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Preface

Innovation and advances in the techniques of analysis of economic dynamics
have been dramatic in recent years. Taken together, they have formed a sort
of second wave following the wave that has revolutionised macro dynamics in
the 80s. Impact has been relevant to both theoretical and applied work and
it has involved also econometrics, of course.

On one side, we have witnessed the birth of families of what could be
broadly defined new growth and development models. They are quite new
in comparison to those of traditional approaches the endogenous and exo-
geneous types- and can be collectively characterised by the fact that their
much richer internal structure is capable of producing a richer, and more in-
teresting, variety of dynamics. On the other hand, econometrics and especially
time series analysis began looking more closely at the finer structure of our
economies, a greater number of variables being attributed to different agents
and represented in the models.

In either case, the result was first that the models economists got used
to work with, had (often, many) more dimensions than the traditional ones.
Moreover, the main force driving the economy’s dynamics began to be identi-
fied with the various rules and forms of interaction among many heterogeneous
agents (industries, firms, individuals). The engine of dynamics was seen to be
fundamentally endogenous, rather than the the mere response to the exoge-
nous shocks of New Classical dynamics. Thus, the whole analytical framework
based upon the impulse-response mechanism had to be entirely overhauled,
changing their relative weights: more was put into the internal structure of
the economy, less in the complications of the shock profiles.

The emerging new modelling framework obviously demanded new analyti-
cal tools, too. These had to be (and have been) imported from elsewhere, this
ranging over a very broad field, from statistics to mathematics to physics.
Among such tools, more and more important became e.g. numerical simula-
tions as an exploratory device with a theoretical dignity of its own. Sometimes,
using simulations was a choice; more often, however, it was a necessity given
the size of the model at hand. Taken together, at any rate, all those new tools
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were employed, at times, to search out the capabilities and to explore the
structure of a given model. On other occasions, they were to depict alterna-
tive scenarios for growth and/or for policy actions. Even when quantitative
results were expected - as in all econometrics and time series studies still,
some part of the added value of the research was in the qualitative nature of
the information provided by its results. This calls for a comparison with the
way the qualitative approach to dynamics entered into economics, and how it
fared in the field since its discovery by the economists.

Qualitative analysis has been a key approach to dynamics since Poincar
invented it at the end of 19th century and since its introduction into eco-
nomics with the classical works of Frisch, Kaldor, Hicks and Goodwin, be-
tween the 30s and the 50s. It was born out of the incapability of handling
certain non-linear dynamic models in a classical way, 1.e. by explicitly finding
their solutions. Going qualitative was a necessity, instead of a choice. It basi-
cally meant topological (hence, non numerical) analysis of individual models
and the fundamentally topological theory of classes of models.

The qualitative approach that has been emerging recently is quite different,
though it complements the classical one. Differences can be appreciated in
many ways, but they all refer either to the intensive use of new, sometimes
simulation and numerical techniques and the construction of models with
greater dimensions than before, and/or to the deeper integration between
theory and empirical evidence.

The New Tools project (and network) was born out of this challenge and
it reflected the variety and heterogeneity of its aspects. Emphasis was how-
ever placed on the common ground, the exploration of tools rather than the
construction of models around specific economic issues. The New Tools net-
work now links researchers in various countries and universities of Europe and
Latin America.

Most of the chapters collected in this volume are revised versions of re-
search papers read in four workshops held consecutively at UNISI in Siena
(December 2000), UDLA in Cholula (State of Puebla, Mexico, September
2001), CIMAT in Guanajuato (State of Guanajuato, October 2002) and in
Nowy Sacz Graduate School of Business in Poland (September 2003). All pa-
pers were subjected to intense discussions during the network’s meetings, with
a varied public of researchers and students at different levels of their educa-
tion. In fact, the purpose of the NT network is not only to promote research
but also to enrich education, focusing on master and doctoral levels.

The broad areas in which the network’s research activity fell so far, are
reproduced in the volume’s structure with the three sections: large interactive
models of the economy; econometrics and time series; growth, development
and structural change, Each section contains both theoretical and applied
chapters as, in general, papers have been written with the need to look for
such intersection in the authors’minds. In fact, it is a key hypothesis in the
NT project that time 1s ripe for a reconciliation between the more theoretical
and the more applied research lines in economic dynamics, ending thus a
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divorce and recomposing a unity that was at the birth of macro dynamics as
envisioned by Ragnar Frisch and the founders of thee Econometric Society.
We believe it is important to try in this direction by picking up the bits and
pieces left from that divorce, in particular reconsidering the different tools
that were developed then from the vantage point of the new ones. We now
briefly go over the three sections, trying to highlight the novelty that is in the
various applications of tools. Such novelty can often be appreciated more by
the economists than by the pratictioner of those disciplines from which those
tools have been imported. The main common ground can be identified with
the study of various aspects of so called complex dynamics. As anticipated
earlier, these aspects are hereafter investigated under the hypothesis that they
spring from the endogenous mechanism more than from the characteristics of
some exogenous forces. In other words, without denying the importance of the
latter, often stochastic forces, it is the structure of the model economy, which
is seen as the site of the basic explanation of its dynamics. Structure can be
looked at in a variety of ways as shown in the various papers, and can also be
seen in its evolution, dramatic or catastrophic as sometimes its discontinuous
change is called (after the mathematical theory).

Thus, 6 out of 9 chapters in Section I are devoted to the analysis of the
various effects and tools to analyse settings with heterogeneous agents, and
to derive characteristics of the resulting (aggregate) dynamics. Thus, Aoki’s
Chapter 1 introduces the notion of classes or types of agents and deals with the
issue of how to consider the uncertain appearance of new types along the eco-
nomic trajectory. By looking at various schemes of local interaction between
nearby firms, in Chpt. 2 Andergassen et als discuss the emergence of fluctu-
ating growth and technological patterns shared by firms (trajectories in the
evolutionary sense). On the other hand, through an explicit neural networks
approach, Chapter 8 considers the emergence of firms and firms’ networks as
the result of processes of learning in an environments too complex to be han-
dled efficiently by any individual, thus as the institutions adequate to solve
the associated economic problems. Aoki’s paper has implications for simula-
tion techniques, which are heavily implemented in many of the other chapters.
Through simulations, Chapter 2 tackles the problems of the emergence of dif-
ferent groupings of agents that are heterogeneous in their initial endowments
and via bilateral exchange have to reach through an evolutionary process,
equilibria implying different schemes of benefits sharing. Chapter 3 looks at a
similar problem of social aggregation, there with a genetic algorithm approach,
within a setting where the assumption of bounded rationality is central and
a learning process is modelled. Chapter 4, on the other hand, innovates the
conventional description of macroeconomic performance by studying (among
other things) the effects of parameter perturbation over a system of equations
tracing the time evolution of the first and second moments of the firms dis-
tributions (in terms of a chosen index of financial robustness). (Many of the
implications of these analyses on growth and in particular on growth irregu-
larity and fluctuations will come up again in Chapters of Section 3, while the
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statistical implications are practically dealt with in Section 2.) Finally, Chap-
ter 9 reviews various easily available platforms for multi-agent simulations,
thus providing a guide to the intriguing question of what to learn to do.

