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Spectroscopic Properties of Rare Earths in Optical 
Materials) 

Preface 

Decades of scientific research on spectroscopic properties of f-shell electrons has 
spawned an extensive array of applications for rare-earth activated luminescent 
and laser materials. From phosphors activated by Eu^^ , Eu^^ and Tb^^ ions for 
lighting and display to crystals and glasses doped with Er̂ ^ and Yb^* for 
infirared-to-visible up-conversion, rare-earths represent a large share of the 
lighting materials market. Currently, Nd^^ doped crystals such as Nd̂ "̂ : YAG 
(Y3AI5O12) and Nd^^ : YVO4 are the dominant laser media for high power and 
compact solid-state lasers, while Er̂ ^ doped phosphate and siUcate glasses 
prevalent in optical fiber amplifiers and microlasers used in optical 
teleconmiunications. Thanks also to materials science development, rare-earths 
will receive even wider use in the future, entering in the new world of 
nanotechnologies for instance. In addition to rare-earth activated phosphors and 
solid-state lasers, optical applications of rare-earths are already an integral part of 
internet and data conununications and are expected to be applied to information 
storage and processing, and organic and biological devices. 

Since the 1960s, several classic books on spectroscopy of rare-earth ions in 
solids have been published, including those by Wyboume (1965) and Hiifner 
(1978). More recent advances in spectroscopic theory and laser experiments 
involving rare-earth ions in solids were also reviewed, for example, in the book 
edited by Kaplyanskii and Macfarlane (1987) . However, in the f-elements 
research community, we feel the need of a book that updates the information of 
recent progresses in the field and facilitates understanding and applications of the 
principles and concepts that are required in rare-earth optical materials 
characterization and development. The goal of this book is to provide a 
connection between basic research and materials science through analysis of 
fundamental spectroscopic properties of rare-earth activated luminescent and laser 
optical materials. In addition, this book will serve as an updated reference for 
materials research by covering a number of currently active topics in the field of 
rare-earth photo-physics and photo-chemistry. Fundamental topics of optical 

V 



spectroscopy are addressed with an emphasis on the physical interactions that 
determine die primary optical properties, including energy level schemes, 
transitions intensities, line broadening, mechanisms of non-radiative relaxation 
and energy transfer. Topics of appUed research are selected from recent advances 
in concepts and techniques that created significant opportunities for present and 
future applications of rare-earth optical materials. 

An international collaboration, which includes contributions from authors 
with both experimental and theoretical expertise, enables us to offer the 
reader a systematic review of fundamental aspects and to provide a wide 
coverage on new applications that utilize the electronic transitions of rare-earth 
ions in solid-state materials. From free-ion and crystal-field energy level 
structures to transition intensities and line broadening induced by ion-ion and 
ion-phonon interactions, the first four chapters survey the fundamentals of f-
element photo-physics and spectroscopy, and provide a theoretical framework 
for the subjects that are discussed in the rest of the book. From Chapter 5 
onwards, each chapter is devoted to a particular area of importance in new 
materials characterization or technology development. From up-conversion 
phenomena, to materials requirements for frequency-domain and time-domain 
optical memory, to current progress in rare-earth laser materials and 
phosphors, the concepts and principles discussed in this book were taken 
directly from the forefront of research in rare-earth optical materials. 
Moreover, illustration of current progress in fundamental aspects of quantum 
confinement and quantum electrodynamics is also discussed. To make it 
easier to read, and also to avoid cluttering up Chapters 1, 2 and 3 , the more 
theoretical derivations of these chapters are given in Appendices A and B. We 
hope that this book will provide useful information to researchers and students 
in the field of f-element spectroscopy and materials development. 

Although chapters in this book are written independently by individual 
authors, significant efforts have been made to achieve a coherent connection 
and systematic balance for the book as a whole. We are grateful to all authors 
of this book for their excellent contributions. 

Guokui Liu 
Argonne, Illinois, USA 

B. Jacquier 
Lyon, France 
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Doped Crystals: Prospects with Other Ions 340 

6.3.2 Lasers Based on Nd^^ and Yb^^ Doped 
Nonlinear Crystals 345 

6.4 Near-and Mid-infrared Laser Sources 349 
6 .4 .1 High-power and Ultrafast Lasers Based on Yb̂ "̂  

Doped Materials 349 

X 



6.5 

6 .4 .2 Rare-earth Doped Crystals for Telecommunications 
and Eyesafe Laser Applications 

6 .4 .3 Low-frequency Phonon Materials 
for Mid-infrared Lasers 

Conclusions 
Appendix • 

6. A 
6.B 
6.C 
6.D 
6 .E 

References 

Laser Threshold Condition 
Minimimi Fraction of Excited Population jS^ 
Energy Transfer Rates 
Einstein Coefficients 
List of Acronyms 

355 

364 
369 
370 
370 
371 
371 
372 
372 
373 

Rare Earth Materials in Optical Storage 
and Data Processing Applications 
7.1 

7.2 

379 
379 Introduction 

7 .1 .1 Equivalence of Holebuming and Photon Echoes 
in Storage and Signal Processing AppUcations 381 

2 Material Parameters for Optical Data Storage 382 
3 Dephasing and Spectral Diffusion 382 
Materials •• 384 

7.1 
7.1 
Eu^ 
7.2 
7.2 
7.2 

7 .2 .4 
7 .2 .5 

.1 

.2 

.3 

Properties of YjSiOj 

Eu^ :Y,Si05 
Other Experiments in Eu' 

Eu '^Y^Os 

Eu'^-YAIO, 

rY.SiOs 

7.3 Pr'* Materials 
7 .3 .1 

7.3.2 

7 .3 .3 

7 .3 .4 

Pr̂  

Pr' 

Pr' 

Pr' 

Y^SiO^ 
YAIO, 

Y3AI3O1, 

Lap, 
7.4 Tm'"^ Materials 

7 .4 .1 

7. 
7. 
7. 
7. 
7. 
7. 

.4 .2 

.4 .3 

.4 .4 

. 4 .5 

.4 .6 

.4 .7 
7 .4 .8 
7 .4 .9 
7.4.10 

Tm*^ 
Tm'^ 
Tm^" 
Tm'* 
Tm'" 
Tm^^ 
Tm^^ 
Tm'* 
Tm'* 

Tm' 

Y3AI5O,, 

LU3AI5O12 

Y1.5LU1.5AI5O12 

YaGajO.^ 
LaF3 
Y^SiOs •• 
Y^Si^O, •• 
Y2O3 

YAIO3 
Materials Summary 

385 

386 

391 

391 

393 

394 

394 

397 

398 

399 

399 

401 

404 

405 

406 

407 

407 

408 

409 

409 

410 

XI 



7.5 Er"^ Materials 411 
7.5.1 Properties of E/^'rYaSiOs 412 

7.5.2 Properties of Er'^iYgOa 416 
7.5.3 Properties of Er '̂̂ iLiNbOg 416 
7.5.4 Properties of Er '̂̂ iYAlOg 417 
7.5.5 Properties of Er'"̂  lY^Al^O,^ 419 
7.5.6 Properties of Er̂ "̂  Doped Tungstates 420 
7.5.7 Er̂ ^ Materials Summary 420 

7.6 Other Materials 421 
7.6.1 Eu'^ Materials 422 
7.6.2 Deuterated Fluorides 423 
7.6.3 Eu^" Persistence 424 
7.6.4 Nd'^ Systems 424 

7.7 Conclusions 426 
References 426 

Rare Earth Doped Confined Structures 
for Lasers and Amplifiers 430 
8.1 Introduction 430 
8.2 Propagation and Amplification: the Key Parameters 432 

8.2.1 Opto-geometrical Parameters 432 
8.2.2 Spectroscopic Parameters 433 
8.2.3 Amplification into a Waveguide 438 
8.2.4 Material Requirements for Fabrication 

of Waveguide 441 
8.2.5 Other Specific Properties: Photosensitivity 

and Photorefractivity 442 
8.3 Waveguide Amplifiers and Lasers 443 

8.3.1 Erbium-doped Fiber Amplifier 444 
8.3.2 Praseodymium-doped Fiber Amplifier 449 
8.3.3 Thulium-doped Fiber AmpUfier 450 
8.3.4 Fiber Lasers 452 
8.3.5 Optical Integrated Amplifiers and Lasers 453 

8.4 Optical Microcavities and Nanoconfinement 454 
8.4.1 Optical Confinement 455 
8.4.2 Experimental Evidences 456 
8.4.3 Various Devices 457 

8.5 Conclusions 458 
References 458 

Rare Earth Luminescent Centers in Organic and 
Biochemical Compounds 462 
9.1 Introduction 462 

XII 



9.2 Sensitizing the Luminescence of Trivalent 
Lanthanide Ions 464 
9 .2 .1 Establishing the Importance of the Triplet State 464 
9 .2 .2 Mechanisms of Energy Transfer 467 

9.3 Preventing Nonradiative Deactivation of the Metal Ion 
Luminescent States 469 
9 .3 .1 Vibrational Deactivation Processes 469 
9 .3 .2 Electronic Deactivation Processes 472 

9.4 Designing a Luminescent Probe 476 
9 .4 .1 Qualitative Rules 476 
9 .4 .2 Quantitative Estimates 477 

9.5 Luminescent Lanthanide Complexes with 
Organic Ligands 481 

9.6 AppUcations in Biomedical Analyses 486 
9 .6 .1 Fluoroimmunoassays 486 
9.6 .2 Responsive Systems 489 

9.7 Conclusions 491 
Appendix 491 

9. A Chemical Formulae of Compounds Cited 
in the Text 491 

9. B Glossary and Chemical Formulae 496 
References 497 

10 Rare Earth Ions in Advanced X-ray Imaging Materials 500 
10.1 X-ray Phosphors 500 
10.2 X-ray Phosphors Used for Intensifying Screens • • • • 502 

10.2.1 Calcium Tungstate 503 
10.2.2 Rare Earth Tantalate Based Phosphors 504 
10.2.3 Europium Activated Barium Fluoro-chloride 

Phosphors 509 
10.2.4 Tb- and Tm-activated Lanthanum 

Oxybromides 511 
10.2.5 Tb^^-activatedGadoUniumOxysulfide 513 

10.3 X-ray Storage Phosphors and Their AppUcations 514 
10.3.1 Physical Mechanism of Photostimulated 

Luminescence 515 
10.4 X-ray Phosphors for Computed Tomography 518 

10.4.1 Scintillators for X-ray Computed 
Tomography 521 

10. 5 Scintillators for Electromagnetic Calorimetric 
Detection 524 
10.5.1 Cerium Fluoride 525 

XIII 



10.5.2 Ce^^-activated Gd2Si05 and Lu2Si05 526 
10.6 Conclusions 527 
References 527 

Appendix A Effective Operator Calculations 530 
A. 1 Effective Hamiltonians and Effective Operators 530 
A. 2 Perturbation Expansions 531 
A. 3 Symmetries and Selection Rules 534 
A. 4 Implications 535 
References 536 

Appendix B Matrix Elements of Tensor Operators 537 
B. 1 Angular Momentum States and Operators 537 
B. 2 Clebsh-Gordan Coefficients and 3-j Symbols 537 
B. 3 Tensor Operators and the Wigner-Eckart Theorem 538 
B. 4 More Complex Situations 539 
References 540 

Keywords Index 541 

Materials Index • 545 

XIV 



List of Contributors 

Editors: 

Guokui Liu 

B. Jacquier 

Chapter Authors: 

Guokui Liu 

(Chapter 1) 

M. F. Reid 

(Chapter 2) 

B. Z. Malkin 

(Chapters) 

R. S. Meltzer 

(Chapter 4) 

Chemistry Division, Argonne National 

Laboratory, Argonne, lUinois 60439, USA 

Tel. 630 262 4630, Fax 630 252 4225 

E-mail: gkliu@anl.gov 

Universite Claude Bernard Lyon 1, 43 bd du 11 

Novembre 1918, Villeurbanne F-69622, France 

Tel. 33-(0)4 72 44 83 36, Fax 33-(0)4 72 43 11 30 

E-mail:Jacquier@pcml. univ-lyonl. fr 

Department of Physics & Astronomy, University of 

Cantebury, Christchurch 8020, New Zealand 

Tel. 64 3 364 2548, Fax 64 3 364 2469 

E-mail: m. reid@phys. canterbury, ac. nz 

Physics Department, Kazan State University, 420008 

Kazan, Russia Federation 

E-mail: boris.malkin@ksu.ru 

Department of Physics and Astronomy, 

University of Georgia, Athens, GA 30602, USA 

Tel. 706 542 5515, Fax 706 542 2492 

E-mail: rmeltzer@hal. physast. uga. edu 

XV 

mailto:gkliu@anl.gov
mailto:boris.malkin@ksu.ru


F. Auzel 

(Chapters) 

Centre National de la Recherche Scientifique, GOTR, 

UMR7574, France 

E-mail: francois.auzel@wanadoo.fr 

R. Moncorge 

(Chapter 6) 

CIRIL, UMR6637 CNRS-CEA-ISMRA, 

Universite de Caen, 6 Boulevard Marechal Juin, 

14050 Caen, France 

E-mail: moncorge@spalp255.ismra.fr 

Y. C. Sun 

(Chapter?) 

