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1

Introduction

Energy harvesting (EH) is expected to have abundant applications in future wireless
communication systems to power transceivers by utilizing environmental energy such as
solar, thermal, wind, and kinetic energy. It becomes a promising technology that enables
sensor networks, cellular networks, and wireless communications in wide rural areas.

Since renewable energy is generally clean and cheap, EH offers various benefits
compared with conventional energy supplies such as batteries and fossil-fuel-based
generators. For example, in cellular networks, solar panels and wind farms have been
deployed to power base stations, thus lowering the expenses of energy bills, reducing
the level of carbon dioxide emissions, and improving the flexibility of deployment.
Besides, in wireless sensor networks, EH has been considered as a good substitute
for the traditional battery, which in principle prolongs the network operation time to
almost infinity. In short, EH in turn leads to a promising future for wireless networks:
green and self-sustainable.

1.1 Energy Harvesting Models and Constraints

Despite many advantages, the use of EH also imposes new challenges on the design of
wireless communication. Obviously, the harvested energy from solar, thermal, wind, and
kinetic energy sources is not stable and might change randomly over time. Therefore,
besides the randomness of the channel fading, there is another dimension of stochas-
tic resource to be dealt with, and it brings new constraints in the optimization of EH
wireless communication systems.

Wireless communication channels often fluctuate more substantially and dynamically
than practical EH rates (e.g. the channel changes on the order of milliseconds, while
the EH rate changes on the order of seconds or minutes), while channel fading is the
main challenge faced in the design of reliable wireless communications. To illustrate
this issue, we adopt a point-to-point wireless communication system, which consists of
one transmitter powered by an energy harvester and one receiver with a reliable power
supply, to show the phenomenon of the multi-time-scale channel/EH rate variations. In
practice, the coherence time of EH processes is often much larger than that of wireless
channels, as previously mentioned. Therefore, a block-based quasi-static EH model is
practically valid, where the EH rate remains constant within each EH coherent block
and may change from one block to another, and at the same time each EH block spans
over many communication channel coherent blocks, as shown in Figure 1.1. For the
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Figure 1.1 Time variations in EH process versus wireless channel.

purpose of exposition, we consider wireless data transmissions over a finite horizon of
M ≤ 1 EH blocks. Each EH block is further divided into N ≤ 1 communication blocks
each of one unit time and a constant channel gain.

Moreover, the random and intermittent characteristics of renewable energy impose a
new type of EH constraint: the available energy at an EH communication node up to any
time is bounded by its accumulatively harvested energy at that time. This is in contrast to
conventional communication systems with stable energy sources, in which the available
energy at any time is either unbounded or only limited by the remaining energy in the
storage device (e.g. battery).

Mathematically, let Em ≥ 0 denote the EH rate in the mth EH block and hn,m ≥ 0
the channel power gain of the (n,m)th communication block (i.e. the nth communica-
tion block of the mth EH block) with n = 1,… ,N ,m = 1,… ,M. Furthermore, we use
Pn,m ≥ 0 to denote the power consumption at the transmitter in the (n,m)th commu-
nication block. Unless otherwise stated, we consider that Pn,m represents the transmit
power at the transmitter and ignore the power consumption by circuit, signal process-
ing, etc. Assuming an ideal energy storage device (i.e. with infinite capacity and no
energy leakage) employed at the transmitter, we have the EH constraints on the sched-
uled power consumptions {Pn,m}; that is, the energy accumulatively consumed up to any
communication block (n,m), i.e.

∑m−1
j=1

(∑N
i=1 Pi,j

)
+
∑n

i=1 Pi,m, should be no larger than
the energy accumulatively harvested by then, i.e. N

∑m−1
j=1 Ej + nEm. In other words, we

have the EH constraints as
m−1∑
j=1

N∑
i=1

Pi,j +
n∑

i=1
Pi,m ≤ N

m−1∑
j=1

Ej + nEm, n = 1,… ,N ,m = 1,… ,M. (1.1)

Due to both the new EH constraints and the multi-time-scale channel/EH rate varia-
tions, it is a challenging problem to jointly optimize the communication scheduling and
energy management in EH-based wireless communications.

Finally, the availabilities of the channel state information (CSI) {h(n,m)} and the
energy state information (ESI) {E(m)} at the transmitter, respectively, can significantly



1.2 Structure of the Book 3

affect the performance of EH communication systems. Among all different assump-
tions about the channel state information at the transmitter (CSIT) and energy state
information at the transmitter (ESIT), there are four cases of primary interest in this
book, listed below:

(1) Case 1: Noncausal CSIT and ESIT. At the beginning of the transmission, the
transmitter perfectly knows the past, current, and future CSI and ESI. This case
approximates the practical scenario when the transmitter can accurately predict the
future CSI (e.g. slowly varying channels in low-mobility applications) and the future
ESI (e.g. based on historical data in a periodically varying energy environment).
The optimal solution in this case provides a performance upper bound for all other
CSIT/ESIT availability cases.