As said above, classical qualitative analysis basically meant topological
methods applied to (classes of) models or of model predicted trajectories.
This is very much the spirit in Chapter 6, where however the study of general
equilibrium economies is carried on by means of much newer notions from
Catastrophe theory. The point is the suggestion to focus upon the singular
economies (that are structurally unstable) rather than on the structurally
stables ones as is always the practice. (The theme of the importance of under-
standing instability comes up again in Section 3). But qualitative analysis can
also be of a different type: an analysis where structural rather than functional
dependence, and thus hierarchical and dominance relations are at the centre,
as 1s in Chapter 7, where a pretopological approach is used to unveil the bare
skeleton of an economy.

Virtually, all of the chapters mentioned above bear implications for observ-
able dynamics, most of them do look also at empirical evidence. While this is a
feature common with Section 3, empirical evidence and how to handle it is the
very focus of Section II; as its title suggests. Here too, the common framework
is one where effects of multidimensional economies and complex time evolution
(including, uncertainty) are studied. This is the realm of econometrics, time
series analysis and of course broadly defined simulation based-econometrics,
a field fast growing specially in a version married with micro simulation.

The latter 1s basically the object of the two coordinated Chapters 13 and
14, and it appears in the topically related Chapter 15. In all three chapters,
the study case of retirement choices is tackled for its own right, but also to
demonstrate a variety of techniques to econometrically construct, handle and
validate models with many agents, thus capable of exhibiting alternative out-
comes through micro simulation experiments (in the former two chapters), or
to endogenize choices (in this case, of retirement) as in the latter chapter. A
critical review of outcomes of a bunch of econometric tools to evaluate mone-
tary policy is presented in Chapter 16, with an application to a known difficult
case, Mexico’s highly volatility behaviour. The chapter makes a case for an in-
formed policy decision-making process, whereby different scenarios produced
by alternative techniques are systematically taken into account. This is again
a link to themes in chapters of Section III, with their multiple illustrations
of applications of complex dynamics tools to Latin America (and possibly to
more recent events elsewhere). But before turning to that, we recall that the
chapters opening this section, are all devoted to issues associated with detec-
tion of the driving force s behind seemingly irregular economic time series.

Thus, Chapter 12 reviews the recent advances of spectral analysis, a
well-established technique in economics being associated with the still most
favoured linear econometric framework, while in fact it has received major
extensions through for instance the windowed filtering methods. The applica-
tion to the well known Phillips’ curve is a good link to Chapter 10, where time
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series are looked at as possibly embodying, next the more popular ingredients,
also structural change. As a way to tackle such cases; the smooth transition
formulation of an econometric model 1s exposed and some result shown. This
is a rapidly expanding research in the filed of non linear econometrics, as much
as 1s the modelling of financial markets, a sample to be found in Chapter 11
introducing an imported method of Value-at-Risk prediction (or VAR, not
to be taken for the better known vector auto regression approach!), which
promises to handle time series for which there are no multiple realizations, or
it 1s safer not to assume it.

Section III deals with issues in what traditionally have been classified
growth and development fields, until recently realm of well-defined theories
with clearly understood predictions. The history of the last decades, and the
theoretical reflections on it, has shown that the apparent consensus reached
some time ago about their interpretation has definitely broken down. We are
searching for an explanation, or more probably for various explanations for
the series of events that have been happening in the various countries, ex-
planations accounting of the variety of experiences and the evolution often
dramatic shown by most of them. The so called convergence literature, enor-
mously boosted by the growth debate and the availability of new statistical
base in the mid of the 80s, has probably misled us by proposing the search
for cross country uniform behaviours and long run stability towards some
predicted equilibrium path. Neither prediction has proved to be reasonably
tenable.

The critical implications of this failure are the common thread of the sec-
tion, which opens with the revision of the notion of convergence in the light of
its environmental implications. This leads to the unveiling of a double conver-
gence hypothesis which is allegedly implicit in the growth re-interpretation of
the so called environmental Kuznets curve, and to the rejection of the latter
on the ground of the prevailing of different growth regimes across countries
( the notion of regime recalls chapter 5 and 6 above). A re-examination of
the growth findings in Chapter 18 focuses upon the much discussed issue of
volatility in performance, an issue discussed by the authors resorting to dis-
tribution analysis with a Markov chain hypothesis. Chapter 19 re-examines in
a detailed way a well known model of externally constrained growth, in the
light of the Mexican and generally recent Latin American experiences, and
it shows how it had to be to a large extent updated. The next two Chapters
20 and 21 dwell upon the uses of the notion of fractional brownian motion
to explain, respectively, the time behaviour of indices of the Mexican stock
market, where structural change is embedded as a result of the recent major
organizational changes (including NAFTA), and the Argentinean high infla-
tion before the parity with the US dollar as the evolution of self organized
structures.

Optimisation is bread and butter for economists, and the intertemporal
optimisation framework has become more so after the 80s. The book could not
overlook this: Chapter 22 reviews the theory and various applications of a new
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field called semi-infinite programming, not as easy as standard programming,
not so difficult as day to day, real life one.
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Large Interactive Economies
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Modeling a Large Number of Agents by Types:
Models as Large Random Decomposable
Structures*

Masanao Aoki

Department of Economics
University of California,
Los Angeles
aoki@econ.ucla.edu

Summary. This paper introduces methods, based on decomposable random com-
binatorial analysis, to model a large number of interacting agents. This paper also
discusses a largely ignored possibility in the mainstream economic literature that
hitherto unknown types of agents may enter the models at some future time. We
apply the notion of holding times, and introduce the results of the one- and two-
parameter inductive methods of Ewens, Pitman and Zabell to economic literature.
More specifically, we use the notion of exchangeable random partitions of a finite
set to produce a simple rule of sucession, that is, the expressions for the probabilties
for entries by new or known types, conditional on the observed data. Then Ewens
equilibrium distriution for the sizes of clusters is introduced, and its use to examine
market behavior is sketched, especially when a few types of agents are dominant.
We suggest that the approaches of this paper and the notion of holding times are
relevant to agent-based simulations because holding times can be used to randomly
select agents that “act” first.