Physics Department, Montana State University, 

Bozeman, Montana 59717, USA 

Tel. 406 994 6163, Fax 406 994 4452 

E-mail: sun@physics.montana.edu 

B. Jacquier 

(Chapters) 

B. Jacquier, L. Bigot, S.Guy, A. M. Jurdyc 

University Claude Bernard Lyon 1 

Villeurbanne F-69622, France 

J. -C. G. Biinzli 

(Chapter 9) 

Chemistry Department, University of Lausanne, BCH 

1402, Lausanne, CH-1015, Switzerland 

Tel. 41 21 692 3821, Fax 41 21 692 3825 

E-mail: Jean-claude. bunzli@icma. unil. ch 

M. Z. Su 

(Chapter 10) 

College of Chemistry and Molecular Engineering, 

Peking University, Beijing, 100871, China 

Tel. 86 10 6275 1715, Fax 86 10 6275 1708 

E-mail: sumz@pku.edu.cn 

W. Zhao 

(Chapter 10) 

Department of Chemistry, University of 

Arkansas, 2801 South University Ave. Little Rock, 

AR 72204, USA 

E-mail: wxzhao@ualr.edu 

XVI 

mailto:francois.auzel@wanadoo.fr
mailto:moncorge@spalp255.ismra.fr
mailto:sun@physics.montana.edu
mailto:sumz@pku.edu.cn
mailto:wxzhao@ualr.edu


1 Electronic Energy Level Structure 

Guokui Liu 

1.1 Introduction 
From fluorescent lamps, solid-state lasers, to optical amplifiers in fiber optics, 
rare earth (RE) elements, or lanthanides, have been widely used to activate 
luminescent and photonic materials. A majority of applications involve electronic 
transitions between states within a 4f^configuration of trivalent (or divalent) RE 
ions doped into transparent host materials. The popular solid-state laser of Nd^^: 
YAG, for example, utiUzes the 1.05-jxm electronic transition from the "̂ Fg/g to 
Îii/2 multiplets within the 4f^configuration of the Nd^^ ion (see Chapter 6). 

Similarly, the Er̂ ^ fluorescence at 1.5-|xm, emitted from the first excited 
multiplet '*Ii3/2 of the 4f̂ ^ configuration, is important because of its high quantum 
efficiency and optimal wavelength for optical amplification in telecommunications. 
Green fluorescence of Er̂ ^ from the "̂ 83/2 state can be induced through up-
conversion excitation from several states at lower energies (see Chapter 5). 
These applications utilize the unique properties of the 4f electrons that have 
localized states and exhibit weak coupling to Ugand electrons and lattice 
vibrations. The 4f spectroscopic properties, including the energy level structure 
and the dynamics of the electronic transitions of RE ions in solids, thus primarily 
define the optical properties of an RE activated device. 

With energy levels at more than 30,000 cm"^ above the ground states of the 
4f̂  configurations, there are 5d, 6s, 6p orbitals in the RE ion electronic 
structure. The 5d states exhibit less locaUzed nature and stronger coupling to 
lattice vibrations, and since the inter-configuration 4f̂  to 4f^"^5d transitions of 
the RE ions are parity-allowed, they have intensities up to 10,000 times stronger 
than the strongest 4f̂  to 4f̂  transitions (see Chapter 2). Due to these electronic 
properties, 4f̂  to 4f̂ "̂  5d transitions have become increasingly important in 
recent years for applications in fast scintillators and ultraviolet laser sources. A 
fundamental understanding of the electronic energy levels of RE ions in the 4f̂  
and 4f̂ "̂  5d configurations is essential not only in spectroscopy but also in 
materials characterization. 

What appears to be unique in solid-state RE spectroscopy is that the 
electronic energy level structure is estabUshed primarily using the quantum theory 
of atomic spectroscopy, and all collective solid-state effects can be treated as a 
perturbation known as the crystal-field interaction (Stevens, 1952; Wyboume, 
1965; Newman and Ng, 2000). Such a simple approximation works very well 
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for RE ions in a 4f̂  configuration in which the electrons in the partially occupied 
4f shell are shielded by the electrons in the 5s and 5p shells from interacting with 
the ligands and, therefore, have Httle participation in chemical bond formation 
(Reisfeld and Jc|)rgensen, 1977). Figure 1.1 shows, with Nd '̂̂ as an example, 
the radial distribution of electrons in different shells. It is clear that most of the 4f 
orbitals are much less extended than the 5 s and 5p orbitals. As a result, the 
electronic transitions between the 4f states are very sharp and have atomic-like 
spectral characteristics. It is based on the localized nature of the electronic 
properties that a general theoretical framework of solidstate RE spectroscopy was 
developed (Stevens, 1952; Judd, 1963a; Wyboume, 1965; Dieke, 1968). 

Nd̂ -

4.0 

Figure 1.1 Radial wave function /if/^ as a function of r in atomic radius for 4f̂  
electrons of Nd^ ̂  in comparison with the charge distribution of its core (Xe) 
configurations 

When a 4f electron is excited into a 5d orbital that extends beyond the 5s 
and 5p orbitals, the spectroscopic properties of RE ions in an electronic 
configuration such as 4f̂ "̂  5d are influenced more strongly by the lattice. 
Therefore, the electronic transitions between the 4f̂  and 4f̂ ~^5d states, through 
absorption or emission of photons, are expected to be characteristically very 
different from transitions within the 4f̂  configuration. A modification of the 
crystal-field theory is necessary for modeling stronger ion-lattice interactions in 
analysis of the energy level splitting and the excited state dynamics. 

With restrictions on localized electronic interactions in a well-defined 
crystalline environment, the overall spectroscopic properties of an RE ion may be 
determined by evaluating interactions in various forms of mechanisms. Table 1.1 
lists the scales of electronic energy levels in terms of different mechanisms of 
electronic interactions. Accordingly, theoretical analyses of the electronic 
interactions and their contribution to energy level splitting will be discussed in the 
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order of energy level scales. Historically, the development of a complete 
Hamiltonian for 4f̂  configurations was approached in two stages. The first dealt 
with the fundamental electronic interactions, including electrostatic Coulomb 
interactions and spin-orbit coupling. The second dealt with the crystal field 
interaction that arises when the ion is in a condensed phase. Subsequently, 
additional effective operators dealing with higher order free-ion interactions and 
corrective crystal-filed interactions were introduced to reproduce more accurately 
the energy level structures observed in experiments. The theoretical framework, 
thus utiUzes well-estabUshed theories in two conventional fields: (l)the quantum 
theory of atomic spectroscopy that is the foundation for establishing free-ion 
energy level structures; (2) the point group theory that facilitates the 
determination of crystal-field splittings according to the symmetry properties of a 
crystalUne lattice. 

As Usted in Table 1.1, the scale of crystal-field splitting is smaller than that of 
the free-ion splitting, while the hyperfine energy level structures are even smaller, 
thus ensuring the legitimate application of perturbation theory to calculations of 
crystal-field spUtting and hyperfine structures. In the framework of crystal-field 
modeling, electronic energy levels are calculated by diagonalizing an effective-
operator Hamiltonian with the basis free-ion wave functions, and the parameters of 
the effective operators are determined by fitting the experimentally observed energy 
levels to the calculated ones. As an en5)irical approach to modeUng the energy level 
structure of RE ions in soUds, crystal-field theory was very successful not only in 
predicting the exact number of crystal-field levels for an RE ion in a given host 
material, but also in accurately determining their energies. 

Table 1.1 Energy level scales of rare earth ions in crystals 

Interaction Mechanism 

Configuration splitting (4f̂  -4f^"^ 5d) 

Splitting within a 4f̂  configuration 

Non-central electrostatic field 
Spin-orbit interaction 
Crystal field interaction 
Ion-ion interaction induced band structure 

(in stoichiometric compounds) 

Energy (cm' 

10̂  

10^ 1 
10' 
10^ 
10"^-10 

^ 

^) Optical Probe 

UV and VUV spectroscopy 

Absorption, fluorescence 
I or 

laser excitation spectroscopy 

Hyperfine splitting 
Superhyperfine splitting (ion-ligand 

hyperfine interaction) 

10 " -10 "I Selective and nonlinear 
10 laser spectroscopy 

In this chapter, we discuss the electronic energy level structure of RE ions in 
crystalline solids. Given that the theoretical foundation has already be established 
and discussed comprehensively in several books (Judd, 1963 a; Wyboume, 
1965; Dieke 1968; Abragam and Bleaney, 1986; Hiifner, 1978; Weissbluth, 
1978; Cowan, 1981; Newman and Ng, 2000), we will not enter into details of 
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the spectroscopic theory. Instead, an overview of modeling the electronic energy 
level structure of RE ions in dielectric crystals is provided. An effective operator 
Hamiltonian is introduced with tensor operators defined according to the nature of 
electronic interactions. The terms of Hamiltonian include free-ion interactions 
such as electrostatic Coulomb interactions and spin-orbit coupling, the ion-ligand 
interactions described in the framework of crystal-field theory, and the hyperfine 
interactions treated as a perturbation on electronic energy levels. Solutions to the 
Hamiltonian are obtained primarily through empirical approaches in which the 
phenomenological parameters of the effective operators of the Hamiltonian are 
determined. The calculations of the electronic energy level structures of RE ions 
require complicated tensor operation and the theory of angular momentum 
coupling (Judd, 1963a; Weissbluth, 1978; Cowan, 1981). In Appendices A 
and B of this book, properties of tensor operators, particularly the effective-
operator Hamiltonian, and angular momentum coupUng are briefly discussed. 

Spectroscopic studies of magnetic and hyperfine interactions of RE ions in 
solids are an important part of solid-state RE spectroscopy and have gained 
significant applications in both fundamental understanding of physical interactions 
and materials characterization (see Chapters 4, 5 and 7) . The advances in high 
resolution and nonlinear laser spectroscopic techniques have facilitated the 
measurements of RE hyperfine energy levels in great detail (Levenson, 1982; 
Macfarlane and Shelby, 1987). In Section 1.6, we discuss various mechanisms 
of hyperfine interactions and Zeeman effect. Their contributions to energy level 
splittings from the GHz to the kHz spectral range are evaluated on the same basis 
of crystal-field interaction. 

It is the author' s intention to outline the practical procedures of analyzing 
experimental spectra and, at the same time, to provide the reader a clear 
theoretical understanding of the electronic interactions, including crystal-field and 
hyperfine interactions of RE ions in crystals. In this regard, this chapter may 
stand alone as a useful guide to chemists and materials scientists in analysis of RE 
spectra. However, more importantly, this chapter serves as an introduction to 
other chapters, which assume the reader's understanding of the concepts of 
electronic interactions and the RE energy level structures. 

1.2 Electronic States and Coupling Schemes 

1.2.1 Central Field Approximation 

A conventional approach to solving Schrodinger equation for an A^-electron 
atomic system is to use the central field approximation and Hartree-Fock method 
(Hartree, 1957; Slater, 1960; Weissbluth, 1978). In the central field 
approximation, each electron is assumed to move independently in the field of 
the nucleus and a central field that is made up of the spherically averaged 
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potential fields of each of the other electrons. The quantum mechanical solution 
for such a central field system is the same as that for a single electron hydrogen 
atom. With the concept of central field approximation, the non-spherical part of 
the electronic interactions is treated as a perturbation to a spherically synmietric 
potential, so that the basis of the hydrogen atom wave functions can be used to 
construct wave functions for an A -̂electron atom (ion). This method has been 
used to classify electronic states and evaluate energy levels of lanthanide and 
actinide ions (Judd, 1963a; Wyboume, 1965). 

The primary terms of the Hamiltonian for an A -̂electron ion in the absence of 
external fields is commonly expressed as 

(1.1) 

where 

^ -^2 N 2 

(1.2) 

= 1! - . (1-3) 
i<j 'ij 

= ti(n)irs, (1.4) 

N 2 

e 

In Eq. (1.2), the first term is the kinetic energy, and the second term is the 
potential energy of the electrons in the field of the nucleus, which is purely radial 
and contributes energy shifts that are the same for all the levels belonging to a 
configuration without affecting the energy level structure of the configuration. In 
Eq. (1.3), the term ^^ represents the inter-electron Coulomb repulsion between 
a pair of electrons at a distance of r^j, which varies for different states of the 
same configuration. In Eq. (1.4), the term J^^Q describes the spin-orbit 
interactions, which can be understood as magnetic dipole-dipole interactions 
between the spin and angular moment of the electrons. The spin-orbit coupUng 
constant f (r.) is defined as a sole function of r.. 

