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Preface

In mathematics generalization is one of the main activities of researchers. It
opens up new theoretical horizons and broadens the fields of applications.
Intensive study of generalized convex objects began about three decades ago
when the theory of convex analysis nearly reached its perfect stage of develop-
ment with the pioneering contributions of Fenchel, Moreau, Rockafellar and
others. The involvement of a number of scholars in the study of generalized
convex functions and generalized monotone operators in recent years is due
to the quest for more general techniques that are able to describe and treat
models of the real world in which convexity and monotonicity are relaxed.
Ideas and methods of generalized convexity are now within reach not only
in mathematics, but also in economics, engineering, mechanics, finance and
other applied sciences.

This volume of referred papers, carefully selected from the contributions
delivered at the 8th International Symposium on Generalized Convexity and
Monotonicity (Varese, 4-8 July, 2005), offers a global picture of current trends
of research in generalized convexity and generalized monotonicity. It begins
with three invited lectures by Konnov, Levin and Pardalos on numerical varia-
tional analysis, mathematical economics and invexity, respectively. Then come
twenty four full length papers on new achievements in both the theory of the
field and its applications. The diapason of the topics tackled in these contri-
butions is very large. It encompasses, in particular, variational inequalities,
equilibrium problems, game theory, optimization, control, numerical meth-
ods in solving multiobjective optimization problems, consumer preferences,
discrete convexity and many others.

The volume is a fruit of intensive work of more than hundred specialists
all over the world who participated at the latest symposium organized by
the Working Group on Generalized Convexity (WGGC) and hosted by the
Insubria University. This is the 6th proceedings edited by WGGC, an inter-
disciplinary research community of more than 300 members from 36 coun-
tries (http://www.gencov.org). We hope that it will be useful for students,
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researchers and practitioners working in applied mathematics and related ar-
eas.

Acknowledgement. We wish to thank all the authors for their contri-
butions, and all the referees whose hard work was indispensable for us to
maintain the scientific quality of the volume and greatly reduce the publica-
tion delay. Special thanks go to the Insubria University for the organizational
and financial support of the symposium which has contributed greatly to the
success of the meeting and its outcome in the form of the present volume.

Kazan, Avignon and Ballarat I.V. Konnov
August 2006 D.T. Luc

A.M. Rubinov
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Radu Ioan Boţ, Sorin-Mihai Grad, Gert Wanka . . . . . . . . . . . . . . . . . . . . . . 101

Pseudomonotonicity of a Linear Map on the Interior of the
Positive Orthant
Alberto Cambini, Laura Martein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

An Approach to Discrete Convexity and Its Use in an
Optimal Fleet Mix Problem
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Combined Relaxation Methods for Generalized
Monotone Variational Inequalities

Igor V. Konnov

Department of Applied Mathematics, Kazan University, Kazan, Russia
ikonnov@ksu.ru

Summary. The paper is devoted to the combined relaxation approach to construct-
ing solution methods for variational inequalities. We describe the basic idea of this
approach and implementable methods both for single-valued and for multi-valued
problems. All the combined relaxation methods are convergent under very mild as-
sumptions. This is the case if there exists a solution to the dual formulation of
the variational inequality problem. In general, these methods attain a linear rate of
convergence. Several classes of applications are also described.

Key words: Variational inequalities, generalized monotone mappings, com-
bined relaxation methods, convergence, classes of applications.

1 Introduction

Variational inequalities proved to be a very useful and powerful tool for in-
vestigation and solution of many equilibrium type problems in Economics,
Engineering, Operations Research and Mathematical Physics. The paper is
devoted to a new general approach to constructing solution methods for vari-
ational inequalities, which was proposed in [17] and called the combined re-
laxation (CR) approach since it combines and generalizes ideas contained
in various relaxation methods. Since then, it was developed in several direc-
tions and many works on CR methods were published including the book [29].
The main goal of this paper is to give a simple and clear description of the
current state of this approach, its relationships with the known relaxation
methods, and its abilities in solving variational inequalities with making an
emphasis on generalized monotone problems. Due to the space limitations, we
restrict ourselves with simplified versions of the methods, remove some proofs,
comparisons with other methods, and results of numerical experiments. Any
interested reader can find them in the references.

We first describe the main idea of relaxation and combined relaxation
methods.
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1.1 Relaxation Methods

Let us suppose we have to find a point of a convex set X∗ defined implicitly in
the n-dimensional Euclidean space Rn. That is, X∗ may be a solution set of
some problem. One of possible ways of approximating a point of X∗ consists
in generating an iteration sequence {xk} in conformity with the following rule:

• The next iterate xk+1 is the projection of the current iterate xk onto a
hyperplane separating strictly xk and the set X∗.

Then the process will possess the relaxation property:

• The distances from the next iterate to each point of X∗ cannot increase in
comparison with the distances from the current iterate.

This property is also called Fejer-monotonicity. It follows that the sequence
{xk} is bounded, hence, it has limit points. Moreover, due to the above relax-
ation property, if there exists a limit point of {xk} which belongs to X∗, the
whole sequence {xk} converges to this point. These convergence properties
seem very strong. We now discuss possible ways of implementation of this
idea.

��
��

xk��� �
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�
�
�
�
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�
��

xk+1�
Hk

�����

�
�
�
�
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Hk+1

�xk+2
X∗

Fig. 1. The relaxation process

First we note that the separating hyperplane Hk is determined completely
by its normal vector gk and a distance parameter ωk, i.e.

Hk = {x ∈ Rn | 〈gk, xk − x〉 = ωk}.

The hyperplane Hk is strictly separating if

〈gk, xk − x∗〉 ≥ ωk > 0 ∀x∗ ∈ X∗. (1)

It also means that the half-space
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{x ∈ Rn | 〈gk, xk − x〉 ≥ ωk}

contains the solution set X∗ and represents the image of this set at the current
iterate. Then the process is defined by the explicit formula:

xk+1 = xk − (ωk/‖gk‖2)gk, (2)

and the easy calculation confirms the above relaxation property:

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (ωk/‖gk‖)2 ∀x∗ ∈ X∗;

see Fig. 1. However, (1) does not ensure convergence of this process in general.
We say that the rule of determining a separating hyperplane is regular, if the
correspondence xk �→ ωk possesses the property:

(ωk/‖gk‖) → 0 implies x∗ ∈ X∗

for at least one limit point x∗ of {xk}.
• The above relaxation process with a regular rule of determining a separating

hyperplane ensures convergence to a point of X∗.

There exist a great number of algorithms based on this idea. For linear equa-
tions such relaxation processes were first suggested by S. Kaczmarz [12] and
G. Cimmino [7]. Their extensions for linear inequalities were first proposed by
S. Agmon [1] and by T.S. Motzkin and I.J. Schoenberg [35]. The relaxation
method for convex inequalities is due to I.I. Eremin [8]. A modification of this
process for the problem of minimizing a convex function f : Rn → R with
the prescribed minimal value f∗ is due to B.T. Polyak [40]. Without loss of
generality we can suppose that f∗ = 0. The solution is found by the following
gradient process

xk+1 = xk − (f(xk)/‖∇f(xk)‖2)∇f(xk), (3)

which is clearly an implementation of process (2) with gk = ∇f(xk) and
ωk = f(xk), since (1) follows from the convexity of f :

〈∇f(xk), xk − x∗〉 ≥ f(xk) > 0 ∀x∗ ∈ X∗ (4)

for each non-optimal point xk. Moreover, by continuity of f , the rule of de-
termining a separating hyperplane is regular. Therefore, process (3) generates
a sequence {xk} converging to a solution. Note that process (3) can be also
viewed as an extension of the Newton method. Indeed, the next iterate xk+1

also solves the linearized problem

f(xk) + 〈∇f(xk), x− xk〉 = 0,

and, in case n = 1, we obtain the usual Newton method for the nonlinear
equation f(x∗) = 0; see Fig. 2. This process can be clearly extended for
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Fig. 2. The Newton method

the non-differentiable case. It suffices to replace ∇f(xk) with an arbitrary
subgradient gk of the function f at xk. Afterwards, it was noticed that the
process (3) (hence (2)) admits the additional relaxation parameter γ ∈ (0, 2):

xk+1 = xk − γ(ωk/‖gk‖2)gk,

which corresponds to the projection of xk onto the shifted hyperplane

Hk(γ) = {x ∈ Rn | 〈gk, xk − x〉 = γωk}. (5)

1.2 Combined Relaxation Methods

We now intend to describe the implementation of the relaxation idea in solu-
tion methods for variational inequality problems with (generalized) monotone
mappings. We begin our considerations from variational inequalities with
single-valued mappings.

Let X be a nonempty, closed and convex subset of the space Rn, G :
X → Rn a continuous mapping. The variational inequality problem (VI) is
the problem of finding a point x∗ ∈ X such that

〈G(x∗), x− x∗〉 ≥ 0 ∀x ∈ X. (6)

We denote by X∗ the solution set of problem (6). Now we recall definitions of
monotonicity type properties.

Definition 1. Let Y be a convex set in Rn. A mapping Q : Y → Rn is said
to be

(a) strongly monotone if there exists a scalar τ > 0 such that
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〈Q(x)−Q(y), x− y〉 ≥ τ‖x− y‖2 ∀x, y ∈ Y ;

(b) strictly monotone if

〈Q(x)−Q(y), x− y〉 > 0 ∀x, y ∈ Y, x �= y;

(c) monotone if

〈Q(x)−Q(y), x− y〉 ≥ 0 ∀x, y ∈ Y ;

(d) pseudomonotone if

〈Q(y), x− y〉 ≥ 0 =⇒ 〈Q(x), x− y〉 ≥ 0 ∀x, y ∈ Y ;

(e) quasimonotone if

〈Q(y), x− y〉 > 0 =⇒ 〈Q(x), x− y〉 ≥ 0 ∀x, y ∈ Y ;

(f) strongly pseudomonotone if there exists a scalar τ > 0 such that

〈Q(y), x− y〉 ≥ 0 =⇒ 〈Q(x), x− y〉 ≥ τ‖x− y‖2 ∀x, y ∈ Y.

It follows from the definitions that the following implications hold:

(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) and (a) =⇒ (f) =⇒ (d).