1.1 Introduction

Economists often face problems of modeling collective behavior of a large
number of interacting agents, possibly of several different types. This paper
discusses methods that are useful in this context. We indicate how the meth-
ods may explaine diverse phenomena such as equilibrium size distributions of
clusters, that is subgroups formed by agents, market shares by different types
of goods, changes in the adjustment speeds towards equilibria with model
sizes, and emergence of macroeconomic regularities as the number of agents
increases towards infinity, and so on.

We explicitly assume that there are several types of agents in our models,
the number of which may not be known in advance, and that agents of new

* Prepared for the NT Book



4 Masanao Aoki

types may enter the models at any time. We cannot assume in advance that
we know all of them because new rules or new goods may be invented in the
future. This is the so-called problem of unanticipated knowledge in the sense
of Zabell, see Zabell (1992)2. In biology this problem is known as the sampling
of species problem. In probability and statistics it is called laws of sucession,
that is, how to specify the conditional probability that the next sample is a
new type, given available sets of observation up to now. See Zabell (1982). In
addition, agents may change their minds at any time about the decisions or
behavioral rules they use. In other words, agents may change their types any
time3. This paper presents some methods from the field of decomposable ran-
dom combinatorial analysis. They are useful in modeling economic structures
composed of a large number of possibly heterogeneous agents, components or
basic units, and indicates some of their potential applications in macroeco-
nomics and finance.

Large economic structures are regarded as decomposable random combi-
natorial structures. Of the many possible structures due to many possible
configurations which a large number of components may assume, we wish to
deal with ”typical” structures of large sizes. By typical we mean structures
which have high probabilities of being chosen, or observed from the set of all
structures, when chosen at random in some sense from the set. This is the
main reason for borrowing or adapting tools and concepts from combinatorial
stochastic processes, and population genetics literature.

We interpret the word ”types” broadly. This word may refer to some char-
acteristics or rules that are used to partition the set of agents. Or, it may refer
to some rules or behavioral patterns adopted by economic agents, or it may
refer to some other characteristics to distinguish one subgroup of agents from
other groups. We assume that the number of types are at most countable.

The methods described in this paper are not in the tool kit of traditionally
trained economists or econometricians, but we have found them to be useful
for understanding macroeconomic or financial phenomena from our new per-
spectives. Stochastic combinatorial tools are used to show how agents form
clusters, and jump Markov processes are used to model how the clusters evolve
over time through interaction among agents of several types. To describe dy-
namic phenomena, master equations (backward Chapman- Kolmogorov equa-
tions) are used to describe probability distributions over states. We use a new
notion of states, called partition vectors, which is more appropriate in dealing
with exchangeable or delabelled agents and category, i.e., type indices.

Some of the questions we examine are: How do we describe the process
by which agents form clusters, that is, subgroups in modeling a collection of

2 Zabell describes the problem faced by statisticians in classifying samples of insects
collected in unexplored regions, since they may contain new species of insects, say.
The naive Bayesian approach is not applicable. See, however, Antoniak (1969) on
non-parametric Bayesian approach. He obtained the same distribution as the
Ewens sampling formula, Ewens (1972).

# There is no lock-step behavior by agents.
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interacting agents? What are the stationary distributions of sizes of fractions
of agents of different types? What are the market shares of a typical largest
cluster, two largest clusters, and so on? Distributions of cluster sizes matter,
because a few of the larger clusters, if and when formed, approximately de-
termine the market excess demands for whatever goods in the markets and
the nature and magnitudes of fluctuations.

The methods mentioned in this paper have diverse origins. To discuss
clusters and entries by agents of new types, such as new goods, new business
models, new (sub)optimization procedures, and so on, we borrow from the lit-
erature of population genetics such as Ewens (1972, 1990), Watterson (1976),
and Watterson and Guess (1977), and from statistics and stochastic processes
such as Kingman (1978a, b), Arratia and Tavaré (1992), and Pitman (2002).
See also Aoki (2002).

The Ewens sampling formula is an example of one-parameter inductive
model. It is specified by a single parameter 8, which controls the rate of
entries of new types, and correlations among agents of different types. We also
describe its two-parameter extension by Pitman (1992), which is specified by
two parameters, a and @ discussed later.

More concretely, we introduce the notion of partition vector as state vec-
tors, which is different from the empirical distributions, and use the asssump-
tion of exchangeable partitions induced by agents of different types in the
models, in the technical sense of exchangeable random variables in the proba-
bility literature. We utilize the notion of holding times from the literature on
continous-time Markov chain (also called jump Markov process) to decide ran-
domly which agent acts first. We apply the equilibrium distribution to discuss
the question of market shares, behavior of rates of returns, and volatilities of
returns.

To conclude, we list some financial and economic applications: In finance
we mention the work on power laws and volatility switching in Aoki (2002b, ¢).
In economics, we briefly compare the approach of the traditional economists
in allocating capital stock between two sectors as formulated by Dixit (1989),
and our modeling procedure in terms of continuous-time Markov chains with
a large but finite number of interacting agents in Aoki (2002a, Chapt.8). A
new approach to the Diamond search model from our perspective is in Aoki
and Shirai (2000). A new approach to growth model is in Aoki and Yoshikawa
(2002).

1.2 New Concepts

Partition vectors

When it is known that there are n agents, and K distinct types of agents, a
common choice of state vector is n = (ny, na, ..., ng) where n; is the number
of agents of type ¢, ¢ = 1,2, ..., n. This choice of state vector is natural, and
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appears to be satisfactory. There is, however, another choice of state which
suits our needs better when identities of agents of various types are not the
issue. In some cases, only the numbers of agents of different types may matter.
Labels we assign to agents may be merely for convenience of reference. Per-
muting these labels often leaves nothing of substance changed. For example,
agents may be labelled in the order we sample or examine them, or in the
order they enter the market, but there is no essential meaning or substance
to the labels. They are for mere convenience of referring to them. Permut-
ing labels assigned to agents should not cause any essential changes in our
conclusions about the models in such cases. When this holds true, agents are
called exchangeable in the technical sense defined in probability literature?.
To indicate this, exchangeable agents are sometimes called delabelled agents.
For a collection of exchangeable agents their joint probability is invariant to
permutations of indices assigned to agents in order to refer to them.

