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Preface

The aim of this book is to present and explain the discrete variational (DV) Xa
molecular orbital method for calculations of the electronic structure and prop-
erties of molecules. With recent advance of computers, several self-consistent
molecular orbital methods have been developed. The DV-Xa method is one
such method.

The approximation for the exchange potential, now denoted by the Xa
potential, was first introduced in 1951 by J.C. Slater. The Xa method is usu-
ally called as the Hartree-Fock-Slater method for atoms. J. Korringa (1947),
W. Kohn and N. Rostoker (1954) proposed the Korringa—Kohn-Rostoker
(KKR) method to calculate electronic states of solids with a translational sym-
metry by the use of the multiple scattering approach. Though this approach
was believed to be suitable for energy band calculations, K.H. Johnson (1967)
demonstrated that this approach is also applicable to isolated molecules, using
the Xa potential. Johnson’s method was called the multiple scattering (MS)
Xa or scattered wave (SW) Xa method. After the work of Johnson, compli-
cated molecules or surfaces, without any periodic boundary conditions, could
be calculated with a similar method of solid state physics.

The DV-Xa method first appeared in 1970 in Chicago and was devel-
oped by D.E. Ellis, H. Adachi (one of the editors and authors of this book),
and other young researchers at that time. In contrast, to multiply scattered
spherical waves used for the MS-Xa or SW-Xa method, the wave functions in
the DV-Xa method are expressed by a linear combination of atomic orbitals
(LCAO). The atomic wave functions are given in numerical form and the
matrix elements in the secular equation are calculated numerically with the
DV-integration method. The advantage of the DV-Xa method is the possibil-
ity to obtain realistic molecular potentials and wave functions with relatively
small basis set. This method is also applicable to molecules or clusters both
for ground and excited states, which have no translational symmetry.

Based on this merit, the DV-Xa method has been used for design of alloys
and ceramics, surface and interface chemistry, and core level spectroscopies,
because, in such systems, the added atoms, surface, or core hole are regarded



VIII  Preface

as an impurity to break the periodic boundary condition. Recently the DV-Xa
method has been applied to design of various kinds of industrial materials,
such as electric batteries, catalysts, etc.

The reason for such wide applications is in the fact that by using the
DV-Xa method it is easy to converge the electronic structure of clusters that
contain any atomic number elements up to Z = 115; any kind of unstable
valence states, such as Fe®t; any bond length, such as an iron in the earth’s
core; or a very short-lived transition state, such as the 1s core hole state.
The DV-Xa method is still advancing including the relativistic effect, spin
multiplet, and spin-orbital interaction.

This book presents various topics of the DV-Xa method from the ba-
sic concept to important applications and is divided into three parts. The
first part is fundamental and the basic principle of the DV-Xa method is ex-
plained in Chap. 1. The second part is devoted to materials science. Chapters
2 to 7 describe alloy design, lattice imperfections, ceramics, magnetic proper-
ties, optical materials and heavy elements. The third part covers applications
for spectroscopy. X-ray spectroscopy, core hole spectroscopy and Auger spec-
troscopy are discussed in Chaps. 8 to 10.

We wish to thank Dr. I. Kishida for his efforts to transform many compli-
cated mathematical formulae into TeX. It is also a pleasure to thank Claus
Ascheron of Springer for his encouragement and patience over the course of
preparing this book.

Kyoto, Oct. 2005 Hirohiko Adachi
Jun Kawai
Takeshi Mukoyama
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Part I

Fundamental



1
DV-Xa Method and Molecular Structure

Hirohiko Adachi

1.1 Molecular Orbital Theory

In a molecule, the potential acting on an electron can be expressed as a sum-
mation of the potentials of the constituent atoms. In such a model, the electron
moves about in the attracting field of their nuclei; in other words, the valence
electron can move all over the molecule, because the potential barrier is de-
pressed midway between the atoms where the atomic potentials overlap (see
Fig. 1.1).

Molecular orbital theory addresses such an electron system. The molecular
orbital corresponds to the wave function of the electron moving about in the
molecule. In order to obtain the molecular orbital ¢;, we need to solve the
Schrédinger equation for the molecule, written as

h¢l(r) 261(25[(7‘) s (1.1)

where h is the one-electron Hamiltonian for the molecule, given by
Lo
h(r) = —2V +Vi(r). (1.2)

Because it is impossible to solve the partial differential equation of (1.1)
rigorously, we need to make an approximation of the solution to the equation.
In most molecular orbital (MO) methods, an MO wave function ¢; is expressed
by a linear combination of atomic orbitals (LCAQO) written as

