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To our teacher, colleague and friend



Preface

The purpose of this book is twofold. We would like to offer our readers a
collection of high quality papers in selected topics of Discrete Mathematics,
and, at the same time, celebrate the 60th birthday of Jarik Nesettil. Since our
discipline has experienced an explosive growth during the last half century,
it is impossible to cover all of its recent developments in one modest volume.
Instead, we concentrate on six topics, those closest to Jarik’s interests. We
have invited leading experts and close friends of Jarik’s to contribute to this
endeavor, and the response has been overwhelmingly positive. We were for-
tunate to receive many outstanding contributions. They are divided into six
parts.

Contents

The topics of the first part are rather diverse, including Algebra, Geometry,
and Numbers and Games. Michael E. Adams and Ale§ Pultr consider rigidity
(lack of nontrivial homomorphisms) of algebraic structures, and they con-
struct 2% rigid countable Heyting algebras. Vitaly Bergelson, Hillel Fursten-
berg, and Benjamin Weiss introduce a new notion of “large” sets of integers,
piecewise-Bohr sets, and they show, in particular, that the sum of two sets
of positive upper density is piecewise Bohr. Christopher Cunningham and
Igor Kriz investigate a generalization of the Conway number games to more
than two players and construct games with any given value. Miroslav Fiedler
solves extremal geometric questions, namely, the shape of n-dimensional unit-
volume simplices that maximize the length of a Hamilton cycle or path in
their graph. The paper of Vaclav Koubek and Jiti Sichler in universal alge-
bra concerns the relation of (J-universality and finite-to-finite universality of
algebras. Christian Krattenthaler studies a simplicial complex associated to a
colored root system, the generalized cluster complex, and proves a generaliza-
tion of remarkable relations, discovered by Chapoton, concerning certain face
counts.
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Part IT contains contributions in Ramsey theory. Ron Graham and Jézsef
Solymosi give an elementary proof that an nxn integer grid colored by fewer
than loglogn colors contains a monochromatic vertex set of an equilateral
right triangle. Andras Gyarfas, Miklés Ruszinkd, Gabor N.Sarkézy, and En-
dre Szemerédi use the regularity lemma for constructing coverings of edge-r-
colored complete bipartite graphs by vertex-disjoint monochromatic cycles.
Neil Hindman and Imre Leader consider a variant of partition-regularity
of systems of linear equations, where they look for nonconstant solutions.
Alexandr Kostochka and Naeem Sheikh construct infinitely many graphs for
which the ratio of the induced Ramsey number to the weak induced Ramsey
number is bounded away from 1, answering a question of Luczak and Gorgol.
Pavel Pudlék applies the recent Bourgain—Katz—Tao theorem on sums and
products in finite fields to an explicit construction of 3-colorings of complete
bipartite graphs with no large monochromatic complete bipartite subgraphs.

Topics in graph and hypergraph theory begin with Part II1. Jézsef Balogh,
Béla Bollobas, and Robert Morris consider the enumeration of ordered graphs
not containing any ordered subgraph from a fixed (possibly infinite) set. The
contribution of Zoltan Firedi, Kyung-Won Hwang, and Paul Weichsel is best
described by its title: A proof and generalizations of the Erdés—Ko-Rado the-
orem using the method of linearly independent polynomials. Tom&s Kaiser,
Daniel Kral’, and Serguei Norine prove that in any cubic bridgeless graph at
least 60% of edges can be covered by two matchings, a result related to a
conjecture of Berge and Fulkerson. Brendan Nagle, Vojtéch Rédl, and Math-
ias Schacht apply the hypergraph regularity method, a recent hypergraph
generalization of the Szemerédi regularity lemma, to extremal problems for
hypergraphs. Colin McDiarmid, Angelika Steger, and Dominic Welsh define
addable graph classes, which include planar graphs and many other natural
classes, and show that the probability of a random graph from such a class
being connected is bounded away from both 0 and 1.

The papers in Part IV deal with graph homomorphisms. Noga Alon
and Asaf Shapira survey the role of homomorphisms in recent results on
constant-time probabilistic testing of graph properties. Christian Borgs, Jen-
nifer Chayes, Lasz1é Lovasz, Vera T. Sés, and Katalin Vesztergombi look at
the number of homomorphisms G — H from various perspectives such as
graph isomorphism, reconstruction, probabilistic property testing, and statis-
tical physics. Josep Diaz, Maria Serna, and Dimitrios Thilikos investigate an
algorithmic problem, the fixed-parameter complexity of testing the existence
of a homomorphism G — H, where H is fixed, G is the input, and the num-
ber of preimages of certain vertices of H is restricted. Pavol Hell considers
the Dichotomy Conjecture, stating that every class of constraint satisfaction
problems specified by a fixed relational structure H is either polynomial-time
solvable or NP-complete, establishes special cases, and connects the problem
to graph colorings.