(2) Case 2: Causal CSIT and ESIT. At the beginning of each EH/communication block,
the transmitter knows the past and current CSI/ESI, as well as the statistical infor-
mation (e.g. distributions) of future CSI/ESI. In general, the solution of this case
achieves the lowest utility among the first three cases considered herein.

(3) Case 3: Causal CSIT and noncausal ESIT. This is a hybrid model based on cases 1
and 2, in which all ESI is perfectly known at the beginning of the transmission while
only the past and current CSI is known.

(4) Case 4: No CSIT and noncausal/causal ESIT. During the transmission, the trans-
mitter does not have any CSI and only has statistical information on the CSI. The
noncausal or causal ESIT is defined as that in Case 1 or 2 above. Note that in all the
above cases, we assume that at each communication block, the receiver perfectly
knows the CSI in that block.

1.2 Structure of the Book

Based on the previous section, it is observed that EH brings a new dimension to the
wireless communication problems, in the form of intermittency and randomness of the
available energy, as well as the possibility of the energy cooperations among the trans-
mission nodes in wireless networks. In this book, we summarize the progresses taken
in the past few years in this new research field. This book is divided into three parts:

(1) In part I, we focus on the optimal transmission design for EH wireless commu-
nication systems. In particular, Chapter 2 addresses the optimal power allocation
problems for the point-to-point EH channels to maximize the system throughput or
minimize the average outage probability and also considers the effects of imperfect
circuits and limited battery storage. Chapter 3 examines the power allocation for
various multi-node wireless channels powered by energy harvesters, including
the multiple-access channels (MACs), relay channels, and large relay networks.
Chapter 4 studies the cross-layer design for EH communications, considering some
upper layer issues such as transmission delay and traffic variations over time.

(2) In part II, we focus on the design and optimization of some EH networks. Chapter 5
considers the ad hoc networks, where there is no central control of the whole net-
work, and studies the opportunistic access control schemes and the corresponding
throughput scaling behavior. Chapter 6 considers a standard cellular network with
multiple base stations powered by energy harvesters and studies the energy and
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communication cooperations among them. Chapter 7 considers several new issues
in the next-generation cellular networks and studies EH-based hyper-cellular net-
works with control and traffic separation and proactive content caching and push
for better utilization of the renewable energy on small-cell base stations.

(3) Part III includes three appendices about the basic tools widely used in this book.
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Part I

Energy Harvesting Wireless Transmission
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2

Power Allocation for Point-to-Point Energy Harvesting Channels

To start with, in this chapter we consider the simplest point-to-point energy harvesting
(EH) channel with a single EH-powered wireless transmitter communicating with a
single wireless receiver. As shown in Figure 2.1, the transmitter can use an energy
harvester to harvest the renewable energy from the environment and then store the
harvested energy in a rechargeable storage device, to be used for sending information
to the receiver. On the other hand, the receiver can either be powered by fixed energy
supply (such as battery or grid) or EH, which will be specified later. The aim of this
chapter is to characterize the fundamental limits of the communication performance
of the point-to-point EH channel via designing the power allocation at the wireless
transmitter. As this channel can be viewed as a building block of more general multiuser
EH channels and EH-powered wireless networks, the results obtained in this chapter
will provide key design insights for general EH networks.

In the point-to-point EH channel, the introduction of renewable energy imposes new
design challenges on the power allocation at the wireless transmitter. In particular, as the
renewable energy arrival rates or EH rates are generally random and intermittent, a new
type of EH constraints is introduced, i.e. the available energy at the EH wireless transmit-
ter up to any time is bounded by its accumulatively harvested energy by that time. This
is in sharp contrast to conventional wireless communication systems with fixed energy
sources, in which the available energy at any time is either unbounded or only limited by
the remaining energy in the storage device (e.g. battery). In addition, wireless commu-
nication channels and practical EH rates often fluctuate at different time scales, while
channel fading is the main challenge faced in the design of reliable wireless communi-
cations. Due to both the new EH constraints and the multi-time scale channel/EH rate
variations, it is a challenging problem to design the power allocation at the EH wireless
transmitter for communication performance optimization [1–3].

