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PREFACE

Man has the faculty of becoming completely absorbed in one subject,
no matter how trivial, and no subject is so trivial that it will not assume
infinite proportions if one’s entire attention is devoted to it.

–Tolstoy, War and Peace

THE TWIN SHINING STARS REVISITED

The main focus of Volume One was to showcase the beauty, applications, and
ubiquity of Fibonacci and Lucas numbers in many areas of human endeavor.
Although these numbers have been investigated for centuries, they continue to
charm both creative amateurs and mathematicians alike, and provide exciting
new tools for expanding the frontiers of mathematical study. In addition to being
great fun, they also stimulate our curiosity and sharpen mathematical skills such
as pattern recognition, conjecturing, proof techniques, and problem-solving. The
area is still so fertile that growth opportunities appear to be endless.

EXTENDED GIBONACCI FAMILY

The gibonacci numbers in Chapter 7 provide a unified approach to Fibonacci
and Lucas numbers. In a similar way, we can extend these twin numeric families
to twin polynomial families. For the first time, the present volume extends
the gibonacci polynomial family even further. Besides Fibonacci and Lucas
polynomials and their numeric counterparts, the extended gibonacci family
includes Pell, Pell–Lucas, Jacobsthal, Jacobsthal–Lucas, Chebyshev, and

xv



xvi Preface

Vieta polynomials, and their numeric counterparts as subfamilies. This unified
approach gives a comprehensive view of a very large family of polynomial
functions, and the fascinating relationships among the subfamilies. The present
volume provides the largest and most extensive study of this spectacular area of
discrete mathematics to date.

Over the years, I have had the privilege of hearing from many Fibonacci
enthusiasts around the world. Their interest gave me the strength and courage
to embark on this massive task.

AUDIENCE

The present volume, which is a continuation of Volume One, is intended for a
wide audience, including professional mathematicians, physicists, engineers, and
creative amateurs. It provides numerous delightful opportunities for proposing
and solving problems, as well as material for talks, seminars, group discussions,
essays, applications, and extending known facts.

This volume is the result of extensive research using over 520 references,
which are listed in the bibliography. It should serve as an invaluable resource for
Fibonacci enthusiasts in many fields. It is my sincere hope that this volume will
aid them in exploring this exciting field, and in advancing the boundaries of our
current knowledge with great enthusiasm and satisfaction.

PREREQUISITES

A familiarity with the fundamental properties of Fibonacci and Lucas numbers,
as in Volume One, is an indispensable prerequisite. So is a basic knowledge of
combinatorics, generating functions, graph theory, linear algebra, number the-
ory, recursion, techniques of solving recurrences, and trigonometry.

ORGANIZATION

The book is divided into 19 chapters of manageable size. Chapters 31 and 32
present an extensive study of Fibonacci and Lucas polynomials, including a
continuing discussion of Pell and Pell–Lucas polynomials. They are followed
by combinatorial and graph-theoretic models for them in Chapters 33 and
34. Chapters 35–39 offer additional properties of gibonacci polynomials,
followed in Chapter 40 by a blend of trigonometry and gibonacci polynomials.
Chapters 41 and 42 deal with a short introduction to Chebyshev polynomials
and combinatorial models for them. Chapters 44 and 45 are two delightful
studies of Jacobsthal and Jacobsthal–Lucas polynomials, and their numeric
counterparts. Chapters 43, 46, and 48 contain a short discussion of bivariate
gibonacci polynomials and their combinatorial models. Chapter 47 gives a brief
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discourse on Vieta polynomials, combinatorial models, and the relationships
among the gibonacci subfamilies. Chapter 49 presents tribonacci numbers and
polynomials; it also highlights their combinatorial and graph-theoretic models.

SALIENT FEATURES

This volume, like Volume One, emphasizes a user-friendly and historical
approach; it includes a wealth of applications, examples, and exercises; numer-
ous identities of varying degrees of sophistication; current applications and
examples; combinatorial and graph-theoretic models; geometric interpretations;
and links among and applications of gibonacci subfamilies.