Part V is concerned mostly with generalized graph colorings. Those in
the paper by Glenn Chappell, John Gimbel, and Chris Hartman are path-
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colorings of planar graphs. Dwight Duffus, Vojtéch Ro6dl, Bill Sands, and
Norbert Sauer consider the minimum chromatic number of graphs and hyper-
graphs of large girth that cannot be homomorphically mapped to a specified
graph or hypergraph, obtaining a new probabilistic hypergraph construction
in the process. Mickaél Montassier, André Raspaud, and Weifan Wang prove
acyclic 4-choosability of planar graphs with excluded cycles of certain lengths.
Xuding Zhu presents an authoritative survey of the circular chromatic num-
ber, a parameter introduced by Vince in 1988 that carries more information
than the chromatic number itself. The contribution of Claude Tardif sticks to
the usual chromatic number and provides an algorithmic version of a special
case of the celebrated Hedetniemi conjecture.

Part VI on graph embeddings opens with the paper by Hubert de Fraysseix
and Patrice Ossona de Mendez, who consider embeddings of multigraphs in
the k-dimensional Euclidean space such that automorphisms correspond to
isometries and present an elegant characterization of such embeddings. Bojan
Mohar extends an intriguing result of Youngs on quadrangulations of the
projective plane, and constructs the first explicit family of infinitely many
5-critical graphs on a fixed surface. Jdnos Pach and Géza Téth relate the
torus crossing number of a graph to the planar crossing number. The survey
of Jozef Siran deals with the classification of regular maps (maps possessing
the highest level of symmetry — their automorphism groups act transitively
on the set of flags) and explains its intriguing connections to other branches
of mathematics.

Presented in a part of its own comes the last article written by Jgrgen
Bang-Jensen, Bruce Reed, Mathias Schacht, Robert Sadmal, Bjarne Toft and
Ulrich Wagner about six problems posed by Jarik Nesetfil and their current
status. This last paper is just a small example of the enormous influence Jarik
has had on other researchers.
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Dedication

Jarik Nesetfil is a scientist and an artist of extraordinary breadth and vision.
His publication record and other achievements, including over a half-dozen
textbooks and monographs, an honorary doctorate and an academy member-
ship, speak for themselves. Equally important is Jarik’s tireless work with
students and younger colleagues. He founded the Prague Combinatorics Sem-
inar, which helped shape the careers of several generations of Czech mathe-
maticians and computer scientists. Among them, the present editors greatly
benefited from Jarik’s guidance, ideas, and endless enthusiasm. We would like
to express our appreciation and wish him many more productive years filled
with success and satisfaction.

Acknowledgement. Many people helped us with this volume. We are in-
debted to the referees, who generously gave their time and effort in order to
improve the presentation of the contributions. In preparation of the final ver-
sion we were greatly assisted by our technical editor Helena Nyklova, whose
meticulous copyediting is warmly appreciated. We also thank Ms. J. Borkov-
cova for her kind permission to reprint the photograph of Jarik. Finally, we
would like to thank the Institute for Theoretical Computer Science and De-
partment of Applied Mathematics of Charles University for their support.'

Prague and Atlanta, Martin Klazar
13" March 2006 Jan Kratochwvil
Martin Loebl
Jir{ MatouSek

Robin Thomas
Pawvel Valtr

! In the framework of Czech research grants 1M0021620808 and MSM0021620838.
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Countable Almost Rigid Heyting Algebras

Michael E. Adams! and Ale§ Pultr?*

! Department of Mathematics, State University of New York, New Paltz,

NY 12561, USA
adamsm@newpaltz.edu

2 Department of Applied Mathematics and ITI, MFF, Charles University,
Malostranské nam. 25, CZ 11800 Praha 1, Czech Republic
pultr@kam.ms.mff.uni.cz

Summary. For non-trivial Heyting algebras Hi, H> one always has at least one
homomorphism H; — Hs; if Hi = H, there is at least one non-identical one. A
Heyting algebra H is almost rigid if |End(H)| = 2 and a system of almost rigid
algebras # is said to be discrete if | Hom(H:, H2)| = 1 for any two distinct Hi, H> €
H. We show that there exists a discrete system of 2“ countable almost rigid Heyting
algebras.

