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Environmental Microbiology and Microbial Ecology provides an overview and discussion of the 
presence of microorganisms and the significance of their interactions in numerous environ-
ments from the perspective of microbiology, environmental science, and biogeochemistry, 
using current publications as a resource. Diverse topics are organized and discussed in eleven 
chapters that include current knowledge concerning the bacteria, archaea, fungi, and viruses 
present in the biosphere. Concepts, results, and conclusions are presented and referenced to 
enable the reader to examine the original publications on which the various topics are based, 
with most references readily available in the Open Access literature. The extensive use of cited 
literature distinguishes Environmental Microbiology and Microbial Ecology from introductory 
text books.

The presentation of recent microbial studies presented in this book builds on the success of 
the previous text Microbial Ecology by Larry L. Barton and Diana E. Northup published by 
Wiley‐Blackwell in 2011. This is an exciting time in environmental microbiology and microbial 
ecology, where numerous microbial interactions are being evaluated and associations are being 
proposed. The topics covered in this book include the following:

●● Microbial formation of biofilms
●● Microbial response to stress and adaption to extreme environments
●● Identification of environmental sites and microbial communities relevant to exploration for 

life on Mars and other extraterrestrial habitats
●● Structure and activities of microbial communities
●● Discussion of the prokaryote–eukaryote dichotomy and the Tree of Life
●● The role of viruses, lysogeny, gene transfer agents, and the CRISPR–cas system in horizontal 

gene transfer
●● Microbial presence and activities in extreme environments, including deep subsurface, 

deserts, cold environments, and hydrothermal vents
●● Extracellular electron transfer, biocorrosion, biomineralization, and bioremediation
●● Biogeochemical cycles with contributions by microorganisms
●● Mutualism and communication between bacteria and plants
●● Mutualism between microorganisms and animals, insects, and humans, with an emphasis on 

intestinal microbiology.

This book is an appropriate resource for instructors of Microbial Ecology or Environmental 
Microbiology courses as it includes the following special features:

●● Discussion questions are provided for each chapter to promote critical thinking and to 
instigate class debate.

●● Lists of references and further reading provide students with numerous Open Access reviews 
and primary literature.

Preface
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●● Numerous tables and boxes provide extra information on specific topics related to the 
chapter.

●● The text is supported by numerous figures that act as visual models.
●● A broad range of specific environments are discussed with numerous presentations on 

specific sites, hosts, and interactions.

The authors have attempted to provide specific documentation for the data presented and 
for the generalizations made throughout the book. The extensive citation of publications ena-
bles readers to gain an insight into how the research was conducted and how any scientific 
conclusions were established. Currently, there is a wealth of scientific information available in 
the Open Access literature, which can be readily accessed online and we have identified 
numerous publications related to topics covered in this book. To draw attention to specific 
topics or clarify complex issues, numerous illustrations are presented throughout the book. 
The authors greatly appreciate the contributions of photographs provided by the following 
individuals:

Gaeton Borgonie, Ghent University, Belgium
Daniel R. Coleman, Montana State University
Stephen Giovannoni, Oregon State University
Robert Harris, University of Guelph, Canada
Gordon V. Johnson, University of New Mexico.
Roy L. Johnson, Jr, University of New Mexico
Cezar Khursigara, University of Guelph, Canada
Richard McIntosh, University of Colorado
Daniela Nicastro, University of Texas Southwestern Medical Center
Yayoi Nishiyama, Teikyo University, Japan
T.C. Onstott, Princeton University
Karsten Pedersen, Microbial Analytics, Sweden
Nathaniel L. Ritz, University of New Mexico
Helga Stan‐Lotter, University of Salzburg, Austria
Xiaowei Zhao, University of Texas Southwestern Medical Center
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1.1  Central Themes of Environmental Microbiology 
and Microbial Ecology

The terms “environmental microbiology” and “microbial ecology” are often used interchange-
ably but there are some subtle distinctions. Environmental microbiology is the study of 
processes in the environment mediated by microorganisms whereas microbial ecology 
addresses the interactions between microorganisms as well as between microorganisms and 
higher life forms. However, many microorganism interactions are dependent on chemicals 
from the environment or from other biological systems and so microbial ecology overlaps with 
environmental microbiology where abiotic chemistry occurs. This first chapter provides an 
overview of the components involved in environmental microbiology and provides a perspec-
tive on the breadth of the microbial relationships in the biosphere. The central themes of 
this chapter include the following:

●● Discussion on the continued use of the terms prokaryote and eukaryote and on the Tree 
of Life

●● Horizontal gene transfer and the role of viruses and gene transfer agents
●● Perspective of cell size and cell shape
●● Bacterial production of dormant cells