HISTORICAL PERSPECTIVE

As in Volume One, I have made every attempt to present the material in a his-
torical context, including the name and affiliation of every contributor, and the
year of the contribution; indirectly, this puts a human face behind each discov-
ery. I have also included photographs of some mathematicians who have made
significant contributions to this ever-growing field.

Again, my apologies to those contributors whose names or affiliations are
missing; I would be grateful to hear about any omissions.

EXERCISES AND SOLUTIONS

The book features over 1,230 exercises of varying degrees of difficulty. I encour-
age students and Fibonacci enthusiasts to have fun with them; they may open
new avenues for further exploration. Abbreviated solutions to all odd-numbered
exercises are given at the end of the book.

ABBREVIATIONS AND SYMBOLS INDEXES

An updated list of symbols, standard and nonstandard, appears in the front of
the book. In addition, I have used a number of abbreviations in the interest of
brevity; they are listed at the end of the book.

APPENDIX

The Appendix contains four tables: the first 100 Fibonacci and Lucas num-
bers; the first 100 Pell and Pell–Lucas numbers; the first 100 Jacobsthal and
Jacobsthal–Lucas numbers; and a table of 100 tribonacci numbers. These
should be useful for hand computations.
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31

FIBONACCI AND LUCAS
POLYNOMIALS I

A man may die,
nations may rise and fall,

but an idea lives on.
–John F. Kennedy (1917–1963)

The celebrated Fibonacci polynomials 𝑓n(x) were originally studied beginning in
1883 by the Belgian mathematician Eugene C. Catalan, and later by the German
mathematician Ernst Jacobsthal (1882–1965). They were further investigated by
M.N.S. Swamy at the University of Saskatchewan, Canada. The equally famous
Lucas polynomials ln(x) were studied beginning in 1970 by Marjorie Bicknell of
Santa Clara, California [37].

Fibonacci and Lucas Numbers with Applications, Volume Two. Thomas Koshy.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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2 Fibonacci and Lucas Polynomials I

Eugène Charles Catalan (1814–1894) was
born in Bruges, Belgium, and received his
Doctor of Science from the École Polytech-
nique in Paris. After working briefly at the
Department of Bridges and Highways, he
became professor of mathematics at Collège
de Chalons-sur-Marne, and then at Collège
Charlemagne. Catalan went on to teach
at Lycée Saint Louis. In 1865, he became
professor of analysis at the University of
Liège. He published Éléments de Géométrie
(1843) and Notions d’astronomie (1860), as
well as many articles on multiple integrals,
the theory of surfaces, mathematical analysis,
calculus of probability, and geometry. Catalan
is well known for extensive research on spher-

ical harmonics, analysis of differential equations, transformation of variables
in multiple integrals, continued fractions, series, and infinite products.

M.N.S. Swamy was born in Karnataka,
India. He received his B.Sc. (Hons) in Math-
ematics from Mysore University in 1954;
Diploma in Electrical Engineering from the
Indian Institute of Science, Bangalore, in
1957; and M.Sc. (1960) and Ph.D. (1963) in
Electrical Engineering from the University of
Saskatchewan, Canada.

A former Chair of the Department of Elec-
trical Engineering and Dean of Engineering
and Computer Science at Concordia Univer-
sity, Canada, Swamy is currently a Research
Professor and the Director of the Center
for Signal Processing and Communications.

He has also taught at the Technical University of Nova Scotia, and the
Universities of Calgary and Saskatchewan.

Swamy is a prolific problem-proposer and problem-solver well known to
the Fibonacci audience. He has published extensively in number theory, cir-
cuits, systems, and signal processing and has written three books. He is the
editor-in-chief of Circuits, Systems, and Signal Processing, and an associate
editor of The Fibonacci Quarterly, and a sustaining member of the Fibonacci
Association.
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Swamy received the Commemorative Medal for the 125th Anniversary of
the Confederation of Canada in 1993 in recognition of his significant contri-
butions to Canada. In 2001, he was awarded D.Sc. in Engineering by Ansted
University, British Virgin Islands, “in recognition of his exemplary contribu-
tions to the research in Electrical and Computer Engineering and to Engineer-
ing Education, as well as his dedication to the promotion of Signal Processing
and Communications Applications.”