All the reverse assertions are not true in general.
First of all we note that the streamlined extension of the above method

does not work even for general monotone (but non strictly monotone) map-
pings. This assertion stems from the fact that one cannot compute the normal
vector gk of a hyperplane separating strictly the current iterate xk and the
set X∗ by using only information at the point xk under these conditions, as
the following simple example illustrates.

Example 1. Set X = Rn, G(x) = Ax with A being an n × n skew-symmetric
matrix. Then G is monotone, X∗ = {0}, but for any x /∈ X∗ we have

〈G(x), x− x∗〉 = 〈Ax, x〉 = 0,

i.e., the angle between G(xk) and xk − x∗ with x∗ ∈ X∗ need not be acute
(cf.(4)).

Thus, all the previous methods, which rely on the information at the current
iterate, are single-level ones and cannot be directly applied to variational
inequalities. Nevertheless, we are able to suggest a general relaxation method
with the basic property that the distances from the next iterate to each point
of X∗ cannot increase in comparison with the distances from the current
iterate.

The new approach, which is called the combined relaxation (CR) approach,
is based on the following principles.
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• The algorithm has a two-level structure.
• The algorithm involves an auxiliary procedure for computing the hyper-

plane separating strictly the current iterate and the solution set.
• The main iteration consists in computing the projection onto this (or

shifted) hyperplane with possible additional projection type operations
in the presence of the feasible set.

• An iteration of most descent methods can serve as a basis for the auxiliary
procedure with a regular rule of determining a separating hyperplane.

• There are a number of rules for choosing the parameters of both the levels.

This approach for variational inequalities and its basic principles were first
proposed in [17], together with several implementable algorithms within the
CR framework. Of course, it is possible to replace the half-space containing the
solution set by some other “regular” sets such as an ellipsoid or a polyhedron,
but the implementation issues and preferences of these modifications need
thorough investigations.

It turned out that the CR framework is rather flexible and allows one to
construct methods both for single-valued and for multi-valued VIs, including
nonlinearly constrained problems. The other essential feature of all the CR
methods is that they are convergent under very mild assumptions, especially
in comparison with the methods whose iterations are used in the auxiliary
procedure. In fact, this is the case if there exists a solution to the dual for-
mulation of the variational inequality problem. This property enables one to
apply these methods for generalized monotone VIs and their extensions.

We recall that the solution of VI (6) is closely related with that of the
following problem of finding x∗ ∈ X such that

〈G(x), x− x∗〉 ≥ 0 ∀x ∈ X. (7)

Problem (7) may be termed as the dual formulation of VI (DVI), but is also
called the Minty variational inequality. We denote by Xd the solution set of
problem (7). The relationships between solution sets of VI and DVI are given
in the known Minty Lemma.

Proposition 1. [34, 13]
(i) Xd is convex and closed.
(ii) Xd ⊆ X∗.
(iii) If G is pseudomonotone, X∗ ⊆ Xd.

The existence of solutions of DVI plays a crucial role in constructing CR
methods for VI; see [29]. Observe that pseudomonotonicity and continuity
of G imply X∗ = Xd, hence solvability of DVI (7) follows from the usual
existence results for VI (6). This result can be somewhat strengthened for
explicit quasimonotone and properly quasimonotone mappings, but, in the
quasimonotone case, problem (7) may have no solutions even on the compact
convex feasible sets. However, we can give an example of solvable DVI (7)
with the underlying mapping G which is not quasimonotone; see [11] and [29]
for more details.
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2 Implementable CR Methods for Variational
Inequalities

We now consider implementable algorithms within the CR framework for solv-
ing VIs with continuous single-valued mappings. For the sake of clarity, we
describe simplified versions of the algorithms.

2.1 Projection-based Implementable CR Method

The blanket assumptions are the following.

• X is a nonempty, closed and convex subset of Rn;
• Y is a closed convex subset of Rn such that X ⊆ Y ;
• G : Y → Rn is a continuous mapping;
• Xd �= ∅.

The first implementable algorithms within the CR framework for VIs un-
der similar conditions were proposed in [17]. They involved auxiliary proce-
dures for finding the strictly separating hyperplanes, which were based on
an iteration of the projection method, the Frank-Wolfe type method, and
the symmetric Newton method. The simplest of them is the projection-based
procedure which leads to the following method.

Method 1.1. Step 0 (Initialization): Choose a point x0 ∈ X and numbers
α ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 2). Set k := 0.

Step 1 (Auxiliary procedure):
Step 1.1 : Solve the auxiliary VI of finding zk ∈ X such that

〈G(xk) + zk − xk, y − zk〉 ≥ 0 ∀y ∈ X, (8)

and set pk := zk − xk. If pk = 0, stop.
Step 1.2: Determine m as the smallest number in Z+ such that

〈G(xk + βmpk), pk〉 ≤ α〈G(xk), pk〉, (9)

set θk := βm, yk := xk + θkp
k. If G(yk) = 0, stop.

Step 2 (Main iteration): Set

gk := G(yk), ωk := 〈gk, xk − yk〉, xk+1 := πX [xk − γ(ωk/‖gk‖2)gk], (10)

k := k + 1 and go to Step 1.

Here and below Z+ denotes the set of non-negative integers and πX [·] denotes
the projection mapping onto X.

According to the description, the method finds a solution to VI in the case
of its finite termination. Therefore, in what follows we shall consider only the
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case of the infinite sequence {xk}. Observe that the auxiliary procedure in
fact represents a simple projection iteration, i.e.

zk = πX [xk −G(xk)],

and is used for finding a point yk ∈ X such that

ωk = 〈gk, xk − yk〉 > 0

when xk /∈ X∗. In fact, (8)–(10) imply that

ωk = 〈G(yk), xk − yk〉 = θk〈G(yk), xk − zk〉
≥ αθk〈G(xk), xk − zk〉 ≥ αθk‖xk − zk‖2.

The point yk is computed via the simple Armijo-Goldstein type linesearch pro-
cedure that does not require a priori information about the original problem
(6). In particular, it does not use the Lipschitz constant for G.

The basic property together with (7) then implies that

〈gk, xk − x∗〉 ≥ ωk > 0 if xk /∈ Xd.

In other words, we obtain (1) where the normal vector gk and the distance
parameter ωk > 0 determine the separating hyperplane. We conclude that,
under the blanket assumptions, the iteration sequence {xk} in Method 1.1
satisfies the following conditions:

xk+1 := πX(x̃k+1), x̃k+1 := xk − γ(ωk/‖gk‖2)gk, γ ∈ (0, 2),
〈gk, xk − x∗〉 ≥ ωk ≥ 0 ∀x∗ ∈ Xd; (11)

therefore x̃k+1 is the projection of xk onto the shifted hyperplane

Hk(γ) = {y ∈ Rn | 〈gk, xk − y〉 = γωk},

(see (5)) and Hk(1) separates xk and Xd. Observe that Hk(γ), generally
speaking, does not possess this property, nevertheless, the distance from x̃k+1

to each point ofXd cannot increase and the same assertion is true for xk+1 due
to the projection properties because Xd ⊆ X. We now give the key property
of the above process.

Lemma 1. If (11) is fulfilled, then

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − γ(2− γ)(ωk/‖gk‖)2 ∀x∗ ∈ Xd. (12)

Proof. Take any x∗ ∈ Xd. By (11) and the projection properties, we have

‖xk+1 − x∗‖2 ≤ ‖x̃k+1 − x∗‖2 = ‖xk − x∗‖2

−2γ(ωk/‖gk‖2)〈gk, xk − x∗〉+ (γωk/‖gk‖)2

≤ ‖xk − x∗‖2 − 2γ(2− γ)(ωk/‖gk‖)2,

i.e. (12) is fulfilled, as desired.

The following assertions follow immediately from (12).



Combined Relaxation Methods 11

Lemma 2. Let a sequence {xk} satisfy (11). Then:
(i) {xk} is bounded.

(ii)
∞∑

k=0

(ωk/‖gk‖)2 <∞.

(iii) For each limit point x∗ of {xk} such that x∗ ∈ Xd we have

lim
k→∞

xk = x∗.

Note that the sequence {xk} has limit points due to (i). Thus, it suffices to
show that the auxiliary procedure in Method 1.1 represents a regular rule of
determining a separating hyperplane. Then we obtain the convergence of the
method. The proof is omitted since the assertion follows from more general
Theorem 2.

Theorem 1. Let a sequence {xk} be generated by Method 1.1. Then:
(i) There exists a limit point x∗ of {xk} which lies in X∗.
(ii) If

X∗ = Xd, (13)

we have
lim

k→∞
xk = x∗ ∈ X∗.

2.2 General CR Methods and Their Modifications

The basic principles of the CR approach claim that an iteration of most de-
scent methods can serve as a basis for the auxiliary procedure with a regular
rule of determining a separating hyperplane and that there are a number of
rules for choosing the parameters of both the levels. Following these princi-
ples, we now indicate ways of creating various classes of CR methods for VI
(6).

First we extend the projection mapping in (10).

Definition 2. LetW be a nonempty, convex, and closed set in Rn. A mapping
P : Rn → Rn is said to be a pseudo-projection onto W , if for every x ∈ Rn, it
holds that

P (x) ∈W and ‖P (x)− w‖ ≤ ‖x− w‖ ∀w ∈W.

We denote by F(W ) the class of all pseudo-projection mappings onto W .
Clearly, we can take the projection mapping πW (·) as P ∈ F(W ). The prop-
erties indicated show that the projection mapping in (10) and (11) can be
replaced with the pseudo-projection P ∈ F(X). Then the assertion of Lemma
1 remains true and so are those of Lemma 2 and Theorem 1. If the definition
of the set X includes functional constraints, then the projection onto X can-
not be found by a finite procedure. Nevertheless, in that case there exist finite
procedures of computation of values of pseudo-projection mappings; see [29]
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for more details. It means that the use of pseudo-projections may give certain
preferences.