1.2  Are the Terms Prokaryotes or Eukaryotes Relevant?

Traditional microbiology classifies microorganisms into two groups: prokaryotes and eukary-
otes. Several structural distinctions may be drawn between these groups of microorganisms 
and the major differences are listed in Table  1.1. This distinction between prokaryotic and 
eukaryotic life evolved from a publication by Stanier and van Niel (1962), which proved to be 
the stimulus to include “blue‐green algae” as cyanobacteria. As stated by Stanier and van Niel, 
bacterial cells were unlike eukaryotic cells in that they lacked true membranes to localize the 
cell “nucleus” and bacteria used nuclear division by fission and not mitosis. However, after 
several decades of microbial phylogeny, the term “prokaryote” has become controversial 
because the designation of a prokaryote is based on the absence of certain characteristics 
(Sapp 2005; Pace 2009; Whitman 2009). It has been proposed that bacteria and archaea, unlike 
eukaryotes, display coupled transcription and translation where translation starts before 
transcription is finished (Martin and Koonin 2006; French et al. 2007). There is a concern that 
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bacteria and archaea themselves are sufficiently distinct and should not be united into the 
single group prokaryotes. The contrast between the nuclear organization and the presence of a 
nuclear membrane in prokaryotic and eukaryotic organisms has become blurred. Bacteria have 
long been considered to lack nuclear organization; however, in the bacterial phylum 
Planctomycetes, Gemmata obscuriglobus has a nucleoid enveloped in a membrane that forms a 
structure analogous to the eukaryotic nucleus (Fuerst 2005). The giant bacterium Epulopiscium 
fishelsoni has DNA highly condensed into chromosome‐like structures that are physically 
separated from the cytoplasm (Bresler et  al. 1998). In contrast, dinoflagellates, eukaryotic 
algae, lack histones for the condensation of DNA and lack nucleosomes (Rizzo 2003). Histone 
proteins are found in mesophilic, thermophilic, and hyperthermophilic archaea and the DNA 
interactions of archaeal histones is like that found in eukaryotes (Reeve et al. 2004).

1.2.1  Intracellular Membranes in Prokaryotes

Models of some of the intracellular membrane structures found in bacteria are presented in 
Figure 1.1. Bacteria that obtain energy from methane oxidization often use particulate methane 
monooxygenase (pMMO). which is localized in the membrane. For the greatest efficiency of 
methane gas oxidation, multiple membrane structures are present in the cytoplasm and, based 
on internal membrane structure, methanotrophic bacteria may have either stacked (type I) or 
paired concentric (type II) cytoplasmic membranes (Davies and Whittenbury 1970). A recently 
isolated filamentous bacterium Crenothrix fusca Roze 1896 also has stacked membranes; 
however, they only extend part way across the diameter of the cell (Vigliotta et  al. 2007). 
Nitrosomonas, Nitrosococcus, and Nitrosocystis are genera of nitrifying bacteria that have 
internal membranes to achieve the oxidation of ammonia (NH3) to nitrite (NO2

−). The configu-
ration of the internal membranes appears to be specific for each genus: Nitrosomonas has 
membranes along the periphery of the cell, Nitrosococcus has laminar membranes through the 
central region of the cell, and Nitrosocystis has a complex membrane structure of small vesicles 
along the exterior of the cell (Murray and Watson 1965). For almost 100 years, acidocalcisomes 
have been known to occur in bacteria; however, they have only been investigated recently. 
In  bacteria and protists, acidocalcisomes store inorganic phosphates and calcium ions, and 
participate in maintaining intracellular pH and in osmoregulation (Docampo and Moreno 
2011). Members of the Planctomycetes have a structure called the anammoxosome, which is 
used for the anaerobic oxidation of ammonia (annamox) (van Nifrik et al. 2004). Magnetotactic 
bacteria produce cytoplasmic magnetosomes with a surrounding membrane that originates at 
the plasma membrane (Lefèvre and Bazylinski 2013). In addition, phototrophic bacteria 

Table 1.1  Differences between prokaryotes and eukaryotes.

●● Prokaryotic cells lack a true nucleus with a nuclear membrane.
●● Prokaryotic cells lack histones to provide condensation of DNA into chromosomes.
●● DNA in prokaryotes is circular whereas DNA in eukaryotes is linear.
●● Prokaryotic cells lack organelles in the cytoplasm and cytoplasmic membranes.
●● Prokaryotic cells lack carbohydrates and sterols in the plasma membrane whereas both are found in 

eukaryotic cells.
●● In prokaryotic cells, ribosomes are 70S; in eukaryotic cells, ribosomes are 80S with 70S found in organelles.
●● Cell division in prokaryotic cells is by binary fission whereas in eukaryotic cells it is by mitosis.
●● Sexual recombination does not occur in prokaryotic cells except for DNA transfer. Sexual recombination 

in eukaryotic cells involves meiosis.
●● Prokaryotic cells are 0.2–2.0 μm wide whereas eukaryotic cells are 10–100 μm wide.
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contain photosynthetic units within cytoplasmic membrane structures (chromatophores) 
(Willey et al. 2014; Saier 2014). Thus, in this book the term prokaryotes is used sparingly and 
includes both bacteria and archaea, with considerations as stated earlier.