In this chapter, we first build a general utility optimization framework to reveal the
key design principles of the point-to-point EH channel by considering the scenario with
the receiver powered by a fixed energy supply and an ideal transmitter with an infi-
nite energy storage and perfect circuits. Then, we apply this framework to solve two
specific problems including the throughput maximization and the outage probability
minimization, which are commonly adopted in the wireless literature as the communi-
cation performance metrics. Next, we extend the power allocation strategies to more
practical setups by considering the limited energy storage and imperfect circuits at the
wireless transmitter. In addition, we discuss the power allocation when both the trans-
mitter and the receiver are EH powered.

Energy Harvesting Wireless Communications, First Edition.
Chuan Huang, Sheng Zhou, Jie Xu, Zhisheng Niu, Rui Zhang and Shuguang Cui.
© 2019 John Wiley & Sons Singapore Pte. Ltd. Published 2019 by John Wiley & Sons Singapore Pte. Ltd.
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Rechargeable

energy storage

Transmitter Receiver

Energy flow Information flow

Energy
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Figure 2.1 A point-to-point EH channel with an EH transmitter using the harvested power to send
information to a receiver.

2.1 A General Utility Optimization Framework
for Point-to-Point EH Channels

In the following sections, we focus on the case when the receiver has a fixed energy
supply, unless otherwise stated. We consider block-based quasi-static models for the
EH process at the wireless transmitter as well as the wireless communication channel
from the transmitter to the receiver, where both the EH rate and the wireless channel
remain constant over each block and may change from one block to another. Since the
coherence time of the EH process is often much larger than that of the wireless channel
as previously mentioned, we consider that each EH coherent block spans over many
communication channel coherent blocks, as shown in Figure 2.1. For the purpose of
exposition, we consider the wireless data transmission over a finite horizon of length T
(in, e.g. seconds) that consists of M ≥ 1 EH blocks. Each EH block is further divided into
N ≥ 1 communication blocks each of one unit time and a constant channel gain.

Let Em ≥ 0 denote the EH rate in the mth EH block and hn,m ≥ 0 the channel power
gain of the (n,m)th communication block (i.e. the nth communication block of the mth
EH block) with n = 1,… ,N ,m = 1,… ,M. Furthermore, we use Pn,m ≥ 0 to denote the
power consumption at the transmitter in the (n,m)th communication block. Unless
otherwise stated, we consider that Pn,m represents the transmit power at the transmit-
ter and ignore the power consumption by circuit, signal processing, etc. Assuming an
ideal energy storage device (i.e. with infinite capacity and no energy leakage) employed
at the transmitter, we have the EH constraints on the scheduled power consumptions
{Pn,m}; that is, the energy accumulatively consumed up to any communication block
(n,m), i.e.

∑m−1
j=1

(∑N
i=1 Pi,j

)
+
∑n

i=1 Pi,m, should be no larger than the energy accumu-
latively harvested by then, i.e. N

∑m−1
j=1 Ej + nEm [4, 5]. In other words, we have the EH

constraints as
m−1∑
j=1

N∑
i=1

Pi,j +
n∑

i=1
Pi,m ≤ N

m−1∑
j=1

Ej + nEm,

n = 1,… ,N , m = 1,… ,M. (2.1)

Over the (n,m)th communication block, we denote the input–output relationship
from the transmitter to the receiver in the point-to-point wireless channel as

yn,m =
√

Pn,mhn,mxn,m + vn,m, n = 1,… ,N , m = 1,… ,M, (2.2)
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where yn,m is the channel output or the received signal at the receiver, xn,m is the corre-
sponding channel input or the transmitted signal by the transmitter with zero mean and
unit average power, and vn,m is the independent and identically distributed (i.i.d.) circu-
larly symmetric complex Gaussian (CSCG) noise at the receiver with zero mean and unit
variance. For each communication block, the achievable data rate (in bps Hz−1) corre-
sponds to the instantaneous mutual information of the channel, assuming the optimal
Gaussian codebook for the transmitted signals, which is given by

In,m(hn,m,Pn,m) = log2(1 + hn,mPn,m). (2.3)

To characterize the communication quality of service (QoS) measured at the receiver,
we define a general utility function Un,m(Pn,m) for the (n,m)th block, which is dependent
on the instantaneous mutual information In,m(hn,m,Pn,m) at that block. As a result, the
general utility maximization problem over the M EH blocks could be formulated as

max
{Pn,m≥0}

M∑
m=1

N∑
n=1

Un,m(Pn,m) (2.4)

s.t.
m−1∑
j=1

N∑
i=1

Pi,j +
n∑

i=1
Pi,m ≤ N

m−1∑
j=1

Ej + nEm,

n = 1,… ,N , m = 1,… ,M. (2.5)

