-, Hebel- und Feder-Getriebe
ischer	Reduzieren				Aufhalter		Dämpfung Bremse
Anpassen mechanischer Energie	Sperren		Verhindern einer Bewe- am Ende gung bei ihrer Ent- stehung		Festhalter		Anschlag Gesperre
ıpasseı	Schalten		Unterbrechen und Wiederherstellen der Bewegungsübertragung		Kupplung		Gehemme Schaltkupplung
- F	Vannala	Out			Eupplung		
ther	Koppeln	Ort	Übertragen von Funktionsgrößen zwischen benachbarten Orten				Ausgleichskupplung starre Kupplung
Übertragen mechanischer Energie	Leiten		Übertragen von Funkti zwischen beliebigen O		Leiter (mechan	isch)	Achse, Welle, Rohr, Getriebe $(i = 1)$
Übe	Vereinigen Verzweigen	Anzahl	Zusammenführen oder Aufteilen von Funktionsflüssen		Verteiler		Differential- und Summier-Getriebe

Schließlich sei darauf verwiesen, dass vielfältige Anforderungen an die Konstruktionselemente aus ihrer Kopplung und Integration mit optischen, elektronischen, elektromechanischen u.a. Geräteelementen resultieren, die sie zur Sicherung des Gesamtaufbaus in jedem Gerät in geeigneter Weise erfüllen müssen.

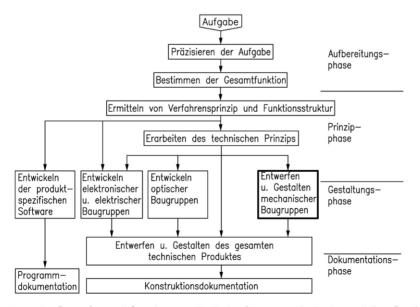
Die besondere Aufgabe des Gerätekonstrukteurs besteht darin, neben der sicheren Beherrschung der feinmechanischen Konstruktionselemente integrierend zwischen den genannten Teildisziplinen zu wirken.

Literatur zum Abschnitt 1 und Grundlagenliteratur zu den Abschnitten 2 bis 14

Bücher

- [1.1] Krause, W.: Grundlagen der Konstruktion Elektronik, Elektrotechnik, Feinwerktechnik, Mechatronik; mit einem Anhang Technisches Zeichnen. 10. Aufl. München, Wien: Carl Hanser Verlag 2018.
- [1.2] Krause, W.: Gerätekonstruktion in Feinwerktechnik und Elektronik. 3. Aufl. München, Wien: Carl Hanser Verlag 2000.
- [1.3] Krause, W.: Fertigung in der Feinwerk- und Mikrotechnik Verfahren, Werkstoffe, Gestaltung. München, Wien: Carl Hanser Verlag 1996.
- [1.4] Haberhauer, H.; Bodenstein, F.: Maschinenelemente. 18. Aufl. Berlin, Heidelberg: Springer-Verlag 2017.
- [1.5] Theumert, H.; Fleischer, B.: Entwickeln, Konstruieren, Berechnen. 5. Aufl. Vieweg+Teubner Verlag 2016.
- [1.6] Krause, W.: Lärmminderung in der Feinwerktechnik. Düsseldorf: VDI-Verlag 1995.
- [1.7] Lindemann, U.: Methodische Entwicklung technischer Produkte. 3. Aufl. Berlin, Heidelberg: Springer-Verlag 2009.
- [1.8] Kurz, U.: Konstruieren, Entwerfen, Gestalten. 4. Aufl. Wiesbaden: Vieweg+Teubner Verlag 2009.
- [1.9] Roth, K.: Konstruieren mit Konstruktionskatalogen. Bde. 1 bis 3. Berlin, Heidelberg: Springer-Verlag 1994 bis 2001.
- [1.10] Ponn, J.; Lindemann, U.: Konzeptentwicklung und Gestaltung technischer Produkte. Berlin: Springer-Verlag 2011.
- [1.11] Roloff, H.; Matek, W.: Maschinenelemente Normung, Berechnung und Gestaltung, mit Tabellenbuch. 23. Aufl. Wiesbaden: Springer Vieweg 2017.
- [1.12] Schlecht, B.: Maschinenelemente. Bd. 1: Festigkeit, Wellen, Verbindungen, Federn, Kupplungen; Bd. 2: Getriebe, Verzahnungen, Lagerungen. München [u.a.]: Pearson Studium 2015; 2011.
- [1.13] Ehrlenspiel, K.: Integrierte Produktentwicklung Denkabläufe, Methodeneinsatz, Zusammenarbeit. 6. Aufl. München, Wien: Carl Hanser Verlag 2017.
- [1.14] Pahl, G.; Beitz, W.: Konstruktionslehre. 8. Aufl. Berlin, Heidelberg: Springer-Verlag 2013.
- [1.15] Niemann, G.; Winter, H.; Höhn, B.-R.: Maschinenelemente. Bde. I, II, III: 4. Aufl., 2. Aufl., 2. Aufl. Berlin, Heidelberg: Springer-Verlag 2005, 2002, 2004.
- [1.16] Dubbel: Taschenbuch für den Maschinenbau. 24. Aufl. Berlin, Heidelberg: Springer-Verlag 2014.
- [1.17] Decker, K.-H.: Maschinenelemente Funktion, Gestaltung und Berechnung. 19. Aufl. München, Wien: Carl Hanser Verlag 2014.
 - Decker, K.-H.; Kabus, K.: Maschinenelemente Aufgaben. 15. Aufl. München, Wien: Carl Hanser Verlag 2014.
- [1.18] Klein, M.: Einführung in die DIN-Normen. 14. Aufl. Wiesbaden: Vieweg+Teubner Verlag 2008.