We regard collections of agents as exchangeable agents, and assume also
that types are exchangeable. That is, agents are partitioned into distinct clus-
ters. Labels of the clusters may again be for convenience. Category indices may
again be for mere convenience of reference with no substance. If categories are
delabelled, then the probability is also invariant with respect to permutations
of category indicies. This is the notion of exchangeable partitions.

State of a population is described by the (unordered) set of type-frequencies
i.e., fractions or proportions of different types without stating which frequency
belongs to which type. In the context of economic modeling, this way of de-
scription does not require model builders to know in advance how many or
what types of agents are in the population. It is merely necessary to recognize
that there are K, distinct types in his sample of size n, and that there are
a; types with j agents or goods in the sample. The vector a with these com-
ponents is called partition vector by Zabell (1992), and we adopt this name.
Note that Zj a; = K,,, and >~ ja; = n. The first equation counts the number
of occupied boxes, and the second total number of agents. Partition vector is
just the right notion to discuss models with delabelled agents and delabelled
categories. The problem 1s the same as the occupancy problem of allocat-
ing unlabelled or indistinguishable balls and unlabelled or indistinguishable
boxes. The same concept is known under different names in Kingman (1980),

and Sachkov (1996).

FEzchangeable random partitions

A partition of a finite set F' into K blocks is an unordered collection of non-
empty, disjoint sets {Ay, ..., Ak} whose union is F. To be definite, we may use
a convention that the blocks of partitions are listed in the order of appearance,
that is, by the least elements of the blocks. Let [n] denote a set of n elements,
{1,2,...,n}. Let X;, i = 1,2,...n be random variables with values on [K].

4 See Feller (1968).
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These X are grouped into subsets of K or less and induce partition of [n].
Any partition of [n] defines a composition of n, which is a sequence of positive
numbers with sum n. By using the size of the sets A;, n; =| A; |, the set defines
the composition n = ny +ns+...+ng. A partition IT,, of [n] is exchangeable
if its distribution is invariant with respect to permutations, i.e.,

Pr(Il, ={A1, Ao, .. . Ar) =p(| A1 |, -, | Ak |);

where p(---) is some symmetric function of the components.
Exchangeable random partition 1s such that

Pr(Nex L ’Nsxk) — n!

1
n,l» nimalng! k!
p(ni,na, - ny
Two partitions with the same vector a are equiprobable when the parti-
tions are exchangeable. Sequences associated with exchangeable random par-
titons are exchangeable sequences.

FErzchangeable agents

This newer representation has roots in the exchangeable random partitions of
a set of agents into clusters, which arises in examining clusters or subsets of
agents of the same types. Stirling numbers of the first and second kind also ap-
pear in counting the configurations of clusters of agents of various types. These
have roots in random combinatorial analysis. Probability distributions such
as the Poisson-Dirichlet distributions and the multivariate Ewens distribution
are not in the tool kit of conventionally trained economists or econometricians,
but are important in examing the distributions of sizes of clusters of agents.
We therefore present these as well as some others; as needs arise, to advance
and support our views expressed in this book.

Let X;, 7 = 1,2,...,n be a sequence of random variables whose values
are in the set of type indices. When an original sequence of random vari-
ables and that of permuted random variables, that is, X, X>,..., X,, and

Xo(1), - - Xo(n), where o denotes permutation of the subscript, have the same
probability depending on the empirical distribution n; =| {X; = typej} |,j =
1,2,---, K, that is p(ny,na, -+, ng), where p(---) is symmetric of its argu-

ments, then we call the sequence exchangeable. Two sequences with the same
empirical distributions are equiprobable for exchangeable sequences of ran-
dom variables.

Limat behavior of large fractions: Poisson-Dirichlet distributions

Suppose that a large number of agents interact in a market where each agent
uses one of K available trading rules, where K is large. Then the set of agents
is partitioned into at most K clusters. The number of clusters depends cru-
cially on the correlations among agents which affects the probability that two
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randomly chosen agents in the market are using the same strategy. The sizes
of clusters are arranged in non-increasing order as n(;y > n) > ---. With
high correlations, a small number of large clusters tend to form. When cor-
relations among agents are small, many smaller clusters are likely to emerge,
as we later mention. We will also mention later that the sum of the sizes of
the first two largest clusters, n(;y + n(2), alone in some cases account for the
majority, 70 per cent say, of the total number of participants. This observa-
tion is useful in characterizing aggregate behavior when it happens. See Aoki
(2002b). Order statistics of the fractions have a well-defined limit distribu-
tion, called the Poisson-Dirichlet distribution, as the number of agents go to
infinity. The probability density of the first few of the orders sizes of fractions
can be used in our discussion of approximations of market excess demands or
return dynamics of some traded assets.

1.3 Dynamics of Clustering Processes

Agents and goods are classified into clusters or subsets by associating types
with strategies or choices of agents. Here we interpret the word types broadly.

As agents interact, new clusters form or some existing clusters break up
into smaller ones. The transitions of these processes are captured by specifying
how the partition vector a is transformed over a small time intervals. For
example, transition rate specification

w(a,,a+e1) = A(n)

where e; is a vector with the only non-zero component 1 at the ith compo-
nent, refers to an event that a single agent enters the market without joining
any existing cluster, while

w(a,a+ ejq - ef) = jajA(n)

specifies one agent joints a cluster of size j, thereby increasing the number
of clusters of size j 4+ 1 by one, and reducing that of size j by one. The right-
hand side specifies that the rates are proportional to some constant A(n), and
Ja; which counts the total number of agents in the clusters of size j. There
are many other possibilities, of course. At this stage of our exposition, let us
pause to take stock of what we have done. Our model building procedures
may be summarized as follows: We start with a collection of a large, but a
finite number of microeconomic agents in some economic or financial context.
We first select state space and specify a set of transition rates on it to model
agent interactions stochastically. Agents may be households, firms, or coun-
tries depending on the context of models. Unlike examples in textbooks in
simple probability, our transition rates are usually state-dependent, that is
functions of states, to model effects of endogenously generated aggregate ef-
fects, called field effects in Aoki (1996), such as effects of aggregate behavior
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such as total outputs, crowding, fashion, group pressures on individual agents,
and so on, as well as evaluations of consequences of specific choices subject to
uncertainty or imperfect information that go into evaluations of value function
maximization associated with alternative choices.