Exact solutions of Schrodinger equation are not possible for systems with 
more than one electron. In the framework of the central field approximation, one 
assumes that it is possible to construct a potential energy function Uir^) which is 
a spherically symmetric, one-electron operator and is a good approximation to 
the actual potential energy of the electron / in the field of the nucleus and the 
other N-l electrons. Therefore, ^^ can be replaced by (Weissbluth, 1978) 

with 
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7 Z N 2 

Ze / -^^ e lU{r,) = - 1 ^ + < X ^ > . (1.6) 
i = 1 i = l ' i i- <j ij 

The second term in Eq. ( 1 . 6) is the average over a sphere of the electron 
repulsion. This term is therefore independent of the angular coordinates. ^ Q 
contains the kinetic energy, the potential energy of N electrons, and most of the 
inter-electron repulsion, and it is called the Hamiltonian of the central field. 
Since most of the inter-electron repulsion is included in the central field 
Hamiltonian of Eq. (1 . 5) , the second term in Eq. (1.1) can be rewritten as 

N 2 N 2 

•^c = l'-- <1~}' (1-7) 

which is small enough to be treated along with the spin-orbit Hamiltonian (1.4) 
as a perturbation to the central field potential. 

The eigenfunctions of . ^ ^ for an AT-electron ion are obtained as a hnear 
combination of one-electron Vave functions that satisfy the PauU exclusion 
principle and are subject to the orthonormalty condition. This method, known as 
Hartree-Fock approach, is generally used for seeking an approximate solution to 
the A^-electron Schrodinger equation (Hartree, 1957; Weissbluth, 1978). The 
effects of non-central field interactions including spin-orbit coupling and many-
body electronic interactions are considered by introducing additional effective 
operators and diagonalizing the Hamiltonian with parameters determined in 
comparison with experiments. 

In the Hartree-Fock method, the wave function of each electron is expressed 
as a product of radial and angular functions of the spherical harmonics multiplied 
by a spin function 

^..., . .(r, m j =-^R^,(r)Y,^^{e,<p)cr(m,), (1.8) 

where the radial function R^iir) depends on the central field potential, which 

determines the radial charge distribution functions such as those plotted in Fig. 1.1 

for Nd^^. The spherical harmonic function Y^^ (̂ft (p) in Eq. (1.8) is characterized 

by the four quantum numbers n, /, m̂  and m ,̂ which define a unique state of an 

electron in an atom. For electrons in a 4f̂  cnfiguration, we have 

n = 4, 

/ = 3, m, = - / , - / + 1, ••% /, (1.9) 

m^ =± 1/2. 

The central field wave function for A^-electrons thus may be written in a 
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determinantal form as 

^ A i , A 2 > - - - , A ; , ) = -

/m 
<Ai(Aiv) IA2(AA^) ••• «Aiv(A;v) 

(1.10) 

in which ipiiXj) are spin orbitals. The subscript i identifies a particular choice of 
the four quantum numbers n, Z, m ,̂ and m ,̂ where Â  represents the space and 
spin coordinates of the j-\h electron. The primary purpose of the central field 
approximation is to use the N-electron wave functions defined by Eq. (1.10) as 
the basis functions for the perturbation terms such as the inter-electron Coulomb 
interactions [see Eq. ( 1 . 7)] and spin-orbit interaction [see Eq. ( 1 . 4) ] of the 
Hamiltonian. 

1.2.2 LS Coupling and Intermediate Coupling 

To construct wave functions for a multi-electron atom on the basis of the central 
field approximation, one needs to choose a coupling scheme of momentum 
summation to determine the wave functions of the AT-independent electrons. There 
are two coupling schemes that are commonly used for two extreme cases in atomic 
spectroscopy (Judd, 1963a; Cowan, 1981). In Ughter atoms, where spin orbit 
interactions [see Eq. (1.4)] tend to be small compared with the electrostatic 
interactions between electrons [see Eq. (1 .3 ) ] , the so-called Russell-Saunders, or 
LS coupling scheme is a good choice, since L and S are, approximately, good 
quantum numbers. With increasing Z, electrostatic interactions decrease and spin-
orbit interactions become more important. In the heavier atoms, spin-orbit 
interactions become much stronger than the Coulomb interactions. Thus, one 
should consider the j-j coupling scheme. In rare earth ions, the Coulomb 
electrostatic interactions and spin-orbit interactions have the same order of 
magnitudes. Therefore, neither coupUng scheme is appropriate, and calculations 
of energy levels of RE ions are mathematically more involved in a scheme called 
intermediate coupling, which can be developed from the LS scheme. 

In the LS coupling scheme, orbital momentum and spin momentum of 
individual electrons are summed separately (Weissbluth, 1978). Thus 

^ = I /. S = I (1.11) 

are the total orbit and total spin momentum operators, respectively, and 

/ =L +S, (1 . 12) 

is the total angular momentum operator which has 2 / +1 eigenstates represented 
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by the magnetic quantum number M = -J, - 7 + 1, • • ,7 . 
In the LS couphng scheme, the electronic states of an RE ion may be 

specified completely by writing the basis states as 

^ =\nlrLSJM}, (1.13) 

where nl, which is 4f, or 5d for RE ions, represents the radial part of the basis 
states. Usually, the symbol ^^'^^Lj is used for naming a free ion state or 

multiplet. Whereas 5 and J are specified with numbers (0, 1/2, 1, *•*)? ^ is 

traditionally specified with letters 5, P, D, F, G, H, "\ respectively, forL = 

0, 1 , 2 , 3, 4, 5 , - * Table 1. 2 lists the electronic configurations and ground 
states identified by ^^^^Lj for divalent and divalent ions in the RE series. 

Table 1.2 Electronic configurations and ground states of divalent (R^ ^) and trivalent (R^ "*̂ ) 
RE ions 

Atomic number 

57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
TT 

La 

Cê ^̂  
p,(a) 

Nd 
Pm 
Sm 
Eu 
Gd 
^ ( a ) 

Dy 
Ho 
Er 
Tm 
Yb 
Lu 

Element 

Lanthanum 

Cerium 
Praseodymium 
Neodymium 
Promethium 
Samarium 
Europium 
Gadolinium 

Terbium 
Dysprosium 
Holmium 
Erbium 
Thulium 
Ytterbium 
Lutecium 

R'* 

4f\ ^F^, 
4f\ ^H, 
4f, ^I,,, 

4f*, % 
4f, "H^,, 
4f, 'Fo 
4f, 'S , , , 
4f, % 
4f', 'H,,,, 
4f°, ^I, 
4f" *I 
4f̂ % 'H, 
4fl3 2 p 

4f", 'S„ 
4f"6s, 'S,/2 

j ^ 3 . 

4f". 'S„ 

4f', %,, 
4f^ ^H, 
4f, %,, 
4f, ^I, 
4f', ''H,,, 
4i*, 'F„ 
4 f / S , , , 
Af. ' F , 

4f, 'H.,/2 
4f", l̂a 
4f" *I 
^ » ' ^15/2 ^f\ 'n. 

4f", 'So 

(a) Ce, Pr and Tb may also be stabilized in tetravalent oxidation states. The electronic configuration 
and ground state of RE in tetravalent oxidation state can be determined from this table. For example, Pr'* "̂  
is in 4>f (^F5/2) configuration (state). 

An additional quantum number r, called the seniority number, is needed for 
distinguishing the states that have the same L and S quantum numbers. In fact, 
two or more quantum numbers are needed in order completely to define the states 
in an f̂  configuration. One such classification number is W = (W1W2W3), with 
three integers for characterizing the irreducible representations of the seven-
dimenisional rotational group Rj The other classification number is U = (u^U2), 
for characterizing the irreducible representations of the group Gg. Details in 
classification of the f̂  states are given in the books by Judd (1963a) and 
Wyboume (1965). Table 1.3 lists the classification of the states for the f̂  

8 
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Table 1.3 

N T W 

1 1 (100) 

2 2 (110) 

2 (200) 

0 (000) 

3 3 (111) 

3 (210) 

1 (100) 

4 4 (111) 

4 (211) 

2 (110) 

4 (220) 

2 (200) 

0 (000) 

5 5 (110) 

5 (211) 

3 (111) 

Classification of the free 

U 

TTo) 
(10) 

(11) 
(20) 

(00) 

(00) 

(10) 

(20) 

(11) 
(20) 

(21) 

(10) 

(00) 

(10) 

(20) 

(10) 

(11) 
(20) 

(21) 

(30) 

(10) 

(11) 
(20) 

(21) 

(22) 

(20) 

(00) 

(10) 

(11) 

(10) 

(11) 
(20) 

(21) 

(30) 

(00) 

(10) 

(20) 

2 5 . 1 ^ 

~ ^ F 
3p 

^PH 

'DGI 

^S 

^S 

' F 

'DGI 

'PH 

'DGI 

'DFGHKL 

^F 

^S 
5 F 

'DGI 
3 F 

'PH 

'DGI 

'DFGHKL 

^PFGHIKM 
3 F 

'PH 

'DGI 

'DFGHKL 

'SDGHILN 

'DGI 

'S 

^F 

'PH 

^F 

'PH 

^DGI 

'DFGHKL 

'PFGHIKM 

^S 

^F 

*DGI 

ion states of the f̂  configurations (Wyboume, 1%5) 

^ j \ 

2 

3 

6 

3 

1 

1 

4 

12 

4 

6 

12 

2 

1 

5 

15 

3 

6 

9 

18 

21 

3 

6 

3 

6 

7 

3 

1 

6 

9 

4 

7 

12 

241 

27 

1 

4 

12] 

WT 

FT 

3 

1 

6 6 

6 

4 

6 

4 

2 

6 

4 

W 

(221) 

(210) 

(100) 

(100) 

(210) 

(111) 

(221) 

(211) 

(110) 

(222) 

(220) 

U 

TlO) 
(11) 
(20) 

(21) 

(30) 

(31) 

(11) 
(20) 

(21) 

(10) 

(10) 

(11) 
(20) 

(21) 

(00) 

(10) 

(20) 

(10) 

(11) 
(20) 

(21) 

(30) 

(31) 

(10) 

(11) 
(20) 

(21) 

(30) 

(10) 

(11) 
(00) 

(20) 

(30) 

(40) 

(20) 

(21) 

2 5 . 1 ^ 

""^F 

'PH 

'DGI 

'DFGHKL 

'PFGHIKM 

'PDFFGHHnKK-

LMNO 

'PH 

^DGI 

^DFGHKL 

^F 

^F 

'PH 

'DGI 

'DFGHKL 

^S 
sp 

'DGI 
3 F 

'PH 

'DGI 

'DFGHKL 

'PFGHIKM 

^PDFFGHHIIKKLMNO 
3 F 

^PH 

'DGI 

'DFGHKL 

'PFGHIKM 
3 F 

'PH 

^S 

'DGL 

'PFGHIKM 

'SDFGGHHKLLMNQ 

'DGI 

'DFGHKL 

Nj 

2 

4 

6 

12 

14 

30 

4 

6 

12 

2 

7 

8 

15 

30 

1 

5 

15 

3 

6 

9 

18 

21 

45 

3 

6 

9 

18 

21 

3 

6 

1 

3 

7 

14 

3 

6 



Guokui Liu 

continue 
N T W 

2 (200) 

0 (000) 

7 7 (000) 

7 (200) 

5 (110) 

7 (220) 

5 (211) 

3 (111) 

U 

(22) 

(20) 

(00) 

(00) 

(20) 

(10) 

(11) 
(20) 

(21) 

(22) 

(10) 

(11) 
(20) 

(21) 

(30) 

(00) 

(10) 

(20) 

2 5 . 1 ^ 

'SDGHILN 

'DGI 

^S 

«S 

'DGI 

^F 

'PH 

*DGI 

'DFGHKL 

^SDGHILN 

^F 

*DGI 

'DFGHKI 

*PFGHIKM 

^S 

^F 

'DGI 

Nj\ 

TJ 
3 

1 

1 

17 

6 

9 

12 

24 

25 

4i 
7 

12 

24 

27 

1 

4 

12 

N T 

7 

5 

3 

1 

W 

(222) 

(221) 

(210) 

(100) 

U 

(00) 

(10) 

(20) 

(30) 

(40) 

(10) 

(11) 
(20) 

(21) 

(30) 

(31) 

(11) 
(20) 

(21) 

(10) 

2 5 . 1 ^ 

"^S 

^F 

'DGI 

'PFGHIKM 

'SDFGGHHKL-

LMNQ 

^F 

'PH 

'DGI 

'DFGHKL 

'PFGHIKM 

'PDFFGHHHKK-

LMNO 

'PH 

'DGl 

'DFGHKL 

^F 

Nj 

1 

2 

6 

14 

27 

2 

4 

6 

12 

14 

30 

4 

6 

12 

2 

configurations with N^7. Column 5 lists the LS terms with the same 5, and 

Column 6 lists the number of ^^''^Lj multiplets in the classification. The LS terms 

of the 4f̂ "̂̂  configuration are identical for those of the 5f̂  configuration with 

Ar>7, although the seniority of the states is different. 