Next, Method 1.1 involves the simplest projection-based auxiliary pro-
cedure for determining a separating hyperplane. However, we can use more
general iterations, which can be viewed as solutions of auxiliary problems ap-
proximating the initial problem at the current point xk. In general, we can
replace (8) with the problem of finding a point zk ∈ X such that

〈G(xk) + λ−1Tk(xk, zk), y − zk〉 ≥ 0 ∀y ∈ X, (14)

where λ > 0, the family of mappings {Tk : Y × Y → Rn} such that, for each
k = 0, 1, . . .,

(A1) Tk(x, ·) is strongly monotone with constant τ ′ > 0 and Lipschitz
continuous with constant τ ′′ > 0 for every x ∈ Y , and Tk(x, x) = 0 for every
x ∈ Y .

The basic properties of problem (14) are given in the next lemma.

Lemma 3. (i) Problem (14) has a unique solution.
(ii) It holds that

〈G(xk), xk − zk〉 ≥ λ−1〈Tk(xk, zk), zk − xk〉 ≥ λ−1τ ′‖zk − xk‖2. (15)

(iii) xk = zk if and only if xk ∈ X∗.

Proof. Assertion (i) follows directly from strong monotonicity and continuity
of Tk(x, ·). Next, using (A1) in (14) with y = xk, we have

〈G(xk), xk − zk〉 ≥ λ−1〈Tk(xk, zk), zk − xk〉
= λ−1〈Tk(xk, zk)− Tk(xk, xk), zk − xk〉 ≥ λ−1τ ′‖zk − xk‖2,

hence (15) holds, too. To prove (iii), note that setting zk = xk in (14) yields
xk ∈ X∗. Suppose now that xk ∈ X∗ but zk �= xk. Then, by (15),

〈G(xk), zk − xk〉 ≤ −λ−1τ ′‖zk − xk‖2 < 0,

so that xk /∈ X∗. By contradiction, we see that assertion (iii) is also true.

There exist a great number of variants of the sequences {Tk} satisfying
(A1). Nevertheless, it is desirable that there exist an effective algorithm for
solving problem (14). For instance, we can choose

Tk(x, z) = Ak(z − x) (16)

where Ak is an n × n positive definite matrix. The simplest choice Ak ≡ I
in (16) leads to the projection method and has been presented in Method
1.1. Then problem (14) becomes much simpler than the initial VI. Indeed, it
coincides with a system of linear equations when X = Rn or with a linear
complementarity problem when X = Rn

+ and, also, reduces to LCP when X
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is a convex polyhedron. It is well-known that such problems can be solved by
finite algorithms.

On the other hand, we can choose Ak (or ∇zTk(xk, zk)) as a suitable
approximation of ∇G(xk). Obviously, if ∇G(xk) is positive definite, we can
simply chooseAk = ∇G(uk). Then problem (14), (16) yields an iteration of the
Newton method. Moreover, we can follow the Levenberg–Marquardt approach
or make use of an appropriate quasi-Newton update. These techniques are
applicable even if ∇G(xk) is not positive definite. Thus, the problem (14) in
fact represents a very general class of solution methods.

We now describe a general CR method for VI (6) converging to a solution
under the blanket assumptions; see [21]. Observe that most of the methods
whose iterations are used as a basis for the auxiliary procedure do not provide
convergence even under the monotonicity. In fact, they need either G be co-
coercive or strictly monotone or its Jacobian be symmetric, etc.

Method 1.2. Step 0 (Initialization): Choose a point x0 ∈ X, a family of
mappings {Tk} satisfying (A1) with Y = X and a sequence of mappings
{Pk}, where Pk ∈ F(X) for k = 0, 1, . . . Choose numbers α ∈ (0, 1), β ∈ (0, 1),
γ ∈ (0, 2), λ > 0. Set k := 0.

Step 1 (Auxiliary procedure):
Step 1.1 : Solve the auxiliary VI (14) of finding zk ∈ X and set

pk := zk − xk. If pk = 0, stop.
Step 1.2: Determine m as the smallest number in Z+ such that

〈G(xk + βmpk), pk〉 ≤ α〈G(xk), pk〉, (17)

set θk := βm, yk := xk + θkp
k. If G(yk) = 0, stop.

Step 2 (Main iteration): Set

gk := G(yk), ωk := 〈G(yk), xk − yk〉, xk+1 := Pk[xk − γ(ωk/‖gk‖2)gk],

k := k + 1 and go to Step 1.

We first show that Method 1.2 is well-defined and that it follows the CR
framework.

Lemma 4. (i) The linesearch procedure in Step 1.2 is always finite.
(ii) It holds that

〈gk, xk − x∗〉 ≥ ωk > 0 if xk /∈ Xd. (18)

Proof. If we suppose that the linesearch procedure is infinite, then (17) holds
for m→∞, hence, by continuity of G,

(1− α)〈G(xk), zk − xk〉 ≤ 0.

Applying this inequality in (15) gives xk = zk, which contradicts the con-
struction of the method. Hence, (i) is true.
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Next, by using (15) and (17), we have

〈gk, xk − x∗〉 = 〈G(yk), xk − yk〉+ 〈G(yk), yk − x∗〉
≥ ωk = θk〈G(yk), xk − zk〉 ≥ αθk〈G(xk), xk − zk〉 (19)
≥ αθkλ

−1τ ′‖xk − zk‖2,

i.e. (18) is also true.

Thus the described method follows slightly modified rules in (11), where
πX(·) is replaced by Pk ∈ F(X). It has been noticed that the assertions of
Lemmas 1 and 2 then remain valid. Therefore, Method 1.2 will have the same
convergence properties.

Theorem 2. Let a sequence {xk} be generated by Method 1.2. Then:
(i) If the method terminates at Step 1.1 (Step 1.2) of the kth iteration,

xk ∈ X∗ (yk ∈ X∗).
(ii) If {xk} is infinite, there exists a limit point x∗ of {xk} which lies in

X∗.
(iii) If {xk} is infinite and (13) holds, we have

lim
k→∞

xk = x∗ ∈ X∗.

Proof. Assertion (i) is obviously true due to the stopping rule and Lemma 3
(iii). We now proceed to prove (ii). By Lemma 2 (ii), {xk} is bounded, hence
so are {zk} and {yk} because of (15). Let us consider two possible cases.
Case 1: limk→∞ θk = 0.
Set ỹk = xk + (θk/β)pk, then 〈G(ỹk), pk〉 > α〈G(xk), pk〉. Select convergent
subsequences {xkq} → x′ and {zkq} → z′, then {ỹkq} → x′ since {xk} and
{zk} are bounded. By continuity, we have

(1− α)〈G(x′), z′ − x′〉 ≥ 0,

but taking the same limit in (15) gives

〈G(x′), x′ − z′〉 ≥ λ−1τ ′‖z′ − x‖2,

i.e., x′ = z′ and (14) now yields

〈G(x′), y − x′〉 ≥ 0 ∀y ∈ X, (20)

i.e., x′ ∈ X∗.
Case 2: lim supk→∞ θk ≥ θ̃ > 0.
It means that there exists a subsequence {θkq

} such that θkq
≥ θ̃ > 0. Com-

bining this property with Lemma 2 (ii) and (19) gives

lim
q→∞ ‖x

kq − zkq‖ = 0.
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Without loss of generality we can suppose that {xkq} → x′ and {zkq} → z′,
then x′ = z′. Again, taking the corresponding limit in (14) yields (20), i.e.
x′ ∈ X∗.

Therefore, assertion (ii) is true. Assertion (iii) follows from Lemma 2 (iii).

In Step 1 of Method 1.2, we first solve the auxiliary problem (14) and
afterwards find the stepsize along the ray xk +θ(zk−xk). Replacing the order
of these steps, which corresponds to the other version of the projection method
in the simplest case, we can also determine the separating hyperplane and thus
obtain another CR method with involves a modified linesearch procedure; see
[22]. Its convergence properties are the same as those of Method 1.2.

We now describe another CR method which uses both a modified linesearch
procedure and a different rule of computing the descent direction, i.e. the rule
of determining the separating hyperplane; see [24].

Method 1.3. Step 0 (Initialization): Choose a point x0 ∈ Y , a family of
mappings {Tk} satisfying (A1), and choose a sequence of mappings {Pk},
where Pk ∈ F(Y ), for k = 0, 1, . . . Choose numbers α ∈ (0, 1), β ∈ (0, 1),
γ ∈ (0, 2), θ̃ > 0. Set k := 0.

Step 1 (Auxiliary procedure):
Step 1.1 : Find m as the smallest number in Z+ such that

〈G(xk)−G(zk,m), xk − zk,m〉 ≤ (1− α)(θ̃βm)−1〈Tk(xk, zk,m), zk,m − xk〉,

where zk,m ∈ X is a solution of the auxiliary problem:

〈G(xk) + (θ̃βm)−1Tk(xk, zk,m), y − zk,m〉 ≥ 0 ∀y ∈ X.

Step 1.2: Set θk := βmθ̃, yk := zk,m. If xk = yk or G(yk) = 0, stop.
Step 2 (Main iteration): Set

gk := G(yk)−G(xk)− θ−1
k Tk(xk, yk),

ωk := 〈gk, xk − yk〉,
xk+1 := Pk[xk − γ(ωk/‖gk‖2)gk],

k := k + 1 and go to Step 1.

In this method, gk and ωk > 0 are also the normal vector and the distance
parameter of the separating hyperplane Hk(1) (see (5)). Moreover, the rule of
determining a separating hyperplane is regular. Therefore, the process gener-
ates a sequence {xk} converging to a solution. The substantiation is similar
to that of the previous method and is a modification of that in [29, Section
1.4]. For this reason, the proof is omitted.

Theorem 3. Let a sequence {xk} be generated by Method 1.3. Then:
(i) If the method terminates at the kth iteration, yk ∈ X∗.
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(ii) If {xk} is infinite, there exists a limit point x∗ of {xk} which lies in
X∗.

(iii) If {xk} is infinite and (13) holds, we have

lim
k→∞

xk = x∗ ∈ X∗.

The essential feature of this method, unlike the previous methods, is that
it involves the pseudo-projection onto Y rather than X. Hence one can simply
set Pk to be the identity map if Y = Rn and the iteration sequence {xk} may
be infeasible.

The convergence properties of all the CR methods are almost the same.
There are slight differences in their convergence rates, which follow mainly
from (12). We illustrate them by presenting some convergence rates of Method
1.3.

