Oliver Diemel

Absorptionsspektroskopie zur zeitaufgelösten Abgasmessung an Verbrennungsmotoren

Absorptionsspektroskopie zur zeitaufgelösten Abgasmessung an Verbrennungsmotoren

Vom Fachbereich Maschinenbau an der Technischen Universität Darmstadt

zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte

Dissertation

von

Oliver Diemel, M.Sc.

aus Bad Hersfeld

Berichterstatter:	Prof. Dr. rer. nat. A. Dreizler		
Mitberichterstatter:	Prof. Dr. phil. T. Walther		
Tag der Einreichung:	25. Juli 2018		
Tag der mündlichen Prüfung:	17. Oktober 2018		

Darmstadt 2018

D17

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar.

> © 2018 Oliver Diemel Herstellung und Verlag: BoD – Books on Demand, Norderstedt

> > ISBN: 978-3-7481-4288-1

Danksagung

Diese Arbeit entstand während meiner dreieinhalbjährigen Zeit als wissenschaftlicher Mitarbeiter am Fachgebiet Reaktive Strömungen und Messtechnik (RSM) der TU Darmstadt, geleitet von Prof. Dr. Andreas Dreizler. Er hat mir nach meiner Master-Thesis, die ich ebenfalls am RSM angefertigt habe, eine Mitarbeit an seinem herausragenden Fachgebiet ermöglicht – danke dafür!

Mein Dank gilt auch Prof. Dr. Walther vom Fachbereich Physik, bei dem ich vor vielen Jahren meine erste Experimentalphysik-Vorlesung gehört habe, und der sich gerne bereit erklärt hat das Zweitgutachten zu übernehmen.

Die fachliche Betreuung der Arbeit erfolgte durch Dr. Steven Wagner, der die Gruppe der Hochtemperatur- und Prozessdiagnostik (HTPD) am RSM leitet. Ihm möchte ich danken für das uneingeschränkte Vertrauen in meine Arbeit, sowie für die vielen Ratschläge und Diskussionen. Ein besonderer Dank geht an die aktuellen und ehemaligen Kollegen aus der HTPD-Gruppe: Anna, Benni, Felix, Johannes, Luigi, Niels Göran, Sani und Sebastian. Ohne ihre Hilfsbereitschaft hätte ich wohl nochmal dreieinhalb Jahre gebraucht, um zu demselben Ergebnis zu kommen. Auch die privaten Unternehmungen waren eine Bereicherung, nicht zuletzt deswegen werde ich meine Zeit am RSM in guter Erinnerung behalten.

Allen weiteren Kollegen am RSM und auch denjenigen von EKT und STFS möchte ich für die unvergleichliche Arbeitsatmosphäre und die vielen tollen Momente abseits der Arbeit danken: beim Fußball, Kartfahren, dem Grillen hinter der Maschinenhalle oder den unzähligen Doktorfeiern. Den Mitarbeitern der Werkstatt um Roland Berntheisel danke ich für die Fertigung der vielen Einzelteile der optischen Zelle, die in 99% der Fälle früher abholbereit waren als gedacht. Die Messungen am RSM-Prüfstand wurden mit tatkräftiger Unterstützung der 'Motor-Leute' Calli, Marius und Rene durchgeführt – danke euch dreien. Für die Messung am VKM möchte ich mich bei Johannes Hipp bedanken, der den durchgängig ausgebuchten Prüfstand so flexibel zugänglich gemacht hat.

Mein gesamter Werdegang bis zu diesem Punkt wäre ohne die Unterstützung meiner Eltern in der Form nicht möglich gewesen, daher gebührt ihnen der größte Dank. Wann immer ich ihre Hilfe gebraucht habe, sie waren bedingungslos für mich da. Meiner Freundin Dorothea danke ich (ob sie will oder nicht) für ihr Verständnis während der letzten 'heißen' Phase dieser Arbeit. In solchen Zeiten merkt man, wie wichtig man einander ist.

Die Finanzierung der Arbeit erfolgte auf großzügige Weise durch die Fritz und Margot Faudi-Stiftung, wofür ich mich ebenfalls herzlich bedanke.