G => Caxi. (1.3)
l

where Cj; is the coefficient and x; the atomic orbital as a basis function.
In order to find a solution to the Schrédinger equation, the Rayleigh—Ritz
variational method is usually employed to obtain a secular equation. The
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valence level
atomic potential

core level

Fig. 1.1. Schematic diagram of the molecular potential resulting from superimpos-
ing atomic potentials

molecular orbital can be obtained by solving the secular equation written in
a matrix formula as
(H-—€e-5)-C=0, (1.4)

where H and S are the matrices whose elements are the so-called resonance
and overlap integrals, respectively. Solving the equation yields the eigenvalue &
and eigenvector C, which correspond to the one-electron energy and the coef-

ficient of the LCAO wave function for the molecular orbital, respectively. The
matrix elements H;; and S;; in the secular equation are given by integrals of
atomic orbitals as

Sij = /Xin dv, (15)

Hij = /XiHde’U s (16)

and are referred to as the “resonance integral” and “overlap integral,” re-
spectively, as mentioned above. For the case of i = j, we sometimes call the
integral H;; the “Coulomb integral.” In the MO calculation, we should first
evaluate the matrix elements H;; and S;; of (1.5) and (1.6) to construct the
secular equation and then solve it by diagonalizing the matrix to obtain €

and C' as the eigenvalue and eigenvector. Thus, we obtain the eigenvalue ¢,

which corresponds to the one-electron MO energy and the eigenvector to the
coefficient Cj; for the atomic orbital 7 in the LCAO wave function of the ith
molecular orbital.

Next, we try to understand the spatial distribution of electronic charge.
We can analyze the result of the MO calculation with the aid of the Mulliken
population analysis [1]. In this method, the total number of electrons in the
system can be written as

n= > > Q5. Qj=fiCuCuSi, (1.7)
TR
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where f; is the occupation number of the ith MO level. Qéj and Q! are re-
lated by

Q=> Q. (1.8)
J

are the contributions of the {th MO state to the orbital population @; and
the overlap population @;;, defined as

Qi=>_ > Ql, (1.9)
1
and

Qij = Q. (1.10)
l

They are regarded as the effective number of electrons in the ith atomic or-
bital, and the strength of the covalent interaction between atomic orbitals i
and j, respectively. When the value of ();; is positive, the interaction between
atomic orbitals ¢ and j is bonding, while an antibonding interaction occurs in
the case of a negative overlap population. The sum of ); over all ¢ belonging
to atom A,

Qa =) Qi, (1.11)

i€EA

is the effective charge of the atom. Thus, the net charge of atom A, Ny, is
given by the difference between the atomic number Z5 and @a; thus,

Nao=2Zx—Qa . (1.12)

The bond overlap population (BOP), Qag, which is defined as the sum of Q;;
over all 7 belonging to atom A and all j belonging to atom B — namely,

Qa=Y_> Qi, (1.13)

i€A i€B

is considered as a measure of strength of covalent bonding between atoms
A and B.

1.2 Discrete Variational (DV) Xa
Molecular Orbital Method

In the conventional first-principle molecular orbital method, an analytical
function such as the Gaussian-type orbital (GTO) or the Slater-type orbital
(STO) is utilized as the basis functions of the LCAO of (1.3), so that the
analytical integrations for H and S are feasible. In such a case, a large number
of basis functions is necessary to represent an atomic orbital. This means
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that a large-scale computation for the preparation of the matrix elements is
inevitable with this method.

In the discrete variational Xo (DV-Xa) method [2—4], we adopt an LCAO
MO function given by (1.3) similar to the usual MO method, but we use the
real atomic orbital for the basis function y; instead of the analytical function,
so that one can prepare basis functions, each of which corresponds to one
atomic orbital. This drastically reduces the required computational memory
and time. The atomic orbital used as the basis function can be obtained by
numerically solving the Schrodinger equation for an atom. The atomic orbital
wave function is given by

X = Bui(r) - yim(0, 9) , (1.14)

where y;, are the well-known spherical harmonics, and R,; is the radial wave
function, which we can calculate numerically with the following equation for
a given atom:

{ld2 1d

Tod?  rdr V(?")} Ruy(r) = entBui(r) - (1.15)

The numerical computation of the above equation is practicable by the use
of a computer code similar to that introduced by Herman and Skillman [5].
Figure 1.2 shows the radial wave functions R,; for C and O atoms, which can
be used for MO calculations of a molecule that contains these atoms.

