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Preface

To describe the true behavior of most real-world systems with sufficient accuracy,
engineers have to overcome difficulties arising from their lack of knowledge about
parts of a process or from the impossibility to characterize it with absolute certainty.
For example, measured parameters of (dynamical) systems cannot be determined
exactly due to non-negligible equipment imprecision. Other sources of such model
inaccuracies are order reduction techniques for complex systems used to simplify
the design of their components and corresponding control algorithms. Therefore,
both aleatory (due to randomness) and epistemological (due to the lack of knowl-
edge) types of uncertainty have to be taken into account while developing techniques
for a model-based analysis or synthesis of systems.

Depending on the application at hand, uncertainties in modeling and measure-
ments can be represented in several different ways. For example, bounded uncer-
tainties can be described by intervals, affine forms or general polynomial enclosures
such as Taylor models. There are frameworks incorporating corresponding kinds of
arithmetics to handle this type of uncertainty, which simultaneously provide verified
results. This means that the results are enclosures guaranteed to contain the exact
solution sets, assuming that the mathematical models and the corresponding ranges
of uncertain quantities are correct.

Another situation arises if the uncertainty can be characterized in the form of
probability distributions described, for example, by mean values, standard devia-
tions and higher-order moments (stochastic uncertainty). In this case, Bayesian es-
timation frameworks offer a solution by propagating the corresponding probability
density functions. These are handled in terms of either analytic or numeric represen-
tations, where the latter approach forms the basis of the well-known Monte Carlo
methods.

For both bounded and stochastic uncertainties, there exist specific theoretic con-
cepts and practical applications. The goal of this Special Volume on Modeling, De-
sign, and Simulation of Systems with Uncertainties is to make the current research
on techniques for uncertainty handling known to a broader circle of researchers and
industry representatives. For this purpose, we have collected 16 articles from re-
searchers from Canada, Russia, Germany, USA, France, Austria, Poland, Italy, and



vi Preface

Bulgaria dealing with this topic, from which five were presented at the Minisym-
posium on Modeling, Design, and Simulation of Systems with Uncertainties during
the 16th European Conference on Mathematics for Industry ECMI in Wuppertal,
Germany, in July 2010.

The volume is subdivided into two parts. In the first we present works highlight-
ing the theoretic background and current research on algorithmic approaches in the
field of uncertainty handling, together with their reliable software implementation.
The second part is concerned with real-life application scenarios from various areas
including but not limited to mechatronics, robotics, and biomedical engineering.

Rostock, Andreas Rauh
Duisburg, Ekaterina Auer
March 2011
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Part I

Theoretic Background and Software
Implementation



In the first part of this book, we present works highlighting the theoretic background
and current research on algorithmic approaches in the field of uncertainty han-
dling together with their reliable software implementation. In Chapter 1, Nedialko
S. Nedialkov presents techniques from literate programming which are used in
the implementation of the verified ODE solver VNODE-LP. Chapter 2 authored by
Sergey P. Shary is concerned with new methods for solving linear systems of equa-
tions with interval uncertainties. Andreas Rauh and Harald Aschemann describe
techniques for the structural analysis of control and state estimation problems for-
mulated as systems of differential-algebraic equations in Chapter 3. In Chapter 4,
Matthias Althoff, Bruce H. Krogh, and Olaf Stursberg consider methods for reach-
ability analysis of linear dynamic processes applicable to high-dimensional system
models. A robustness analysis of different tracking control schemes in performed
by Marco Kletting and Felix Antritter in Chapter 5. Approaches for set-membership
state estimation are presented by Luc Jaulin in Chapter 6, whereas verified global
optimization routines for parameter estimation of nonlinear models are discussed by
Michel Kieffer, Mihdly Csaba Markot, Hermann Schichl, and Eric Walter in Chap-
ter 7. Chapter 8 by Darya Filatova and Marek Grzywaczewski deals with the theory
applicable to the design of optimal control strategies for induction heating processes
and a robustness evaluation of the obtained results. The first part of this volume is
concluded by a contribution on coherent upper and lower conditional previsions
authored by Serena Doria.