Marjorie Bicknell-Johnson was born in
Santa Rosa, California. She received her B.S.
(1962) and M.A. (1964) in Mathematics from
San Jose State University, California, where
she wrote her Master’s thesis, The Lambda
Number of a Matrix, under the guidance of
V.E. Hoggatt, Jr.

The concept of the lambda number of
a matrix first appears in the unpublished
notes of Fenton S. Stancliff (1895–1962)
of Meadville, Pennsylvania. (He died in
Springfield, Ohio in 1962.) His extensive

notes are pages of numerical examples without proofs or coherent defi-
nitions, that provided material for further study. Bicknell developed the
mathematics of the lambda function in her thesis [40].

A charter member of the Fibonacci Association, Bicknell-Johnson has
been a member of its Board of Directors since 1967, as well as Secretary
(1965–2010) and Treasurer (1981–1999). In 2012, she wrote a history of the
first 50 years of the Association [39].

Bicknell-Johnson has been a passionate and enthusiastic contributor to
the world of Fibonacci and Lucas numbers, as author or co-author of F11
research papers, 32 of them written with Hoggatt. Her 1980 obituary of
Hoggatt remains a fine testimonial to their productive association [38].

31.1 FIBONACCI AND LUCAS POLYNOMIALS

As we might expect, they satisfy the same polynomial recurrence gn(x) =
xgn−1(x) + gn−2(x), where n ≥ 2. When g0(x) = 0 and g1(x) = 1, gn(x) = 𝑓n(x);
and when g0(x) = 2 and g1(x) = x, gn(x) = ln(x). Table 31.1 gives the first ten
Fibonacci and Lucas polynomials in x. Clearly, 𝑓n(1) = Fn and ln(1) = Ln.

In the interest of brevity and clarity, we drop the argument in the functional
notation, when such deletions do not cause any confusion. Thus gn will mean
gn(x), although gn is technically a functional name and not an output value. ⇐



4 Fibonacci and Lucas Polynomials I

TABLE 31.1. First 10 Fibonacci and Lucas Polynomials

n 𝑓n(x) ln(x)

1 1 x

2 x x2 + 2

3 x2 + 1 x3 + 3x

4 x3 + 2x x4 + 4x2 + 2

5 x4 + 3x2 + 1 x5 + 5x3 + 5x

6 x5 + 4x3 + 3x x6 + 6x4 + 9x2 + 2

7 x6 + 5x4 + 6x2 + 1 x7 + 7x5 + 14x3 + 7x

8 x7 + 6x5 + 10x3 + 4x x8 + 8x6 + 20x4 + 16x2 + 2

9 x8 + 7x6 + 15x4 + 10x2 + 1 x9 + 9x7 + 27x5 + 30x3 + 9x

10 x9 + 8x7 + 21x5 + 20x3 + 5x x10 + 10x8 + 35x6 + 50x4 + 25x2 + 2

For the curious-minded, we add that 𝑓n is an even function when n is odd, and
an odd function when n is even; and ln is an odd function when n is odd, and even
when n is even.

TABLE 31.2. Triangular Array A

k 0 1 2 Row Sums

n

1 1 1

2 1 1

3 1 1 2

4 3

5 5

6 8

7 13

8

1 2

1 3 1

1 4 3

1 5 6 1

1 6 10 4 21

↑

tn Fn

↑

Table 31.1 contains some hidden treasures. To see them, we arrange the
nonzero coefficients of the Fibonacci polynomials in a left-justified array A;
see Table 31.2. Column 2 of the array consists of the triangular numbers
tn = n(n + 1)∕2, and the nth row sum is Fn.
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Let an,k denote the element in row n and column k of the array. Clearly,

an,k is the coefficient of xn−2k−1 in 𝑓n; so an,k =
(

n − k − 1
k

)
. Recall that

∑
k≥0

(
n − k − 1

k

)
= Fn [287].