1.2.2  Compartmentalized Heterotrophic Bacterial Cells

The presence of a compartment inside a heterotrophic bacterium was reported initially for 
cells of G. obscuriglobus (Fuerst 2005). However, recent developments indicate that the com-
partmentalized bacteria, members of the Planctomycetes‐Verrucomicrobia‐Chlamydiae (PVC) 
superphylum, have a homolog of a eukaryotic protein that occurs in eukaryotic membranes 
(Santarella‐Mellwig et al. 2010). Ladderanes (Figure 1.2) are unusual lipids found in the anam-
moxosome membrane and in Kuenenia stuttgartiensis and Borcadia anammoxidans the 
ladderanes account for over half of the lipids present (Damsté et  al. 2002). The ladderane 
lipids produce a dense membrane with low permeability, which is needed to retain potentially 
toxic intermediates in the anammox reaction. Unlike the anaerobic ammonia‐oxidizing 
Planctomycetes, members of the phylum Verrucomicrobia (i.e. Verrucomicrobium spinosum, 
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Prosthecobacter dejongeii, and Chthonibacter flavus) have a compartmentalized unit in the 
cell  but do not have the enzymes to carry out the anammox reaction (Lee et  al. 2009). 
The  membrane enclosure contains nucleoid and ribosome‐like particles and is like the 
pirellulosome in some Planctomycetes (i.e. Pirellula staleyi and Blastopirellula marina) 
(Lindsay et al. 2001).

1.2.3  The Universal Tree of Life: Rooted or Unrooted

Microorganisms addressed here are associated with the phylogenetic domains of Bacteria, 
Archaea, and Eukarya. Although there have been several other systems used to arrange life 
forms, the classification system dealing with phylogenetic relationships or evolutionary aspects 
of cells or individuals that has been favored by microbiologists involves the domains of Bacteria, 
Archaea, and Eukarya. Salient distinctions between these groups of organisms are indicated 
in Table 1.2.

Tree configurations have long been used to organize physical characteristics into different 
categories and the Tree of Life, as proposed by Woese et al. (1990), relies on the DNA segment 
encoding for ribosomal RNA (rRNA). While numerous other genes could be used to express 
relationships between microorganisms, the genes encoding for rRNA seem to be stable and not 
subject to evolutionary changes. The hope was that through evaluation of the many genes 
found in microorganisms, a universal common ancestor for life could be determined. However, 
it has been difficult to construct a valid Tree of Life for organisms on Earth due to horizontal 
(lateral) gene transfer throughout the life span of microorganisms. Doolittle (2015) has sum-
marized the various concerns in construction of a Tree of Life and suggested organizing the 
three domains using an unrooted tree (see Figure 1.3). Even though gene trees have stimulated 
a great amount of research, it is worth recalling Whitman’s (2009) statement that “gene trees 
are not equivalent to organismal trees.” For a thoughtful presentation of the status of the 
universal Tree of Life the reader is encouraged to consult the review by Forterre (2015).

1.2.4  What About the Giant Viruses?

In the past few years there have been many double stranded DNA (dsDNA) viruses isolated 
that are gigantic. These viruses make up the Nucleocytoplasmic Large DNA Viruses (NCLDV). 
which infect protozoa, algae, and other aquatic eukaryotes. The family Phycodnaviridae are 
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Figure 1.2  Ladderane lipids present in anammoxosome. About half of the lipid in the anammoxosome 
membrane consists of ladderane lipids; the fused five cyclobutane groups enable the lipids to be closely 
packed, which contributes to the impermeable character of this membrane.
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large icosahedral dsDNA viruses with genomes of 160–560 kb that infect eukaryotic algae 
(Wilson et al. 2009). Mimiviruses are large dsDNA viruses that infect amoeba and have been 
associated with many human pneumonia cases; due to their size, they were initially considered 
to be gram‐positive intracellular bacteria (Raoult et  al. 2007). Faustavirus is an icosahedral 
virus ~200 nm that was isolated from Acanthamoeba spp. and appears closely related to the 
pathogenic African swine fever virus (Reteno et al. 2015). Pithovirus sibericum, an ancestral 
large virus that infects amoeba, was isolated from a 30 000‐year‐old Siberian permafrost sam-
ple (Legendre et al. 2014). The giant virus Pandoravirus salinus, which attacks amoeba, was 
isolated from seawater near the coast of central Chile (Philippe et al. 2013). Several giant viruses 
have genome sizes greater than some bacteria and the genomes of mimiviruses, pithoviruses, 
pandoraviruses, and Faustovirus are 1.2, 0.6, 2.5, and 0.466 mbp, respectively. When these 
viruses were discovered, some microbiologists proposed that the giant viruses represented a 
fourth form of cellular life or a fourth branch on the Tree of Life (Sharma et al. 2015). Although 
the discussion concerning the origin of these viruses continues, a strong argument has been 
presented that suggests giant viruses arose from smaller DNA viruses that have acquired genes 
from their eukaryotic hosts (Yutin et al. 2014).