Chapter 1

Implementing a Rigorous ODE Solver Through
Literate Programming

Nedialko S. Nedialkov

Abstract Interval numerical methods produce results that can have the power of a
mathematical proof. Although there is a substantial amount of theoretical work on
these methods, little has been done to ensure that an implementation of an interval
method can be readily verified. However, when claiming rigorous numerical results,
it is crucial to ensure that there are no errors in their computation. Furthermore,
when such a method is used in a computer assisted proof, it would be desirable to
have its implementation published in a form that is convenient for verification by
human experts.

We have applied Literate Programming (LP) to produce VNODE-LP, a C++ solver
for computing rigorous bounds on the solution of an initial-value problem (IVP) for
an ordinary differential equation (ODE). We have found LP well suited for ensuring
that an implementation of a numerical algorithm is a correct translation of its under-
lying theory into a programming language: we can split the theory into small pieces,
translate each of them, and keep mathematical expressions and the corresponding
code close together in a unified document. Then it can be reviewed and checked for
correctness by human experts, similarly to how a scientific work is examined in a
peer-review process.

1.1 Introduction

Interval numerical methods produce results that can have the power of a mathemati-
cal proof. Typically, such a method computes bounds that are guaranteed to contain
the true solution of a problem, proves that a solution does not exists or it indicates
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that a solution cannot be found. For example, when computes an enclosure on the
solution of an IVP in ODEs, an interval solver first proves that there exists a unique
solution and then produces bounds that contain it [10]; when solving a nonlinear
equation, an interval method can prove that a region does not contain a solution or
computes bounds that contain a unique solution to the problem [30]. For an excel-
lent, up-to-date survey of these methods, see [35].

To date, not much has been done to ensure that the implementation of such a
method can be readily verified, and the bounds it computes are indeed rigorous.
Showing that an implementation is correct is of paramount importance for these
methods, as mathematical rigor cannot be claimed, if we miss to include even a
single roundoff error in a computation. Furthermore, when interval software is used
in a computer-assisted proof, it would be desirable to have the software published
in a form that is convenient for inspection and verification by human experts.

The author released in 2001 VNODE [25, 28], Validated Numerical ODE, a C++
package for computing bounds on the solution of an IVP for an ODE. This package
is carefully written and tested, and it had shown to be robust and reliable. While
one can check the theory behind VNODE (e.g. in [25]), it would be difficult to
show that its C++ translation does not contain errors. The same applies to the other
packages for computing bounds in IVPs for ODEs: ADIODES [39], cOSY [3], and
VSPODE [20]. That is, it also would be difficult to establish the correspondence be-
tween underlying theory and source code in these packages. A notable exception is
AWA [22], where there is a clear “match” between the theory and the program listing
in [22]. Another well-documented implementation is the VODESIA package [5], but
unfortunately it is not publicly available.

The above solvers have been used to compute rigorous bounds on solutions in
IVP ODE:s. For example, VNODE had been employed in applications such as rigor-
ous multibody simulations [2], reliable surface intersection [24, 32], robust evalu-
ation of differential geometry properties of a Bezier surface patch [18], computing
bounds on eigenvalues [4], parameter and state estimation [12,34], rigorous shad-
owing [7, 8], and theoretical computer science [1].

The author had always been concerned about possible errors in the implemen-
tation of VNODE. Obviously, if an error is present, then the works that have em-
ployed VNODE may contain invalid results. Moreover, how can one establish that
the computed bounds are rigorous, and further, how others can be convinced that
the implementation and the results are correct? This came as a major concern of the
author of [1]: how one can trust the numerical results of VNODE? He needed a rig-
orous proof that an algebraic expression involving the solution of a highly nonlinear
scalar ODE is less than one; otherwise his theorem would not hold. The strongest
assurance argument was of the sort “VNODE has been accurate and reliable”, but
obviously this is not satisfactory. The value of this expression was approximately
0.999... in multiple precision in MAPLE, but it needed to be proved that it was al-
ways smaller than 1. With VNODE we showed that the exact value of this expression
is always smaller than one, but still, we did not have an unquestionable proof.