In the LS coupling scheme, the spin-orbit interaction Hamiltonian commutes 

with / and J,, but not with L and S: 

[ ^ s o , L ] 7^0, [ ^ so .S ] 7^0, 

3 , / ] = >^J =0, 
(1.14) 

which means that inclusion of spin-orbit coupling breaks the symmetry of the LS 

coupling scheme. In this case, L and 5 are no longer good quantum numbers, 

but J and M are still good. The wave functions I nhLSJM} are not eigenfunctions 

of the Hamiltonian of Eq. (1 .1 ) . Based on perturbation theory and the concept 

of the central field approximation, one may obtain a new set of eigenfunctions by 

diagonalizing the primary terms of the Hamiltonian defined by Eqs. ( 1 . 4) and 

(1 .7 ) with the basis of I nlrLSJM}. As a result, the new eigenfunctions are 

linear combinations of the LS basis sets, and are known as the free-ion wave 
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functions in the intermediate coupling scheme. If we do not include inter-
configurational coupling, the eigenfunctions in the intermediate coupling scheme 
are expressed as 

^(nlj) = £ a^^jlnlrLSjy, (1.15) 
TLS 

where the coefficients a^^sj are determined by the matrix elements, 

^TLSJ = S (nkLSJl^c + ^ s o IW/T'L'S7'>5^,,. (1. 16) 
T'L'S' 

The energy levels of the free-ion states are independent of M, so they are (2 / + 
l)-fold degenerate. The new basis Eq. (1.15) in the intermediate coupling 
scheme describes the energy states of the Hamiltonian including Coulomb and 
spin-orbit interactions and is obtained from mixing all LS terms with the same J 
in a given 4f̂  configuration. The transformation coefficients of a^su ^^ the 
components of the eigenvector pertaining to the basis state in the LS coupling 
(Judd, 1963). 

1.3 Free-ion Interactions 
In spectroscopy, a powerful method for evaluating atomic energy level structure 
(or RE ion energy level structure in our case) is to define and diagonalize an 
effective-operator Hamiltonian with the wave functions of the central field 
Hamiltonian. Racah (1949) used this method for calculating the energy matrix 
elements of the tensor operators of the electronic angular momentum. Since then, 
many developments have been made, particularly for applications of the effective 
operator method to rare earth spectroscopy (Judd, 1963a; Wyboume, 1965). In 
this section, we will review the primary results of the theory that are important 
for understanding the free-ion properties of RE ions in solids. The effective 
operator Hamiltonian and its reduced matrix elements for the Coulomb 
electrostatic interaction and spin-orbit coupling are discussed, while the effective 
operators for higher order free-ion interactions are presented without derivations. 
An essential part of the effective operator method is to determine the irreducible 
matrix elements of tensor operators using the Wigner-Eckart theorem (see B. 9 in 
Appendix B). For more comprehensive theories of tensor operators and atomic 
spectroscopy, one may read textbooks by Judd (1963a) and Weissbluth (1978). 

1.3.1 Coulomb Interaction 

In the central field approximation, orbital electronic wave functions of an RE ion 
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are represented by products of radial and angular parts as shown in Eq. (1.8) . 
The effective operator for Coulomb electrostatic intra-ion interaction may be 
expressed by expanding l/r^j into scalar products of the tensor operators of 
spherical harmonics as follows: 

where r< indicates the distance from the nucleus to a near electron, and r> the 
distance from the nucleus to a further electron, and 

Y<" (i) ' Y<'' (y) = S ( - 1) 'Yf (d„ <pd Y['l (d., <pj). (1.18) 

It is convenient to define a tensor Ĉ ^̂  as (Weissbluth, 1978) 

^(k) _ I 4Tr x^(^) 

with components given in Appendix B Eq. (B. 12). The reduced matrix elements 
of &^^ may be expressed as 

</||c^'> l i r> =(- i )^[ (2 /+i ) (2r+i ) ]^ '^ (^ J Ij). (1.20) 

The 3-j symbol in Eq. ( 1 . 20) is defined in Eq. (B. 6) in Appendix B. 
Therefore, for N equivalent electrons in orbital nl, the matrix of the effective 
operator Hamiltonian for Coulomb electrostatic interaction may be expressed as 

{frLslj^^ll'TLS} = Y^f,{l,l)F\nl,nl), (1.21) 
i>j ^ij 

where F^(nl, nl), with k =0, 2, 4, 6, are the Slater radial integrals for the 
radial part of the electrostatic interaction, which is defined as 

00 00 ^ 

F\ nl, nl) = e'jj^ [ RJ r.) ]'[ RJ r,) ] 'dr.dr,. (1. 22) 

The value of F*̂  may be calculated using the Hartree-Fock method, but in actual 
cases of spectrum analysis, F* is considered an experimentally determined 
parameter. The angular part of matrix (1.21) is defined as 
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1 Electronic Energy Level Structure 

/ ,( / , /) = < / V L S | ^ C<*>(0 • C<*'0-) \fTLSy. (1.23) 
1>J 

The matrix elements (1.23) are best handled by introducing the unit tensor 
operator l/̂ *̂  (Weissbluth, 1978) with reduced matrix elements expressed in 
Appendix B Eqs. (B. 10) and (B. 11). In combination with symmetry properties 
of angular momentum, /^(/, /) may be expressed in terms of the reduced matrix 
elements of U^^^ as 

Mi,i)={i2i.iy(l^ 0 of 

M2TTT § 10'^^' II ^' II ^'^'^'''> r -2TTT}- ^'-''^ 

In the particular case of fc =0, it is easy to find that 

UU) = N{N-l)/2. (1.25) 

For the p^, d ,̂ and f̂  configurations, the values for the reduced matrix elements 
of the tensor operator f/̂*̂  were tabulated by Nielson and Koster (1963), and 
may also be displayed in SPECTRA program. Because of the symmetry 
properties of the 3-j symbol, the matrix in Eq. (1.24) has nonzero elements only 
if / + l^k'^ IZ - /I, and k must be even. For the 4f electrons, / = 3, thus the/^ 
matrix vanishes except for A: =0,2,4,6. 

To illustrate the use of the reduced matrix elements for energy level 
calculation in the simple case of f̂  configuration (Nd^^), Table 1. 4 lists the 
values of electrostatic matrix elements in terms of F^ along with other free-ion 
interaction parameters to be introduced in the Section 1.3.2 and 1.3.3. 

Table 1.4 Elements of the 7 = 1/2 submatrix of the free-ion Hamiltonian for f̂  configurations 
(in the first and second columns, 1 stands for *D and 2 for ^P) 

^ 
1 

2 

1 

2 
1 

2 

1 

2 

1 
2 

1 

^ 

1 

2 

1 

2 

1 
2 

1 
2 

1 
2 

1 

Coefficient 

1.00000000 

1.00000000 

0.17264957 

-0.04957265 
0.01165501 

0. 00155400 

-0.19873289 

0. 07321738 

-0.02446153 

- 0 . 02846153 
- 0 . 10256410 

Parameter 

£0 

Eo 
F' 

F' 
F* 
F* 

F' 
F' 
O.Ola 

O.Ola 

i 
13 
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continue 

^ '^ Coefficient Parameter 

2 2 -0,26923077 ^ 

1 -0.32307690 y 
2 0.27692306 y 
1 1.11116780 T^ 
2 -0.25253800 T^ 
1 0.09759000 T^ 
2 -0.58554000 T^ 
1 -1.16700680 T' 
2 -1.52362350 r' 
1 -1.50000000 ^ 
1 11.89999944 M ' 
1 -18.09999640 M ' 
1 -19.40908767 M ' 
1 -0.12777776 P' 
1 -0.04292929 P* 
1 0.03399380 P^ 
2 -1.58113883 ^ 
2 -2.42441266 M ^ 
2 2.31900337 M ' 
2 -0.81452561 M * 
2 0.06441676 P' 
2 0.01597110 P' 
2 -0.03583260 P' 

2 2 4.66666625 M ^ 

2 2 3.00000097 M ' 

2 2 -6.36363739 M ' 

2 2 -0.09629627 P' 

2 2 0.07575757 P* 

2 2 -0.04532506 P' 

1.3.2 Spin-orbit Interaction 

As defined in Eq. ( 1 . 4 ) , the Hamiltonian the for spin-orbit coupling of N 
electrons in a rare earth ion is a linear summation of independent spin-orbit 
interactions for a single electron. In LS coupling, the N equivalent electron 
matrix elements of the spin-orbit interaction are expressible in terms of tensor 
operator V^^ \̂ so that the matrix element of spin-orbit interaction for N 
equivalent electrons can be expressed as (Sobelman, 1972; Weissbluth, 1978) 
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1 Electronic Energy Level Structure 

( nfrLSJM I ^ ^( î) h ' S, \ nl\'L'S'J'M' ) = ^^A^oi nl), (1 . 26) 
i = l 

where f „̂  is the spin-orbit interaction parameter which is a radial integral defined 
by 

00 

C^ = j[RAr)V^{r)dr. (1.27) 
0 

The spin-orbit parameter can be evaluated numerically using the Hartree-Fock 
central field potential, but it is usually adjusted to the experimentally observed 
energies. The matrix element in Eq. (1.26) can be expressed as 

Asoinl) = ( - l ) ' ^ ^ ' ^ V ( 2 / + l ) ( / + l)/5,;,5^^, 

x { ^ , f' | } < T L S II V "̂> II T ' L ' 5 ' > , (1.28) 

where {... } is a 6-j symbol. The values for the reduced matrix elements of the 
tensor operator V "̂̂  are tabulated in the books by Sobelman (1972) and Nielson 
and Koster (1963). They may be output from the SPECTRA program. 

1.3.3 Corrections to Free-ion Hamiltonian 

The electrostatic and spin-orbit interactions give the right order for the energy 
level splitting of the f̂  configurations. However, these primary terms of the free 
ion Hamiltonian do not accurately reproduce the experimentally measured energy 
level structures. This is because the parameters F* and ^^f, which are associated 
with interactions within a f̂  configuration, cannot absorb all the effects of 
additional mechanisms such as relativistic effects and configuration interactions. 
Introduction of new terms to the effective operator Hamiltonian is required to 
better interpret the experimental data. Judd and Crosswhite (1984) demonstrated 
that, in fitting the experimental free-ion energy levels of Pr^"^(f configuration), 
the standard deviation could be reduced from 733 cm~^ to 24 cm~^ by adding 
nine more parameterized corrective effective operators into the Hamiltonian. 

Among several corrective terms included in the effective operator 
Hamiltonian, a significant contribution to the f̂  energy level structure is from 
configuration interactions between the configurations of the same parity, which 
can be taken into account by a set of three two-electron operators recommended 
by Wyboume (1965), 

^ , 1 = a L ( L + l ) -\-pG{G^) +yG(Rj), (1.29) 
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where a, /? and y are the parameters associated with GiGz) and G(Rj) (Rajnak 
and Wyboume, 1963), the latter being eigenvalues of Casimir operators for the 
groups G2 and R^i Judd, 1963) 

For f̂  configurations of N^S, a three-body interaction term was introduced 
by Judd (1966) and Crosswhite et al. (1968) as 

^c2 = I 7^% (1.30) 
i =2, 3,4,6, 7, 8 

where T' are parameters associated with three-particle operators t^. This set of 
effective operators scaled with respect to the total spin S and total orbital angular 
momentum L are needed in the Hamiltonian in order to represent the coupling of 
the f̂  states to those in the higher energy configurations (5d, 5p, 5s) via inter-
electron Coulomb interactions. It is common to include six three-electron 
operators ,̂( / =2,3,4,6, 7,8). When perturbation is carried beyond the second 
order, an additional eight three-electron operators f.(ll ^ / ^ 19, with / = 13 
excluded) are required (Judd and Lo, 1996). A complete table of matrix 
elements of the 14 three-electron operators for the f-shell were published by 
Hansen et al. (1996). 

In addition to the magnetic spin-orbit interaction parameterized by „̂̂ , 
relativistic effects including spin-spin and spin-other-orbit, both being 
parameterized by the Marvin integrals M°, M ,̂ and A^( Marvin, 1947), are 
included as the third corrective term of the effective operator Hamiltonian (Judd 
etal., 1968). 

.̂ 03 = S M'm,. (1.31) 
i =0, 2,4 

where m, is effective operator and M' is the radial parameter associated with m^. 
As demonstrated by Judd et al. (1968) and Camall et al. (1983), for 

improving the parametric fitting of the f-element spectra, two-body effective 
operators can be introduced to account for configuration interaction through 
electrostatically correlated magnetic interactions. This effect can be characterized 
by introducing three more effective operators as 

î c4 = I P'P, (1-32) 
I =2, 4, 6 

where /?, is the operator and P' is the parameter. 
In sunmiary, we have introduced 20 effective operators including those for 

two- and three-electron interactions. The total effective-operator Hamiltonian of 
free-ion interactions is 

^Fi = Z F% ^CnAsoinl) -^aUL+l) + pG{G,) +yG{R,) 
k =0, 2, 4, 6 
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i =2, 3,4,6, 7, 8 i =0, 2,4 i =2,4,6 

This effective-operator Hamiltonian has been used as the most comprehensive 
free-ion Hamiltonian in previous spectroscopic analyses of f-element ions in 
soUds (Crosswhite, 1977; Crosswhite and Crosswhite, 1984; Camall et al., 
1984, 1989). The 20 parameters associated with the free-ion operators are 
adjustable in fitting of experimental data. 