In practice, the utility function Un,m(Pn,m) can be defined more explicitly as through-
put [4–10], non-outage probability [11, 12], or other performance metrics such as
end-to-end distortion in an EH-based estimation system [13], which could be either
deterministic or statistical average based on the availabilities of the channel state
information (CSI), i.e. {hn,m}, and the energy state information (ESI), i.e. {Em}, at the
transmitter, namely, CSIT and ESIT, respectively. In the following sections, we will par-
ticularly focus on the throughput maximization and outage probability minimization
by considering the throughput and the non-outage probability as the utility Un,m(Pn,m).
Moreover, among all different assumptions about the channel state information at the
transmitter (CSIT) and energy state information at the transmitter (ESIT), there are
four cases of our primary interest including:

• Case 1: Noncausal CSIT and ESIT.
• Case 2: Causal CSIT and ESIT.
• Case 3: Causal CSIT and noncausal ESIT.
• Case 4: No CSIT and noncausal/causal ESIT.

Note that in all the above cases, we consider the case that at each communication block,
the receiver perfectly knows the CSI in that block.

2.2 Throughput Maximization for Gaussian Channel with EH
Transmitter

First, we consider the throughput maximization problem in the EH channel by
considering the instantaneous mutual information In,m(hn,m,Pn,m) in (2.3) as the
utility function. Specifically, we consider the Gaussian channel case with the channel
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power gains remaining constant over the whole time horizon. As a result, we have
hn,m = h, n = 1,… ,N ,m = 1,… ,M. In this case, the utility function is expressed as

Un,m(Pn,m) = In,m(h,Pn,m) = log2(1 + hPn,m) (2.6)

in bps Hz−1 with normalized noise power. Furthermore, with the Gaussian channel,
we have the number of communication blocks in each EH block as N = 1 and define
Pm ≜ P1,m without loss of generality. Accordingly, the general utility maximization
problem in (2.4) can be expressed as the following throughput maximization problem:

max
{Pm≥0}

M∑
m=1

log2(1 + hPm) (2.7)

s.t.
m∑

j=1
Pj ≤

m∑
j=1

Ej, m = 1,… ,M. (2.8)

The optimal power allocation solution to the problem (2.7) depends on the availability
of the ESIT. In the following, we consider two cases with noncausal and causal ESIT,
respectively.

2.2.1 The Case with Noncausal ESIT

When the transmitter noncausally knows the current and future ESI, we refer to the
solution to problem (2.7) as an offline optimization. In the following, we first obtain
the optimal solution structure to problem (2.7) and then discuss its implementation in
practice.

2.2.1.1 Staircase Power Allocation to Problem (2.7)
It is easy to show that problem (2.7) is a convex optimization problem, since the objec-
tive function is concave and the EH constraints are linear. As a result, this problem can
be efficiently solved via standard convex optimization techniques [14]. Furthermore,
since problem (2.7) satisfies Slater’s condition, strong duality holds between (2.7) and its
dual problem. In this case, we can apply the Karush–Kuhn–Tucker (KKT) conditions to
reveal its optimal solution.

Let 𝜆m ≥ 0 denote the Lagrange multiplier associated with the mth constraint in
(2.8) and 𝜇m ≥ 0 denote the Lagrange multiplier associated with the power constraint
Pm ≥ 0,m = 1,… ,M. The Lagrangian associated with problem (2.7) is

2.2({Pm}, {𝜆m}, {𝜇m}) =
M∑

m=1
log2(1 + hPm) −

M∑
m=1

𝜆m

( m∑
j=1

Pj −
m∑

j=1
Ej

)
+

M∑
m=1

𝜇mPm. (2.9)

Then the necessary and sufficient conditions for {P★
m}, {𝜆★m}, and {𝜇★

m} to be the primal
and dual optimal solutions to problem (2.7) are given by the following KKT conditions:

0 ≤ P★
m , (2.10)

0 ≥

m∑
j=1

P★
j −

m∑
j=1

Ej, (2.11)
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0 ≤ 𝜆
★
m , (2.12)

0 ≤ 𝜇
★
m , (2.13)

0 = 𝜆
★
m

( m∑
j=1

P★
j −

m∑
j=1

Ej

)
, (2.14)

0 = 𝜇
★
m P★

m , (2.15)

0 =
𝜕2.2({P★

m}, {𝜆★m}, {𝜇★
m})

𝜕P★
m

, (2.16)

for all m = 1,… ,M. From (2.10), (2.13), (2.15), and (2.16), we obtain the optimal power
allocation as

P★
m =
[
𝜈m − 1

h

]+
, m = 1,… ,M, (2.17)

where [x]+ ≜ max(x, 0), 𝜈m ≜

(
ln 2
∑M

j=m 𝜆
★
j

)−1
≥ 0, and the 𝜆★j ’s satisfy the above KKT

conditions.
For the ease of description, we define an EH block t ∈ {1,… ,M} as a transition block

if the transmit power changes after EH block t, i.e. P★
t ≠ P★

t+1. We define the last EH
block M also as a transition block (say, by defining P★

M+1 to be infinity); hence there is
at least one transition block. We collect all transition blocks as the set  = {t1,… , t||},
where ti < tj for i < j and t|| = M. Then, we have the following structural properties for
the optimal power allocation {P★

m}, as shown in Figure 2.2.