This prompted the author to search for ways to show that not only the implemen-
tation is correct, but it can also be checked readily by others. Literate Programming
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(LP) [16] was found particularly suitable for this purpose. Using LP, we can produce
a verifiable implementation in the sense that it can be reviewed and examined for
correctness, similarly to how a scientific work is reviewed by human experts in a
peer-review process. This is in contrast to mechanical software verification, when a
proof tool is applied to verify code against given specifications.

We reimplemented VNODE entirely with LP (along with some algorithmic im-
provements), which resulted in the VNODE-LP solver [27]. This paper gives an
overview of VNODE-LP, elaborates on LP, and illustrates the process of employing
it for carrying out a verifiable implementation.

Section 1.2 discusses LP. Section 1.3 presents an overview of VNODE-LP. Ex-
amples from its implementation, illustrating our approach using LP, are given in
Section 1.4. Section 1.5 elaborates on relevant work. Section 1.6 summarizes our
experience.

1.2 Literate Programming and VNODE-LP

Literate programming was introduced as a programming methodology by D. Knuth
[14, 15]. Its essence can be captured as in [16, pg. 99]: “...instead of imagining
that our main task is to instruct a computer what to do, let us concentrate rather
on explaining to human beings what we want a computer to do”, and introducing
concepts “...in an order that is best for human understanding, using a mixture of
formal and informal methods that reinforce each other.”

When developing a literate program, we break down an algorithm into smaller,
easy-to-understand parts, and explain, document, and implement each of them in an
order that is more natural for human comprehension, versus order that is suitable for
compilation. In a literate program, documentation and code are in one source. The
program is an interconnected “web” of pieces of code, referred to as sections [14,16]
or chunks [11,37], which can be presented in any sequence. They are assembled into
a program ready for compilation in a tangle process, which extracts the source code
from the LP source. The documentation is “weaved” in a weave process, which
prepares it for typesetting [16, 17].

We developed VNODE-LP using the CWEB literate programming tool [17] and
its ctangle and cweave utilities. CWEB enables the inclusion of documentation
and C++ code in a CWEB source file, which is essentially a IATEX file with additional
statements for dealing with source code.

From a CWEB file, cweave generates a IATEX file; cweave takes care of page
layout, indentation, suitable fonts, pretty printing of C/C++ code, and generates ex-
tensive cross-index information. Originally, CWEB could deal with TgX input only.
The IXTEX cweb [36] class allows using ISTEX; the cweb-hy class [37], an exten-
sion of cweb, allows structuring of a I&IEX document in chapters, sections, subsec-
tions, etc., and also provides automatic generation of hyperlinks, which are conve-
nient for navigation through the code in the resulting, e.g., PDF file.
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The ctangle utility extracts the source code and writes C/C++ files. It also
includes line information in the generated files so that handling errors when compil-
ing and debugging can be done in terms of CWEB source files, and not the generated
C/C++ files. That is, when syntax errors or warnings are encountered, a compiler
gives line numbers in web files, and similarly, when runtime errors are detected, a
debugger gives line numbers in web files.

Developing a literate program reduces to writing an article or a book: we present
the program in an order that follows our thought process and strive to explain our
ideas clearly in a document that should be of publishable quality. For each algorithm
in [27], we present its theory first, and then translate parts of it, where the division
is such that the code in each part is not difficult to inspect. During development, if
errors in compilation or execution occur, we can review the manuscript and update
accordingly the CWEB files, without looking into the generated program files (they
are for compiler consumption). Similarly, when inspecting VNODE-LP, we can work
only with the LP document [27].