Darmstadt, Juli 2018

Oliver Diemel

Inhaltsverzeichnis

1	Ein	leitung		1	
	1.1	Motiva	ation	1	
	1.2	Messv	erfahren für gasförmige Abgasbestandteile	3	
	1.3	Zielset	zung und Struktur der Arbeit	6	
0	G			-	
2	Gru	indlage	en	7	
	2.1	verbre	ennungsmotor	-	
		2.1.1	Grundlegende Zusammenhange	1	
		2.1.2	Abgaszusammensetzung	.2	
		2.1.3	Abgasmesstechnik	.6	
	2.2	Absor	ptionsspektroskopie	.9	
		2.2.1	Molekülspektren	20	
		2.2.2	Linienstärken	:4	
		2.2.3	Linienformen	26	
		2.2.4	Diodenlaser	28	
		2.2.5	Messmethode: TDLAS	52	
	2.3	Messa	bweichungen	57	
		2.3.1	Allgemeine Zusammenhänge	57	
		2.3.2	Unsicherheit der Spektren-Auswertung	8	
3	Spe	Spektrometer-Entwicklung 4			
	3.1	Spekti	rale Übergänge der Messspezies	1	
	-	3.1.1	Wasserdampf	3	
		3.1.2	Kohlenstoffdioxid & Kohlenstoffmonoxid	4	
		3.1.3	Stickstoffmonoxid	5	
		3.1.4	Stickstoffdioxid	6	
	3.2	Aufba	u des Spektrometers	17	
		3.2.1	Optische Zelle	7	
		322	Gesamtsystem	2	
	3.3	Validie	erungsmessungen	3	
	0.0	331	Castemperatur	14	
		332	Stickstoffmonoxid	7	
		333	Stickstoffdiovid	;0	
	34	Signal	-Stabilität im Motorbetrieb	:9 ;2	
	3.5	Moser		;2 ;2	
	0.0	TATCODE		0	

4	Eins	satz an einem Einzylinder-Forschungsmotor	67
	4.1	Experimenteller Aufbau	67
		4.1.1 Motorprüfstand	67
		4.1.2 Spektrometer-Anbindung	70
	4.2	Abgastemperatur	73
		4.2.1 Zyklus-zu-Zyklus Schwankungen	75
		4.2.2 Einfluss ausgewählter Betriebsparameter	78
	4.3	Spezieskonzentrationen	83
		4.3.1 Sub-Zyklus-aufgelöste Spezies	83
		4.3.2 Zyklus-aufgelöste Spezies	87
		4.3.3 Lambda-Abhängigkeit	90
		4.3.4 Einfluss weiterer ausgewählter Betriebsparameter	93
	4.4	Fazit	97
5	Eins	satz an einem Vierzylinder-Serienmotor	99
	5.1	Experimenteller Aufbau	99
	5.2	Datenauswertung	101
	5.3	Betriebspunkte	102
		5.3.1 Kaltstart	102
		5.3.2 Stationärbetrieb	103
		5.3.3 Fahrzyklus	103
	5.4	Ergebnisse	104
		5.4.1 Kaltstart	104
		5.4.2 Stationärbetrieb	106
		5.4.3 Fahrzyklus	107
	5.5	Fazit	115
6	Zusa	ammenfassung und Ausblick	117
\mathbf{A}	Anh	nang	119
Lit	Literaturverzeichnis 122		