1.3.4 Reduced Matrices and Free-ion State Representation 

In (1 .33) , all effective operators for the free-ion interactions have well-defined 
group-theoretical properties (Judd, 1963a; Wyboume, 1965). Within the 
intermediate coupling scheme, all matrix elements can be reduced, using the 
Wigner-Eckart theorem, to new forms that are independent of / , viz. 

< T S L / I ^ . I r'S'L'ry = P,8jrC{SLS'L'J) (rSL \\ O, || r'S'L'}, (1.34) 

where Pj is the parameter, c(SLS'L'J) is a numerical coefficient, and {rSL 
II Oi II T'S'V} is the reduced matrix element of the effective operator O^. Once 

the reduced matrix elements are established, it is then not difficult to diagonalize 
the entire free-ion Hamiltonian with the wave function basis in the L5-coupling 
scheme. All matrix elements of the effective operator Hamiltonian are evaluated 
in terms of the parameters of the effective operators. 

The property of matrix reduction thus allows the matrix of the free-ion 
Hamiltonian to be reduced into a maximum of 13 independent submatrices for 

7 = 0 , 1, 2, •••,12 for even AT and 7 = 1/2, 3/2, 5/2, ••,25/2 for odd iV in an 
f̂  configuration. The numbers of submatrices and their size can be determined 
from the values of Nj given in Table 1 .3 . Evaluation of matrix elements is 
actually a trenlendous effort, particularly with inclusion of the effective two- and 
three-electron operators in the Hamiltonian. For an f̂  configuration with 3 < 
Â  < 11, there are more than 10"̂  free-ion matrix elements and each of them may 
have as many as 20 terms to be evaluated on the basis of angular-momentum 
operations. Fortunately, several groups have made the calculated matrix elements 
available. For example, one may download from the web site http: //chemistry, 
anl. gov the tables prepared by Crosswhite and co-workers for the free-ion matrix 
elements, or SPECTRA, to calculate the eigenvalues and eigenfunctions of the 
free-ion Hamiltonian. 

In the Crosswhite files for configurations of f^with Â  = 2 through 12, the 
free-ion matrix elements are given in terms of the 20 parameters for all the f̂  
configurations. As an example, the elements of the free-ion matrix for the 7 = 
1/2 submatrix of the f̂  configuration are Usted in Table 1.4. Column 3 of 
Table 1.4 lists the values of the product of c{SLS'L'J) and the values of matrix 
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elements, Column 4 lists the corresponding parameters. This is one of the 
simplest cases in which there are only two multiplets: "̂ 01/2 and ^Pi/g. Except for 
f^ and 7*, all 18 other parameters appear in this 2 x 2 submatrix. Among the 
interaction terms that contribute to the energy level of these two multiplets, only 
^, M^ '̂̂  and p^'^^ mix the two L5-multiplets. In addition, the T' terms induce a 
mixture of different multiplets with identical 5 and L but different r. 

Due to the SL-S'L' mixing in the intermediate coupUng scheme, labeUng a 
multiplet as ^^^^Lj is incomplete. In most cases, the nominal labeling of a free 
ion state as ^^^^Lj only indicates that this multiplet has a leading component from 
the pure LS basis \LSJ}, Diagonalization of each of the sub-matrices produces 
free-ion eigenfunctions in the form (1.15) . As an example, for Nd^^, 4f 
configuration, we give the leading LS terms in the free-ion wavefunctions of the 
ground states and the excited state at 21, 000 c m " \ which were obtained using 
the values of the parameters Usted in Table 1.5: 

y^(4f, 'I9/2, 0 cm"') = 0 . 9 8 4 ' 1 - 0 . 1 7 4 ' H \ 
tf^(4f, 'G9/2, 21,000 cm"') =0.616 ' G ' -0 .494 ' O ' +0.487 ' O 

+ 0.273 ' F - 0 . 2 0 8 ' H \ 

where ^G' and ^G^ are the first and second ^G9/2 terms with (7 = (20) and (21), 
respectively, for the LS states of f̂  configuration listed in Table 1.3. Other terms 
with magnitudes less than 0. 1 are neglected. These two Nd^^ multiplets are 
conamonly labeled as nominal "̂ Ig/g and ^G9/2, respectively. In general, SL-S'L' 
mixing becomes more significant in the excited multiplets. 

1.3.5 Parameterization of the Free-ion Interactions 

One of the characteristics of attempts to parameterize f-configuration spectra is 
that, because of the heavy mixing of 5L-basis states brought about by the spin-
orbit interactions for each / value, the least-squares fitting method can result in 
convergence to a false solution. A false solution can be recognized if there is 
sufficient characterization of the states from supplementary data, such as Zeeman 
splitting factors or polarized spectra. However, this in itself does not produce the 
true solution. The true solution can only be found if sufficiently accurate initial 
parameters are available for the least-squares fitting process to be effective. On 
the other hand, existing theories of f-element spectroscopy do not accurately 
reproduce the experimentally observed energy level structure of an f-element ion 
in solids, and the calculated parameters may be physically different from the 
phenomenological ones that result from a fitting of the experimental data. 
Therefore, establishing accurate parameters for the model Hamiltonian 
essentially relies on systematic analyses that encompass theoretical calculations 
for incorporating trends of parameter variation across the f-element series. The 
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1 Electronic Energy Level Structure 

results of analyses of simpler spectra are carried over to more complex ones 
through consideration of their synmietry properties ( Camall et al., 1989; 
Camall, 1992). 

Because lanthanide crystal fields appear as small perturbations on the free-
ion levels, efforts to gain a theoretical understanding of free-ion interactions are 
essential in the development of parametric modeling of crystal field spectra. An 
important procedure that was taken in establishing the parametric model for f-
configurations was to conduct a series of Hartree-Fock (HF) calculations, 
which, although they require corrections that must be caUbrated by comparison 
with experimental data, predict free-ion parameter trends across the lanthanide 
series. Detailed results of HF calculations on f-electrons were previously 
discussed by Crosswhite and Crosswhite (1984) and Camall et al. (1983). 

The most important trends are those of the electrostatic-interaction 
parameters F^ and spin-orbit parameter ^^^ which increase with the number of f-
electrons, N, The experimentally determined values of F^ and 4̂̂  for trivalent RE 
ions R^̂  in LaFg and LaClg are shown in Fig. 1.2 as a function of N, These 
values were obtained from systematic analyses of data from a series of 
experiments (Crosswhite, 1977; Camall et al., 1989). Figure 1.2 indicates that 
for trivalent RE ions in crystals, not only the systematic trends are independent of 
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Figure 1. 2 Systematic variation of experimentally determined free-ion interaction 
parameters F* and ^ as a function of number of f-electrons (AT) for trivalent RE ions R^̂  
in crystal lattice of LaFa and LaClg 
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hosts, but the values of F^ and 4̂̂  do not vary significantly in different host 
crystals. Calculated HF values predict the same trends cross the series, but the 
HF values of the F^ and „̂̂  are always larger than those obtained by allowing 
them to vary as parameters in fitting experimental data. A comparison is given in 
Fig. 1. 3 between the Hartree-Fock relativistic (HFR) values and experimental 
values of F ^ F^, F^, and ^4 f̂or trivalent RE ions (Crosswhite, 1977; Camall 
et al., 1983). The HFR values of 4̂̂  agree remarkably with empirical values, 
while the F* values remain considerably larger than the empirical values. This is 
presumably because, in addition to relativistic effects, f-electron coupling with 
orbitals of higher-lying energies reduces the radial integrals assumed in the HFR 
approximation. Moreover, the experimental results are frequently obtained for an 
ion in a condensed phase, not in a gaseous phase, which leads on average to 5% 
change (Crosswhite, 1977). Because of the absence of mechanisms that absorb 
these effects in the HFR model, HFR values of F^ cannot be directly used as 
initial parameters for the least squares fitting process. As shown in Fig. 1.3, 
although the HFR values of F^ are much larger than the experimental ones, the 

10 11 12 13 14 

Figure 1.3 Variation of the parameter difference, AP = P{ HFR) - P{ Exp.), between 
the HFR computed values and that determined from experimental data as a function of 
number of f-electrons 

differences between the HFR and the experimental values of F* have been shown 
to be nearly a linear function cross the RE series. With this characteristic, linear 
extrapolations of model parameters from one ion to another lead to values 
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consistent with those obtained in the actual fitting process. 
In addition to HFR calculations of F^ and „̂y., estimated values for M ,̂ k = 

0,2,4, can also be computed using the HFR method (Judd et al., 1967). These 
parameters do not vary dramatically across the f-series. In practice, experience 
has shown that they can be taken as given or varied as a single parameter by 
maintaining the HFR ratios M^/Nf =0. 56 and l^/l^f = 0. 31 (Camall et al., 
1989) (see Table 1.5). 

For the rest of the free-ion effective operators introduced above, no direct 
HF-values can be derived. Only a term-by-term HFR calculation is possible to 
give additional guidance for parameter estimates. For example, the HFR values 
of P^s for Pr̂ ^ and Pr̂ "" have been determined by Copland et al. (1971). In 
establishing systematic trends of parameters for Ln "̂": LaFg, Camall et al. 
(1989) constrained the P* parameters by the ratios P^ =0. 5P^ and P^ =0. IP^ 
while P^ was varied freely along with other parameters. These ratios are 
consistent with the HFR estimation. The variation of these parameters across the 
series is not significant, and no obvious systematic trends have been established. 

Once the systematic trends of free-ion parameters are established, constraints 
can be imposed on other parameters that are relatively insensitive to the available 
experimental data. Some parameters such as T^, Af̂  and P^ do not vary 
significantly across the series and to a good approximation have the same values 
for neighboring ions in the same series. In fact, most of the free-ion parameters 
are not host sensitive. Typically, there are approximately 1% changes in the 
values of the free-ion parameters between different lattice environments. 
Table 1.5 lists parameters for trivalent rare earth ions in LaFg. The free-ion 
parameters given in the table can be used as initial inputs for least-squares fitting 
of energy level structure of a trivalent f-element ion in any crystalline lattice. If 
there is a limited number of experimental data, one may only allow F^ and „̂̂  to 
valy freely along with the crystal-field parameters and keep other parameters 
fixed. For further improvement, a, ^ and y can be released. For final 
refinement, M^ and P^ may be varied freely with M '̂̂  and P"*'̂  varied following 
Af and P^ respectively at fixed ratios. 

1.3.6 Energy Levels of 4f̂  Configurations and Binding 
Energies Relative to Host Band 

The fi-ee-ion Hamiltonain of Eq. (1.33) and the values of free-ion interaction 
parameters listed in Table 1. 5 are essential in RE spectroscopy and provide a 
framework useful for analyzing spectra of trivalent RE ions (R^"") in solutions 
and solids. While the values of free-ion interaction parameters vary within 1% 
for different hosts, the calculated energy levels of the 4f̂  multiplets are also 
expected to vary approximately within 1% for different matrices. The widely-
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circulated Dieke chart of energy level structure in the RE series was first created 
for trivalent ions in LaClg based on the analyses of limited spectra (Dieke, 1968) 
and extended to R^^: LaFg by Camall et al. (1989) with more systematic 
analyses. The Dieke chart for R^^: LaFg, Fig. 1.4, is based entirely on the 
computed energy levels up to 50, 000 c m ' \ including crystal-field splittings. 
The computations were conducted with the values of the free-ion and crystal-field 
parameters listed in Table 1.5. This chart should provide a useful basis for 
comparison with spectra of trivalent RE ions in other matrices. 

While the energy levels of R^ ^ in 4f^ configurations extend to higher than 
50,000 cm"^ for 4:^A^:^ 10, and even extend to higher than 150, 000 cm"^ for 
N = 6,7,8, energy levels accessible by optical excitation are often below 
30,000 c m " \ Using excitation with UV sources or two-visible photons, spectra 
containing energies above 30,000 have been analyzed ( Schwiesow and 
Crosswhite, 1969; Camall et al., 1989, Liu et al., 1994a) for parameterization 
of the effective-operator Hamiltonian of Eq. ( 1 . 33) . Using the values of 
interaction parameters determined with experimental data for the low-lying states, 
we anticipate that calculated energy levels below 50,000 cm"^ are more accurate 
than those at higher energies, in which configuration interactions are significant. 
As a result, the corrections Eqs. ( 1 . 35) - ( 1 . 38) to the free-ion (and crystal-
field, to be discussed in next section) Hamiltonian are either inadequate, or the 
values of the parameters are expected to be different from these for the low 
energy states. 