Let us consider the following assumption.
(A2) There exist numbers µ > 0 and κ ∈ [0, 1] such for each point x ∈ X,

the following inequality holds:

〈G(x), x− πX∗(x)〉 ≥ µ ‖x− πX∗(x)‖1+κ. (21)

Observe that Assumption (A2) with κ = 1 holds if G is strongly (pseudo)
monotone and that (A2) with κ = 0 represents the so-called sharp solution.

Theorem 4. Let an infinite sequence {xk} be generated by Method 1.3. If G
is a locally Lipschitz continuous mapping and (A2) holds with κ = 1, then
{‖xk − πX∗(xk)‖} converges to zero in a linear rate.

We now give conditions that ensure finite termination of the method.

Theorem 5. Let a sequence {xk} be constructed by Method 1.3. Suppose that
G is a locally Lipschitz continuous mapping and that (A2) holds with κ = 0.
Then the method terminates with a solution.

The proofs of Theorems 4 and 5 are similar to those in [29, Section 1.4]
and are omitted.

Thus, the regular rule of determining a separating hyperplane may be im-
plemented via a great number of various procedures. In particular, an auxiliary
procedure may be based on an iteration of the Frank-Wolfe type method and
is viewed as a “degenerate” version of the problem (14), whereas a CR method
for nonlinearly constrained problems involves an auxiliary procedure based on
an iteration of a feasible direction method. However, the projection and the
proximal point based procedures became the most popular; their survey can
be found e.g. in [48].

3 Variational Inequalities with Multi-valued Mappings

We now consider CR methods for solving VIs which involve multi-valued
mappings (or generalized variational inequalities).
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3.1 Problem Formulation

Let X be a nonempty, closed and convex subset of the space Rn, G : X →
Π(Rn) a multi-valued mapping. The generalized variational inequality problem
(GVI for short) is the problem of finding a point x∗ ∈ X such that

∃g∗ ∈ G(x∗), 〈g∗, x− x∗〉 ≥ 0 ∀x ∈ X. (22)

Similarly to the single-valued case, together with GVI (22), we shall consider
the corresponding dual generalized variational inequality problem (DGVI for
short), which is to find a point x∗ ∈ X such that

∀ x ∈ X and ∀g ∈ G(x) : 〈g, x− x∗〉 ≥ 0 (23)

(cf. (6) and (7)). We denote by X∗ (respectively, by Xd) the solution set of
problem (22) (respectively, problem (23)).

Definition 3. (see [29, Definition 2.1.1]) Let Y be a convex set in Rn. A
multi-valued mapping Q : Y → Π(Rn) is said to be

(a) a K-mapping, if it is upper semicontinuous (u.s.c.) and has nonempty
convex and compact values;

(b) u-hemicontinuous, if for all x ∈ Y , y ∈ Y and α ∈ [0, 1], the mapping
α �→ 〈Q(x+ αz), z〉 with z = y − x is u.s.c. at 0+.

Now we give an extension of the Minty Lemma for the multi-valued case.

Proposition 2. (see e.g. [43, 49])
(i) The set Xd is convex and closed.
(ii) If G is u-hemicontinuous and has nonempty convex and compact val-

ues, then Xd ⊆ X∗.
(iii) If G is pseudomonotone, then X∗ ⊆ Xd.

The existence of solutions to DGVI will also play a crucial role for conver-
gence of CR methods for GVIs. Note that the existence of a solution to (23)
implies that (22) is also solvable under u-hemicontinuity, whereas the reverse
assertion needs generalized monotonicity assumptions. Again, the detailed de-
scription of solvability conditions for (23) under generalized monotonicity may
be found in the books [11] and [29].

3.2 CR Method for the Generalized Variational Inequality
Problem

We now consider a CR method for solving GVI (22) with explicit usage of
constraints (see [18] and [23]). The blanket assumptions of this section are the
following:



18 I.V. Konnov

• X is a subset of Rn, which is defined by

X = {x ∈ Rn | h(x) ≤ 0},

where h : Rn → R is a convex, but not necessarily differentiable, function;
• the Slater condition is satisfied, i.e., there exists a point x̄ such that h(x̄) <

0;
• G : X → Π(Rn) is a K-mapping;
• Xd �= ∅.

The method also involves a finite auxiliary procedure for finding the
strictly separating hyperplane with a regular rule. Its basic scheme involves
the control sequences and handles the situation of a null step, where the aux-
iliary procedure yields the zero vector, but the current iterate is not a solution
of VI (22). The null step usually occurs if the current tolerances are too large,
hence they must diminish.

Let us define the mapping Q : Rn → Π(Rn) by

Q(x) =
{
G(x) if h(x) ≤ 0,
∂h(x) if h(x) > 0.

Method 2.1. Step 0 (Initialization): Choose a point x0 ∈ X, bounded positive
sequences {εl} and {ηl}. Also, choose numbers θ ∈ (0, 1), γ ∈ (0, 2), and a
sequence of mappings {Pk}, where Pk ∈ F(X) for k = 0, 1, . . . Set k := 0,
l := 1.

Step 1 (Auxiliary procedure) :
Step 1.1 : Choose q0 from Q(xk), set i := 0, pi := qi, wk,0 := xk.
Step 1.2: If

‖pi‖ ≤ ηl,

set xk+1 := xk, k := k + 1, l := l + 1 and go to Step 1. (null step)
Step 1.3: Set wk,i+1 := wk,0 − εlp

i/‖pi‖, choose qi+1 ∈ Q(wk,i+1). If

〈qi+1, pi〉 > θ‖pi‖2,

then set yk := wk,i+1, gk := qi+1, and go to Step 2. (descent step)
Step 1.4: Set

pi+1 := Nr conv{pi, qi+1}, (24)

i := i+ 1 and go to Step 1.2.
Step 2 (Main iteration): Set ωk := 〈gk, xk − yk〉,

xk+1 := Pk[xk − γ(ωk/‖gk‖2)gk],

k := k + 1 and go to Step 1.

Here NrS denotes the element of S nearest to origin. According to the
description, at each iteration, the auxiliary procedure in Step 1, which is
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a modification of an iteration of the simple relaxation subgradient method
(see [15, 16]), is applied for direction finding. In the case of a null step, the
tolerances εl and ηl decrease since the point uk approximates a solution within
εl, ηl. Hence, the variable l is a counter for null steps. In the case of a descent
step we must have ωk > 0, hence, the point x̃k+1 = xk − γ(ωk/‖gk‖2)gk

is the projection of the point xk onto the hyperplane Hk(γ), where Hk(1)
separates xk and Xd (see (5) and (11)). Thus, our method follows the general
CR framework.

We will call one increase of the index i an inner step, so that the number
of inner steps gives the number of computations of elements from Q(·) at the
corresponding points.

Theorem 6. (see e.g. [29, Theorem 2.3.2]) Let a sequence {uk} be generated
by Method 2.1 and let {εl} and {ηl} satisfy the following relations:

{εl} ↘ 0, {ηl} ↘ 0. (25)

Then:
(i) The number of inner steps at each iteration is finite.
(ii) There exists a limit point x∗ of {xk} which lies in X∗.
(iii) If

X∗ = Xd, (26)

we have
lim

k→∞
xk = x∗ ∈ X∗.

As Method 2.1 has a two-level structure, each iteration containing a finite
number of inner steps, it is more suitable to derive its complexity estimate,
which gives the total amount of work of the method, instead of convergence
rates. We use the distance to x∗ as an accuracy function for our method,
i.e., our approach is slightly different from the standard ones. More precisely,
given a starting point x0 and a number δ > 0, we define the complexity of the
method, denoted by N(δ), as the total number of inner steps t which ensures
finding a point x̄ ∈ X such that

‖x̄− x∗‖/‖x0 − x∗‖ ≤ δ.

Therefore, since the computational expense per inner step can easily be eval-
uated for each specific problem under examination, this estimate in fact gives
the total amount of work. We thus proceed to obtain an upper bound for
N(δ).

Theorem 7. [29, Theorem 2.3.3] Suppose G is monotone and there exists
x∗ ∈ X∗ such that

for every x ∈ X and for every g ∈ G(x),
〈g, x− x∗〉 ≥ µ‖x− x∗‖,
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for some µ > 0. Let a sequence {xk} be generated by Method 2.1 where

εl = νlε′, ηl = η′, l = 0, 1, . . . ; ν ∈ (0, 1).

Then, there exist some constants ε̄ > 0 and η̄ > 0 such that

N(δ) ≤ B1ν
−2(ln(B0/δ)/ ln ν−1 + 1),

where 0 < B0, B1 <∞, whenever 0 < ε′ ≤ ε̄ and 0 < η′ ≤ η̄, B0 and B1 being
independent of ν.

It should be noted that the assertion of Theorem 7 remains valid without
the additional monotonicity assumption on G if X = Rn (cf. (21)). Thus,
our method attains a logarithmic complexity estimate, which corresponds to
a linear rate of convergence with respect to inner steps. We now give a similar
upper bound for N(δ) in the single-valued case.

Theorem 8. [29, Theorem 2.3.4] Suppose that X = Rn and that G is strongly
monotone and Lipschitz continuous. Let a sequence {xk} be generated by
Method 2.1 where

εl = νlε′, ηl = νlη′, l = 0, 1, . . . ; ε′ > 0, η′ > 0; ν ∈ (0, 1).

Then,
N(δ) ≤ B1ν

−6(ln(B0/δ)/ ln ν−1 + 1),

where 0 < B0, B1 <∞, B0 and B1 being independent of ν.

3.3 CR Method for Multi-valued Inclusions

To solve GVI (22), we can also apply Method 2.1 for finding stationary points
of the mapping P being defined as follows:

P (x) =

⎧⎨⎩
G(x) if h(x) < 0,
conv{G(x)

⋃
∂h(x)} if h(x) = 0,

∂h(x) if h(x) > 0.
(27)

Such a method does not include pseudo-projections and is based on the fol-
lowing observations; see [20, 25, 29].

First we note P in (27) is a K-mapping. Next, GVI (22) is equivalent to
the multi-valued inclusion

0 ∈ P (x∗). (28)

We denote by S∗ the solution set of problem (28).