Proposition 2.1 The optimal solution {P★
m} in (2.17) to problem (2.7) satisfies the

following properties:

• The optimal transmit power monotonically increases over time, i.e. P★
1 ≤ P★

2 ≤ · · · ≤
P★

M. We say that the optimal solution performs staircase power allocation over blocks,
since the transmit power {P★

m} in (2.17) is a staircase-like function.
• If EH block t is a transition block, then the battery storage is empty after this block, or

equivalently, the accumulative energy consumed up to EH block t equals that harvested
up to then, i.e. (2.11) holds with equality for t ∈  .

Proof : Since 𝜆★j ≥ 0, it follows that 𝜈1 ≤ 𝜈2 ≤ · · · ≤ 𝜈M. Accordingly, based on (2.17), we
have P★

1 ≤ P★
2 ≤ · · · ≤ P★

M. Therefore, the first property is verified.
Suppose that the transmit power changes after EH block t, and thus we have 𝜈t ≠ 𝜈t+1.

Since by definition 𝜈t =
(

ln 2
∑M

j=t 𝜆
★
j

)−1
, we get 𝜆★t ≠ 0. From (2.13), we get 𝜆★t > 0. It

then follows from the complementary slackness condition (2.14) that (2.11) holds with
equality for EH block t. This proves the second property. ◽

2.2.1.2 Efficient Algorithm to Solve Problem (12.7)
Based on the structural properties of the optimal solution, we develop an efficient
algorithm to implement the staircase power allocation to optimally solve problem (2.7).
Such an algorithm was proposed initially in [4] and in [6] in parallel.
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EH rates

Time

Time

Time

Optimal transmit power

Accumulative energy

(a)

(b)

(c)

Figure 2.2 Staircase structure of the optimal transmit power allocation. (a) The EH rates over time. (b)
The optimal staircase transmit power over time. (c) The accumulatively harvested energy (upper curve)
and accumulatively consumed energy (lower curve) over time.

Some definitions are in order. For convenience, let t0 = 0. We define the ith block
interval ̃i, where i = 1,… , ||, as the EH blocks between the ith and the (i + 1)th
transition block, i.e. ̃i ≜ {ti−1 + 1,… , ti}. Thus, ∪ĩi = {1,… ,M} and ̃i ∩ ̃j = 𝜙 for
i ≠ j. Let ★ = {t★1 ,… , t★|★|} denote the optimal set of transition blocks corresponding
to an optimal power allocation.

Then the optimal staircase power allocation is performed as follows. From the second
property in Proposition 2.1, all the harvested energy available in the ith block interval
(i.e.
∑t★i

m=t★i−1+1
Em) needs to be used during the ith block interval. Moreover, the optimal

transmit power should remain constant over this block interval. In other words, the
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optimal power allocation at the ith block interval is given as

P★
m =

∑t★i
m=t★i−1+1

Em

t★i − t★i−1

, m = t★i−1 + 1,… , t★i . (2.18)

As a result, the original optimization problem (2.7) can thus be reduced to a search for
the optimal transition block set ★ that has a size from 1 to at most M:

max
1≤||≤M

max


||∑
i=1

(ti − ti−1) log

(
1 + h

∑ti
m=ti−1+1 Em

ti − ti−1

)
(2.19)

subject to the power allocation
{

Pm =
∑ti

m=ti−1+1 Em

ti−ti−1

}
, satisfying the EH constraints in

(2.8). A brute force search based on (2.19) is of a high computational complexity.
Nevertheless, it turns out that it is optimal to simply employ a forward-search proce-
dure, starting with the search of the optimal t★1 , then of the optimal t★2 , and so on until
the last optimal transition block t★|★| equals M, at which point the optimal size |★| is
also obtained.

The first optimal t★1 can be found in Lemma 2.1 given below; by induction, the search
of the subsequent optimal transition blocks will follow similarly. Lemma 2.1 requires the
following feasible-search procedure:

(1) Initialize 1 as an empty set.
(2) For t1 = 1,… ,M, obtain the optimal power allocation from block 1 to block t1 as

Pt1
=
∑t1

m=1 Em

t1
, t1 = 1,… ,M. (2.20)

(3) Admit t1 in the set 1 if the corresponding optimal power allocation satisfies the EH
constraints in (2.8).