Consequently, it can be defined recursively:

a1,0 = 1 = a2,0

an,k = an−1,k + an−2,k−1,

where n ≥ 3 and k ≥ 1; see the arrows in Table 31.2. This can be confirmed; see
Exercise 31.1.

Let dn denote the nth rising diagonal sum. The sequence {dn} shows an inter-
esting pattern: 1, 1, 1, 2, 3, 4, 6©, 9, 13, …; see Figure 31.1. We can also define
dn recursively:

d1 = d2 = d3 = 1

dn = dn−1 + dn−3,

where n ≥ 4.

1

1

1 1

1 2

1 3 1

1 4 3

1 5 6 1

1 6 10 4

1
1

1
2

3
4

6©©©

Figure 31.1.

Since an,k =
(

n − k − 1
k

)
, it follows that

dn =
⌊(n−1)∕3⌋∑

k=0

an−k,k

=
⌊(n−1)∕3⌋∑

k=0

(
n − 2k − 1

k

)
.
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For example, d8 =
2∑

k=0

(
7 − 2k

k

)
=

(
7
0

)
+

(
5
1

)
+

(
3
2

)
= 9.

The falling diagonal sums also exhibit an interesting pattern: 1, 2, 4, 8, 16, …;
see Figure 31.2. This is so, since the nth such sum is given by

n−1∑
k=0

an+k,k =
n−1∑
k=0

(
n − 1

k

)

= 2n−1,

where n ≥ 1.

1

1

1 1

1 2

1 3 1

1 4 3

1 5 6 1

1 6 10 4

1

2

4

8

Figure 31.2.

The nonzero elements of Lucas polynomials also manifest interesting proper-
ties; see array B in Table 31.3.

TABLE 31.3. Triangular Array B

k 0 1 2 3 4 Row Sums

n

1 1 1

2 1 2 3

3 1 3 4

4 1 4 2 7

5 1 5 5 11

6 1 6 9 2 18

7 1 7 14 7 29

8 1 8 20 16 2 47

↑

Ln
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Let bn,k denote the element in row n and column k, where n ≥ 1 and k ≥ 0.
Then

1)
⌊n∕2⌋∑
k=0

bn,k = Ln.

2) bn,k = bn−1,k + bn−2,k−1, where b1,0 = 1 = b2,0, b2,1 = 2, n ≥ 3, and k ≥ 0.

3) Let xn denote the nth rising diagonal sum. Then x1 = 1 = x2, x3 = 3, and
xn = xn−1 + xn−3, where n ≥ 4.

4) xn =
⌊(n−1)∕3⌋∑

k=0

n − k
n − 2k

(
n − 2k

k

)
.

For example, x7 =
2∑

k=0

7 − k
7 − 2k

(
7 − 2k

k

)
= 7

7

(
7
0

)
+ 6

5

(
5
1

)
+ 5

3

(
3
2

)
= 12.

In the interest of brevity, we omit their proofs; see Exercises 31.2–31.5.
Next we construct a graph-theoretic model for Fibonacci polynomials.

Weighted Fibonacci Trees

Recall from Chapter 4 that the nth Fibonacci tree Tn is a (rooted) binary tree [287]
such that

1) both T1 and T2 consist of exactly one vertex; and
2) Tn is a binary tree whose left subtree is Tn−1 and right subtree is Tn−2, where

n ≥ 3. It has 2Fn − 1 vertices, Fn leaves, Fn − 1 internal vertices, and 2Fn − 2
edges.
Figure 31.3 shows the first five Fibonacci trees.

T 1 T 2 T 3 T 4 T 5

Figure 31.3.

We now assign a weight to Tn recursively. The weight of T1 is 1 and that of T2
is x. Then the weight 𝑤(Tn) of Tn is defined by 𝑤(Tn) = x ⋅𝑤(Tn−1) +𝑤(Tn−2),
where n ≥ 3.