Theorem 9. [29, Theorem 2.3.1] It holds that

X∗ = S∗.
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In order to apply Method 2.1 to problem (28) we have to show that its dual
problem is solvable. Namely, let us consider the problem of finding a point x∗

of Rn such that

∀u ∈ Rn, ∀t ∈ P (u), 〈t, u− u∗〉 ≥ 0,

which can be viewed as the dual problem to (28). We denote by S∗
(d) the

solution set of this problem. Clearly, Proposition 2 admits the corresponding
simple specialization.

Lemma 5. (i) S∗
(d) is convex and closed.

(ii) S∗
(d) ⊆ S∗.

(iii) If P is pseudomonotone, then S∗
(d) = S∗.

Note that P need not be pseudomonotone in general. Nevertheless, in
addition to Theorem 9, it is useful to obtain the equivalence result for both
the dual problems.

Proposition 3. [29, Proposition 2.4.1] Xd = S∗
(d).

Combining the above results and Proposition 2 yields a somewhat strength-
ened equivalence property.

Corollary 1. If G is pseudomonotone, then

X∗ = Xd = S∗
(d) = S∗.

Therefore, we can apply Method 2.1 with replacing G, X, and Pk by P ,
Rn, and I, respectively, to the multi-valued inclusion (28) under the same
blanket assumptions. We call this modification Method 2.2.

Theorem 10. Let a sequence {xk} be generated by Method 2.2 and let {εl}
and {ηl} satisfy (25). Then:

(i) The number of inner steps at each iteration is finite.
(ii) There exists a limit point x∗ of {xk} which lies in X∗.
(iii) If (26) holds, we have

lim
k→∞

xk = x∗ ∈ S∗ = X∗.

Next, the simplest rule (24) in Method 2.1 can be replaced by one of the
following:

pi+1 = Nr conv{q0, . . . , qi+1},
or

pi+1 = Nr conv{pi, qi+1, Si},
where Si ⊆ conv{q0, . . . , qi}. These modifications may be used for attaining
more rapid convergence, and all the assertions of this section remain true.
Nevertheless, they require additional storage and computational expenses.
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4 Some Examples of Generalized Monotone Problems

Various applications of variational inequalities have been well documented in
the literature; see e.g. [36, 29, 9] and references therein. We intend now to give
some additional examples of problems which reduce to VI (6) with satisfying
the basic property Xd �= ∅. It means that they possess certain generalized
monotonicity properties. We restrict ourselves with single-valued problems by
assuming usually differentiability of functions. Nevertheless, using a suitable
concept of the subdifferential, we can obtain similar results for the case of
multi-valued GVI (22).

4.1 Scalar Optimization Problems

We start our illustrations from the simplest optimization problems.
Let us consider the problem of minimizing a function f : Rn → R over the

convex and closed set X, or briefly,

min
x∈X

→ f(x). (29)

If f is also differentiable, we can replace (29) by its optimality condition in
the form of VI: Find x∗ ∈ X such that

〈∇f(x∗), x− x∗〉 ≥ 0 ∀x ∈ X (30)

(cf. (6)). The problem is to find conditions which ensure solvability of DVI:
Find x∗ ∈ X such that

〈∇f(x), x− x∗〉 ≥ 0 ∀x ∈ X (31)

(cf. (7)). It is known that each solution of (31), unlike that of (30), also solves
(29); see [14, Theorem 2.2]. Denote by Xf the solution set of problem (29)
and suppose that Xf �= ∅. We can obtain the solvability of (31) under a
rather weak condition on the function f . Recall that f : Rn → R is said to be
quasiconvex on X, if for any points x, y ∈ X and for each λ ∈ [0, 1] it holds
that

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}.
Also, f : Rn → R is said to be quasiconvex along rays with respect to X if for
any point x ∈ X we have

f(λx+ (1− λ)x∗) ≤ f(x) ∀λ ∈ [0, 1], ∀x∗ ∈ Xf ;

see [20]. Clearly, the class of quasiconvex along rays functions strictly contains
the class of usual quasiconvex functions since the level sets {x ∈ X | f(x) ≤ µ}
of a quasiconvex along rays function f may be non-convex.

Proposition 4. If f : Rn → R is quasiconvex along rays with respect to X,
then the solution set of (31) coincides with Xf .
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Proof. Due to the above observation, we have to show that any solution
x∗ ∈ Xf solves (31). Fix x ∈ X and set s = x∗ − x. Then we have

〈∇f(x), s〉 = lim
α→0

f(x+ αs)− f(x)
α

= lim
α→0

f(αx∗ + (1− α)x)− f(x)
α

≤ 0,

i.e. x∗ solves (31) and the result follows.

So, the condition Xd �= ∅ then holds.

4.2 Walrasian Price Equilibrium Models

Walrasian equilibrium models describe economies with perfect competition.
The economy deals in n commodities and, given a price vector p = (p1, . . . , pn),
the demand and supply are supposed to be determined as vectors D(p) and
S(p), respectively, and the vector

E(p) = D(p)− S(p)

represents the excess demand. Then the equilibrium price vector p∗ is defined
by the following complementarity conditions

p∗ ∈ Rn
+,−E(p∗) ∈ Rn

+, 〈p∗, E(p∗)〉 = 0;

which can be equivalently rewritten as VI: Find p∗ ∈ Rn
+ such that

〈−E(p∗), p− p∗〉 ≥ 0 ∀p ∈ Rn
+; (32)

see e.g. [2, 37]. Here Rn
+ = {p ∈ Rn | pi ≥ 0 i = 1, . . . , n} denotes the

set of vectors with non-negative components. The properties of E depend
on behaviour of consumers and producers, nevertheless, gross substitutability
and positive homogeneity are among the most popular. Recall that a mapping
F : P → Rn is said to be

(i) gross substitutable, if for each pair of points p′, p′′ ∈ P such that p′ −
p′′ ∈ Rn

+ and I(p′, p′′) = {i | p′i = p′′i } is nonempty, there exists an index
k ∈ I(p′i, p′′i ) with Fk(p′) ≥ Fk(p′′);

(ii) positive homogeneous of degree m, if for each p ∈ P and for each λ > 0
such that λp ∈ P it holds that F (λp) = λmF (p).

It was shown by K.J. Arrow and L. Hurwicz [3] that these properties
lead to a kind of the revealed preference condition. Denote by P ∗ the set of
equilibrium prices.

Proposition 5. Suppose that E : intRn
+ → Rn is gross substitutable, posi-

tively homogeneous with degree 0, and satisfies the Walras law, i.e.

〈p,E(p)〉 = 0 ∀p ∈ intRn
+;
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moreover, each function Ei : intRn
+ → R is bounded below, and for every

sequence {pk} ⊂ intRn
+ converging to p, it holds that

lim
k→∞

Ei(pk) =
{
Ei(p) if Ei(p) is finite,
+∞ otherwise.

Then problem (32) is solvable, and

〈p∗, E(p)〉 > 0 ∀p ∈ intRn
+\P ∗,∀p∗ ∈ P ∗.

Observe that P ∗ ⊆ intRn
+ due to the above conditions, i.e. E(p∗) = 0 for

each p∗ ∈ P ∗. It follows that

〈−E(p), p− p∗〉
{
> 0 ∀p ∈ intRn

+\P ∗,
≥ 0 ∀p ∈ P ∗

for each p∗ ∈ P ∗, therefore condition Xd �= ∅ holds true for VI (32). Similar
results can be obtained in the multi-valued case; see [39].

4.3 General Equilibrium Problems

Let Φ : X × X → R be an equilibrium bifunction, i.e. Φ(x, x) = 0 for each
x ∈ X, and let X be a nonempty convex and closed subset of Rn. Then we
can consider the general equilibrium problem (EP for short): Find x∗ ∈ X
such that

Φ(x∗, y) ≥ 0 ∀y ∈ X. (33)

We denote by Xe the solution set of this problem. It was first used by
H. Nikaido and K. Isoda [38] for investigation of non-cooperative games and
appeared very useful for other problems in nonlinear analysis; see [4, 11] for
more details. If Φ(x, ·) is differentiable for each x ∈ X, we can consider also
VI (6) with the cost mapping

G(x) = ∇yΦ(x, y)|y=x, (34)

suggested by J.B. Rosen [41]. Recall that a function f : X → R is said to be
(i) pseudoconvex, if for any points x, y ∈ X, it holds that

〈∇f(x), y − x〉 ≥ 0 =⇒ f(y) ≥ f(x);

(ii) explicitly quasiconvex, if it is quasiconvex and for any point x, y ∈ X,
x �= y and for all λ ∈ (0, 1) it holds that

f(λx+ (1− λ)y) < max{f(x), f(y)}.

Then we can obtain the obvious relationships between solution sets of EP
(33) and VI (6), (34).
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Proposition 6. (i) If Φ(x, ·) is differentiable for each x ∈ X, then Xe ⊆ X∗.
(ii) If Φ(x, ·) is pseudoconvex for each x ∈ X, then X∗ ⊆ Xe.

However, we are interested in revealing conditions providing the property
Xd �= ∅ for VI (6), (34). Let us consider the dual equilibrium problem: Find
y∗ ∈ X such that

Φ(x, y∗) ≤ 0 ∀x ∈ X (35)

and denote by Xe
d the solution set of this problem. Recall that Φ : X×X → R

is said to be
(i) monotone, if for each pair of points x, y ∈ X it holds that

Φ(x, y) + Φ(y, x) ≤ 0;

(ii) pseudomonotone, if for each pair of points x, y ∈ X it holds that

Φ(x, y) ≥ 0 =⇒ Φ(y, x) ≤ 0.

Proposition 7. (see [29, Proposition 2.1.17]) Let Φ(x, ·) be convex and dif-
ferentiable for each x ∈ X. If Φ is monotone (respectively, pseudomonotone),
then so is G in (34).

Being based on this property, we can derive the condition Xd �= ∅ from
(pseudo)monotonicity of Φ and Proposition 1. However, it can be deduced
from the existence of solutions of problem (35). We recall the Minty Lemma
for EPs; see e.g. [4, Section 10.1] and [6].

Proposition 8. (i) If Φ(·, y) is upper semicontinuous for each y ∈ X, Φ(x, ·)
is explicitly quasiconvex for x ∈ X, then Xe

d ⊆ Xe.
(ii) If Φ is pseudomonotone, then Xe ⊆ Xe

d .

Now we give the basic relation between the solution sets of dual problems.