So far, we have only discussed the 4f^ electronic energy levels of the RE 
ions. However, interactions between the localized 4f^ electronic states of RE 
ions and the delocalized band states of the crystal lattice can strongly affect the 
optical properties of technologically important RE-doped materials. Relative 
energies of 4f^ electronic states and crystal band states are important for a 
fundamental understanding of RE-doped optical materials and a practical 
understanding of each material' s potential performance in specific appHcatioSs. 
In contrast to the well-developed understanding of the 4f^ states, relatively little 
is known about the relationships between these states and the electronic states of 
the crystal. The 4f^ ground state binding energies of rare earth ions were recently 
studied in the gallium garnets by Thiel et al. (2001) using resonant photoemission 
spectroscopy and compared with the aluminum and iron garnet hosts. The 4d - 4f 
photoemission resonance was used to separate and identify the 4f̂  and valence band 
components of the spectra, and theoretical 4f photoemission spectra were fit to 
experimental results to accurately determine electron binding energies. A two-
parameter en^irical model was used to describe the relative energies of the 4f̂  
ground states in these materials. This model can be expressed as 

E,, = I,, -E,+aj,{R- Ro) - ^vBM. (1 . 35) 

where l^^ is the free-ion ionization potential, E^ is the uniform shift experienced 
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Figure 1.4 Energy level stmcture of R^*: LaFj based on calculated free-ion and 

crystal-field splittings (Camall et al., 1989) 

by the RE ions, a^ is the binding energy shift per unit change in ionic radius, R 
and RQ are the effective ionic radii of the trivalent RE ion and the ionic radius 
reference. £'VBM =8. 3 eV is the binding energy of the valence band maximum 
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(VBM). The value of two parameters in Eq. ( 1 . 35), iÊ^ =31 . 6 eV and aj^ = 
9.2 eV/A when R^^RiYh^^), were obtained by Thiel et al. (2001) in fitting 
the model to the observed binding energies in gallium garnets. Figure 1. 5 shows 
the calculated and experimental values of binding energies of 4f̂  electrons in the 
RE ions relative to VBM in gallium garnets. The experimental data are 7.8, 
10.9 and 11. 6 eV for TbGG, ErGG, and YbGG, respectively (Thiel et al., 
2001), the ionization potentials, 7̂ ,̂ are calculated by Martin et al. (1974), and 
the effective ionic radii are from Shannon (1976). 
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Figure 1.5 Systematic variation of 4f̂  binding energies relative to the valence band 
maximum (8.7 eV) in gallium garnets. Circles represent measured binding energies for 
TbGG (7.8 eV), ErGG (10.9 eV), and TbGG(lL6 eV) (Thiel et al., 2001). The 
squares connected by solid lines are calculated 

The success of this empirical model indicates that measurements on as few 
as two different RE ions in a host are sufficient to predict the energies of all RE 
ions in that host. It is shown that systematic shifts in the relative energies of 4f^ 
states and crystal band states between different garnets arise entirely from shifts of 
the band states, while each RE ion maintains the same absolute binding energy 
for all garnets studied. These results suggest that ftirther studies of additional host 
compounds using both photoemission and optical spectroscopy will rapidly lead to 
a broader picture of the host crystal' s effect on 4f electron binding energies. 

1.4 Crystal-field Interaction 

On placing a rare earth ion in a dielectric crystal, the spherical symmetry of its 
electronic structure is destroyed, and ionic energy levels split under the influence 
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of the electric field produced by the crystalline environment. The f-electrons, 
which participate primarily in ionic bonding with the ligands, have very locaUzed 
states that are conventionally described in the framework of crystal-field theory 
(Stevens, 1952; Wyboume, 1965). Using effective operator techniques and the 
parameterization method, crystal-field theory was developed on the same basis 
eigenfiinctions of the effective operator Hamiltonian for the free-ion interactions 
as we discussed in the previous section. Applications of group theory along with 
operator techniques (Tinkham, 1964; Judd, 1963 a) have made the crystal-field 
theory a great success in characterization of the RE ion energy level structure 
(Gorller-Walrand and Binnemans, 1996; Newman and Ng, 2000). 

We pointed out in the introduction that, because of the weak ion-ligand 
interaction, the crystal-field intraconfigurational 4 f - 4 f spectra of RE ions 
contain very sharp spectral lines and are much like the gas phase atomic spectra. 
The degree to which the 2 / + 1 fold degeneracy of a free-ion state is removed 
depends only on the point symmetry about the ion. The magnitude of crystal-
field splittings is determined primarily by the crystal-field strength expressed in 
terms of the crystal-field parameters of the effective operator Hamiltonian. 
Because of the compUcated electronic interactions in solids, various interaction 
mechanisms that influence the electronic states of the RE ion in a solid 
environment may not be accurately calculated in the framework of current crystal-
field theory. Evaluation of the crystal-field parameters, however, is theoretically 
much more difficult than predicting the number of energy levels for each free-ion 
state. An empirical approach is so far the most effective method for evaluation of 
the crystal-field parameters (Crosswhite, 1977; Camall et al., 1984; 1989), 
while phenomenological modeling and ab initio calculations of ion-ligand 
interactions are able to provide theoretical guidance to the analysis. 

From theoretical approaches, analytical expressions of crystal field 
parameters using phenomenological models are available for calculating the 
crystal-field parameters of RE ions in specific crystalline lattice. The exchange 
charge model (ECM) (MaUdn et al., 1970, 1987) and the superposition model 
(SP) (Newman, 1971; Newman and Ng, 1989) are two crystal-field models 
that have achieved significant success and are very useful for guiding spectrum 
analysis. From the theoretical point of view, ab initio calculations of solid-state 
electronic energy level structure have advanced significantly along with the rapid 
development of computer technology and have potential for future applications. 
However, ab initio calculations of f̂  crystal field splittings have not reached the 
accuracy of the observed crystal-field splittings ( < 10 cm"^). This accuracy is 
essential in many cases for determining physical properties of rare earth activated 
materials (see Chapters 2 ~ 6 ) . 

In this section, we discuss the concepts and methods of crystal field 
modeling. Applications of empirical methods and model calculations are 
reviewed with examples of RE activated crystalline materials that have been 
extensively studied or conmionly used as laser media. To gain a more 
comprehensive understanding of crystal-field theory, the reader may refer to 
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more detailed reviews (Wyboume, 1965; Hufner, 1978; Gorller-Walrand and 
Binnemans, 1996; Newman and Ng, 2000). 

1.4.1 Crystal-field Hamiltonian and Matrix Element 
Evaluation 

Based on the concept that the crystal-field interaction can be treated 
approximately as a point charge perturbation on the fi*ee-ion energy states, which 
have their eigenfunctions constructed with the basis of harmonic functions, the 
effective operators of crystal-field interaction may be defined with the tensor 
operators of spherical harmonics C^^^. Following Wyboume' s formaUsm 
(Wyboume, 1965), the crystal-field potential may be defined by 

K q, i 

(1.36) 

where the summation involving / is over all the electrons of the ion of interest; 
J5̂  are crystal-field parameters and, as defined by Eqs. (1. 19) and (B. 12) in 
Appendix B, Ĉ^̂  are components of tensor operators C^^^ that transform like 
spherical harmonics. 

In addition to Wyboume's formaUsm for crystal field parameters 5^, the 
older Stevens' notations Al(/} is often found in the literature. Table 1.6 gives 
the relationship between B^ and A^</>. 

Table 1.6 Relationship between parameters 5^ and A^</> 

Bj=16A°<r''> 

_6 _ 8 y i 0 5 .3 . 6N 
^ ^ - ^ " 1 0 5 " ^ ^ ^ ' ^ 

21 

231 
Bl^^^l^^^AUr'y 

With the harmonic tensor operators, evaluation of the crystal field matrix 
elements can be performed with the same methods used for the free-ion matrix 
elements. With applications of the Wigner-Eckart theorem (Appendix B), the 
matrix elements of the crystal-field interaction can be expressed with the reduced 
matrix elements of a unit tensor U^^^ (Wyboume, 1965; Weissbluth, 1978): 
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{lrSLJM\lcl{i)\lr'S'L'rM'} =i-iy-''(J^ J ^',) 

X ikSLJ II U^'^ II I'T'S'L'J'} 

X </II C<*> II/>. (1.37) 

In LS coupling, the matrix elements of the unit tensor can be further reduced to 

{ITLSJWU^"^ WIT'L'S'J'} =(- l )^* ' ' ' - '^**[(2y+1)(2/ ' +1)] ' ' ' ' 
x H • '̂ ^ |< /T5L II f/*M|/T'L'5'>. 

U ' L Si " " 
(1.38) 

WithEqs. (1 . 20), (1 . 37) and (1 . 38), we may write the reduced matrix 
elements of the crystal-field Hamiltonian as 

<ITSLJM\ ^ C F I IT'S'L'J'M'} = y B''A-l)'-"( -^ ^ •''\D), 
tl ^ -M q Ml 

(1.39) 

where 

D] ={-\y''''\{2]+ \){2r +\)Y''[I^, /' A| 

X </TSL II t/̂ '̂  I I / T ' 5 ' L ' X - 1 ) ^ ( 2 / + ! ) ( ' ^ M (1.40) 

with /=3 for f ^ configurations. Since all the coefficients, including the values 
of the 3-j ( ) and 6-j { } symbols, and the doubly reduced matrix elements of the 
unit tensor, are known for a given free-ion multiplet, it is obvious that evaluation 
of crystal-field spUtting only needs input values of the crystal field parameters 

The doubly reduced matrix elements of (7̂ *̂  may be obtained directly from 
the tables of Nielson and Koster (1963) or from the SPECTRA program. For 
configurations of Â  > 7 in the second half of the f-series, the V^^^ matrix 
elements are identical to those of 14-Ar in the first half of the f-series. The values 
of the 3-j and 6-j symbols can be obtained from the book of Rotenberg et al. 
(1959). The values of k and q for which the matrix elements are non-zero are 
determined by the symmetry of the crystal field and the f-electron angular 
momentum. For f̂  configurations (/ =3), the 3-j symbols in Eq. (1.40) require 
that A: =0, 2, 4, 6, and 1^1^^. The values of q are also restricted by the point 
group of the RE ion site, since the crystal field Hamiltonian has to be invariant 
under all symmetric operations of the point group. Restrictions due to point group 
synmietry properties on the non-zero matrix elements of crystal field Hamiltonian 
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are illustrated in the second part of this section. 
For the matrix element of k = q = 0, the zero-order of crystal-field 

interaction is spherically symmetric and does not split the free-ion energy levels, 
but induces a shift to all energy levels in the same f̂  configuration. In general, 
BI is not included in evaluation of the crystal-field splitting. Therefore, its 
contribution to energy level shift is combined with the spherically synmietric 
component of the free-ion electrostatic interaction. One parameter, namely F^, 
absorbs contributions from spherically symmetric components of free-ion and 
crystal-field interactions. 

Once the matrix elements [see Eq. (1 .40)] are evaluated, the Hamiltonian 
of the crystal-field interaction may be diagonalized together with the free-ion 
Hamiltonian to obtain the crystal-field spHtting as a function of the crystal-field 
parameters. In general, the free-ion parameters may also be considered as 
variables for fitting an experimental spectrum. As a result, each of the ^^^^Lj 
multiplets sphts into crystal-field levels. Because the off-diagonal matrix 
elements between different 7-multiplets may not be zero, as shown in Eqs. 
(1.39) and (1.40) , crystal-field operators can induce J-mixing. Therefore, for 
RE ions in crystals, both / and M are no longer good quantum numbers. 

As a result of /-mixing, as shown in Eq. ( B . 4) in Appendix B, the 
eigenfunction of a crystal-field level is of the form, 

IM> = X aj^\JM>, (1.41) 
J,M 

where, in principle, the summation is over all JM terms of a given f̂  
configuration. However, inclusion of all / multiplets results in extremely large 
matrices, particularly, for the configurations with 4^Ar^ lO. Diagonalization of 
the effective operator Hamiltonian on the entire LSJM basis could be very time 
consuming and not actually necessary in an analysis of an experimental spectrum, 
which usually covers energy levels less than 40, 000 cm~\ Off-diagonal matrix 
elements between free-ion states separated in such a large energy gap are 
neghgibly small. As an approximation, crystal field calculation without including 
J mixing is appropriate for the isolated multiplets, such as ^Dg of Pr^^, ^87/2 of 
Gd^^, and ^D4 of Tb^^. In practice, the crystal-field energy level structure of an 
f̂  configuration is usually calculated in a limited energy region in which 
experimental data are available. Free-ion multiplets with energy levels far from 
this region may not be included in the calculation. Namely, the eigenfunction 
basis may be truncated before diagonalizing the matrix of crystal-field 
Hamiltonian. Theoretically, this truncation of free ion states is legitimate because 
crystal-field coupling diminishes between two free-ion multiplets as their energy 
gap increases. From the perturbation point of view, the leading contribution of J 
mixing to the energy level spUtting of the / multiplets is proportional to l/AEjj,, 
Given that the crystal-field spUtting of a free-ion multiplet is on the order of 
100 -1000 c m " \ the multiplets that are separated by 10"̂  cm"^ should have no 
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significant influence on each other. 
In computational analyses of experimental spectra, one may truncate the 

fi'ee-ion states whose energy levels are far fi*om the region of interest. This can 
be readily accomplished after diagonalization of the free-ion matrix to produce 
the free-ion energy level structure. The later may be considered approximate 
centers of gravity for the crystal field spUtting (Camall et al., 1984). One 
chooses the numbers of / multiplets to be included in the crystal-field matrices for 
each / value. Therefore, the remaining / multiplets are still complete sets of 
free-ion eigenfunctions that contain all SL components of the given / . This way 
of free-ion state truncation ensures that no contribution from the free-ion 
interactions is lost from constructing the free-ion wavefunctions for each / 
multiplet. 