This article and [27] are created with CWEB and the cweb-hy class. The latter is
composed like a book: with a table of contents, list of figures, hierarchical structure
of the presentation, index, and bibliography. This document contains everything re-
lated to VNODE-LP: user guide, theory, documentation, source code, example, test
cases, makefiles, and gnuplot files used for generating the plots in [27]

All the theory of VNODE-LP is included in [27]. Our goal was to have a self-
contained, detailed presentation, so a reviewer would need only [27] when evalu-
ating VNODE-LP. Since all the pieces for verifying the theory and implementation
are in [27], if their correctness is confirmed by human experts like in a peer-review
process, we may trust, or at least have high-confidence, in the correctness of the im-
plementation of VNODE-LP and accept the bounds it computes as rigorous. When
claiming rigor, however, we presume that the operating system, compiler, and the
packages VNODE-LP uses do not contain errors affecting its execution.

1.3 Overview of VNODE-LP

We introduce interval arithmetic (IA), state the IVP that is the subject of this work
(§1.3.1), and discuss briefly the methods in VNODE-LP and the packages it uses
(§1.3.2).

1.3.1 The IVP VNODE-LP Solves

The VNODE-LP software builds on IA as defined below. Denote the set of closed
(finite, nonempty) intervals on R by

IR={a=[aa] |a<x<a, aacR}.
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Ifaand b € IR and € {+,—, X, /}, then the IA operations are defined as
aeb={xey|xca,ycbh},

where division is undefined if 0 € b.
Now consider the IVP

Y () =ft,y), y(t)=yo, tE€R, yeR" (1.1)

where f : R x R" is sufficiently smooth. As a consequence, the code list of f should
not contain for example branches, abs, or min. For more details see [10,25-29].

Denote the set of n-dimensional interval vectors by IR". Given y, € IR" and
fend 7 10 (fend € R), VNODE-LP tries to compute a ¥,,q € IR" at fepq that contains the
solution to (1.1) at #epq for all yg € y,. If VNODE-LP cannot reach #.,q, for example
the bounds on the solution become too wide, bounds at some t* between 7y and Zeng
are returned.

1.3.2 Methods and Packages

Denote by y(¢;;%0,y0) the solution to (1.1) with an initial condition yq at 7y, and
denote by y ; an enclosure of the solution at #;. That is,

¥(tj3t0,0) €y; forall yo € y.

This solver proceeds in a one-step manner from #y to fepq, Where it computes bounds
at (adaptively) selected points #; € (f,%enq]. On a step from ¢; to #;1 |, VNODE-LP
computes first a priori bounds y ; such that

y(t;tj,y;) €y; forallt € [tj,t;41] andally; €y;.
Then it finds tight bounds y; ; at 7, such that

Y(tj+1320,¥0) €¥jyq  forall yo € yp;

see Figure 1.1. To compute these bounds, we use IA, Taylor series expansion of the
solution to (1.1) at each integration point, and various interval techniques.

VNODE-LP is based on Taylor series and the Hermite-Obreschkoff [25] methods.
It is a fixed-order, variable-stepsize solver. The stepsize is varied such that an es-
timate of the local excess per unit step is below a user-specified tolerance. Typical
values for the order (for efficient integration) can be between 20 and 30 [26]; the
default order is set to 20.

Generally, VNODE-LP is suitable for computing bounds on the solution of an IVP
ODE with point initial conditions or interval initial conditions with a sufficiently
small width. If the initial condition set is not small enough and/or long time inte-
gration is desired, the COSY package [3] of Berz and Makino can produce tighter
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tight bounds ——+—
a priori bounds ------

Fig. 1.1: A priori and tight bounds. For this visualization, the tight bounds are con-
nected with lines, which do not necessarily enclose the true solution

bounds than VNODE-LP. Alternatively, one can subdivide the initial interval vector
(box) y, into smaller boxes, perform integrations with them as initial conditions,
and build an enclosure of the solution at the desired #eq.

We tried to avoid advanced C++ constructs and tried to minimize the dependence
of VNODE-LP on the IA package. The present distribution of VNODE-LP compiles
with either of the IA packages PROFIL/BIAS [13] or FILIB++ [19]. Recently, the IA
package GAOL [6] was used as the IA package in VNODE-LP [9].