Note that the set 1 is non-empty, as it contains at least the element t1 = 1. Moreover,
the set 1 includes all possible candidates for the optimal t★1 .

Lemma 2.1 Let 1 be the feasible set of t1 obtained by the feasible-search procedure.
Then the optimal transition block is given by the largest element in 1, which corresponds
to the element with the smallest value of

{∑t1
m=1 Em

t1

}
, i.e.

t★1 = max
t1∈1

t1 = arg min
1≤t1≤M

∑t1
m=1 Em

t1
. (2.21)

Proof : If |1| = 1, then the only t1 must be optimal. Henceforth, assume |1| ≥ 2. Con-
sider two blocks t′, t′′ ∈ 1, where t′ < t′′. Denote their respective optimal transmit
power obtained from (2.20) as Pt′ =

∑t′
m=1 Em

t′
and Pt′′ =

∑t′′
m=1 Em

t′′
. Then Pt′ ≥ Pt′′ . Other-

wise if Pt′ < Pt′′ , then more power is allocated for each time block k = 1,… , t′, with
the transmit power Pt′′ used, as compared with the case with Pt′ used. But since the
transmit power Pt′ has used all available power at block t′ due to second property in
Proposition 2.1, the transmit power Pt′′ is infeasible and thus cannot be optimal.
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We now show that t′ cannot be the optimal t★1 by contradiction. Suppose that t★1 = t′,
i.e. the transmit power Pt′ is used from block 1 to block t′. The transmit power must then
subsequently decrease at some block t′ < k ≤ t′′; otherwise the sum power allocated
from block 1 to block t′′ will be more than the sum power allocated with the (constant)
transmit power Pt′′ , which violates the sum power constraint. But from the first property
in Proposition 2.1, the optimal transmit power is non-decreasing. Thus, t★1 ≠ t′ by con-
tradiction. By induction, all elements in 1, except for the largest one, are suboptimal.
The only candidate left, namely, the largest element, must then be optimal.

Based on the above discussion, t★1 should correspond to the element with
smallest value of

{
Pt1

=
∑t1

m=1 Em

t1

}
from (2.20). As a result, it must follow that

t★1 = arg min1≤t1≤M

∑t1
m=1 Em

t1
, and this lemma is proved. ◽

We now propose Algorithm 2.1 to find the optimal transition blocks for solving
problem (2.19) or equivalently problem (2.7), for which the optimality is shown in
Proposition 2.2. Briefly, Algorithm 2.1 computes t★1 , t★2 ,… , t★|★| in each of the iteration
until t★|★| = M. Given that t★1 ,… , t★i−1 is found, t★i is obtained based on (2.21) in
Lemma 2.1.

Proposition 2.2 Algorithm 2.1 obtains the optimal ★ that solves the optimization
problem in (2.19) or equivalently problem (2.7).

Proof : The ith iteration of Algorithm 2.1 finds the optimal t★i based on (2.21) in
Lemma 2.1. Next, from the second property in Proposition 2.1, in the first block inter-
val, all the power available would be used. Since no power is available for subsequent
block intervals given t★1 , the power allocation for subsequent block intervals can be
optimized independent of the actual power allocated in the first block interval. The
throughput maximization problem from block t★1 + 1 onward can be solved similarly
as before (after removing time blocks 1,… , t★1 ). Thus, we determine t★2 based on (2.21),
similarly for t★3 and so on, as reflected in the iteration of Algorithm 2.1. The iteration
ends when the optimal transition block equals M, which is the largest possible value as
stated in the optimization problem in (2.19). ◽