One example is the 8̂7/2 ground state of ions in a 4f̂  configuration for Eu^^ 
and Gd^ ,̂ in which both diagonal and off-diagonal matrix elements of crystal 
field operators vanish. The observed crystal field splittings must be attributed to 
the contributions of the mixture of other LS terms into the ground state free-ion 
wavefunction and non-zero off-diagonal matrix elements between different / . 
Because of large energy gaps from the ground state to the excited multiplets, / 
mixing is negligible in this case. It has been shown (Liu et al., 1993) that for 
the 8̂7/2 ground state splitting, the leading contributions are from the fourth and 
higher orders of the coupled matrix elements between the spin-orbit (V^^^^) and 
crystal field ( U^^^) operators. Without inclusion of / mixing, the leading 
contributions to the crystal-field splitting of the 8̂7/2 multiplet of an f 
configuration are from the mixed matrix elements such as 

<'SI V^ I 'PX'PI U^^^ I^DX'DI t/̂ '̂  I^PX'PI V^ l'5> 

and 

<'SI V^ I 'PX'PI U^'^ I ' / x V l t/̂ '̂  I 'PX'PI V^ l'5>. 

It is obvious that truncation of LS terms in the / = 7/2 multiplets should 
affect the scale of the coupled matrix elements, and thus affect the crystal-field 
splitting. The same effect is expected for the off-diagonal matrix elements 
between different / , but this is less important because of the large energy gap 
between the ground state and the first excited state. 

In the literature, the crystal-field interaction is often characterized by 
quantitative comparison of the crystal-field strength defined as (Auzel, 1983) 

N^ = [ J _ y A ^ i ^ l , (1.42) 

or as (Chang et al., 1982) 
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r 1 1^^^ 

1.4.2 Symmetry Rules 

We now discuss the geometric properties of the crystal-field operators and 
parameters in more detail. In addition to the angular momentum of the RE ions 
that restricts k and q for a set of non-vanishing crystal-field operators, the site 
symmetry of RE ion in a crystalUne lattice also imposes Umits on crystal field 
operators, because the tensor operators for the crystal-field interaction must be 
invariant under the point group symmetry operations. Here our interest is to 
identify the non-vanishing components of crystal-field operators and their matrix 
elements. First, if we restrict our attention to the states of the same parity, 
namely l = l\ k must have even values. It is also required that BJ must be real in 
any synunetry group that contains a rotation operation about the F-axis by IT or a 
reflection through the X-Z plane; otherwise 5^(^7^0) is complex. In the later 
case, one of the BJ can be made real by a rotation of system of coordinates about 
the Z-axis. The B^ forq < 0 are related to the imaginary ones for ^ > 0 by 

B'_^ ={-iyB';, (1.44) 

Also under the invariant conditions of the point group theory, the 
crystallographic axis of lowest symmetry determines the values of q for the non-
vanishing crystal-field operators. For example, at a site with C^^ synmietry, 
there is a threefold axis of rotational symmetry with a reflection plane that 
contains the Cg axis (Tinkham, 1964; Hiifner, 1978). The ligand electric field 
must exhibit this symmetry and hence if a 2Tr/3 rotation is made on the crystal 
field potential, followed by a reflection with regard to the plane, the potential is 
invariant only if ^ = 0 , ± 3 , and ±6 . Thus, within an f̂  configuration, the 
crystal field Hamiltonian may be written as 

M C3.) = X [Blcf' (i) + Kef-:' (0 + K[ c<.t (0 - cf^' (/) ] 
i 

+ Bl[C''_l{i) +Cf(0]}. (1.45) 

If the reflection plane is perpendicular to the C3 axis, the site synmietry 
becomes Cg ,̂ which occurs for RE ions in all the lanthanide ethylsulfates and 
trichlorides such as LaClg and bromides such as LaBrg (Morosin, 1968). The 
potential invariant property requires ^ =0, ±6 only, but since there is no rotation 
symmetry about the j-axis by TT or a reflection through the X-Z plane for the C^^ 
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site, there is an imaginary non-cylindrical term in the Hamiltonian: 

(1.46) 

Dgh is a symmetry group that includes all rotation and reflection operations of C^^ 
and CghCTinkham, 1964; Hufner, 1978). The crystal field operators for RE ions 
at a Dgh site are the real terms for C^^ without the imaginary term iB'l(Cl^^ -
C^%). The non-vanishing terms of crystal field operators for various lattice sites 
of RE ions in crystals are Usted in Table 1.7. 

Table 1.7 Non-vanishing tenns of crystal-field (CF) parameters 5*, numbers of reduced 
matrices and crystal-field quantum number /z, for f̂  configurations in crystals of various 
symmetries '̂̂ "' 

Crystal 
structure 

Monoclinic 

Rhombic 

Trigonal 

Tetragonal 

Hexagonal 

Cubic 

Site symmetry 

^ s » ^ 2 , ^ 2 h 

Q v » ^ 2 » ^2h 

Q» ^^evQi) 

^ 3 v » ^ 3 » ^ 3 d 

^ 4 » '^4» ^ 4 h 

D„C,,,D^,D^ 

^ 6 » ^ 3 h ' ^ 6 h ' ^ 6 » 

^ 6 v ' ^ 3 h » ^ 6 h 

r, r,, r„ o, o, 

Example 

LaF3 

Y3AI5O1, 

LiNbOj 

Y2O2S 

LiYF^ 

YPO4 

LaClg 

CeOg 

« : 

D 4 | T 6 jj4 i>6 136 

^ • ^ » BQ, Re(52, 

D 2 D 4 D 6 

Re(Bj),B^5^ 

p 2 D 4 D 6 

Re(5l),fi^ 

D 2 I>4 I J 6 

Re(B:,Bj) 

D 2 I J 4 D 6 

Re(B^) 

BQ.BQ, 

ReiBlBiy^ 

At ( S, D, T, 

Q)̂ '̂ ^ for even Â  

S: ±0, ±1 

S: ±0 
D:l 

S: ±0, ±2, 
D:l 

S: ±0, ±3 
D: l ,2 

S: ±0, ±4 
D:2,6 
T: l 

/ x ( S , D, T, 

Q)^'^foroddA^ 

D: l /2 

D: 1/2,3/2 

D: 1/2,3/2 

D: 1/2,3/2, 
5/2 

D:/^ = l /2 ,7 /2 
Q:/t=3/2 

(a) Morrison et al., 1982; 
(b) Hufner, 1978; 
(c) S: singlet, D: doublet. T: triplet, Q: quadruplet; 
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Because of the 3-j symbols in Eq. ( 1 . 39), the degeneracy in M may be 
completely or partially removed by crystal-field coupling between states of 
different JM. In the crystal-field matrix, the terms for which M - M' = q aie 
mixed by C[^^. Otherwise the crystal-field matrix elements are zero. Based on 
this property, the crystal-field matrix may be reduced into a number of 
independent submatrices each of which is characterized by a crystal quantum 
number jm (or F). Each fi represents a group of M, such that M-M' =q (0,2, 
3 , 4 , 6 ) belongs to the same submatrix (Hiifner, 1978). All matrix elements 
between the submatrices are zero. The crystal-field quantum number may be used 
to classify the crystal-field energy levels even when J and M are not good 
quantum numbers. To consider C^^iand D^^^) as an example, the JM and J'M' 
with M -M' =6 belong to the same crystal-field submatrix. For even number of f 
electrons, there are four independent submatrices, and for odd number of f 
electrons, there are three independent submatrices. The parameters of non-
vanishing crystal-field terms for synmietries of common crystal hosts of f-element 
ions are given in Table 1. 7 along with the numbers of reduced crystal-field 
matrices. 

Without a magnetic field, the electrostatic crystal field alone does not 
completely remove the free-ion degeneracy for the odd-numbered electronic 
configurations. Known as Kramers' degeneracy (Kramers, 1930), all crystal 
field levels are at least doubly degenerate. The crystal quantum number and JM 
classification are given for Cĝ , and D^^ in Table 1.8. In calculation of energy 
level structure for degenerate doublets, one may cut off a half of the submatrix 
elements. 

In many cases, calculations of crystal-field energy levels have been 
successful by using higher site symmetry than the real one so that a smaller 
number of parameters are required. First of all, this is because RE ions in many 
solids occupy a low site symmetry and the limited number of observed energy 
levels could not accurately determine a large number of crystal-field parameters. 
Secondly, many crystal lattices do not have mirror symmetries in their 
coordinates so that the crystal-field parameters with q 9^0 are complex ( see 
Table 1.7). If one makes an approximation by using only the real part of the 
crystal-field operators, the energy level calculation becomes much easier. Since 
the high synmietry approximation is equivalent to up-grading a lower synunetry 
site to a higher one within the same symmetry group, this is called the descent-
of-symmetry method ( Gorller-Walrand and Binnemans, 1996). This method 
may be applied to the groups of monocHnic, trigonal, and tetragonal structures 
listed in Table 1.7. For example, the S4 site synmietry of trivalent lanthanide 
ions in LiYF4 is often treated as Dg^iCEsterowitz, 1979; Gorller-Wakand, 1985, 
Liu et al., 1994a). Similarly, the actual C2 synmietry of LaFg is replaced by €2^ 
(Camall et al., 1989) and the Cĝ  symmetry of LaClg by Dĝ  (Morrison and 
Leavitt, 1982). 
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Table 1.8 Classification of crystal field energy levels for Q^ and Dĝ  symmetry 
(a) Even number of electrons 

/ 

0 

1 

2 

3 

4 

5 

6 

7 

8 

M{fjL=0 

0 

0 

0 

0 

0 

0 

- 6 , 0 , 6 

- 6 , 0 , 6 

- 6 , 0 , 6 

M(lJL= ± 1 

±1 

±1 

±1 

±1 

±1 , +5 

±1 , +5 

±7, ±1 , +5 

±7, ±1 , + 5 

M(/x= ±2 

±2 

±2 

±2, +4 

±2, +4 

±2, +4 

±2, +4 

±8, ±2, +4 

3, - 3 

3, - 3 

3, - 3 

3, - 3 

3, - 3 

3, - 3 

No. (Levels) 

1 

2 

3 

5 

6 

7 

9 

10 

11 

(b) 

J 

1/2 

3/2 

5/2 

7/2 

9/2 

11/2 

13/2 

15/2 

Odd number of electrons 

MiiJL=±l2 

±1/2 

±1/2 

±1/2 

±1/2 

±1/2 

±1/2, qhll/2 

±13/2, ±1/2, +11/2 

±13/2, ±1/2, +11/2 

M(fi= ±3/2 
V3) 

±3/2 

±3/2 

±3/2 

±3/2, +9/2 

±3/2, +9/2 

±3/2, +9/2 

±15/2, ±3/2, +9/2 

M{fjL= ± 5 / 2 

±5/2 

±5/2, qF7/2 

±5/2, HP7/2 

±5/2, +7/2 

±5/2, +7/2 

±5/2, +7/2 

No. (Levels) 

1 

2 

3 

5 

6 

7 

8 

9 

In practical cases, the crystal field of Cĝ  symmetry has been found to 
exhibit an effective potential appropriate to Dĝ  synmietry because the imaginary 
term of ImBl in the C^^ potential is negligibly small. This is known because the 
nearest Ugands have D^^ synmietry. When the second shell of coordination is 
considered, the site symmetry reduces to Cĝ  because the second nearest ligands 
add a smaller contribution to the crystal field at the lanthanide site. As illustrated 
in Fig. 1.6 on the X-Y plane, a rotation (Ac/)) of the next nearest hgand (NNL) 
coordinates about the Z-axis converts the structure of LaClg from C^^^ to Dĝ  
synmietry. For the actual structure of the lanthanide ethylsulfates and 
trichlorides, Ac/) may be less than 1°. Similarly for lanthanide ions in LiYF4, the 
value of ImBl in the ^4 potential is less determined. With zero InLB4, an effective 
site synmietry of Dgj has been used in practical cases (Morrison and Leavitt, 
1982). 
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Conversion of the LiYF4 structure from S^^ symmetry to Dĝ  synunetry only 
involves the NNL fluorine ions connected in a tetrahedron. The actual 
crystallographic site synunetry is a slight distortion of Dgd- This implies a 
distortion of the (/)-coordinates from the dodecahedron D24 values (Blanchfield, 
1983; Urland, 1981). In addition to a rotation of Aĉ  about the Z-axis, a small 
change in the radial distance from the Ŷ  ̂  center to the NNL is required in order 
to construct a perfect Dgd symmetry for the two tetrahedrons of the fluorine ions. 