1.3  Major Approach to Study Microorganisms

There are several major approaches for the study of microorganisms, especially bacteria, from 
an environmental or ecological perspective. Analysis of specific environmental sites includes 
traditional cultivation procedures as well as the use of molecular techniques to identify bacte-
ria or archaea and to characterize their response to environmental conditions. The molecular 
study of environmental microorganisms is discussed in further detail in Chapter 2.

Table 1.2  Distinctions between members of the Tree of Life.

Characteristic Bacteria domain Archaea domain Eukarya domain

Histones associated with DNA Absent Present in some Present
Chromosome or nucleoid Most circular, few linear Circular Linear
Nuclear membrane Absenta Absent Present
Introns Absent Present in a few Present
RNA polymerase One type Several types Several types
Peptidoglycan in cell wall Present Absent Absent
Amino acid initiating protein 
synthesis

N‐formyl methionine Methionine Methionine

Ribosomes sensitive to  
antibiotics

70S inhibited 70S not inhibited 80S not inhibited

Cholesterol in membrane Absentb Absent Present
Membrane lipids Fatty acids  

esterified to glycerol
Phytanols ether  
linked to glycerol

Fatty acids esterified 
to glycerol

Heat‐resistant endospores Present Absent Absent
a Present in only one bacterium.
b An exception is that cholesterol is found in a few species of bacteria of the genus Mycoplasma.
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1.3.1  Application of Genomics, Metagenomics, and Proteomics

Scientists may ask “What are these microorganisms and what specific genes do they possess?” 
To answer this question, scientists may use genomics, metagenomics, or proteomics. 
Microbiologists examining a specific site may use 16S rRNA from bacteria that were isolated 
and grown in the laboratory and this use of the bacterial genome to identify the bacteria pre-
sent is genomics. Since not all prokaryotes at a site can be grown in the laboratory, extraction 
and analysis of all DNA at a site (metagenomics) provides the identity of the bacteria and 
archaea present, whether or not they can be cultivated. It is generally considered that less than 
1% of bacteria and archaea in an environmental sample can be grown in the laboratory. The 
inability to count colonies of bacteria from diluted soil samples as a means of enumerating the 
bacteria present is referred to as the “great plate count anomaly.” With the number of bacteria 
on Earth estimated to be 1.7 × 1030 cells (Table 1.3). it would be a daunting task to work out 
cultivation schemes for all bacteria and then analyze their genes. The identification of genes to 
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explain specific activities may be obtained by sequencing DNA isolated from a site or by in situ 
hybridization techniques using probes targeting specific genes. Proteomics can also provide an 
excellent analysis of bacteria present (Dworzanski and Snyder 2005). For proteomics, protein 
produced by bacteria is isolated and nuclear magnetic resonance (NMR) analysis is used to 
match it to protein from a known gene, so the specific gene can be identified. Using genomic 
analysis, bacterial diversity and community structure at a site can be established. From this 
molecular analysis, relatively sound proposals can be made concerning the contribution of 
specific bacteria to the overall biological activity at a specific site.

1.3.2  Biochemical and Physiological Analysis

Another approach is to ask “How do microorganisms function in a specific process?” In this 
case, the activities of specific bacteria are examined by transcriptomics. The bacteria involved 
in the active synthesis of a specific protein can be identified by isolating mRNA from a site and 
its subsequent conversion to DNA by reverse transcriptase,. This is important to demonstrate 
which gene is being expressed because the presence of a gene in bacteria does not mean that 
gene is being decoded. For example, the presence of a gene for nitrogen fixation can be 
determined by genomic analysis but RNA isolation would indicate the actual expression of the 
nitrogen‐fixing gene. With bacteria isolated from a site, the biochemical processes can be stud-
ied to understand how bacteria are capable of accomplishing a given activity. Included in this 
type of investigation would be chemical analysis to assess biotic and abiotic activities as well as 
processes resulting from mixed populations. This is an important approach for the study of 
processes such as biogeochemical cycles, bacterial symbiosis, and bioremediation.