For example, 𝑤(T3) = x ⋅𝑤(T2) +𝑤(T1) = x2 + 1; and 𝑤(T4) = x ⋅𝑤(T3) +
𝑤(T2) = x3 + 2x.

Since 𝑤(T1) = 𝑓1, and 𝑤(T2) = 𝑓2, it follows by the recursive definition that
𝑤(Tn) = 𝑓n, where n ≥ 1. Clearly, 𝑤(Tn) gives the number of leaves of Tn when
x = 1.
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Binet-like Formulas

Using the recurrence gn = xgn−1 + gn−2 and the initial conditions, we can derive
explicit formulas for both 𝑓n and ln; see Exercises 31.6 and 31.7:

𝑓n = 𝛼n − 𝛽n

𝛼 − 𝛽
and ln = 𝛼n + 𝛽n,

where 𝛼 = 𝛼(x) = x + Δ
2

and 𝛽 = 𝛽(x) = x − Δ
2

are the solutions of the equation

t2 − xt − 1 = 0 and Δ = Δ(x) =
√

x2 + 4. Notice that 𝛼 + 𝛽 = x, 𝛼 − 𝛽 = Δ, and
𝛼𝛽 = −1.

Since 𝛼 = 𝛼𝑓1 + 𝑓0 and 𝛼2 = 𝛼x + 1, it follows by the principle of mathe-
matical induction (PMI) that 𝛼n = 𝛼𝑓n + 𝑓n−1, where n ≥ 1; see Exercise 31.8.
Similarly 𝛽n = 𝛽𝑓n + 𝑓n−1.

Using the Binet-like formulas, we can extend the definitions of Fibonacci and
Lucas polynomials to negative subscripts: 𝑓−n = (−1)n−1𝑓n and l−n = (−1)nln.

Using the Binet-like formulas, we can also extract a plethora of properties of
Fibonacci and Lucas polynomials; see Exercises 31.14–31.97. For example, it is
fairly easy to establish that

𝑓nln = 𝑓2n;

𝑓n+1 + 𝑓n−1 = ln; (31.1)

x𝑓n−1 + ln−1 = 2𝑓n; (31.2)

l2n + 2(−1)n = l2
n ;

𝑓n+1𝑓n−1 − 𝑓 2
n = (−1)n;

ln+1ln−1 − l2
n = (−1)n−1(x2 + 4).

The last two identities are Cassini-like formulas. It follows from the Cassini-like
formula for 𝑓n that every two consecutive Fibonacci polynomials are relatively
prime; that is, (𝑓n, 𝑓n−1) = 1, where (a, b) denotes the greatest common divisor
(gcd) of the polynomials a = a(x) and b = b(x).

Cassini-like Formulas Revisited

Since ln(2i) = 2in, it follows that (x ± 2i) ∤ ln, where i =
√
−1. Consequently, by

the Cassini-like formula for ln, every two consecutive Lucas polynomials are
relatively prime, that is, (ln, ln+1) = 1.

The Cassini-like formulas have added dividends. For instance, (𝑓n+4k + 𝑓n,
𝑓n+4k−1 + 𝑓n−1) = l2k. To see this, we have

Δ(𝑓n+4k + 𝑓n) =
(
𝛼n+4k − 𝛽n+4k) + (𝛼n − 𝛽n)

=
(
𝛼n+2k − 𝛽n+2k) (𝛼2k + 𝛽2k)

𝑓n+4k + 𝑓n = 𝑓n+2kl2k.
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Replacing n with n − 1, this implies 𝑓n+4k−1 + 𝑓n−1 = 𝑓n+2k−1l2k. Thus

(𝑓n+4k + 𝑓n, 𝑓n+4k−1 + 𝑓n−1) = l2k ⋅ (𝑓n+2k, 𝑓n+2k−1)

= l2k ⋅ 1

= l2k. (31.3)

Similarly,
(ln+4k + ln, ln+4k−1 + ln−1) = l2k; (31.4)

see Exercise 31.102.
It follows from properties (31.3) and (31.4) that

(Fn+4k + Fn,Fn+4k−1 + Fn−1) = L2k;

(Ln+4k + Ln,Ln+4k−1 + Ln−1) = L2k.