The interface to an IA package is encapsulated in 26 small (most of them single
line), inline wrapper functions that call functions from it. We aimed at keeping this
interface as small as possible, such that another IA package can be incorporated
easily by implementing these wrapper functions. For this reason, we do not use,
for example, the matrix and vector classes of PROFIL/BIAS, but implement our own
matrix and vector operations through the C++ standard template library.

A major component of our solver is the tool for generating Taylor coefficients
and Jacobians of Taylor coefficients through automatic differentiation (AD). This is
done using the FADBAD++ [40] AD package. We also use LAPACK and BLAS for
computing an approximate matrix inverse, which is needed for enclosing the inverse
of an interval matrix.

1.4 Examples from VNODE-LP

We illustrate typical steps when developing VNODE-LP: we give examples of two
simple functions (§1.4.1) and an example of translating an expression that is part
of a function (§1.4.2). We also present a simple program for integrating the Lorenz
system (§1.4.3).
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1.4.1 Computing h such that [0,h]a C b

The following problem is from the VNODE-LP implementation: given finite machine
intervals a and b, where 0 € b, find the largest 4 > 0 such that [0,4]a C b. Here, for
x,yelR, xCyiffx>yandx <7y.

We derive a formula for / and then produce the C++ code. By V(x/y), we denote
the rounded towards —eo result of x/y.

1. Ifa=a=0, then [0,k]a = [0,0] C b for any h, and we set
h = numeric_limits (double) :: max( ), the largest double precision number.
Below we assume a # [0,0].
2. Ifa>0,thena > 0 and [0,h]a = [0,4a] C [b,b] when h<b/a.
We set h = V(b /a).
3. Ifa<0,thena < 0and [0,h]a = [ha,0] C [b,b] when h <b/a.
We set h=v(b/a).
4. If a < 0 < @, then [0,h] a = [ha,ha) C [b,b] when h=min{b/a,b/a}.
We set h =min{V(b/a), V(b/a)}.

We translate the above cases into:

(h such that [0,h]a C b (intervals) 1) =
#include <climits>
using namespace std;
using namespace v_bias;

inline double compH (const interval &a,const interval &b)

{ /* inf (a) returns g; sup(a) returns @ */
if (inf(a) =0 Asup(a) =0) return numeric_limits(double) :: max();
round_down(); /* set rounding mode to —eo %/

if (inf (a) > 0) return sup(b)/sup(a);

if (sup(a) <0) return inf(b)/inf (a);

return std :: min (inf (b) /inf (a),sup (b) /sup(a));
}

This code is used in chunk 2

This is a chunk of code. It is identified by its name, here “h such that [0,h]a C b
(intervals)”. The ctangle program, when extracting the code, orders the chunks
based on their names. Each chunk is numbered by cweave, and these numbers are
convenient for referencing them in the LP document.

A nice feature of cweave is that it typesets the code in a very readable form,
while the code that is typed in a web file does not even need to be indented. Mathe-
matics can be included in a IATEX form as a comment, and if conditions are typeset
more like math, rather than C++.

Now, given interval vectors a and b, with each component of b containing 0, we
wish to find the largest representable 2 > 0 such that [0,%]a C b. We write

(h such that [0,h]a C b (interval vectors) 2) =
(h such that [0,h]a C b (intervals) 1)
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double compH (const iVector&a, const iVector&b)

double iimin = compH (a[0],5]0]);

for (unsigned int i = 1; i < sizeV(a); i++) {
double i = compH (ali],bli]);
if (h < hmin) hmin = h;

}

return hmin;

This chunk includes the previous one and calls compH on each two components
to find .

1.4.2 Translating Expressions

A method in VNODE-LP can be broken down into a sequence of formulas, and each
formula must be implemented carefully, to ensure that all truncation and roundoff
errors in a computation are included in the resulting bounds. To achieve this, each
formula (or a few formulas) is translated into a chunk. The resulting chunks are put
together by ctangle, thus obtaining an implementation of the complete method.