Then we describe by master equation the dynamics of the joint probability
of the components of a state vector for the model which incorporates specified
transition rates. Stationary or nonstationary solutions of the master equations
are then examined to deduce model aggregate dynamic behavior.

In models which focus on the decomposable random combinatorial aspects,
distributions of a few of the largest order statistics of the cluster size distri-
butions are examined to draw economic consequences.

Fwens Distribution

Here we follow Aoki (1996, 1998, 2000a,b, 2002a, b,c) and sketch the basic
ingredients for our modeling procedure without too much detail. The reader
is asked to consult the cited references for detail.

Continuous-time Markov chains, also known as jump Markov processes,
are completely specified by transition rates, when state spaces are at most
countable.

For ease of explanation we use vector n some of the times and a at other
times. Define a state vector X; which takes on the value n := (nq, na, -+, ng),
called frequency or occupancy vector, where n; is the number of agents of type
,t=1,2,--- K, N=ni1+ns4+---+ng.

In our model we need to specify entry rates, exit rates and rates of type
changes. Over a small time interval A, rates are multiplied by the length of
interval to approximate the conditional probabilities up to O(A). For example,
entry rates by an agent of type j may be specified by

w(n,n+e;) = ¢;(n;, athbfn);

where e; is a vector with the only nonzero element of one at component
7.7 Exit rates of an agent of type k is specified by

w(n,n— ey) = Pi(ng,n);
and transition rates of type ¢ agent changing into type j agent by
wn,n —e; +e;) = A jv(n;, nj,n);

With transition rates between states specified, the dynamics for the prob-
ability is given by the following equation, where s, s’, and s refer to some
states

® For example, w(n;n +e;)A = Pr(Xipa=n+e; | X; =n).
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dP(s,t)/dt = " w(s',s)P(s', 1) = > w(s,s")P(s,1)

s/ e

This is called the master equation in phyics, ecology and chemistry, and we
follow their usage of the name. A specific example of interest has the transition
rates:

w(n,n+ey) = cp(ni + hi)

for ng > 0,

w(n,n—e;) =d;n;

n; > 1, and

wn,n—e; +ep) = A\jpdjnjep(ng + hy)

with Ajr = Ax;, and where j, k =1,2,--. K. We assume that d; > ¢; > 0,
and h; > 0, and A;; = Ag; for all j, k pairs.

The first transition rate specifies entry rate of type k& agents, and the sec-
ond that of the exit or departure rate by type j agents and the last specifies
the transition intensity of changing types by agents from type j to type k. In
the entry transition rate specification cgny stands for attractiveness or disad-
vantage of larger group, such as network externality which makes it easier for
others to join the cluster or group, or congestion which may induce avoidance
of larger groups, as the case may be. The term ¢ hy stands for the innovation
effects which is independent of the group size. These transition rates for type
changes are in Kelly (1979), for example. We need interactions or correlations
among agents. It turns out that parameter 8, to be introduced in connection
with (2) below, plays this role. See Aoki (2000a, 2002b). The jump Markov
process thus specified has the steady state or stationary distribution

m(n) = [ mi(n;),

j=1

where

o) = (1= ) () o)

where g; = ¢;/d;

These expressions are derived straightforwardly by applying the detailed
balance conditions to the transition rates. See Kelly (1979, Chapt.1), or Aoki
(2002, p. 148) for example.

To provide simpler explanation, suppose that g; = g for all j. Then, noting
that Hj (1-g)h =(1 —g)Ei hi the joint probability distribution is expressible
as
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W (VR

n
j=1 J

By a suitable limiting process this distribution goes to the Ewens distribu-
tion. To see this suppose that K becomes very large and h very small, while
the product Kh approaches a positive constant . We note that the negative

blnomlal eXpI'eSSlOIl
( h) j
j

approaches (h/j)*(—1)7% as h becomes smaller. Suppose K, = k < K.

Then, there are
K!

alas!- - ap /(K — k)!

many ways of realizing a vector. Hence

-6 K! ho,
m(n) = ( n )(_1)” alas!- - ap /(K — k)! H(;)% (1.2)

Noting that K! = (K — k)! x h* approaches 6% in the limit of K becoming
infinite and h approaching 0 while keeping Kh at 8, we arrive, in the limit,
at the probability distribution, known as the Ewens distribution, or Ewens
sampling formula very well known in the genetics literature, Ewens (1972).

where 60"l := 6(6+1) - -- (64n—1). This distribution has been investigated
in several ways. See Arratia and Tavaré (1992), or Hoppe (1987). Kingman
(1980) states that this distribution arise in many applications. There are other
ways of deriving this distribution. We next examine some of its properties.

The number of clusters and value of 0

Ewens sampling formula has a single parameter 8. Its value influences the
number of clusters formed by the agents. Smaller values of § tends to produce
a few large clusters, while larger values produce a large number of smaller
clusters. To obtain some quick feels for the influences of the value of #, take
n =2 and as = 1. All other as are zero. Then

1
T1+0

This shows that two randomly chosen agents are of the same type with high
probability when 6 is small, and with small probability when 6 1s large. In fact,
@ controls correlation between agents’ types or classification. Furthermore, the

7T2(Cll = O,Clz = 1)
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next two expreme situations may convey the relation between the value of ¢
and the number of clusters. We note that the probability of n agents forming
a single cluster is given by

(n—1)10

T(a; =0,1<j<(n—-1),a,=1)= ]

while the probability that n agents form n singleton is given by

gn—l
@+1)0+2)---(+n-1)
With & much smaller than one, the former probability is approximately
equal to 1, while the latter is approximately equal to zero. When 6 is much

larger than n the opposite is approximately true.
We can show that

Tp(ar =na; =0, #1) =

1
Po(Kp = k) = sre(n, k)ok

where ¢(n, k) is known as the signless Stirling numbers of the first kind,

and is defined by

n

6"l =N " e(n, k)o".