For example, (L23 + L7,L22 + L6) = (64079 + 29, 39603 + 18) = 47 = L8.

Pythagorean Triples

The identities ln+1 + ln−1 = Δ2𝑓n and l2n = Δ2𝑓 2
n + 2(−1)n (see Exercises 31.32

and 31.49) can be employed to construct Pythagorean triples (a, b, c). To see
this, let c = Δ2𝑓2n+3 and a = xl2n+3 − 4(−1)n. We now find b such that (a, b, c)
is a Pythagorean triple.

Since c = l2n+4 + l2n+2, we have

c + a = l2n+4 + (xl2n+3 + l2n+2) − 4(−1)n

= 2[l2n+4 − 2(−1)n+2]

= 2Δ2𝑓 2
n+2;

c − a = (l2n+4 − xl2n+3) + l2n+2 + 4(−1)n

= 2[l2n+2 − 2(−1)n+1]

= 2Δ2𝑓 2
n+1.

Therefore, b2 = c2 − a2 = (2Δ2𝑓 2
n+2)(2Δ

2𝑓 2
n+1) = 4Δ4𝑓 2

n+2𝑓
2
n+1; so we obtain

b = 2Δ2𝑓n+2𝑓n+1.
Thus (a, b, c) = (xl2n+3 − 4(−1)n, 2Δ2𝑓n+2𝑓n+1,Δ2𝑓2n+3) is a Pythagorean

triple.
Clearly, Δ2|b and Δ2|c; so Δ4|(c2 − b2). Consequently, Δ4|a2 and hence Δ2|a.

Thus (a, b, c) is not a primitive Pythagorean triple.
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H.T. Freitag (1908–2005) of Roanoke, Virginia, studied the Pythagorean triple
for the special case x = 1 in 1991 [168].

Recall from Chapter 16 that lim
n→∞

Fn+1

Fn
= 𝛼. So what can we say about

lim
n→∞

𝑓n+1

𝑓n
? Next we investigate this.

Suppose x > 0. Then 0 < x∕Δ < 1. Since
𝛽

𝛼
= x − Δ

x + Δ
= −

1 − x∕Δ
1 + x∕Δ

, |𝛽∕𝛼| < 1.

Consequently,

𝑓n+1

𝑓n
= 𝛼n+1 − 𝛽n+1

𝛼n − 𝛽n

= 𝛼n+1

𝛼n
⋅

1 − (𝛽∕𝛼)n+1

1 − (𝛽∕𝛼)n

lim
n→∞

𝑓n+1

𝑓n
= 𝛼 ⋅

1 − 0
1 − 0

= 𝛼.

Similarly, lim
n→∞

ln+1

ln
= 𝛼. Thus

lim
n→∞

𝑓n+1

𝑓n
= 𝛼 = lim

n→∞

ln+1

ln
, (31.5)

where x > 0.
For the curious-minded, we add that

𝑓n+1(0)
𝑓n(0)

=

{
0 if n is odd

undef ined otherwise;

ln+1(0)
ln(0)

=

{
undef ined if n is odd

0 otherwise.

It follows by the recursive definition that deg(𝑓n) = n − 1 and deg(ln) = n,
where deg(hn) denotes the degree of the polynomial hn(x) and n ≥ 1. Suppose
a, b ≥ 2. Then (a − 1)(b − 1) ≥ 1; consequently, ab > a + b − 1. Suppose also that
x ≥ 1. Since deg(𝑓a𝑓b) = deg(𝑓a) + deg(𝑓b) = a + b − 2, it follows that 𝑓ab > 𝑓a𝑓b.
Likewise, lab > lalb.

The facts that 2𝛼 = x + Δ, 2𝛽 = x − Δ, and Δ =
√

x2 + 4 can be used to
develop two interesting identities, one involving Fibonacci polynomials and the
other involving Lucas polynomials.