Lemma 6. Suppose that Φ(x, ·) is quasiconvex and differentiable for each x ∈
X. Then Xe

d ⊆ Xd.

Proof. Take any x∗ ∈ Xe
d , then Φ(x, x∗) ≤ Φ(x, x) = 0 for each x ∈ X. Set

ψ(y) = Φ(x, y), then

〈∇ψ(x), x∗ − x〉 = lim
α→0

ψ(x+ α(x∗ − x))− ψ(x)
α

≤ 0,

i.e. x∗ ∈ Xd.

Combining these properties, we can obtain relationships among all the
problems.
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Theorem 11. Suppose that Φ : X × X → R is a continuous equilibrium
bifunction, Φ(x, ·) is quasiconvex and differentiable for each x ∈ X.

(i) If holds that Xe
d ⊆ Xd ⊆ X∗.

(ii) If Φ(x, ·) is pseudoconvex for each x ∈ X, then

Xe
d ⊆ Xd ⊆ X∗ = Xe.

(iii) If Φ(x, ·) is pseudoconvex for each x ∈ X and Φ is pseudomonotone,
then

Xe
d = Xd = X∗ = Xe.

Proof. Part (i) follows from Lemma 6 and Proposition 1 (ii). Part (ii) follows
from (i) and Proposition 6, and, taking into account Proposition 8 (ii), we
obtain assertion (iii).

Therefore, we can choose the most suitable condition for its verification.

4.4 Optimization with Intransitive Preference

Optimization problems with respect to preference relations play the central
role in decision making theory and in consumer theory. It is well-known that
the case of transitive preferences lead to the usual scalar optimization prob-
lems and such problem have been investigated rather well, but the intransitive
case seems more natural in modelling real systems; see e.g. [10, 44, 46].

Let us consider an optimization problem on the same feasible set X with
respect to a binary relation (preference) R, which is not transitive in general,
i.e. the implication

xRy and yRz =⇒ xRz

may not hold. Suppose that R is complete, i.e. for any points x, y ∈ Rn at least
one of the relations holds: xRy, yRx. Then we can define the optimization
problem with respect to R: Find x∗ ∈ X such that

x∗Ry ∀y ∈ X. (36)

Recall that the strict part P of R is defined as follows:

xPy ⇐⇒ (xRy and ¬(yRx)).

Due to the completeness of R, it follows that

¬(yRx) =⇒ xPy,

and (36) becomes equivalent to the more usual formulation: Find x∗ ∈ X such
that

∃y ∈ X, yPx∗. (37)

Following [46, 42], consider a representation of the preferenceR by a bifunction
Φ : X ×X → R:
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x′Rx′′ ⇐⇒ Φ(x′′, x′) ≤ 0,
x′Px′′ ⇐⇒ Φ(x′′, x′) < 0.

Note that the bifunction Ψ(x′, x′′) = −Φ(x′′, x′) gives a more standard repre-
sentation, but the current form is more suitable for the common equilibrium
setting. In fact, (37) becomes equivalent to EP (33), whereas (36) becomes
equivalent to the dual problem (35).

We now consider generalized monotonicity of Φ.

Proposition 9. For each pair of points x′, x′′ ∈ X it holds that

Φ(x′, x′′) > 0 ⇐⇒ Φ(x′′, x′) < 0,
Φ(x′, x′′) = 0⇐⇒ Φ(x′′, x′) = 0. (38)

Proof. Fix x′, x′′ ∈ X. If Φ(x′, x′′) > 0, then ¬(x′′Rx′) and x′Px′′, i.e.
Φ(x′′, x′) < 0, by definition. The reverse implication Φ(x′, x′′) < 0 =⇒
Φ(x′′, x′) > 0 follows from the definition of P . It means that the first equiva-
lence in (38) is true, moreover, we have

Φ(x′, x′′) ≤ 0 =⇒ Φ(x′′, x′) ≥ 0.

Hence, Φ(x′, x′′) = 0 implies Φ(x′′, x′) ≥ 0, but Φ(x′′, x′) > 0 implies
Φ(x′, x′′) < 0, a contradiction. Thus, Φ(x′, x′′) = 0 ⇐⇒ Φ(x′′, x′) = 0, and
the proof is complete.

Observe that (38) implies

Φ(x, x) = 0 ∀x ∈ X,

i.e. Φ is an equilibrium bifunction and R is reflexive. Next, on account of
Proposition 9, both Φ and −Φ are pseudomonotone, which yields the equiva-
lence of (33) and (35) because of Proposition 8 (ii). The relations in (38) hold
if Φ is skew-symmetric, i.e.

Φ(x′, x′′) + Φ(x′′, x′) = 0 ∀x′, x′′ ∈ X;

cf. Example 1.
In order to find a solution of problem (36) (or (37)), we have to impose

additional conditions on Φ; see [20] for details. Namely, suppose that Φ is con-
tinuous and that Φ(x, ·) is quasiconvex for each x ∈ X. Then R is continuous
and also convex, i.e. for any points x′, x′′, y ∈ X, we have

x′Ry and x′′Ry =⇒ [λx′ + (1− λ)x′′]Ry ∀λ ∈ [0, 1].

If Φ is skew-symmetric, it follows that Φ(·, y) is quasiconcave for each y ∈ X,
and there exists a CR method for finding a solution of such EPs; see [19].
However, this is not the case in general, but then we can solve EP via its
reducing to VI, as described in Section 4.3. In fact, if Φ(x, ·) is differentiable,
then (36) (or (37)) implies VI (6), (34) and DVI (7), (34), i.e., the basic
condition Xd �= ∅ holds true if the initial problem is solvable, as Theorem
11 states. Then the CR methods described are also applicable for finding its
solution.
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4.5 Quasi-concave-convex Zero-sum Games

Let us consider a zero-sum game with two players. The first player has the
strategy set X and the utility function Φ(x, y), whereas the second player has
the utility function −Φ(x, y) and the strategy set Y . Following [5, Section
10.4], we say that the game is equal if X = Y and Φ(x, x) = 0 for each x ∈ X.
If Φ is continuous, Φ(·, y) is quasiconcave for each y ∈ X,Φ(x, ·) is quasiconvex
for each x ∈ X, and X is a nonempty, convex and closed set, then this equal
game will have a saddle point (x∗, y∗) ∈ X ×X, i.e.

Φ(x, y∗) ≤ Φ(x∗, y∗) ≤ Φ(x∗, y) ∀x ∈ X,∀y ∈ X

under the boundedness of X because of the known Sion minimax theorem
[45]. Moreover, its value is zero, since

0 = Φ(y∗, y∗) ≤ Φ(x∗, y∗) ≤ Φ(x∗, x∗) = 0.

Thus, the set of optimal strategies of the first player coincides with the solution
set Xe of EP (33), whereas the set of optimal strategies of the second player
coincides with Xe

d , which is the solution set of the dual EP (35). Unlike the
previous sections, Φ may not possess generalized monotonicity properties. A
general CR method for such problems was proposed in [19]. Nevertheless, if
Φ(x, ·) is differentiable, then Theorem 11 (i) gives Xe

d ⊆ Xd ⊆ X∗, where
Xd (respectively, X∗) is the solution set of DVI (7), (34) (respectively, VI (6),
(34), i.e. existence of saddle points implies Xd �= ∅. However, by strengthening
slightly the quasi-concavity-convexity assumptions, we can obtain additional
properties of solutions. In fact, replace the quasiconcavity (quasiconvexity) of
Φ(x, y) in x (in y) by the explicit quasiconcavity (quasiconvexity), respectively.
Then Proposition 8 (i) yieldsXe = Xe

d , i.e., the players have the same solution
sets. Hence, Xe �= ∅ implies Xd �= ∅ and this result strengthens a similar
property in [47, Theorem 5.3.1].

Proposition 10. If the utility function Φ(x, y) in an equal game is continu-
ous, explicitly quasiconcave in x, explicitly quasiconvex and differentiable in
y, then

Xe = Xe
d ⊆ Xd ⊆ X∗.

If, additionally, Φ(x, y) is pseudoconvex in y, then

Xe = Xe
d = Xd = X∗.

Proof. The first assertion follows from Theorem 11 (i) and Proposition 8 (i).
The second assertion now follows from Theorem 11 (ii).

This general equivalence result does not use pseudomonotonicity of Φ or
G, nevertheless, it also enables us to develop efficient methods for finding
optimal strategies.

Therefore, many optimization and equilibrium type problems possess re-
quired generalized monotonicity properties.
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Further Investigations

The CR methods presented can be extended and modified in several direc-
tions. In particular, they can be applied to extended VIs involving additional
mappings (see [30, 31]) and to mixed VIs involving non-linear convex functions
(see [29, 31, 33]).

It was mentioned that the CR framework is rather flexible and admits spe-
cializations for each particular class of problems. Such versions of CR methods
were proposed for various decomposable VIs (see [27, 28, 29, 32]). In this con-
text, CR methods with auxiliary procedures based on an iteration of a suitable
splitting method seem very promising (see [26, 29, 31, 33]).
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the Monge–Kantorovich Duality
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Summary. In the present survey, we reveal links between abstract convex analysis
and two variants of the Monge–Kantorovich problem (MKP), with given marginals
and with a given marginal difference. It includes: (1) the equivalence of the validity of
duality theorems for MKP and appropriate abstract convexity of the corresponding
cost functions; (2) a characterization of a (maximal) abstract cyclic monotone map
F : X → L ⊂ IRX in terms connected with the constraint set

Q0(ϕ) := {u ∈ IRZ : u(z1) − u(z2) ≤ ϕ(z1, z2) ∀z1, z2 ∈ Z = dom F}
of a particular dual MKP with a given marginal difference and in terms of L-
subdifferentials of L-convex functions; (3) optimality criteria for MKP (and Monge
problems) in terms of abstract cyclic monotonicity and non-emptiness of the con-
straint set Q0(ϕ), where ϕ is a special cost function on X × X determined by the
original cost function c on X × Y . The Monge–Kantorovich duality is applied then
to several problems of mathematical economics relating to utility theory, demand
analysis, generalized dynamics optimization models, and economics of corruption,
as well as to a best approximation problem.