Here is another simple example from VNODE-LP’s implementation. When prop-
agating bounds on the global excess [25,27], we need to evaluate

— (A=l A, Al
rivt = (A LA )T+ AL Vi,

where r; and v;; are interval vectors, A;; is an interval matrix, and A;; is a
nonsingular point matrix. The chunk implementing this formula (we omit the dec-
larations of objects and variables) is:

(riv1= AL A)r+A v 3) = /x

trial_solution-A = A
A 2 Aj+1
v Vitl

solution-r D r;

Ainv 3 A7), if ok

temp O A]Tilvjﬂ

MO A Aj
trial_solution-r D (Aj]}lAjH)rj

. . -1 -1
trial_solution-r D rj | = (Aj+1A.i+1)rj +A Vi



1 Implementing a Rigorous ODE Solver Through Literate Programming 11

bool ok = matrix_inverse~encloseMatrixInverse(Ainv, trial_solution-A);
if (ok) {

multMiVi(temp ,Ainv,v);

multMiMi(M,Ainv,A);

multMiVi(trial _solution~r,M  solution-r);

addViVi(trial _solution-r,temp);

In the comment above the horizontal line, we state informally where the vectors
and matrices are stored before executing the code: trial_solution-A stores'> A JoL vV
contains v; 1, A contains A 1 1, and solution-r contains r;. After the horizontal line,
we state each step of the computation, so we can easily check the code that follows
against it.

The encloseMatrixInverse function computes an interval matrix, output argument
Ainv, which encloses A;+11‘ If this function computes an enclosure (A ;| is nonsin-
gular and not badly conditioned), then we evaluate the expression. Here Mi and Vi
stand for interval matrix and interval vector, respectively. Obviously, it is not diffi-

cult to establish the validity of this code.

Remark 1.1. One may find the explanations here and in [27] containing too much
detail. However, our goal is to provide as much detail as possible such that one can
readily verify all the steps when going from theory to code.

Remark 1.2. For better understanding, the author has found it helpful to write in
comments what is computed, in addition to the exposition before a chunk. We could
comment separate lines of code, but it becomes less readable.

1.4.3 Integrating the Lorenz System

We give an example illustrating basic integration with VNODE-LP and showing in
more detail how LP works. More examples are given in [27].

With VNODE-LP, the user has to specify first the right side of an ODE problem
and then provide a main program. An ODE must be given by a template function
for evaluating y' = f(z,y) of the form

(template ODE function 4) =

template (typename var_type)

void ODEName(int n,var_type *xyp,const var_type *y, var_type 7,

void xparam)

{

}

! For readers not familiar with C++, the operator— selects a field in a structure when a pointer is
being used.

/* body */

2 Since trial_solution~A, A, v, trial_solution~r, Ainv, temp, and M are C++ objects, they do not
appear in bold font, as they are typeset by cweave as code.
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Here n is the size of the problem, 7 is the time variable, y is a pointer to input
variables, yp is a pointer to output variables, and param is a pointer to additional
parameters that can be passed to this function.

Consider the Lorenz system

Yi=0(n—y)
Yo =y1(p—y3) =y
¥3 =y1y2— By,

where o, p, and B are constants. This system is encoded in the Lorenz function
below. The constants have values 0 = 10, § = 8/3, and p = 28. We initialize beta
with the interval containing 8/3: interval(8.0) creates an interval with endpoints
8.0, and interval(8.0)/3.0 is the interval containing 8/3.

(Lorenz 5) =
template (typename var_type)
void Lorenz(int n,var_type xyp,const var_type xy, var_type ¢,
void xparam)
{

interval sigma(10.0), rho(28.0);
interval beta = interval(8.0)/3.0;

yp[0] = sigmax (y[1] — y[0]);
yp[1] = y[0] x (rho — y[2]) — y[1];
} wp[2] = y[0] xy[1] — betax y[2];

This code is used in chunk 6

We give a simple main program and develop its parts.