1

See Hoppe (1987) for the derivation. Stirling numbers are discussed in
van Lint and Wilson (1992, p.104) for example. Another class of interesting
transition rates arise by applying what is called the Johnson’s sufficientness
postulate® in the statistical literature. In modeling industrial sector with ni
being the number of agents of type i, the word type may refer to the kinds of
goods being produced by firm ¢ or n; may refer to the size of the ”production
line” | that is, a measure of capacity utilization by firm producing typ ¢ good.
Zabell (1982) proved that under the assumption of exchangeable partitions
the functional form of f is specified by

T n+4

with some positive scalar parameter @ . Therefore, the entry rate of a new
type is given by 6/(n + #). More generally, with K types, it is of the form

f(ni,n)

o+ ng
wmn ) = ey

6 Johnson’s sufficientness postulate stipulates that the conditional probability that
the next agent which enters is of type ¢, given the current state vector, is f(n;, n),

that 1s, a function of the existing number of agents of type i and that of the total
number of agents in the model. See Zabell (1982).
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which reduces to (2) in the limit of a going to zero, and K to infinity while
their product approaches #, and

_

wn,n—e;) = .

See Costantini (1979, 2000), and Zabell (1982) for circumstances under
which these transition rates arise. See Aoki and Yoshikawa (2001) and Aoki
(2002a, Sec.8.6) for an application of this type of transition rates in models
of economy or sectors of economy.

Densities of the large fractions

Aoki (2002a, Sec.10.6) gives expressions for the densities of the r largest frac-
tions of clusters. In the case where the largest fraction x is greater than 1/2,
its density is given by
0 -
plz) = —(1— )"~

X

For the largest two fractions z and y such that y > (1 — #)/2, the joint
density is

02 g1
x =—1-z—-y)""
)= y)
These are used in Aoki (2002b) to discuss asset returns in an asset market
in which there are two dominant groups of agents, that i1s two largest clusters
such that z + y is about 0.7 or larger.

1.4 Gibbs Partitions

We can construct more complex combinatorial structures by introducing the
notion of compound or internal states of a particular combinatorial structures.
They could be called colors of structures, and may correspond to internal
energies in the case of physical components.

The multiset {| Ay |, | Ag |}, related to the sizes of k blocks of a partiton
of [n], of unordered sizes of blocks defines a partition of n. Earlier we have
introduced two ways of representing or encoding these: non-increasing order
of sizes, and partiton vectors.

Let V' be some kind of combinatorial structures (called species in Pitman
(2002)). As before [n] is the set of n agents, objects or elements. Denote by
V([n]) a set of V-structures such that the number of V-structures on [n] is
| V([n]) |= vn.

Let W be another species of combinatorial structures. Let w; be the num-
ber of W-structures on a set of j agents.
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We construct the composite structure on [n], (VoW )([n]), which is the set
of all ways of partitioning [n] into blocks {A1,--- Ag} for some k = 1,2,--- ' n,
and assigning to each block A; a W-structure. The number of composite
structure is then

n

| (VoW )([n]) |:= Bu(v,w) := > vk By s(w)

where .
B, k(w) = Z H Wi,
i=1

and where the sum is over all possible partitions of n agents into & clusters.
Using the composition n = ny + ns + - - - 4+ ng, we may write this as

|

where the sum is over (nq,n9, -, ng). Since there are a; of blocks of size

J, and j agents can be arranged in j! ways, and a; blocks in a;! ways, we have

|
4% B — o
]Hw] n,k(w Hj(j!)ajajl

with Zj = ij ja; = n. Here the notation [xf] f(x) = ¢; means thaF
the polynomial f(z) has ¢; as the coefficient of power #7. The symbol B, ()
is known as the Bell polynomial in the combinatorics literature. We use the
generating function
w(z) = Z wjﬁ
j=1

to write

By k(w) = [ﬁ] w(x)k

’ n!
For each partition of [n]

Pr(J] = {41, Az, A = p(1 Ar |- (| Ak v, w),

n

where I
. _ Uk ] Wn,
p(nla ,nk,V,W)— Bn(V,W)

Here

n

Ba(v,w) =3 vpBn ((w).

k=1
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We call [, a Gibbs (v,w) partition if the distribution of [, on the set
of all partitions of [r] is as given above. A random partition of n induced by
a random partiton n of [n] is represented by partition vector a with

) nlug W g, 1
Pr(|m, lj=aj,j=1,---,n) = WH(?) ol

where | [, |; is the number of blocks of size j.

FEconomic interpretation

Our economic interpretation is as follows: Suppose that n agents are parti-
tioned into clusters such that each agent belongs to a unique cluster. The
collection of clusters is represented by a partition of [n].
Assume that each cluster of size j can be in any one of w; different internal
"states”, or "color” w := (w1, wa, ), where w; is a non-negative integer.
Configuration of the system of n agents is a partition of the set [n] into
clusters, plus the assignment of an internal state to each cluster. For each

partition of [n] into & blocks of sizes ni,no, - -, ny, there are []; wy,, different
configurations.
When v, = 1 for some &k and zero elsewhere, the Gibbs partition cor-

responds to those in which all configurations with & clusters are equiprob-
able. This 1s the microcanonical configurations in physics. A general weight
sequence v randomizes k to allow all probabilistic mixture over k of these
microcanonical states.

Ewens distributions are derived as a special case of the above in Pitman
(2002). Because of our interest in underlying dynamics generating the dis-
tributions, we have earlierr provided a jump Markov process derivation for
them. Whittle used reversible equilibrium distribution of a Markov process to
construct particualr cases of Gibbs partitions, Whittle (1986).

Entry of new types

Our view on economic growth is that growth is sustained by continual intro-
duction of goods of new types which stimulate demands for these new goods,
not by R & D activities which re ne existing goods, Aoki and Yoshikawa
(2002).

New entries could be newly invented or improved goods, new business
models, new behavioral patterns and so on. Law of succession in the statis-
tical literature address these questions as conditional probabilities of agents
entering models from outside being new or one of existing types in the model.
Here we rely on recent works by Kingman and Pitman. Their models can be
approximated as birth-immigration models in the context of continous time
branching processes and we introduce their resuls into our models. See Feng
and Hoppe (1998)for the mathematical set-up.



16 Masanao Aoki

Let X;,...X, ... be an infinite sequence of random variables taking on
any of a finite numbe of values, say 1, 2, --- k. The subscripts on X are
thought of time index, or the order in which samples are taken or agents enter
the system.