Aufsätze, Normen und Richtlinien


- [1.20] Höhne, G.; Schilling, M.: CAD-Einsatz in der Gerätekonstruktion. Feingerätetechnik 36 (1987) 2, S. 51.
- [1.21] Krause, W.: Automatisierte Präzisionsgerätetechnik aktuelle Schwerpunkte in Lehre und Forschung. Feingerätetechnik 37 (1988) 11, S. 482.
- [1.22] Krause, W.; Schilling, M.: Konstruktionselemente der Feinmechanik/Präzisionsgerätetechnik Charakterisierung und Aufgaben. Feingerätetechnik 38 (1989) 1, S. 17.
- [1.23] Krause, W.: Noch immer Feinmechanik im Zeitalter der Mikroelektronik? Feinwerktechnik und Meßtechnik 98 (1990) 9, S. 345.
- [1.24] Krause, W.: Traditionen und Trends in der Feinmechanik. Technische Rundschau Bern 82 (1990) 45, S. 76.
- [1.25] Krause, W.: Ökologie aus feinwerktechnischer Sicht. Technische Rundschau Bern 84 (1992) 47, S. 64.
- [1.26] Todt, H.: Die Bedeutung der Mikro- und Feinwerktechnik in der heutigen Zeit. Feinwerktechnik · Mikrotechnik · Meßtechnik 100 (1992) 7, S. 270.
- [1.27] Skoludek, H.: Feinmechanik Optik, eine Schlüsselindustrie im Markt. Feinwerktechnik · Mikrotechnik · Meßtechnik 100 (1992) 7, S. 272.
- [1.28] Krause, W.; Weißmantel, H.: Mikro- und Feinwerktechnik Modell einer zukunftsorientierten Studienrichtung. Feinwerktechnik · Mikrotechnik · Meßtechnik 101 (1993) 9, S. 329.
- [1.29] Krause, W.: Umweltgerechte Produktentwicklung. Wiss. Zeitschrift der TU Dresden 44 (1995) 4, S. 1.