The atomic orbital y is the product of Ry,; and the spherical harmonics Yy,
as shown by (1.14). We use the numerical atomic orbital thus obtained for the

Fig. 1.2. Radial wave function of atomic orbitals for C and O atoms
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basis function in the DV-Xa MO method; naturally, analytical integrations
for the resonance and overlap matrix elements, H;; and S;;, are impossible
to carry out. Instead, a numerical integration [4, 6] should be adopted for
the calculation of H;; and S;;. In this method, the integration is replaced by
a summation; namely,

N
/dr~g('r) =Y w(rk) - g(re) - (1.16)

k=1

Here g(r) is the integrand, and w(ry) is the weight of the sampling point 7.
For the integration, we first take a total of N sampling points in three-
dimensional real space to calculate the integrand values at each sampling
point, and then sum up the integrand values multiplied by the weight of the
point over all sampling points. The matrix elements are thus given by

N

Hij =Y w(re)xi(ri)h(ri)x; (ve) | (1.17)
k;l

Sij = Y wre)xi(ri)x; (re) (1.18)

>
Il

1

where h(r}) is the one-electron Hamiltonian given by
Lo
h(ry) = —2V +V(ry) . (1.19)

V(ry) is the effective molecular potential and is written by

o 1/3
V(ry) =— XV: - %VR,,| + / pr2) dry — 30[{8:;,0(71)} ) (1.20)

12

where Z, and R, are the atomic number and position of atom v, respectively.
The molecular charge density is given by

p(r) =Y o) = fileu(r) . (1.21)
l l

Thus, the first and second terms of (1.20) are the attractive potential from the
nuclei and the repulsive potential of the electron cloud of the whole system,
respectively. The third term is the exchange-correlation potential proposed by
Slater [7,8], and « is the scaling parameter, the only parameter used in this
method.

In performing the DV numerical integration described above, we have to
generate the N sampling points. We first take three random numbers, ay,
br, and cg, which are distributed between 0 and 1, to set the kth sampling
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point 7. We can choose these numbers, for example, to be the decimal parts
of ap =k x 22, by = kx3Y2 and ¢, = k x 5Y/2, for k = 1 to N. In order to
determine the point 7 (rk, 0k, ¢x) in polar coordinates using ay, by, and cg,
we set

cosfy =2b, — 1,

b = 2mey (1.22)
exp(ay/A)

e =In 1+ {1 —exp(ag/A)} exp(—Rp) ’

where A is an adjustable parameter and Ry is chosen to be a value near the
atomic radius. Both are parameters of the Fermi-like distribution function for
the sampling point (see Fig. 1.3).

Then, the density of the sampling point is given by

A

d(r) = . 1.23
) 47r2{1 + exp(r — Ro)} (1:23)
The sampling points are distributed around a given atom according to the
above equations. For a molecular calculation, we take these points around all
constituent atoms. The density of the sampling point r can be given by the

sum of contributions from all atoms in the molecule; thus,
D(r) = "t,-dy(r,), Y t,=1. (1.24)

Consequently, the weight of the sampling point is

1

“r) = N D) -

(1.25)

The distribution of the sampling points for a diatomic molecule is dis-
played in Fig. 1.4. The sampling points are relatively condensed near the nu-
cleus where the variations of the wave functions and the potential are rapid,
while the points are dilute far from the nucleus since these functions change
smoothly.

d(r) A

r
L > Fig. 1.3. Density of the sampling

point of a Fermi-like function
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Fig. 1.4. Projection of 2000 sampling points around the C and O atoms in a CO
molecule

Next, we should evaluate the integrand at a given sampling point con-
structed by the atomic orbital functions and potential function, as given in
(1.17) and (1.18). The radial part of the atomic orbital given by (1.14) is
previously calculated using (1.15). The molecular potential is also expressed
by (1.20); thus, we are able to evaluate the integrand value at the point.

Figure 1.5 illustrates how to estimate the values of atomic orbital functions
at a sampling point r locating around the nuclei. The integrand is multiplied
by the weight w(r) for each sampling point and then summed up over all
the sampling points to obtain the integral values of H;; and S;;. The secular
equation thus composed can be solved by an ordinary matrix diagonalization
to obtain the eigenvalues and eigenvectors.
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Fig. 1.5. Evaluation of the radial wave functions of atomic orbitals for C and O
atoms at a sampling point r

1.3 Molecular Orbital Calculation of Ho

Next we are going to perform an actual calculation of the molecular orbital.
The simplest case of a molecular problem is a hydrogen molecule. Consider
two hydrogen atoms A and B approaching each other to form a hydrogen
molecule. In this case, we have an LCAO molecular orbital given by

¢ =Caxa+Caxs, (1.26)

where xa and xp are H X 1s orbitals of atoms A and B. The secular equation
(1.4) can thus be expressed as

(HAA — E)CA + (HAB — ESAB)CB =0

(HBA - ESBA)OA + (HBB — E)CB =0 (127)

where we can set
€0 =Haa =Hpp, OSBa=5as, Hpa=Hagn, (1.28)

since the atoms A and B are equivalent. Then, the eigenvalue € can be obtained
by solving the determinantal equation

co—€  Hap—eSaB

Hap —eSap  c0—¢ = (e0 —€)* — (Hap — €SaB)* = 0. (1.29)

Then, we have two values
o + Hap

£ 1+ SaB

for eigenvalues; namely, the orbital energies for the Hy molecule. Because the
molecular wave function ¢; is normalized, we have

(1.30)

/|¢l|2du=cji+0§+2CA CpSap =1. (1.31)