1.4  The Impact of Horizontal Gene Transfer Between 
Microorganisms

The vertical transmission of genes refers to the transfer of DNA from the parent to the off-
spring, whereas the horizontal transmission of genes describes the movement of DNA between 
biological systems. The distinction between horizontal gene transfer and vertical inheritance 
(Andam et  al. 2010) and the frequency at which DNA transfer occurs between phylogenic 
groups has been reviewed elsewhere (Kloesges et al. 2011). The movement of genes between 
bacteria has been extensively studied and DNA is transferred by conjugation, transduction, 

Table 1.3  Estimation of prokaryotes distributed throughout the biosphere.

Location Number of prokaryotic cellsa

Aquatic environment 1.2 × 1029

Subsurface of oceans 3.5 × 1029

Terrestrial subsurface 2.5 × 1029

Soil 2.6 × 1027

Plant surfaces 1.0 × 1026

a Estimated number of prokaryotic cells produced each year is 1.7 × 1030 cells 
(Whitman et al. 1998).
Source: Reproduced with permission from Whitman et al. (1998), Lindow and 
Brandl (2003), and Kallmeyer et al. (2012).
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transformation, or gene transfer agents (GTAs). Characteristics of these four processes for 
genetic exchange are summarized in Box 1.1 and while DNA exchanges are observed in the 
environment, the frequency that each mechanism is used may not be apparent. It is well docu-
mented from several different environments that considerable movement of DNA between 
microorganisms occurs. It has been estimated that there may be 1013 prokaryotic gene trans-
fers per year in the Mediterranean Sea (McDaniel et al. 2010). 1.3 × 1014 transduction events 
each year in Tampa Bay (Jiang and Paul 1998). and 1024 genes transferred by transduction each 
year in the oceans of the world (Rohwer and Vega Thurber 2009). The extensive horizontal 
exchange of DNA between microorganisms contributes to the difficulties of finding the Last 
Universal Common Ancestor and the rooting of the Tree of Life. Note that once DNA is 
transferred to a bacterial or archaeal cell, coevolution processes will determine if the host cell 
incorporates the DNA into its genome and if the newly acquired DNA is expressed.

Since bacteria and archaea do not have “sexual stages” in their growth processes, the mixing 
of the gene pool is accomplished by asexual horizontal gene transfer. There are many examples 
of horizontal gene transfer between microorganisms and higher biological forms and a few 
documented cases are given in Table 1.4. Potentially any gene in the donor cell can be mobi-
lized but at least three classes of genes transferred between bacteria have been identified. 
The most common genes associated with horizontal transfer include those associated with the 
replication, translocation, and integration of mobile genetic elements and viruses. Additionally, 
genes encoding for antibiotic resistance, pathogenicity, and host–pathogen interaction are 

Box 1.1  Characteristics of Bacterial DNA Exchange

Conjugation – DNA exchange between bacteria that requires cell‐to‐cell contact is referred to as 
conjugation. As described in most introductory microbiology text books (Willey et al. 2014). DNA 
is moved from a donor cell to a recipient cell as a plasmid or as “chromosomal” genetic material. 
In Escherichia coli, a special plasmid referred to as the F‐factor enhances this horizontal gene 
transfer. Conjugation is assumed to occur in most bacteria and new examples are being discov-
ered as is the case with Mycobacterium smegmatis (Gray et al. 2013). Often the DNA transferred to 
the recipient cell provides new catabolic genes, resistance to toxic metals or resistance to antibi-
otics. Conjugation between bacteria and plant cells accounts for tumor induction in plants by 
introduction of Ti plasmids from Agrobacterium tumefaciens or Ri plasmids from Agrobacterium 
rhizogenes (Pan et al. 1995).

Transduction – In bacteria this is the transfer of DNA into a recipient host by a bacteriophage 
(bacterial virus). While generalized transduction carries any gene from a donor, specialized trans-
duction moves only a gene near the provirus in the “chromosome” of the donor. Both processes 
are described in introductory microbiology text books such as Willey et al. (2014).

Transformation – Bacteria have the capability of taking up DNA from outside of the cell and 
DNA becomes part of its genome (Chen and Dubnau 2004). The DNA acquired may be as a plas-
mid or a disrupted bacterial chromosome. Cells of a specific competent state are capable of 
acquiring exogenous DNA and there is the potential for acquiring DNA from species different 
from the host cell.

Gene transfer agents  –  The mechanism of gene transfer between prokaryotes involves a 
particle that is similar to a small bacterial virus. These gene transfer agents (GTAs) are released 
from prokaryotes by cell lysis and transduce random genomic segments to a recipient prokary-
ote. Enhanced gene transfer is attributed to the GTA particle (Maxmen 2010). In addition to the 
microorganisms listed in the text, bacteria with GTAs receiving attention include Rhodovulum 
sulfidophilum, Bartonella spp., and Bacillus spp. (Nagao et al. 2015; Lang et al. 2012).
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moved between bacteria at the highest rate. At the intermediate level of mobilization are genes 
encoding for metabolic or structural development. Genes transferred at the lowest frequency 
include those dealing with transcription, translocation, or other informational processes 
(Keese  2008). Bacteria that have received genes enabling them to survive and grow in the 
presence of antibiotics or to engage in catabolism of toxic materials in the environment are 
often referred to as “super bugs.” Horizontal gene exchanges occur between different bacteria, 
bacteria and archaea, and most likely between archaeal cells.