Key words: H-convex function, infinite linear programs, duality relations,
Monge-Kantorovich problems (MKP) with given marginals, MKP with a given
marginal difference, abstract cyclic monotonicity, Monge problem, utility the-
ory, demand analysis, dynamics models, economics of corruption, approxima-
tion theory

1 Introduction

Abstract convexity or convexity without linearity may be defined as a theory
which deals with applying methods of convex analysis to non-convex objects.

∗Supported in part by the Russian Leading Scientific School Support Grant NSh-
6417.2006.6.
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Today this theory becomes an important fragment of non-linear functional
analysis, and it has numerous applications in such different fields as non-
convex global optimization, various non-traditional duality schemes for par-
ticular classes of sets and functions, non-smooth analysis, mass transportation
problems, mathematical economics, approximation theory, and measure the-
ory; for history and references, see, e.g., [15], [30], [41], [43], [53], [54] [59], [60],
[62]...2

In this survey, we’ll dwell on connections between abstract convexity and
the Monge—Kantorovich mass transportation problems; some applications to
mathematical economics and approximation theory will be considered as well.

Let us recall some basic notions relating to abstract convexity. Given a
nonempty set Ω and a class H of real-valued functions on it, the H-convex
envelope of a function f : Ω → IR ∪ {+∞} is defined to be the function
coH(f)(ω) := sup{h(ω) : h ∈ H(f)}, ω ∈ Ω, where H(f) comprises functions
in H majorized by f , H(f) := {h ∈ H : h ≤ f}. Clearly, H(f) = H(coH(f)).
A function f is called H-convex if f = coH(f).

In what follows, we take Ω = X × Y or Ω = X × X, where X and Y
are compact topological spaces, and we deal with H being a convex cone or
a linear subspace in C(Ω). The basic examples are H = {huv : huv(x, y) =
u(x)− v(y), (u, v) ∈ C(X)×C(Y )} for Ω = X ×Y and H = {hu : hu(x, y) =
u(x)−u(y), u ∈ C(X)} for Ω = X×X. These examples are closely connected
with two variants of the Monge—Kantorovich problem (MKP): with given
marginals and with a given marginal difference.

Given a cost function c : X × Y → IR ∪ {+∞} and finite positive regular
Borel measures, σ1 on X and σ2 on Y , σ1X = σ2Y , the MKP with marginals
σ1 and σ2 is to minimize the integral∫

X×Y

c(x, y)µ(d(x, y))

subject to constraints: µ ∈ C(X × Y )∗+, π1µ = σ1, π2µ = σ2, where π1µ and
π2µ stand for the marginal measures of µ.3

A different variant of MKP, the MKP with a given marginal difference,
relates to the case X = Y and consists in minimizing the integral∫

X×X

c(x, y)µ(d(x, y))

subject to constraints: µ ∈ C(X ×X)∗+, π1µ− π2µ = σ1 − σ2.
Both variants of MKP were first posed and studied by Kantorovich [17, 18]

(see also [19, 20, 21]) in the case where X = Y is a metric compact space with

2Abstract convexity is, in turn, a part of a broader field known as generalized
convexity and generalized monotonicity; see [14] and references therein.

3For any Borel sets B1 ⊆ X, B2 ⊆ Y , (π1µ)(B1) = µ(B1 × Y ), (π2µ)(B2) =
µ(X × B2).
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its metric as the cost function c. In that case, both variants of MKP are
equivalent but, in general, the equivalence fails to be true.

The MKP with given marginals is a relaxation of the Monge ‘excavation
and embankments’ problem [49], a non-linear extremal problem, which is to
minimize the integral ∫

X

c(x, f(x))σ1(dx)

over the set Φ(σ1, σ2) of measure-preserving Borel maps f : (X,σ1) → (Y, σ2).
Of course, it can occur that Φ(σ1, σ2) is empty, but in many cases it is non-
empty and the measure µf on X × Y ,

µfB = σ1{x : (x, f(x)) ∈ B}, B ⊂ X × Y,

is positive and has the marginals π1µf = σ1, π2µf = σ2. Moreover, if µf is an
optimal solution to the MKP then f proves to be an optimal solution to the
Monge problem.

Both variants of MKP may be treated as problems of infinite linear pro-
gramming. The dual MKP problem with given marginals is to maximize∫

X

u(x)σ1(dx)−
∫

Y

v(y)σ2(dy)

over the set

Q′(c) := {(u, v) ∈ C(X)× C(Y ) : u(x)− v(y) ≤ c(x, y) ∀(x, y) ∈ X × Y },

and the dual MKP problem with a given marginal difference is to maximize∫
X

u(x) (σ1 − σ2)(dx)

over the set

Q(c) := {u ∈ C(X) : u(x)− u(y) ≤ c(x, y) ∀x, y ∈ X}.

As is mentioned above, in the classical version of MKP studied by Kan-
torovich, X is a metric compact space and c is its metric. In that case, Q(c)
proves to be the set of Lipschitz continuous functions with the Lipschitz con-
stant 1, and the Kantorovich optimality criterion says that a feasible mea-
sure µ is optimal if and only if there exists a function u ∈ Q(c) such that
u(x) − u(y) = c(x, y) whenever the point (x, y) belongs to the support of µ.
This criterion implies the duality theorem asserting the equality of optimal
values of the original and the dual problems.

Duality for MKP with general continuous cost functions on (not necessarily
metrizable) compact spaces is studied since 1974; see papers by Levin [24,
25, 26] and references therein. A general duality theory for arbitrary compact
spaces and continuous or discontinuous cost functions was developed by Levin
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and Milyutin [47]. In that paper, the MKP with a given marginal difference is
studied, and, among other results, a complete description of all cost functions,
for which the duality relation holds true, is given. Further generalizations
(non-compact and non-topological spaces) see [29, 32, 37, 38, 42].

An important role in study and applications of the Monge—Kantorovich
duality is played by the set Q(c) and its generalizations such as

Q(c;E(X)) := {u ∈ E(X) : u(x)− u(y) ≤ c(x, y) ∀x, y ∈ X},

where E(X) is some class of real-valued functions on X. Typical examples
are the classes: IRX of all real-valued functions on X, l∞(X) of bounded real-
valued functions on X, U(X) of bounded universally measurable real-valued
functions on X, and L∞(IRn) of bounded Lebesgue measurable real-valued
functions on IRn (Lebesgue equivalent functions are not identified).

Notice that the duality theorems and their applications can be restated
in terms of abstract convexity of the corresponding cost functions. In that
connection, mention an obvious equality Q(c;E(X)) = H(c) where H = {hu :
u ∈ E(X)}. Conditions for Q(c) or Q0(c) = Q(c; IRZ) to be nonempty are
some kinds of abstract cyclic monotonicity, and for specific cost functions c,
they prove to be crucial in various applications of the Monge—Kantorovich
duality. Also, optimality criteria for solutions to the MKP with given mar-
ginals and to the corresponding Monge problems can be given in terms of
non-emptiness of Q(ϕ) where ϕ is a particular function on X ×X connected
with the original cost function c on X × Y .

The paper is organized as follows. Section 2 is devoted to connections
between abstract convexity and infinite linear programming problems more
general than MKP. In Section 3, both variants of MKP are regarded from
the viewpoint of abstract convex analysis (duality theory; abstract cyclic
monotonicity and optimality conditions for MKP with given marginals and for
a Monge problem; further generalizations). In Section 4, applications to math-
ematical economics are presented, including utility theory, demand analysis,
dynamics optimization, and economics of corruption. Finally, in Section 5 an
application to approximation theory is given.

Our goal here is to clarify connections between the Monge - Kantorovich
duality and abstract convex analysis rather than to present the corresponding
duality results (and their applications) in maximally general form.

2 Abstract Convexity and Infinite Linear Programs

Suppose Ω is a compact Hausdorff topological space, and c : Ω → IR∪{+∞} is
a bounded from below universally measurable function on it. Given a convex
cone H ⊂ C(Ω) such that H(c) = {h ∈ H : h ≤ c} is nonempty, and a
measure µ0 ∈ C(Ω)∗+, we consider two infinite linear programs, the original
one, I, and the dual one, II, as follows.



Abstract Convexity and the Monge–Kantorovich Duality 37

The original program is to maximize the linear functional 〈h, µ0〉 :=∫
Ω
h(ω)µ0(dω) subject to constraints: h ∈ H, h(ω) ≤ c(ω) for all ω ∈ Ω.

The optimal value of this program will be denoted as vI(c;µ0).
The dual program is to minimize the integral functional

c(µ) :=
∫

Ω

c(ω)µ(dω)

subject to constraints: µ ≥ 0 (i.e., µ ∈ C(Ω)∗+) and µ ∈ µ0 −H0, where H0

stands for the conjugate (polar) cone in C(Ω)∗+,

H0 := {µ ∈ C(Ω)∗ : 〈h, µ〉 ≤ 0 for all h ∈ H}.

The optimal value of this program will be denoted as vII(c;µ0).
Thus, for any µ0 ∈ C(Ω)∗+, one has

vI(c;µ0) = sup{〈h, µ0〉 : h ∈ H(c)}, (1)

vII(c;µ0) = inf{c(µ) : µ ≥ 0, µ ∈ µ0 −H0}. (2)

In what follows, we endow C(Ω)∗ with the weak∗ topology and consider
vI(c; ·) and vII(c; ·) as functionals on the whole of C(Ω)∗ by letting vI(c;µ0) =
vII(c;µ0) = +∞ for µ0 ∈ C(Ω)∗ \ C(Ω)∗+.

Clearly, both functionals are sublinear that is semi-additive and positive
homogeneous. Furthermore, it is easily seen that the subdifferential of vI at 0
is exactly the closure of H(c),

∂vI(c; 0) = clH(c). (3)

Note that
vI(c;µ0) ≤ vII(c;µ0). (4)

Also, an easy calculation shows that the conjugate functional v∗II(c;u) :=
sup{〈u, µ0〉 − vII(c;µ0) : µ0 ∈ C(Ω)∗}, u ∈ C(Ω), is the indicator function of
clH(c),

v∗II(c;u) =
{

0, u ∈ clH(c);
+∞, u /∈ clH(c); (5)

therefore, the second conjugate functional v∗∗II (c;µ0) := sup{〈u, µ0〉−v∗II(c;u) :
u ∈ C(Ω)} is exactly vI(c;µ0),

v∗∗II (c;µ0) = vI(c;µ0), µ0 ∈ C(Ω)∗. (6)

As is known from convex analysis (e.g., see [47] where a more general
duality scheme was used), the next result is a direct consequence of (6).