Algorithm 2.1: Finding the optimal transition blocks.
Input: t⋆0 = 0
Output: t⋆i

1: for i = 1, 2,… ,M do
2: Pti

←

∑m
j=t⋆i−1+1 Ej

m−t⋆i−1

3: ti ← t⋆i−1 + 1
4: t⋆i ← arg mint⋆i−1+1≤ti≤M Pti

5: if t⋆i − M then
6: Exit the algorithm
7: end if
8: end for



2.2 Throughput Maximization for Gaussian Channel with EH Transmitter 15

To better illustrate the optimal power allocation structure at the EH transmitter,
Figure 2.2c shows the accumulatively harvested energy (the upper curve) and accu-
mulatively consumed energy (the lower curve) over time. Here, both the upper and
the lower curves increase monotonically over time, and their slopes represent the EH
rate and the optimal transmit power, respectively. First, the accumulatively consumed
energy curve is observed to always lie below the accumulatively harvested energy curve,
which is in order to satisfy the EH constraints. Next, the slope of the accumulatively
consumed energy curve is observed to monotonically increase over time, which is
expected as in the first property of Proposition 2.1. Furthermore, it is observed that
when the slope of the accumulatively harvested energy curve changes, it touches the
accumulatively harvested energy curve at that time instant. This is consistent with the
second property of Proposition 2.1, showing that the harvested energy must be used up
at that time instant. This also implies that the first line segment of the accumulatively
consumed energy curve should be the line connecting the original and the corner
point of the accumulatively harvested energy curve and with the minimum slope, for
which the idea is used to develop Algorithm 2.1 to obtain the optimal staircase power
allocation solution.

2.2.2 The Case with Causal ESIT

Next, we consider the other case with only causal ESIT, i.e. at each EH block m, the
transmitter only knows the knowledge of past and present Ej’s, j = 1,… ,m, but is not
aware of future Ej’s, j = m + 1,… ,M. In this case, the transmitter cannot solve problem
(2.7) via the offline optimization approach with convex optimization techniques due
to the unawareness of Ej’s, j = m + 1,… ,M. Alternatively, we need to use an online
optimization for problem (2.7) in the following.

2.2.2.1 Dynamic Programming
Dynamic programming is known as the optimal online approach to solve problem (2.7),
provided that the harvested energy Em’s follow a stochastic process with certain dis-
tributions, and the transmitter knows such distribution information. In this case, the
transmitter aims to maximize the expected throughput over the finite horizon of M EH
blocks, i.e. 𝔼

(∑M
m=1 log2(1 + hPm)

)
, subject to the EH constraints in (2.8). The policy

can be optimized offline and implemented in real time via a look-up table that is stored
at the transmitter.

At each EH block m, we denote the state of the system as the harvested energy Em and
the energy storage level, denoted by Bm, at that block. Here, Bm’s are given as

Bm =
m−1∑
i=1

(Ei − Pi), m = 1,… ,M, (2.22)

where B1 = 0. Note that with Bm at hand, the EH constraints in (2.8) can be re-expressed
as

Pm ≤ Bm + Em, m = 1,… ,M. (2.23)

Then we have the following proposition.
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Proposition 2.3 Given E1 and B1, the optimal value achieved by maximizing
𝔼
(∑M

m=1 log2(1 + hPm)
)

subject to the EH constraints in (2.8) is given by J1(E1,B1),
which can be computed recursively based on the following Bellman equations, starting
from JM(EM,BM), JM−1(EM−1,BM−1), and so on until J1(E1,B1):

JM(EM,BM) = max
PM≥0

log2(1 + hPM)

s.t. PM ≤ BM + EM, (2.24)

Jm(Em,Bm) = max
Pm≥0

log2(1 + hPm) + J̄m+1(Bm − Pm)

s.t. Pm ≤ Bm + Em, (2.25)

for m = 1,… ,M − 1, where

J̄m+1(Bm − Pm) = 𝔼Em+1
(Jm+1(Em+1,Bm − Pm)), (2.26)

where 𝔼Em+1
(⋅) denotes the expectation over Em+1. An optimal policy is accordingly given

by π★ = {PDP
m (Em,Bm)}, where PDP

m (Em,Bm) is the optimal solutions to problem (2.24) for
m = M and (2.25) for m = 1,… ,M − 1.

Proof : The proof follows directly by applying Bellman equations [15] and thus is omitted
here for brevity. ◽

For problem (2.24), the optimal solution is trivial, i.e. PDP
M (EM,BM) = BM + EM, which

means that the transmitter uses all the available energy for transmission in the last EH
block M. We can interpret the maximization in (2.25) as a tradeoff between the present
and future rewards. This is because the throughput log2(1 + hPm) represents the present
reward, while J̄m+1(Bm − Pm), commonly known as the value function, is the expected
future throughput accumulated from block m + 1 until block M.

Next, we present structural properties of the maximum throughput Jm(Em,Bm)’s and
the corresponding optimal policy π★ in Propositions 2.4 and 2.5. The two propositions
are proved based on the concavity of the throughput function log2(1 + Pm), for which
the details can be found in [4].

Proposition 2.4 We have the following properties for Jm(Em,Bm)’s:

(1) Jm(Em,Bm)’s in (2.24) and (2.25) are concave in Bm for m = 1,… ,M.
(2) J̄m+1(Bm − Pm) in (2.26) is concave in Bm for m = 1,… ,M.

Proposition 2.5 Given Em, the optimal power allocation PDP
m (Em,Bm) that solves (2.24)

and (2.25) is non-decreasing in Bm, where m = 1,… ,M.