The sequence is said to be exchangeable if for every n, the cylinder set
probabilities

PT(Xl Ijl,...Xn :]n) = P?“(jl,jz,'"jn)

are invariant under all possible permutations of the time index. Two se-
quences have the same probability if one 1s a rearrangement of the other, or the
probability is the function of the frequency vector, n = (ny,na,...ng). The
observed frequency counts, n; = n;(X1, Xs,, - X,) are sufficient statistics
for the sequence in the sense that probabilities conditional on the frequence
counts depend only on the frequency vector
nilnat. . ny

P?“(Xl,Xz,...,Xn|n)I ol

de Finetti theorem says that
Pr(Xl = jl,XZ = jZ, . "X” = j”) = /prlllpgl2 o 'prllkd/’t(plap% e apk)a
over the simplex Ay, of p;s which sum to one. Once the prior dy is implicitly
or explicitly specified, it is immediate that
P?“(Xn+1 = j1 | Xl,Xz, .. ,Xn) = P?“(Xn+1 = .72 | Il).

Such a conditional probability is sometimes called a rule of succession.
Johnson’s sufficientness postulate” is

Pr(Xpy1=1%|n)= f(n;, N):

If X1, X5, ...1s an exchangeable sequence satisfying the sufficientness pos-
tulate, and k& > 3, then assuming that the relevant conditional probabilities
exist

ni—i—a.
n+ka

Pr(Xn_H =1| n) =

See Zabell (1982).

How different are the estimates of probability of new types with the Ewens
distribution and multinomial distribution? Ewens (1996) has some numerical
examples which show that they are quite different. With the multinomial ap-
proach, a; (the number of singleton) is critical. With the Ewens formula, the
total number of types, > a; is only relevant.

7 so called by L. J. Good to avoid confusion with the notion of sufficient statistics
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The Pitman two-parameter model

Pitman (1992) generalized the Ewens’ distribution by using the transition

rates
nj —

n-+6

where 8 + a > 0. In terms of the rule of sucession it becomes

win,n+e;) =

nN; —«

Pri¥apln) = T

for a between 0 and 1, and 6 positive, the conditional probability for a

new type is
Pr(X,41 = new) = m :

Pitman (1995). With this, the conditional probability that a new type
enters in the next A time interval is approximately given by %ﬂ. Pitman
also derived the equilibrium distribution for this two-parameter version.

The two-parameter Poisson-Dirichlet distribution, PD(a, ), for some o
between 0 and 1 and § > —a« is a probability distribution on the sequence
of fractions V,,, with Vi > Vo > - and "V, = 1. Let X;,, n = 1,2,...
be independent random variables with Beta(l — o, 0 + na distribution. Let
U, be the random variables with residual allocation, that is, Uy = Xy; Us =
(1 = X1)Xa, .... Let V], be the decreasing order statistics. This is Pitman’s
PD(a,f) distribution. When « is zero, it reduces to the Kingman PD(6).
This corresponds to the conditional probability

Pr (new type | X1, Xo,...X,) = 2
and

Pr (existing type | X1, Xo,...X,) = e

In other words, when there are k clusters of types in the data, the proba-
bility of a new type appearing as the next observation is increased from the
0/(04+n) to (f+kea)/(0+n), and correspondingly the probability of observing
type i next is reduced to (n; — «)/(6 + n). With the partition vector a, the
probability 1s

1 & - a;
Pr(a:a,6) Wl:[ﬁ—l— (i —Da 1:[{1—@ }

where K, = > a;, and ) ja; = n. There are interpretations in terms of
what is called size-biased sampling of these, which is briefly mentioned below.

See Kingman (1992), and Pitman (1992, 1995)
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Urn models

It 1s most instructive to use urn models to describe the ways conditional
probabilities of new types are constructed. Hoppe (1984) generalizes the Polya
urn by introducing a special ball, the black ball say, of weight . All other balls
of various colors have weight one. Initially, the urn contains just the black
ball. So, at the first drawing, the black ball is drawn, and is returned to the
urn, together with a ball of color 1, say. When a non-black ball is drawn
in subsequent drawings it is returned together with another ball of the same
color. When the black ball is drawn, it is returned togehter with a ball of color
so far not seen. That is, a ball of new color signifies a new type of balls, that
is agents. After n drawings, the urn contains balls of total weight 6 + n. Thus,
the probability of a new type next is 8/(8 +n), while that of drawing a ball of
existing color is n/(0 + n). In (3), as a goes to zero, and K, « approaches ),
Ewens (1996) discusses how the conditional probability assigned by the Ewnes
distribution differs from the multinomial distributions.

Let a process {X,,} generated by sampling from the urn. Let K, be the
number of colors in the urn.

Fix a and consider a possible sample path {X; = j1, X2 = ja, ..., Xs, = Jn }

0% [j=i (ny — 1!
gln]

Here 0?1 := 0(6 4+ 1)---(0 + n — 1). Recall that the black ball has been
selected K, times, and that each ball of new color is followed n; — 1 times by
balls of the same color.

To count the number of samples, there are two constraints:

PT(Xl Ijl,XQIjz,...,Xn I_]n)z

1. we observe that the first ball of color 1 precedes the first ball of color 2,
which precedes the first ball of color 3, and so on.

2. We merely know that there are n; balls of some color, ny of another and
SO on.

To count the sample path subject to the above two constraints, arrange of
occupancy numbers in decreasing order, n(1y > n(2) - n,). Suppose that
there are p distinct integers in the set of the ordered frequencies. Define a3 to
be such that n(;y = n(1), as be such that nyy = n(e,41), and so on. Finally,

ayp is such that ngy = nig )-

n

There are K,!/T['_; a;! ways of distributing {ni,ns,...nx,} among
K, types. For each such distribution of the occupancy numbers there are
n!/ni!- - -ng_ permutations of labels agreeing with the occupancy numbers.
In total, there are

K, 'n!
H Ozz'! H nj!

permutations which meets with constraint (2). Not all among these meet

the constraint (1). Separate the permuta- tions into disjoint classes by the
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order of the first appearance of the digits {1,2,---K,}. There are K,! such
disjoint classes, all of the same cardinality by symmetry. Only one of them satis
es (1). Thus dividing the above by K,!, and multiplying by the probability of
one sample, we have the probability of the random partition being given by
a. This is the Ewens sampling formula.

When we let & go to infinity, and « to zero in such a way that ka goes to
a positive limit, we have

Pr(Xpi1=i|n)= n7—l|j€
Then

Pr(Xpy1 = new | n) = —

7(Xn41 = new n_n—l—ﬁ'

This leads us to the Ewens sampling formula, well known in the population
genetics literature.