Proposition 1. Given µ0 ∈ dom vI(c; ·) := {µ ∈ C(Ω)∗+ : vI(c;µ) < +∞},
the following assertions are equivalent:

(a) vI(c;µ0) = vII(c;µ0);
(b) the functional vII(c; ·) is weakly∗ lower semi-continuous (lsc) at µ0.
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Say c is regular if it is lsc on Ω and, for every µ0 ∈ dom vI(c; ·),

vII(c;µ0) = inf{c(µ) : µ ≥ 0, µ ∈ µ0 −H0, ‖µ‖ ≤M‖µ0‖}, (7)

where M = M(c;H) > 0. Note that if µ0 /∈ dom vI(c; ·) then, by (4),
vII(c;µ0) = +∞; therefore, for such µ0, (7) is trivial. Thus, for a regular
c, (7) holds true for all µ0 ∈ C(Ω)∗.

Proposition 2. (i) If c is regular, then vII(c; ·) is weakly∗ lsc on C(Ω)∗+ hence
both statements of Proposition 1 hold true whenever µ0 ∈ C(Ω)∗+.

(ii) If, in addition, µ0 ∈ dom vI(c; ·) then there exists an optimal solution
to program II.

Proof. (i) It suffices to show that for every real number C the Lebesgue
sublevel set L(vII(c; ·);C) := {µ0 ∈ C(Ω)∗+ : vII(c;µ0) ≤ C} is weakly∗

closed. According to the Krein–Shmulian theorem (see [11, Theorem V.5.7]),
this is equivalent to that the intersections of L(vII(c; ·);C) with the balls
BC1(C(Ω)∗) := {µ0 ∈ C(Ω)∗ : ‖µ0‖ ≤ C1}, C1 > 0, are weakly∗ closed. Since
c is regular, one has

L(vII(c; ·);C) ∩BC1(C(Ω)∗) = {µ0 : (µ0, µ) ∈ L′(C,C1)}, (8)

where

L′(C,C1) := {(µ0, µ) ∈ C(Ω)∗+ × C(Ω)∗+ : ‖µ0‖ ≤ C1, ‖µ‖ ≤M‖µ0‖,
c(µ) ≤ C, µ ∈ µ0 −H0}. (9)

Note that the functional µ �→ c(µ) is weakly∗ lcs on C(Ω)∗+ because of lower
semi-continuity of c as a function on Ω, and it follows from here that L′(C,C1)
is weakly∗ closed hence weakly∗ compact in C(Ω)∗×C(Ω)∗. Being a projection
of L′(C,C1) onto the first coordinate, the set L(vII(c; ·);C) ∩BC1(C(Ω)∗) is
weakly∗ compact as well, and the result follows.

(ii) This follows from the weak∗ compactness of the constraint set of (7)
along with the weak∗ lower semi-continuity of the functional µ �→ c(µ). �

We say that the regularity assumption is satisfied if every H-convex func-
tion is regular.

The next result is a direct consequence of Proposition 2.

Corollary 1. Suppose the regularity assumption is satisfied, then the duality
relation vI(c;µ0) = vII(c;µ0) holds true whenever c is H-convex and µ0 ∈
C(Ω)∗+. If, in addition, µ0 ∈ dom vI(c; ·), then these optimal values are finite,
and there exists an optimal solution to program II.

We now give three examples of convex cones H, for which the regularity
assumption is satisfied. In all the examples, Ω = X × Y , where X, Y are
compact Hausdorff spaces.
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Example 1. Suppose H = {h = huv : huv(x, y) = u(x) − v(y), u ∈ C(X), v ∈
C(Y )}. Since H is a vector subspace and 1Ω ∈ H, one has ‖µ‖ = 〈1Ω , µ〉 =
〈1Ω , µ0〉 = ‖µ0‖ whenever µ ∈ µ0 − H0, µ ≥ 0, µ0 ≥ 0; therefore, (7) holds
with M = 1, and the regularity assumption is thus satisfied.

Remark 1. As follows from [42, Theorem 1.4, (b)⇔(c)] (see also [43, Theorem
10.3]), a function c : Ω = X × Y → IR ∪ {+∞} is H-convex relative to H
from Example 1 if and only if it is bounded below and lsc. (Note that, since
Ω is compact, every lsc function c is automatically bounded below.)

Example 2. Let X = Y and H = {h = hu : hu(x, y) = u(x) − u(y), u ∈
C(X)}, then H0 = {ν ∈ C(Ω)∗ : π1ν − π2ν = 0}, where π1ν and π2ν are
(signed) Borel measures on X as given by 〈u, π1ν〉 =

∫
X×X

u(x) ν(d(x, y)),
〈u, π2ν〉 =

∫
X×X

u(y) ν(d(x, y)) for all u ∈ C(X). Observe that any H-convex
function c : Ω = X × X → IR ∪ {+∞} is lsc (hence, bounded from below),
vanishes on the diagonal (c(x, x) = 0 ∀x ∈ X), and satisfies the triangle
inequality c(x, y)+ c(y, z) ≥ c(x, z) whenever x, y, z ∈ X. Moreover, it follows
from [47, Theorem 6.3] that every function with such properties is H-convex.
Let µ0, µ ∈ C(Ω)∗+ and µ ∈ µ0 −H0. Then ν = µ − µ0 ∈ −H0 = H0, hence
π1µ− π2µ = π1µ0 − π2µ0, and (2) is rewritten as

vII(c;µ0) = inf{c(µ) : µ ≥ 0, π1µ− π2µ = π1µ0 − π2µ0}. (10)

Furthermore, since c is lsc, vanishes on the diagonal, and satisfies the triangle
inequality, it follows from [47, Theorem 3.1] that (10) is equivalent to

vII(c;µ0) = inf{c(µ) : µ ≥ 0, π1µ = π1µ0, π2µ = π2µ0}. (11)

Therefore,

‖µ‖ = 〈1Ω , µ〉 = 〈1X , π1µ〉 = 〈1X , π1µ0〉 = 〈1Ω , µ0〉 = ‖µ0‖

whenever µ satisfies the constraints of (11); therefore, (7) holds with M = 1,
and the regularity assumption is thus satisfied.

Example 3. Let X = Y and H = {h = huα : huα(x, y) = u(x) − u(y) −
α, u ∈ C(X), α ∈ IR+}, then (−1Ω) ∈ H, and for any µ ∈ µ0 −H0 one has
‖µ‖ − ‖µ0‖ = 〈1Ω , µ − µ0〉 ≤ 0. Therefore, (7) holds with M = 1, and the
regularity assumption is satisfied.

Remark 2. Taking into account Example 2, it is easily seen that any function
c : Ω = X × X → IR ∪ {+∞} of the form c(x, y) = ϕ(x, y) − α, where
α ∈ IR+,ϕ is lsc, vanishes on the diagonal, and satisfies the triangle inequality,
is H-convex relative to H from Example 3. On the other hand, it is clear that
any H-convex function c satisfies the condition c(x, x) = const ≤ 0 ∀x ∈ X.

Now suppose that µ0 = δω is the Dirac measure (delta function) at some
point ω ∈ Ω, 〈u, δω〉 := u(ω) whenever u ∈ C(Ω). We shall show that in this
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case some duality results can be established without the regularity assump-
tion.

Observe that for all ω ∈ Ω one has vI(c; δω) = vI(coH(c); δω) = coH(c)(ω).

Proposition 3. Two statements hold as follows:
(i) If c is H-convex, then the duality relation vI(c; δω) = vII(c; δω) is valid

whenever ω ∈ Ω;
(ii) If, for a given ω ∈ Ω, vI(c; δω) = vII(c; δω), then vI(coH(c); δω) =

vII(c; δω) = vII(coH(c); δω).

Proof. (i) By using the definition of vI and taking into account that c is H-
convex, one gets vI(c; δω) = coH(c)(ω) = c(ω). Further, since µ = δω satis-
fies constraints of the dual program, it follows that vII(c; δω) ≤ c(ω); hence
vI(c; δω) ≥ vII(c; δω), and applying (4) completes the proof.

(ii) Since c ≥ coH(c), it follows that vII(c; δω) ≥ vII(coH(c); δω); therefore,
vI(coH(c); δω) = vI(c; δω) = vII(c; δω) ≥ vII(coH(c); δω), and taking into
account (4), the result follows. �

Let us define a function

c#(ω) := vII(c; δω). (12)

Clearly, c# ≤ c.

Lemma 1. H(c) = H(c#).

Proof. If h ∈ H(c), then, for every µ ≥ 0, µ ∈ δω − H0, one has c(µ) ≥
〈h, µ〉 ≥ h(ω), hence c#(ω) = inf{c(µ) : µ ≥ 0, µ ∈ δω −H0} ≥ h(ω), that is
h ∈ H(c#).

If now h ∈ H(c#), then h ∈ H(c) because c# ≤ c. �

The next result is a direct consequence of Lemma 1.

Corollary 2. For every ω ∈ Ω, c(ω) ≥ c#(ω) ≥ coH(c)(ω).

It follows from Corollary 2 that if c is H-convex, then c# = c.

Corollary 3. c# is H-convex if and only if c# = coH(c).

Proof. If c# is H-convex, then c#(ω) = sup{h(ω) : h ∈ H(c#)}, and applying
Lemma 1 yields c#(ω) = sup{h(ω) : h ∈ H(c)} = coH(c)(ω). If c# fails to
be H-convex, then there is a point ω ∈ Ω such that c#(ω) > sup{h(ω) :
h ∈ H(c#)}, and applying Lemma 1 yields c#(ω) > sup{h(ω) : h ∈ H(c)} =
coH(c)(ω). �

Proposition 4. The following statements are equivalent:
(a) c# is H-convex;
(b) the duality relation vI(c; δω) = vII(c; δω) holds true whenever ω ∈ Ω;
(c) for all ω ∈ dom coH(c) := {ω ∈ Ω : coH(c)(ω) < +∞}, the functional

vII(c; ·) is weakly∗ lsc at δω.