The magnitude of horizontal gene exchange between bacteria can be evaluated by comparing 
the core genome to the Pan‐genome for bacteria (Willey et al. 2014). The core genome refers 
to the genes present in a species that would reflect the minimum number of genes required to 
enable that species to grow. Included in the core genome are the genes for transcription, trans-
lation, and replication. The Pan‐genome refers the total of all genes found among all taxa and 
not limited to a single taxon. If the number of core genes is subtracted from the number of 
Pan‐genes in a strain, the difference would represent the number of genes acquired to enable 
bacteria to colonize new niches. The examples provided by Willey et  al. (2014) include the 
following: Bacillus anthracis has 3600 and 3800 in the core genome and Pan‐genome, respec-
tively. Streptococcus agalactiae has 1800 and 2700 in the core genome and 2700 in the Pan‐
genome. Escherichia coli has 2800 in the core genome and 6000 in the Pan‐genome. This would 
indicate that B. anthracis would be limited to a few habitats whereas E. coli may expand into 
numerous habitats. Although horizontal gene exchange is a reality for bacteria, the amount of 
DNA exchanged varies considerably with the individual species.

1.4.1  Genetic Islands

The genes associated with horizontal gene transfer include a large segment of DNA that is 
10–200 kb and which is often referred to as a genetic island (Juhas et al. 2009). Encoded in this 
gene cluster there are usually insertion elements or plasmid conjugation factors that mobilize 
this genetic information. Antibiotic resistance and virulence bacterial genes are some of the 
best‐known genes moved by horizontal gene transfer and these discrete DNA elements are 
referred to as pathogenicity islands. Other discrete DNA segments may be symbiosis islands, 
which enhance bacterial interactions with nodulation in plants or associations with animals. 
Metabolic islands may describe genes for catabolism or mineral metabolism. Geochemical or 
geomicrobiology islands refer to a unit of genes that enable mineral transformations. Resistance 
or fitness islands describe those discrete DNA segments that enable bacteria to grow in toxic 
environments or under chemical stress.

Table 1.4  Examples of interspecies horizontal gene transfer involving microorganisms.

●● From bacteria to the yeast Saccharomyces cerevisiae (Hall et al. 2005).
●● Adzuki bean beetle, filarial nematodes, and arthropods have acquired DNA from their endosymbiont 

Wolbachia (Kondo et al. 2002).
●● Pea aphids (Acyrthosiphon pisum) contain multiple genes from fungi (Moran and Jarvik 2010).
●● Plasmodium vivax, a malaria pathogen, has acquired DNA from its human host and this enables it to escape 

defenses of host (Bar 2011).
●● Genes for Shiga toxin moved from Shigella sonnei to Escherichia coli (Strauch et al. 2001).
●● Genes for dissimilatory sulfite reductase have been transferred between bacteria and from bacteria to 

archaea (Klein et al. 2001).
●● Several genes transferred from relatives of endosymbionts Buchnera and Wolbachia to pea aphid, 

Acyrthosiphon pisum (Nikoh et al. 2010).
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1.4.2  Risks from Genetically Modified Organisms

With the reality that horizontal gene transfer is an ongoing process in nature, there is concern 
that new segments of DNA will be introduced into the environment by genetically modified 
organisms (GMOs). In agriculture, transgenic plants are grown and seeds from these plants are 
used for human consumption. The transfer of genes from these transgenic plants to humans or 
bacteria in the human gut has been of concern but it is highly likely that the only genes that 
could be transferred would be the genes of bacterial origin that were used to construct the 
genes for the development of GMOs. The bacterial genes of interest would be the antibiotic 
resistance genes used to insert the genes into the plant cells. The most common antibiotic 
resistance genes used for the wide transgenic development of plants are the genes encoding for 
kanamycin and hygromycin B. Both antibiotics are rarely used in therapeutic situations. 
Additionally, although there may be reports of gene transfer from transgenic plants to 
environmental bacteria, these are carefully controlled laboratory evaluations that have not 
been demonstrated in field settings (Keese 2008). Recently, transgenic salmon have been 
approved for human consumption and studies are needed to evaluate the potential for gene 
transfer from GMOs to humans. With transgenic animals, the greatest potential for gene 
transfer is from the viruses that were used to construct the donor DNA (Keese 2008).

1.4.3  Microbial Viruses and Gene Transfer Agents

Bacterial viruses, also known as “bacteriophages” or simply “phages,” are dispersed throughout 
the environment and it has been estimated that there are about 1031–32 bacterial viruses in the 
biosphere. The presence of microbial viruses in various environments is indicated in Table 1.5.