The notion of partition exchangeability generalizes the notion of exchange-
ble sequence by imposing exchangeability with respect to categories, as well
as time indices. That is, a probability function P is partition exchangeable
if the cylinder set probabilities Pr(Xy = ji,...X, = jn) are invariant under
permutation of the time index and the type index. The role of frequency vec-
tor is now played by the partition vector a where a; denotes the number of
types with ¢ entries, that is, the number of n; that are equal to 1.

The predictive probabilities for partition exchangeable probabiities will
have the form

Pr(Xn-I—l :i|X1aX2a"'aXn) :f(nl |a)

Sampling, residual allocation models, and distributions of order statistics
Given K categories or types, and the associated random probability vector
P = (P1,p2: -, PK);
let v be a random variable having values 1,2,... K such that
Pr(v=r)=py;

r = 1,2,..., K. This probability p, is said to be obtained from p by
sizebiased sampling. This process is repeated by renormalizing the remaining
probability by dividing it by 1 — p and proceeding as before.

The components of p is rearranged as a vector q, the components of which
are expressible by
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g1 =v1,q2 = (L —v1)va, g3 = (1 —v1)(1 — wa)us, ...

The random variables vy, vs, ... are independent. For example, vs may have
beta distributions. This last construction is an example of a residual allo-
cation model, also known as a broken stick model. With the one-parameter
size-biased samples, when the random vari- ables ¢, are arranged in descending
order g1 < g3 < ..., that is, reordered into the descending order statistics is
distributed according to the Poisson-Dirichlet distribution invented by King-
man, where the random variables ¢s are Beta(l, ), other random variables
are used to generate a two-parameter generalization of the Ewens distribution
by Pitman.

FEeconomic Applications
A traditional approach to model two-sector economy

In 1989 Dixit has analyzed several economic problems, such as that of how
to optimally allocate capital stocks among two sectors, and of assessing the
effects of exchange rate changes to induce entries or exits of firms in some
export industry. In a setting of a two-sector economy what Dixit derives is
the price schedule, that is, the price as a function of the number of firms
existing in one sector. When the relative price of the two goods crosses the
price schedule from above or below, a move by one more firm into or from one
sector to the other is triggered. This, however, is analyzed as a problem for a
central planner of the economy, not as problems for individual firm managers.
He does not say how a firm manager knows that it is his turn to enter or
switch sectors. In spite of random prices his approach is basically determin-
istic. What are some of the objections to this analysis? First, as we already
mentioned, there is no explanation about which of the firms decide to move.
Also, there 1s apparently no uncertainty as to which firm switches. Problems
of imperfect or incomplete information and externalities among firms (agents)
are cleverly hidden or abstracted away in his analysis.

An Alternative Approach: Basic Setup

Aoki (2002b) gives one potential applications of the Ewens sampling formula
in finance.

Aoki (1996, 2002a) presents several examples of some alterntive approaches
to that sketched above. Basically, our approach focuses on the random parti-
tions of the set of firms into clusers induced by subsets formed by firms of the
same types, and utilizes the conditional probability specifications for new en-
tries and exits to derive equilibrium distributions, when they exist, for cluster
sizes. We use the master equation (backward Chapman-Kolomorov equation)



1 Models as Large Random Decomposable Structures 21

as the dynamic equation for the probabilities of state vectors.® Given the to-
tal number of agents, N, and the number of possible types, K, both of which
are assumed in this paper to be known and finite for ease of explanation, we
examine how the N-set, that is, the set {1,2,...N} is partitioned into K clus-
ters, or subsets. This partition is treated as a random exchangeable partition

in the sense of Zabell (1992).

Holding times

Jump Markov processes stay at each state it visits for a while, called sojourn
or holding time, before it jumps to another state. Holding times are expo-
nentially distributed. Given a number of agents wishing to jump, one with
the minimum holding time actually can jump. This notion is applied in Aoki
(2002a, Chapt. 8) to a model of economy with several sectors. Each sector
faces a fraction of the aggregate outputs of the economy as its demand. In his
model some agents are in excess supplies and others are in excess demands.
Those in the excess supply conditions wish to reduce their production, and
those in excess demands wish to expand the production. The aggregate out-
puts a ect demand conditions each agent faces. Therefore, as soon as one agent
adjusts its output first, that changes the aggregate output, and possibly the
demand conditions each agent faces. Consequently, sets of agents with posi-
tive or negative aggregate demand conditions generally change as one agent
actually jump to a new state. The notion of holding time is therefore useful
as a conceptual device in choosing which of the agents actually can carry out
their intended decisions in condiitons with externalities.

Power Laws and volatility switching

Aoki (2000, 2002) has examples of an asset market in which two dominant
clusters of agents trade. This market exhibits power laws for returns. When
two types of agents switch between two strategies, returns exhibit switchings
of volatility as well.

Sluggish responses of dynamics as power laws, that is, decay of the form
t~° for some positive o rather than exponential decay e~*! are found in models
in which states are arranged as trees and transition rates between states are
the functions of ultrametric distance as in Aoki (1996, Sec. 7.1). As the number
of layers of tree nodes increase, reduce transition rates appropriately. In the
limit we obtain power laws decays, not exponential decays. See Ogielski and

Stein (1985), or Aoki (1996, p. 157).

8 In a closed two-sector model the scalar variable of the number of firms in sector
one, say, serves as the state variable. In an open model with K sectors, a K-
dimensional vector is used.



22 Masanao Aoki

1.5 Concluding Remarks

This paper proposes a finitary approach to economic modeling, that is to start
with a finite number of agents with discrete choice sets, and with explicit tran-
sition rates. It discusses several entry and exit transition rates in economic
models. In particular, it presented Ewens and related distributions as candi-
dates for distributions of cluster sizes formed by a large number of economic
agents who interact in a market. This distribution seems to be very useful in
economic modelings, although we have only a few examples so far. However,
see Arratia and Tavaré (1992), and Kingman (1980). These and other investi-
gations strongly suggest that the Ewens’ and related distributions are robust
and ubiquitous.

Carlton (1999) discusses some estimation issues of two-parameter Poisson-
Dirichlet distribution.

Although no application is described in this paper, Aoki (2002a, 2002b)
has one simple application in which stocks of a holding company is traded by a
large number of agents. With 8 =: 3, two largest groups are shown to capture
nearly 80 per cent of the market shares and hence dominate the market excess
demands for the shares, which in turn determine the stationary distributions
of price. In this way it is also possible to relate the tail distribution of the
market clearing prices with entry and exit assumptions.
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