- [1.30] Röhrs, G.; Krause, W.: Recyclinggerechtes Konstruieren elektronischer und feinwerktechnischer Produkte. Wiss. Zeitschrift der TU Dresden 44 (1995) 4, S. 6.
- [1.31] *Prottung, V.*: Parallelentwicklung beim Gerätedesign. Feinwerktechnik · Mikrotechnik · Meßtechnik 103 (1995) 10, S. 596 und 104 (1996) 1–2, S. 12.
- [1.32] *Roth, K.*: Finden und Ordnen technischer Lösungen Wahl des Gliederungsprinzips und der Zugriffsmerkmale für Konstruktionskataloge. Feinwerktechnik · Mikrotechnik · Mikrotechnik 104 (1996) 1–2, S. 76.
- [1.33] *Merz, G.*: CAD als Schlüssel zur durchgängigen Prozeßkette. Feinwerktechnik · Mikrotechnik · Mikrotech
- [1.34] Becker, W.: CAD/CAM-Modellierer der n\u00e4chsten Generation. Feinwerktechnik · Mikrotechnik · Mikrot
- [1.35] Schmidt, G.: Integrierte Entwicklungen von Optik und Mechanik. Feinwerktechnik · Mikrotechnik · Mikrotechnik i 104 (1996) 6, S. 448.
- [1.36] *Roessger, W.O.*: Der Weg zu höherer Produktivität. Feinwerktechnik · Mikrotechnik · Mikr
- [1.37] *Ehlers, K.*: Konzentration auf die Kernkompetenz. Feinwerktechnik · Mikrotechnik · Mikro
- [1.38] *Klipstein, D.L.*: Optoelektronik und Mikromechanik setzen neue Maßstäbe. Feinwerktechnik · Mikrotechnik · Mikroelektronik 105 (1997) 1 2, S. 15.
- [1.39] *Mertz, G.*: Entwicklungswerkzeuge als Wettbewerbsfaktor. Feinwerktechnik · Mikrotechnik · Mikrotechnik
- [1.40] *Merz, G.*: Rettung aus dem Konstruktionsengpaß. Feinwerktechnik · Mikrotechnik · Mikrote
- [1.41] Krause, W.: Mechatronik studieren aber wie? Feinwerktechnik · Mikrotechnik · Mikroelektronik 106 (1998) 1 – 2. S. 18.
- [1.42] Krause, W.: Feinwerktechnik im Zeitalter der Mikroelektronik. GMM-Report 1998, S. 33. Frankfurt/M.: VDE/ VDI-Gesellschaft Mikroelektronik, Mikro- und Feinwerktechnik.
- [1.43] Weiβmantel, H.; Kisse, R.: Klar und deutlich Produkte benutzerfreundlich konzipieren. Mechatronik/Elektronik Entwicklung und Gerätebau (F&M) 110 (2002) 3, S. 57.
- [1.44] DIN 40150: Begriffe zur Ordnung von Funktions- und Baueinheiten
- [1.45] VDI 2206: Entwicklungsmethodik für mechatronische System
- [1.46] VDI 2242: Ergonomiegerechte Gestaltung technischer Erzeugnisse
- [1.47] VDI 2243: Recyclingorientierte Produktentwicklung
- [1.48] Krause, W.: Feinwerktechnik im Spannungsfeld zwischen Feinmechanik und Mikroelektronik. Sitzungsbericht der Sächsischen Akademie der Wissenschaften zu Leipzig. Band 2, Heft 4. Leipzig 2007.
- [1.49] Krause, W.: Umweltgerechte Produkte der Feinwerktechnik. Jahrbuch Optik und Feinmechanik 2008, S. 121.
- [1.50] Shopbell, M. L.: ITRS Roadmap, main focus: automation. 5th Innovationsforum for automation. Dresden 2008.
- [1.51] Krause, W.: Die Geschichte der Feinwerktechnik von den Anfängen bis zur Gegenwart. Jahrbuch Optik und Feinmechanik 2010, S. 169.
- [1.52] Krause, W.: Entwicklung l\u00e4rmarmer feinwerktechnischer Produkte. Jahrbuch Optik und Feinmechanik 2011, S. 203.
- [1.53] Krause, W.; Nagel, T.: Feinmechanische Konstruktionselemente. Jahrbuch Optik und Feinmechanik 2014, S. 199.

2

Entwerfen und Gestalten von Konstruktionselementen

Das Entwerfen und Gestalten von Konstruktionselementen ist eine wichtige Aufgabe bei der Entwicklung technischer Produkte. Der Produktentwicklungsprozess umfasst alle Tätigkeiten von der Ermittlung der Konstruktionsaufgabe bis zur Fertigstellung der Konstruktionsdokumentation. Da in diesem Prozess alle entscheidenden Eigenschaften des zukünftigen Produktes festgelegt werden (Produktdefinition), liefert er die notwendigen Daten für alle nachfolgenden Phasen des Produktlebenszyklus (Arbeitsvorbereitung, Produktion, Vertrieb, Transport, Inbetriebnahme, Nutzung und Wartung bis zum Recycling bzw. der Entsorgung) [1.1] [1.7] [1.13] [1.14] [2.1] [2.2]. Je nach Komplexität des zu entwickelnden Geräts unterteilt er sich in relativ selbständige Teilprozesse (Bild 2.1). Sie ergeben sich aus der Struktur des Objektes (mechanische, optische, elektrische Baugruppen) und dem Arbeitsfortschritt (Entwicklungsphasen). Der Gerätekonstrukteur hat dabei neben federführender Mitwirkung in der Aufbereitungs- und Prinzipphase für das Gesamtgerät einschließlich der elektrischen und optischen Baugruppen den mechanischen Aufbau sicherzustellen, alle für die Gesamtfunktion erforderlichen mechanischen Elemente zu entwerfen und für eine optimale Gesamtgestalt des Geräts in Kooperation mit Technologen, Formgestaltern u.a. zu sorgen. Der größte Aufwand liegt mit über 50% in der Gestaltungsphase, in der die Vielfalt aller Einflussfaktoren und Forderungen bei der endgültigen Festlegung aller Details zu berücksichtigen ist [2.48].

Bild 2.1 Einordnung des Entwerfens und Gestaltens mechanischer Baugruppen in den konstruktiven Entwicklungsprozess von Geräten (nach VDI-Richtlinie 2221)