Each bacterial and archaeal species is subject to phage attack and excellent reviews 
by Weinbauer (2004) and Suttle (2007) characterize bacterial viruses in the environment. The 
abundance of microbial viruses in aquatic and soil environments is determined by electron 
microscopy and epifluorescence microscopy using uranyl acetate staining and fluorochromes 
for staining nucleic acid, respectively. Electron microscopy has revealed the presence of virus‐
like structures in the environment with the most common structure being viruses with a head 
and a tail. Some bacterial phages have a long flexible tail, some have a short tail, and most 

Table 1.5  Abundance of bacterial virus in the environment.

Estimates of viruses Site of collection Reference

106–109 ml−1 Seawater Suttle et al. 1990
105–107 ml−1 Sewage effluent Bitton 1987
108 mg−1 Soil Ashelford et al. 2003;  

Williamson et al. 2007
108 mg−1 Cold deserts

Ice‐free region of Antarctica
Zablocki et al. 2016

105 ml−1 117–292 m beneath ocean
Juan de Fuca Ridge, Pacific Ocean

Nigro et al. 2017

104–109 ml−1 320 m below sea floor
South Pacific Gyre

Engelhardt et al. 2016

106–109 ml−1 Arctic sea ice Maranger et al. 1994
6.5 × 1010 ml−1 Algal floc (marine snow) Peduzzi and Weinbauer 1993
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marine phages have a contractile tail. The phage head or capsid size is 30–60 nm with DNA‐
containing phages significantly more abundant than those containing RNA. As transformation 
and conjugation are not effective in natural settings, the process of transduction is a major 
mechanism for genetic transfer in most environments.

In addition to bacterial viruses, the virosphere also includes infection particles targeting cells 
of the Archaea domain and algal cells of the Eukarya domain (Prangishvili 2013). It has been 
suggested that viruses against archaeal cells should not be called “phages”, the term “phage” 
should be reserved for bacterial viruses (Abedon and Murray 2013) due to the differences 
between bacterial and archaeal cells, and the domain Akamara (Greek for without chamber) 
should be used for archaeal viruses (Hurst 2000). As reviewed by Pietilä et al. (2013, 2014), 
there are over 6000 known phages but only about 100 archaeal viruses have been reported. 
Archaeal cells targeted by viruses include methanogens, hyperthermophiles, and extreme halo-
philes of the Crenarchaeota and Euryarchaeota phyla. The shapes of these archaeal viruses 
range from lemon, bottle, droplet to icosahedral heads, and many of the forms have tails.

Eukaryotic algae are important to provide nutrients to aquatic systems and, therefore, algae 
constitute an important segment of the food chain. In an unbalanced aquatic system, algal 
blooms occur and the decline of these blooms may be attributed to algal viruses. The virus‐
mediated lysis of algal cells releases nutrients into the water for use by bacteria, and the algal 
viruses join the phages in nutrient cycling known as the viral loop. A historical review of algal 
viruses is available (Van Etten et al. 1991). Recently, considerable interest has been given to 
algal viruses because one of these DNA‐containing viruses, Chlorovirus ATCV‐1, has been 
found to be part of the human virome and has been implicated in causing changes in cognitive 
functions in humans and mice (Yolken et al. 2014).

Viruses associated with fungi are called mycoviruses and were discovered in mushrooms 
over 50 years ago. Mycoviruses are broadly distributed and have been detected in Ascomycota, 
Basidiomycota, Chytridiomycota, Deuteromycota, and Zymomycota phyla of fungi (Son et al. 
2015). Currently, most of the mycoviruses are characterized as containing dsRNA, about 30% 
of the mycoviruses contain positive‐sense, single stranded RNA (ssRNA) and a few mycovi-
ruses contain negative‐sense ssRNA and ssDNA. Most mycoviruses do not have an extracel-
lular route for infection and transmission of a mycovirus is dependent on cell fusion, cell 
division, and spore production. Therefore, to detect and identify mycoviruses, scientists rely on 
purification of dsRNA from fungal cultures because some mycoviruses have a genome of 
dsRNA but other mycoviruses produce dsRNA intermediates in their hosts. Fungi infected 
with mycoviruses display changes in cell pigmentation, reduced growth rate, altered sexual 
reproduction, and most importantly, a reduction of virulence with reduced production of 
mycotoxin. Considerable success has been obtained in using specific mycoviruses to control 
the chestnut blight fungus, Cryphonectria parasitica, and rapeseed stem rot by Sclerotinia 
sclerotiorum. Not all mycoviruses reduce fungal virulence but some are latent mycoviruses 
that have a unique effect on the host. There is one report where the symbiotic activity of an 
endophytic mycorrhizal fungus, mycovirus, and a grass plant enables survival at elevated tem-
peratures when the three partners are present (Son et al. 2015). In some instances, the mycovi-
rus is destructive to cells, as in yeast where host death occurs when the mycovirus unites with 
a DNA virus‐like particle. Additional research is needed to clarify the role of mycoviruses in 
the biosphere.