Abbildungsverzeichnis

2.1	Arbeitsspiel des Viertakt-Ottomotors	9
2.2	Zyklus-aufgelöste Abgas-Massenflussrate aus [153]	10
2.3	Seiliger-Vergleichsprozess und reales pV-Diagramm eines Viertaktmotors	11
2.4	Mittlere Rohemissionen von Otto- und Dieselmotoren	13
2.5	Schadstoffkonzentrationen im Abgas eines konventionellen Ottomotors in	
	Abhängigkeit vom Luftverhältnis	13
2.6	AVL-Abgasmessanlage, entnommen aus [111]	17
2.7	Aufbau eines NDIR-Analysators	18
2.8	Aufbau eines Chemilumineszenz-Analysators für die NO-Messung	18
2.9	Energieschema eines zweiatomigen Moleküls	21
2.10	Absorptionsspektrum der ersten Obertonbande von CO	23
2.11	Normalmoden der Molekülschwingung von CO_2 und H_2O	23
2.12	Flächennormiertes Gauß-, Lorentz- und Voigtprofil	28
2.13	Aufbau klassischer pn-Diodenlaser	29
2.14	Energieschema eines einfachen Quantengrabens und Energiekaskade eines	
	Interbandkaskadenlasers	31
2.15	Etalon-Messsignal zur Bestimmung des Durchstimmverhaltens	35
2.16	Schematisches TDL-Messsignal	35
0.1		40
3.1 2.0	Linienstarken der Messspezies zwischen 1,25 und 6,00 µm	42
ა.∠ ა.ა	Simularte Π_2 O-Spektren bei abgastypischen Bedingungen	43
ა.ა ე_/	Simularte VO ₂ - und CO-Spektren bei abgastypischen Bedingungen	44
0.4 ១ ธ	Simularte NO-Spektren bei abgastypischen Bedingungen	40
3.0 9.6	ZEMAX Simulation der White Zelle	40
3.0	ZEMAX-Simulation der Winte-Zene	48
3.1 20	CAD Derstellungen der optigehen Zelle	49
3.0 2.0	CAD-Daistellungen der Optischen Zeile	51
0.9 9 10	Gemessene i ladiangen der Winte-Zenen	51
5.10 2.11	Temperaturprofil der Strömung im Heißgeschanel	55
2 1 2	Am Heißgeskanel gemessenes H.O. Spektrum	55
2.12	Zeitreihe der gemessenen Temperaturen sowie der H.O.Konzentration am	55
0.10	Heißgeskapal	56
2 14	Vergleich der TC, und TDL Temperaturen am Heißgeskanal	57
3.14	Am Heißgeschangl gemessenes NO Spektrum	58
3.10	Zaitroiba dar gamassanan NO Konzontration am Haißgaskanal	59
3.10	Versteile von präparierter und spektreckenisch gemessener NO Kenzen	90
0.17	tration am Hoißgeskanal	50
	uanon am nongaokanai	09

$3.18 \\ 3.19$	Gemessenes NO ₂ -Spektrum bei Durchfluss einer Luft-NO-Mischung Vergleich von präparierter und spektroskopisch gemessener	61
	NO ₂ -Konzentration	61
3 20	Signalkontrast hei gefeuertem Motor und unheheizter ontischer Zelle	62
3.21	Signalkontrast bei gefeuertem Motor und beheizter optischer Zelle	63
2.21	Degiduen der Speltremeter Kapäle	64
3.22	Nachweisgrenzen der Spektrometer-Kanäle in Abhängigkeit der Gastempe-	04
0.20	ratur	65
4.1		00
4.1		09
4.2	Zeitlicher Verlauf des Luitvernaltnisses am Forschungsmotor	70
4.3	CAD-Darstellung des Forschungsmotors mit optischer Messzelle	71
4.4	Trigger-Schema der Messung am Forschungsmotor	72
4.5	Exemplarische Abgasdruckkurve mit Unsicherheit	73
4.6	Temperaturkurve eines einzelnen Motorzyklus	74
4.7	Abgastemperatur beim Übergang geschleppt \rightarrow gefeuert \ldots	75
4.8	Temperaturkurven einzelner Zyklen und im Phasenmittel	76
4.9	Korrelationsdiagramm von integralem Heizverlauf und mittlerer Abgastem-	
	peratur auf Zvklusbasis	77
4 10	Q-T-Korrelation verschiedener Messreihen	78
4 11	Abhängigkeit der Abgastemperatur vom Zündzeitnunkt	79
4 19	Abhängigkeit der Abgastemperatur vom Luftverhältnig	80
4.12	Abhängigkeit der Abgastemperatur vom Einlagdnuck und Dickrahl	00
4.15	Abhangigkeit der Abgastemperatur von Ermassdruck und Drenzam	01
4.14	Abnangigkeit der Abgastemperatur vom Kraitston	82
4.15	Abgastemperatur und -konzentrationen von H_2O , CO_2 , CO und NO über zehn Motorzyklen	84
4.16	Spektren von CO ₂ , CO und NO während der Messung am Forschungsmotor	85
4.17	Instantane relative Abweichung der CO ₂ -Konzentration von deren Zyklus-	
	Mittelwert	86
4.18	Simulierte NO_2/CH_4 -Spektren über einen Motorzyklus	88
4.19	Spektren des NO_2 -Kanals zur Bestimmung der Fremdverbreiterung \ldots	89
4.20	Zyklus-zu-Zyklus-Variationen der NO-Konzentration	91
4.21	Korrelation der NO-Konzentration mit dem Luftverhältnis	91
4.22	Abhängigkeit der Spezieskonzentrationen vom Luftverhältnis	92
4.23	Einfluss des Einlassdrucks auf CO und NO	94
4.24	Drehzahlabhängigkeit von CO und NO	95
4.25	Abhängigkeit der Abgaszusammensetzung vom Kraftstoff	96
F 1	Calendaria der Magneticken der Mannen aus Cariannater	100
5.1	Schematischer Aufbau der Messung am Serienmotor	100
5.2	Abgasdruckveriaui am Serienmotor	100
5.3	Fremdverbreiterungen von CO und NO im Abgas des Serienmotors	101
5.4	Alpha und Drehzahl während des Kaltstarts	102
5.5	Geschwindigkeitsprofil des WLTC	103
5.6	$\rm H_2O\text{-}Messung$ während des Kaltstarts	104
5.7	Konzentrationen von CO ₂ , CO und NO während des Kaltstarts	105
5.8	NO- und CO-Konzentration während der Messung zu Betriebspunkt $2 \ . \ . \ .$	106