(simple main program 6) =
(Lorenz 5)

int main()
{
(set initial condition and endpoint 7)
(create AD object 8)
(create a solver 9)
(integrate (basic) 10)
(check if success 11)
(output results 12)
return 0;

}

This code is used in chunk 13

The initial condition and endpoint are represented as intervals in VNODE-LP. In
this example, they are all point values stored as intervals. The components of iVector
(interval vector) are accessed like a C/C++ array is accessed.
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(set initial condition and endpoint 7) =
const int n = 3;
interval r = 0.0, tend = 20.0;

iVectory(n);
y[0] = 15.0;
y[l] = 15.0;
y[2] = 36.0;

This code is used in chunk 6
Then we create an AD object of class FADBAD_AD. It is instantiated with data
types for computing Taylor coefficients (TCs) of the ODE solution and TCs of the
solution to its variational equation, respectively [25]. To compute these coefficients,
we employ the FADBAD++ package [40]. The first parameter in the constructor of
FADBAD_AD is the size of the problem. The second and third parameters are the
name of the template function.
(create AD object 8) =
AD*ad = new FADBAD_AD(n,Lorenz,Lorenz);
This code is used in chunk 6
Now, we create a solver:
(create a solver 9) =
VNODE % Solver = new VNODE (ad);
This code is used in chunk 6
The integration is carried out by the integrate function. It attempts to compute
bounds on the solution at fend. When integrate returns, either ¢t = tend or t # tend.
In both cases, y contains the ODE solution at .
(integrate (basic) 10) =
Solver-integrate(t,y,tend);
This code is used in chunk 6
We check if an integration is successful by calling Solver-successful ():
(check if success 11) =
if (—Solver-successful())
cout < "VNODE-LP_could_not_reach t_=_" < tend < endl,
This code is used in chunk 6
Finally, we report the computed enclosure of the solution at ¢ by
(output results 12) =
cout < "Solution_enclosure_at_t_=_" <t <K endl,
printVector(y);

This code is used in chunk 6
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The VNODE-LP package is in the namespace vnodelp. The interface to VNODE-
LP is stored in the file vnode . h, which must be included in any file using VNODE-
LP. We store our program in the file basic.cc.

(basic.cc 13)=
#include <ostream>
#include "vnode.h"
using namespace std;
using namespace vnodelp;
(simple main program 6)
When compiled and executed, the output of this program is

Solution enclosure at t = [20,20]

14.30[38161600956570,44725513004334]
9.5[785946141093152,801346480733898]
39.038[2374138960486,4119183796657]

It is interpreted as

[14.3038161600956570, 14.3044725513004334 ]
y(20) € | [ 9.5785946141093152, 9.5801346480733898] | . (1.2)
[39.0382374138960486,39.0384119183796657 |

These results are produced using PROFIL/BIAS, and the output format is due to the
output format of this package. (The platform is x86 Linux with the GCC compiler.)
For comparison, if we integrate the Lorenz system with MAPLE using dsolve with
options method=taylorseries and abserr=Float(l,-18), and with
Digits := 20, we obtain

14.304146251277895001
¥(20) = | 9.5793690774871976695 | ,
39.038325167739731729

which is contained in the bounds (1.2).

Needless to say, one can write application programs without LP. In Figure 1.2,
we show the code of the above example written in “plain” C++.

Remark 1.3. Here, the chunks are presented in a consecutive order, but as mentioned
earlier, they can be in any order.