The gene transfer agent (GTA) was discovered by Barry Marrs in 1994 using Rhodobacter 
capsulatus. The GTA particle consists of protein that is encoded on 15–17 genes located on the 
bacterial chromosome and moves dsDNA randomly acquired from the host to a recipient 
bacterial cell (see reviews by Lang et al. 2012; McDaniel et al. 2012). Unlike phages, GTAs do 
not contain DNA that encodes for GTA production but the GTA uses genes from the host cell. 
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Reported GTAs have a head size of about 40 nm and tail length varies from 7 to 190 nm. Unlike 
bacterial viruses, which carry their own DNA in the head of the infectious particle, GTAs 
carry 4.4–14 kb of DNA randomly collected from the host cell (McDaniel et al. 2010, 2012). 
GTAs have been found in several microbial strains: RcGTA from R. capsulatus (formerly 
Rhodopseudomonas capsulatus). Dd1 from Desulfovibrio desulfuricans, VSH‐1 from 
Brachyspira hyodysenteriae (formerly Serpulina hyodysenteriae). and VAT from the archaeon 
Methanococcus voltae (Lang et  al. 2012). Roseovarius nubinhibens ISM and Nitratireductor 
44B9s isolated from a costal environment near Georgia, USA, were mutagenized with Tn5 
(which encodes for both kanamycin and streptomycin resistance) and were found to effectively 
transfer dual antibiotic resistance to bacteria in environmental samples. Additional studies 
indicated that R. nubinhibens, R. capsulatus, Oceanicola granulosus, and Ruegeria (formerly 
Silicibacter) pomeroyi carried genes for GTA proteins and these were correlated with the pro-
duction of 105–109 virus‐like particles per milliliter (McDaniel et  al. 2012). Examination of 
genome reports indicates that genes similar to those for the production of RcGAT are broadly 
distributed throughout the Alphaproteobacteria and that the enhanced exchange of DNA 
between bacteria of different species occurs (McDaniel et al. 2010, 2012; Biers et al. 2008; Lang 
and Beatty 2007). Using the estimated abundance of bacteria in marine waters as 1.6 × 106 ml−1 
and 30% of the marine bacteria as Alphaproteobacteria with the potential for GTA production, 
suggests that the GTAs could represent 0.05% of the marine viruses. As a point of reference, the 
bacterial viruses in the oceans are estimated to be 4.4 × 107 ml−1 (McDaniel et al. 2012).

1.5  What Determines Which Microorganisms are Present?

When microbiologists sample different environments, the microorganisms isolated reflect the 
physical and chemical nature of the environment. That is, agricultural soil has different micro-
organisms than hot water springs and acid runoff from mines has different microbes than fresh 
water. However, when bacteria from agricultural soil at different sites around the world are 
isolated, similar types of bacteria would be expected just as bacteria from different marine 
settings may have similar phenotypes. The question arises “What determines which microor-
ganisms are present in the environment?” In response to this question, Lourens Gerhard 
Marinus Bass Becking in 1934 proposed that “Everything is everywhere but the environment 
selects” (de Wit and Bouvier 2006). This hypothesis has been a basic component of environ-
mental microbiology for many years. The idea is that microorganisms become airborne due to 
some type of physical activity and winds distribute the suspended cells over the entire Earth. 
Also, in fresh water or marine aquatic environments, the aquatic currents contribute to 
the mixing of suspended microorganisms. The physical and chemical environments where the 
cells are deposited select for organisms that are able to grow at those sites. However, Bass 
Becking’s hypothesis does not explain the extent of genetic variation between the Synechococcus 
spp., a cyanobacterium, in hot springs (Pake et  al. 2003) or the archaeon Sulfolobus spp. 
(Whitaker et al. 2003) that are geographically separated. Although the phenotypic characteris-
tics of microbial communities in surface ocean waters are correlated with environmental 
features and not physical distance (Raes et al. 2011; Jiang et al. 2012). microbial biogeochemis-
try in extreme environments may be influenced by microbial dispersion with genetic selection 
as well as geographical isolation (Lau et al. 2014).

There are many chemical and physical environments that are highly restrictive and select for 
a unique type of microorganism. In environments containing high levels of acid, alkali, or salt, 
or areas containing toxic metals, the absence of one or more nutrients selects for a specific type 
of microorganism. At the bottom of oceans, the hydrostatic pressures are extreme and 
only  barophilic bacteria can grow. Recognition sites and molecular interactions select for 