5.9	CO_2 -Emissionen über den WLTC 109
5.10	$\mathrm{CO}_2\text{-}\mathrm{Konzentrationen}$ über den WLTC \ldots
5.11	CO-Emissionen über den WLTC
5.12	CO-Konzentrationen über den WLTC
5.13	NO-Emissionen über den WLTC
5.14	NO-Konzentrationen über den WLTC
5.15	$\mathrm{NO}_2\text{-}\mathrm{Konzentrationen}$ über den WLTC (Ausschnitt) 115
A.1	$\rm H_2O\text{-}Spektren während der Messung am Forschungsmotor$
A.2	Instantane relative Abweichung der CO- und NO-Konzentration von deren
	Zyklus-Mittelwert
A.3	Abhängigkeit der CO- und NO-Konzentration vom Zündzeitpunkt 121
A.4	Fotos der Messaufbauten an den verschiedenen Motorprüfständen $\ .$ 121

Tabellenverzeichnis

3.1 3.2 3.3	Mittlere Volumenanteile der gemessenen Spezies in Motorabgasen Übersicht der verschiedenen Multipfad-Anordnungen der optischen Zelle . Fahler- und Nachweisgrenzen der Spektrometer-Kanäle		42 51 65
4.1			00
4.1	Konstante Randbedingungen des Forschungsmotor-Prufstands		68
4.2	Ubersicht der variierten Betriebsparameter am Forschungsmotor		70
4.3	Messraten am Forschungsmotor		72
4.4	Betriebspunkte zur Untersuchung der Abhängigkeit der Abgastemperatur		
	vom Zündzeitpunkt		79
4.5	Betriebspunkte zur Untersuchung der Abhängigkeit der Abgastemperatur		
	vom Luftverhältnis		80
4.6	Betriebspunkte zur Untersuchung der Abhängigkeit der Abgastemperatur		
	von Einlassdruck und Drehzahl		81
4.7	Mittlere Unsicherheiten der Konzentrationsmessung am Forschungsmotor		87
4.8	Betriebspunkte zur Bestimmung der Fremdverbreiterung von NO_2 und CH_4		
	in Abgasatmosphäre.		89
4.9	Betriebspunkte zur Untersuchung der Abhängigkeit der Spezieskonzentra-		
	tionen vom Luftverhältnis		90
4.10	Betriebspunkte mit unterschiedlichem Einlassdruck bei näherungsweise stö-		
	chiometrischem Luftverhältnis		94
4.11	Betriebspunkte zur Untersuchung der Abhängigkeit der Spezieskonzentra-		
	tionen von der Drehzahl		95
5.1	Stationäre Betriebspunkte am Serienmotor	. 1	103
5.2	Ergebnisse für die stationären Betriebspunkte am Serienmotor	. 1	107
A.1	Betriebspunkte zum Vergleich der Abgastemperatur bei Verwendung der		
	Kraftstoffe Isooktan und Methan	1	119
A.2	Betriebsnunkte zur Untersuchung der Abhängigkeit der Abgaszusammen-		
	setzung vom Kraftstoff	1	120