The structural properties in Propositions 2.4 and 2.5 simplify the numerical com-
putation of the optimal power allocation solution in Proposition 2.3. In particular,
from (2.24), we get the optimal solution for block M as PDP

M (EM,BM) = BM + EM.
Now, consider the problem of finding the optimal PDP

m (Em,Bm) to obtain Jm(Em,Bm),
m = 1,… ,M − 1. As J̄m+1(Bm − Pm) in (2.26) is concave as shown in Proposition 2.4, the
objective function in (2.25) is concave. Thus, problem (2.25) is a convex optimization



2.3 Throughput Maximization for Fading Channel with EH Transmitter 17

0 5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
T

h
ro

u
g
h
p
u
t 

p
er

 b
lo

ck

SNR (dB)

M = 4

M = 2

M = 1

Figure 2.3 Optimal throughput with noncausal ESI (light gray with “o” markers) or causal ESI (dark
gray with “×” markers) at the transmitter for M = 1, 2, 4.

problem and has a unique solution, which can thus be easily solved using numerical
techniques such as a bisection search [14].

Figure 2.3 compares the throughput per EH block, i.e. the sum throughput divided
by the number of EH blocks M, with noncausal ESI versus that with causal ESI. In
this simulation, the harvested energy Em’s are i.i.d. over EH blocks m. We assume the
harvested energy Em takes a value in {0, 0.5, 1} with equal probability. It is observed
that for M = 1, the throughput in both cases with noncausal ESI and causal ESI is the
same, because any ESI cannot be exploited for future EH blocks. However, in both cases
the throughput per block increases as M increases. The increment is more substantial
when noncausal ESI is available, intuitively because the ESI can then be much better
exploited. The incremental improvement as M increases is significant when M is small
but becomes less significant when M is large. The throughput with either noncausal ESI
or causal ESI does not differ significantly, possibly because the ESI that can be further
exploited from noncausal ESI is limited in our i.i.d. scenario.

2.3 Throughput Maximization for Fading Channel with EH
Transmitter

Now, we move to the case with fading channels, where the transmitter aims to
maximize the throughput over the finite horizon with M EH blocks each consisting of
N communication blocks. In this case, the utility function is given as

Un,m(Pn,m) = log2(1 + hn,mPn,m) (2.27)
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in bps Hz−1 with normalized noise power for the (n,m)th block. Problem (2.4) can then
be reformulated as

max
{Pn,m≥0}

M∑
m=1

N∑
n=1

log2(1 + hn,mPn,m) (2.28)

s.t. (2.5).

As for the CSIT and ESIT, we particularly focus on Case 1 with noncausal CSIT and
ESIT and Case 2 with causal CSIT and ESIT. We will provide some discussions on the
other two cases, i.e. Case 3 with causal CSIT and noncausal ESIT, as well as Case 4 with
no CSIT and noncausal/causal ESIT.

2.3.1 The Case with Noncausal CSIT and ESIT

First, we consider the case with noncausal CSIT and ESIT. In this case, we adopt an
offline optimization to solve problem (2.28). Since the objective function is concave
and the constraints are all linear, problem (2.28) is a convex optimization problem.
Furthermore, as problem (2.28) satisfies Slater’s condition, strong duality holds between
problem (2.28) and its dual problem. In this case, we use the KKT condition to obtain
the optimal solution.

2.3.1.1 Water-Filling Power Allocation
Before proceeding to consider the general case where the EH constraint (2.5) is imposed
for all m = 1,… ,M and n = 1,… ,N , we impose the constraint (2.5) only for the last
communication block, i.e. only for (n,m) = (N ,M). This then corresponds to the con-
ventional problem of maximizing the sum throughput with a sum energy constraint of
Pmax = N

∑M
m=1 Em:


WF({hn,m}

(N ,M)
(1,1) ,Pmax) = max

{Pn,m≥0}

M∑
m=1

N∑
n=1

log2(1 + hn,mPn,m) (2.29)

s.t.
M∑

m=1

N∑
n=1

Pn,m ≤ Pmax. (2.30)

Since less constraints are imposed, the maximum throughput in (2.29) is no smaller
than that of problem (2.28). It is well known that the optimal solution to problem (2.29)
is given by (see, e.g. [14, 16])

PWF
n,m =

[
𝜈 − 1

hn,m

]+
. (2.31)

This optimal solution is implemented by the water-filling power allocation algo-
rithm, where the water-level (WL) 𝜈 ≥ 0 is chosen such that (2.30) holds with
equality by using the optimal power allocation in (2.31). For completeness,
an implementation of the water-filling power allocation algorithm is given in
Algorithm 2.2.