Figure 1. 6 Illustration of descent-of-symmetry operations for LaCla type of 
hexagonal crystals. A rotation of the next nearest lignds on the larger trigonal prism by 
a small angle A<̂  about the Z-axis converts C^^ to D^^. The next nearest ligands move 
from their actual positions to the D^^^ sites shown by the circles 

In general, use of the descent-of-symmetry method may have more 
complicated consequences than that of the above two examples. For a specific 
synunetry modification, one may estimate the changes in crystal-field parameters 
based on the rotation symmetry of point charges in polar coordinates (0, (jy) and 
assume that ligand ions in each shell of coordination are at the same distance 
from the f-element ion. For an arbitrary rotation, the BQ parameters should only 
depend on the ^-coordinates, whereas the 5* parameters (^7^0) depend on both 
6' and (/)-coordinates. Changes in the (^-coordinates have no influence on B^ and 
IB^l = [(RCBI)^ + (ImBl)^]^''^. Descent-of-symmetry operations that have this 
property are C^^^-^ D^^, S^-^ D^^, and C„-> Q^. The symmetry changes that 
incorporate a change in ^-coordinates will change all parameters, such as D^-^ 
C„̂  and D„h—>C„. If the symmetry of the f-element site is lowered, not only are 
additional parameters required, but there are also changes in the crystal-field 
parameters present in the higher symmetry. Therefore, there is far less rational 
for using D^^ as an approximation for C„ and C„y. 

As mentioned above, site distortion is a common phenomenon when doping 
f-element ions into crystals. A dopant ion Hkely has a lower synunetry site than 
that of the host ion. Accordingly, both the sign and magnitude of crystal-field 
parameters are subjected to change. The descent-of-symmetry, although not 
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realized, is actually enacted in analyses of the crystal-field spectra of doped 
systems in which lowering the site symmetry does not necessarily further reduce 
the degeneracy of the energy states. As we discussed above, different crystal 
structures may undergo different types of distortion that reflect the properties of 
the specific coordination polyhedra in a given crystal. Gorller-Walrand and 
Binnemans (1996) gave a detailed description of the effects of structure distortion 
in terms of changes in the 0- and (/)-coordinates. However, changes in radial 
distances may occur as well. For ions at a distorted site that further reduces the 
degeneracy of electronic states, analyses of crystal-field spectra must be 
conducted using a lower synmietry, although in many cases determination of 
actual site, symmetry is difficult. An extensively studied system is trivalent rare 
earth ions in CaF2 which has an intrinsic site of cubic symmetry. Due to charge 
imbalance between a trivalent dopant and a Ca^^ ion, more than 20 distinct 
defect sites have been identified (Seelbinder and Wright, 1979; Tissue and 
Wright, 1987). In addition to cubic site symmetry, defect sites of C^^, C^^ were 
also found, and many of these defect sites have synmietries lower than C^^. 

1.4.3 Empirical Evaluation of Crystal-field Parameters 

In modeling crystal-field splittings, we have the same problems as we pointed out 
in Section 1. 3. 5 for parameterization of the free-ion Hamiltonian. Theoretical 
calculations do not accurately reproduce the observed spectra, while the least-
squares method for empirical evaluation of crystal-field parameters can result in 
convergence to a false solution. However, from the experimental point of view, 
theoretical calculations using the point charge approximation provide a necessary 
guidance to establishing the parameters for the effective operator Hamiltonian. 
For RE ions in crystals of well-defined site synmietry, crystal-field theory is 
widely used along with group theory for predicting the number of energy levels 
and determining selection rules for electronic transitions between crystal-field 
levels ( see Chapter 2) . Whereas the number of non-vanishing crystal-IBeld 
parameters can be determined by the symmetry arguments, their values are 
usually determined by analyzing the experimentally observed crystal-field 
spUttings. In general, abundant experimental data that carry supplementary 
spectroscopic information, such as polarized transitions allowed by electric or 
magnetic dipolar coupUng, ensure the accuracy of the experimentally fitted 
crystal-field parameters (Liu et al., 1994a). In addition, temperature 
dependence of crystal-field splitting may be analyzed to distinguish pure 
electronic lines from vibronic features (see Chapter 3). If multiple sites exist, 
site-resolved spectra are required to distinguish energy levels of ions at different 
sites (Tissue and Wright, 1987; Liu et al., 1994a, b) . Accordingly, as a 
procedure of parametric modeling, correct assignment of observed energy levels 
to the calculated ones is crucial to avoid a false solution. For spectra that lack 
sufficient experimental information for exclusive assignment, this procedure may 
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involve several iterations of trial calculations and analyses that again require 
understanding the basics of crystal-field splitting of free-ion states (Camall et al., 
1989; Camall, 1992). Based upon the symmetry properties expressed as 3-j 
symbols in Eqs. ( 1 . 39) and ( 1 . 40) , several criteria may be applied with the 
assumption that J mixing is small, which is true for isolated multiplets: 

(1) Splitting of 7 = 1 (or 3/2) states depends only on B\\ that of 7 = 2 (or 

5/2) depends on B\ and also on B\\ 
(2) The BI parameters dominate splittings between the crystal-field levels 

that have the same leading Mcomponents; 
(3) The sign of crystal-field parameters determines the ordering of crystal-

field levels in terms of ^{ JM). 
For setting initial parameters of the crystal-field Hamiltonian to be fitted by 

observed energy levels, one may simply use the previously established 
parameters for different f-element ions in the same or similar host materials. For 
the entire series of trivalent rare earth ions in one of the most extensively studied 
crystals LaFg, the parameters of free-ion and crystal-field interactions are listed in 
Table 1.5. Comprehensive sunmiaries of previously studied systems were given 
by Morrison and Leavitt (1982) and also by Gorller-Walrand and Binnemans 
(1996). Alternatively, the signs and magnitudes of crystal-field parameters can 
be predicted according to the coordination of the f-element ion and using the 
point charge model of electrostatic crystal-field potential. For this purpose, only 
the nearest ligand (NL) atoms need to be considered. As a function of the radial 
and angular coordinates, the expressions for the B^ parameters are given in next 
section. The signs of the crystal-field parameters are merely determined by the 
angular part of the electrostatic potential and may be obtained by symmetry 
analysis. The predicted signs are of great importance for checking the signs of 
the parameters obtained by the fitting procedure. Some sign combinations may 
correspond to a coordination that is physically impossible. Generally, 
determination of the magnitudes requires more quantitative calculations of the 
overlap integrals between the f-electrons and the electrons of the ligands. The 
electrostatic interactions beyond the nearest ligands may bring about significant 
contributions to the parameters with k -2. For those parameters, the total 
contribution from the long range interactions may exceed that of the NL so that a 
change in the sign of 5^ determined by the NL atoms is possible (Zhorin and 
Liu, 1998). Moreover, the electrostatic point charge model is not realistic in 
describing the short-range interactions between the f-element ion and its nearest 
ligands. Charge exchange interactions including covalent effect may dominate the 
crystal-field parameters with A: =4, 6. For these reasons, the empirical approach 
with theoretical guidance is necessary to ensure that the parameterization is within 
the limitations of physical interactions. 

In a nonlinear least-squares fitting process, the magnitudes and signs of 
crystal-field parameters are varied to best reproduce the observed energy level 
structure. This is actually a process of optimizing crystalline structure within a 
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given restriction through variation of the crystal-field parameters. The parameters 
that have higher weight are better determined than the parameters that have less 
influence on the observed energy levels. Adding an imaginary parameter may 
only change the real part of the term that has the same q and k but does not have 
much influence on other parameters. If the values of the crystal-field parameters 
for a system of higher synmietry are used as initial values of the parameters for a 
different system of lower symmetry, the fitting may either fall into a false 
solution or leave the added parameters less determined. In this case, one should 
assign the unambiguously observed energy levels, most Ukely the isolated 
multiplets, and only allow the most weighted crystal-field parameters to vary 
freely. Once these weighted parameters settled down, further fitting should be 
performed on the entire set of crystal-field parameters along with the variation of 
the free-ion parameters. 

1.4.4 Theoretical Evaluation of Crystal-field Parameters 

Quantum mechanical calculations of crystal-field energies and corresponding 
crystal-field parameters for RE ions in compounds with different chemical 
characteristics were carried out by several groups of authors in the fi-amework of 
the cluster approximation. For a RE ion and its nearest Hgands (chlorine, 
fluorine or oxygen ions), the fully antisymmetric and orthonormalized wave 
functions of zero-order are constructed as linear combinations of products of 
individual ion wave functions, and the energy matrix is built with the complete 
Hamiltonian that contains one- and two-electron operators including the 
interaction with the electrostatic field created by the rest of the crystal. The 
effective crystal-field Hamiltonian is introduced satisfying the requirements that 
its matrix elements in the basis of 4f-functions of the RE ion coincide with the 
corresponding matrix elements of the complete Hamiltonian (see Appendix A). 
The first order contributions to the energy matrix include integrals over one-
electron wave-functions of the occupied states of the cluster. Higher order 
contributions correspond to configuration mixing. The procedure and details of 
calculations have been described in original and review papers by Newman 
(1971), Eremin (1989), Garcia and Faucher (1995), Shen and Bray (1998), 
and Newman and Ng (2000). Here we present only a brief description of the 
results of ab initio simulations that are important for modeling of the main 
physical mechanisms responsible for crystal-field splittings in the spectra of RE 
ions. 

The first order terms in the energy matrix include Coulombic, exchange and 
overlap integrals over 4f orbitals of the RE ion and outer orbitals of ligand ions. 
From these terms, the 4f-electron energy in the electrostatic field of the hgand 
point multipole moments and the charge penetration contribution may be singled 
out. The second order terms may be classified according to the intermediate 
(virtual) excited state of the cluster. In this regard, the following electronic 
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excitations are considered: 
(1) Intra-ion excitations from the filled electronic shell of the RE ion to the 

empty excited shell (in particular, 5p^-^5p^5d^). These processes shield the 
inner valence 4f^-shell and may be accounted for, at least partly, by introducing 
shielding (or antishielding) factors into the multipole moments of the valence 
electron ( <4f I /14f> -> (1 - o-,) <4f I / 1 4 f » (Rajnak and Wyboume, 1964). 
The shielding factors for RE ions were computed by Gupta and Sen (1973) using 
the variational method. 

(2) Intra-ion excitations from the valence shell into empty shells and from 
the filled shells into the valence shell (in particular, 4f̂ —• 4f^"^5d^ or 5p^-^ 
5p^4f^^^). These processes contribute to the linear shielding and cause additional 
corrections to parameters of the effective Hamiltonian bilinear in parameters of 
the electrostatic field. 

(3) Inter ion excitations, mainly into the charge transfer states of the RE ion 
with the extra electron in the valence shell excited from the ligand outer filled 
shell. Actually, mixing of the ground configuration with the charge transfer 
states corresponds to the partial covalent character of chemical bonding between 
an RE ion and its ligands. 

It should be noted that the effective Hamiltonian (see Eq. ( 1 . 36)) with a 
single set of crystal-field parameters, operating within the total space of wave 
functions of the 4f^ configuration, can be introduced if all excited configurations 
of the cluster under consideration are separated from the ground configuration by 
an energy gap that is much larger than the width of die energy spectrum of the 
ground configuration. Otherwise the crystal-field parameters become term (LSJ) 
dependent. In particular, the crystal-field analysis fulfilled on an extended basis 
containing the ground 4f̂  and excited 4f5d, 4f6p configurations of Pr^^ in YPO4 
(Moune et al., 2002) greatly improved the agreement between the experimental 
data and the calculated energy levels. An example of the quasiresonant mixing of 
the ground 4f̂ ^ configuration with the charge transfer states of the Yb^'' Br̂ " 
cluster in CsCdBrg and its effect on the splitting of the excited ^Fs/gmultiplet of 
the Yb^^ ion was described by Malkin et al. (2000). 

A general conclusion concerning the dominant role of overlap and covalent 
contributions to the crystal-field parameters B^ and B^ follows from all ab initio 
calculations carried out up to the present time. When the Hartree-Fock one-
electron wave functions of free ions are used in simulations, relative differences 
between the theoretical and experimental values of these parameters do not 
exceed 50%. However, for the parameters 5^ of the quadmpole component of 
the crystal field, contributions from the long-range interactions of valence 
electrons with point charges, dipole and quadmpole moments of ions in the 
crystal lattice are comparable to contributions from the interactions with the 
nearest ligand ions, and the theoretical estimations differ substantially from the 
experimental data. 

Whereas the free-ion parameters vary smoothly across the 4f series, series 
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