Abkürzungsverzeichnis

AMA	Abgasmessanlage
AGR	Abgasrückführung
CLD	$Chemiluminescence\ Detection\ -\ Chemilumineszenz-Detektion$
DAQ	Data Acquisition – Datenaufnahme
DBR	Distributed Bragg Reflector – Bauart von Laserresonatoren
DFB	$Distributed \ Feedback$ – Bauart von Laserresonatoren
DPF	Dieselpartikelfilter
dTDLAS	$direct\ TDLAS$ – TDLAS-Variante mit direkter Messung der optischen Dichte
FID	Flammenionisationsdetektion
FSR	$Free \ Spectral \ Range$ – Freier Spektralbereich eines Etalons
FTIR	Fouriertransform-Infrarot
ICL	$Interband\ Cascade\ Laser-Interbandkaskadenlaser$
KW	Kurbelwinkel
LIF	Laserinduzierte Fluoreszenz
MIR	Mittleres Infrarot – etwa 3 bis 50 μm
NDIR	Nichtdispersiv-Infrarot
NEDC	New European Driving Cycle – Neuer Europäischer Fahrzyklus
NIR	Nahes Infrarot – etwa 780 nm bis $3\mu{\rm m}$
от	Oberer Totpunkt
PEMS	Portable Emissions Measurement System – Mobiles Emissionsmessgerät
PIV	Particle Image Velocimetry – Laserbasiertes Messverfahren für Strömungsgeschwindigkeiten
PMD	Paramagnetische Detektion
ppm	$parts \ per \ million - 1$ Teil in 1 Million, hier verwendet für Konzentrationsangaben

\mathbf{QCL}	Quantum Cascade Laser – Quantenkaskadenlaser
\mathbf{QW}	Quantum Well - Quantengraben
RDE	Real Driving Emissions – Emissionen im praktischen Fahrbetrieb
REMPI	<i>Resonance Enhanced Multiphoton Ionisation</i> – Resonanzverstärkte Mehrphotonenionisation
SCR	Selective Catalytic Reduction – Selektive Katalytische Reduktion
\mathbf{SM}	Single-Mode – Monomodal
SNR	Signal-to-Noise-Ratio-Signal-zu-Rausch-Verhältnis
TC	Thermocouple – Thermoelement
TDLAS	$Tunable\ Diode\ Laser\ Absorption\ Spectroscopy$ – Absorptions spektroskopie mit durchstimmbaren Diodenlasern
\mathbf{UT}	Unterer Totpunkt
UV	Ultraviolett
VCSEL	Vertical Cavity Surface Emitting Laser – Oberflächenemitter
WLTC	Worldwide harmonized Light vehicles Test Cycle – Weltweit einheitlicher Prüfzyklus für Pkw und leichte Nutzfahrzeuge
WMS	$Wavelength\ Modulation\ Spectroscopy-{\tt TDLAS-Variante\ mit}\\ {\tt Lock-In-Detektion}$
ZZP	Zündzeitpunkt

Nomenklatur

Große Lateinische Buchstaben Einheit Transmissionskorrektur A s^{-1} A_{ik} Einsteinkoeffizient der spontanten Emission BBasislänge m B_{ν} cm^{-1} Rotationskonstante $m^{3}J^{-1}s^{-2}$ Einsteinkoeffizient der Absorption B_{ki} Cm \vec{D}_{ik} Übergangsdipolmoment ${\rm cm}^{-1}$ JZentrifugalkonstante EEmissionskorrektur V FFinesse _ Ι Intensität W/m^2 JRotationsquantenzahl _ L Absorptionslänge m MMolare Masse $\rm kg \, mol^{-1}$ NAnzahl $OD_{\rm e}$ Optische Dichte (zur Basis e) _ PLeistung W QWärme J Zustandssumme Q_ RKernabstand m SLinienstärke (normiert auf Absorberdichte) cmTTemperatur Κ UInnere Energie J USpannung V VVolumen m^3 WArbeit J ZKostenfunktion _

Kleine Lateinische Buchstaben

$\begin{array}{ccc} \alpha & & \mbox{Absorptionskoeffizient} & & \mbox{m}^{-1} \\ \hline a & & \mbox{Parametervektor der Modellfunktion} & & \mbox{spezifisch} \end{array}$

Einheit