1.5 Relevant Work

A comprehensive collection of resources on LP, including extensive bibliography
is [21]; annotated bibliography of LP until 1991 is [38]. To the best of the author’s
knowledge, VNODE-LP is the first LP implementation of an interval package, and
the only other implementation of non-trivial numerical software appears to be [33].
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#include <ostream>
#include ”vnode.h”
using namespace std;
using namespace vnodelp;

template<typename var_type>
void Lorenz(int n,var_typexyp, const var_typesxy,
var_type t, voidsparam) {
interval sigma(10.0), rho(28.0);
interval beta = interval (8.0)/3.0;

yp[0] = sigmax(y[l]-y[0]);
ypll] y[0]*(rho—y[2]) —y[1];
yp[2] y[O]*y[1]—betaxy[2];

}

int main() {
const int n = 3;
interval t = 0.0,tend = 20.0;
iVector y(n);

y[0] = 15.0;
y[1] = 15.0;
y[2] = 36.0;

AD xad= new FADBAD_AD(n, Lorenz,Lorenz);
VNODE *Solver= new VNODE(ad);
Solver—>integrate (t,y, tend);
if (! Solver—>successful ())
cout <<’VNODE-LP could not reach t = "<<tend<<endl;
cout<<’Solution enclosure at t = "<<t<<endl;
printVector(y);
return O;

}

Fig. 1.2: “Plain” C++ code for the Lorenz example

In [23], LP is used to facilitate the verification of a network security device.
The authors propose in [23] that LP techniques are used to “document the en-
tire assurance argument.” According to their experience, rigorous arguments, in-
cluding machine-generated proofs of theory and implementation, “did not signifi-
cantly improve the certifier’s confidence” in their validity. One of the main reasons
is that specifications and proofs were documented in a manner to facilitate accep-
tance by mechanical tools rather than humans. Essentially, the authors conclude that
LP greatly facilitates the development of assurance arguments that would be more
naturally understood by (human) certifiers than descriptions of machine-generated
proofs.

A notable methodology for inspecting an implementation is the program func-
tion tables approach of D. Parnas [31]. Before considering LP, the author assessed
this approach for inspecting VNODE. However, program function tables are suitable
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when the relation between input and output arguments is represented by a relatively
simple function, which is hardly the case with VNODE.

1.6 Summary of Experience

Developing a non-trivial literate program can be time consuming, which manifests
itself into a substantial “up-front” investment of time: we focus on writing a high-
quality, well-structured, and easy-to-understand document. This requires paying at-
tention to detail and ensuring that no errors are present. Since this process is in-
herently slow, one is “forced” to write code carefully, reducing the likelihood of
erTors.

Once the effort is put into writing a good LP document, then little time goes
into debugging and testing—instead of trying to discover errors through them, we
simply proofread the LP document. Moreover, theory and code can be cross checked
against each other, and error in one may be revealed in the other. In addition, since
documentation and code are in one source, they can be naturally kept in sync.

In the author’s opinion, if one shows that (a) the theory of a method is correct and
(b) its implementation is a provably correct translation of the theory, then minimal
testing is required. From the author’s experience, if he had implemented the original
VNODE solver through LP, then less time would have been spent on checking the
implementation, debugging, and testing. More importantly, the confidence in the
implementation would have been much higher.

There are 14 tests in the distribution of VNODE-LP. Their main purpose is to
ensure that the IA package and VNODE-LP are installed properly. Indeed, the few
problems reported to the author about VNODE-LP not being able to execute a test
successfully were all related to problems in the installation of the underlying IA
package.

It does not appear appropriate to use LP at early stages of program development,
when prototyping and experimenting with algorithms, design, and interfaces. When
a design is settled, and no major changes are anticipated, then one can “cement” the
implementation with LP. In our case, VNODE was in a stable state, and no experi-
menting was needed before investing into VNODE-LP.

The number of C/C++ lines (without comments) in VNODE-LP is 2,030. This is
not a large package, but complex “per line of code.” The LP document [27] is 218
pages. For much larger programs, LP may not be an attractive option, especially
when a software product must be delivered on time. In academia, researchers rarely
go beyond prototype, research codes and releasing software packages, let alone de-
voting a substantial amount of time into producing a book-like manuscript (which
may not count as a publication). At least for the above two reasons, LP is not ubig-
uitous, even though it has existed for more than 25 years.

Although LP may appear prohibitively time consuming, the author believes that
the cumulative effort for producing and maintaining a complex program is smaller
using LP compared to “traditional” program development. The author also believes