AMS Subject Classification. 06D20, 18A20, 18B15.
Keywords. Heyting algebras, almost rigid, discrete system, Priestley duality.

Introduction

A Heyting algebra
(H5 V7 /\7 _)7 07 ]')

is an algebra of type (2,2,2,0,0) where (H;V,A,0,1) is a distributive (0, 1)-
lattice and the extra operation z — y satisfies the formula

z<z—y iff zAz<y.

That is to say, a Heyting algebra is a bounded relatively pseudocomplemented
distributive lattice for which relative pseudocomplementation is taken to be
a binary algebraic operation.

Since any two elements of a finite distributive lattice have a uniquely
determined relative pseudocomplement, any finite distributive lattice can be
viewed as a Heyting algebra. So too, any two elements of a Boolean algebra

* The second author would like to express his thanks for the support by the project
LN 00A056 of the Ministry of Education of the Czech Republic.



4 Michael E. Adams and Ale§ Pultr

have a uniquely determined relative pseudocomplement a—b = —a V b which
also provides an example of a Heyting algebra.

For an algebra A, let Aut(A) (resp End(A)) denote the group of automor-
phisms (resp. the monoid of endomorphisms) of A under the operation of
composition. An algebra is automorphism rigid provided | Aut(A)| = 1, that
is, the only automorphism of A is the identity.

Independently, Jénsson [Jén51], Katétov [Kat51], Kuratowski [Kur26], and
Rieger [Rie51] have shown that there exists a proper class of non-isomorphic
automorphism rigid Boolean algebras. Since, as observed above, every Boolean
algebra is relatively pseudocomplemented, there exists a proper class of non-
isomorphic automorphism rigid Heyting algebras as well.

In sharp contrast with respect to their automorphism groups, as inde-
pendently shown by Magill [Mag72], Maxson [Max72], and Schein [Sch70],
Boolean algebras are uniquely recoverable from their endomorphism monoids.
That is, for Boolean algebras B and B, if End(B) = End(B’), then B = B’; or,
by the result of Tsinakis ([Tsi79]), for bounded relative Stone lattices which
are principal, End(S) = End(S’) implies S = S’ as well. However, this is far
from the case for general Heyting algebras, where endomorphisms can be very
few.

There are necessary non-identical homomorphisms, though. Every non-
trivial Heyting algebra has at least one minimal prime ideal. Furthermore, for
each minimal prime ideal I of a Heyting algebra H, and any other Heyting
algebra H', p(x) = 0 for x € I and 1 otherwise determines an homomorphism
¢ : H— H'. Such homomorphisms will be referred to as

trivial homomorphisms.
In particular, if |[H| > 3, then | End(H)| > 2. Dismissing the necessary trivial
endomorphisms one defines an almost rigid Heyting algebra H as such that
| End(H)| = 2. Thus, by the preceding remarks, H is almost rigid if and only if
|H| > 3,if H has exactly one minimal prime ideal and the only endomorphism
other than the identity is associated with the minimal prime as indicated.

In [AKSS85] it was shown that there exists a proper class of non-isomorphic
almost rigid Heyting algebras. All the almost rigid Heyting algebras from
[AKSS85] have cardinality > 2¢. Taking into account that for |H| > 4 there is
no almost rigid finite Heyting algebra (for any such H either there are at least
two minimal prime ideals I and I’ or else a minimal prime ideal I and another
prime ideal I' which is minimal with respect to properly containing I; in the
former case obviously | End(H)| > 3, in the latter case, fora € I' \ I, ¢p(z) =0
for x € I, a for x € I' \ I, and 1 otherwise determines an endomorphism
¥ € End(H) distinct from ¢ associated with I, and |End(H)| > 3 again) this
begs the question whether there are countable almost rigid Heyting algebras.
This is answered in the positive in this article. Moreover, we show that

there exists a system H of 2% countable almost rigid Heyting algebras such that

— for each A in H, End(H) = {ida,Taa}, and
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— for any two distinct A, B in H there is exactly one homomorphism Tap :
A — B,

where the Top are unique trivial homomorphisms.
For related background on Heyting or Boolean algebras see Balbes and
Dwinger [BD74] or Koppelberg [Kop89].

1 Preliminaries

Let (P,<) be a partially ordered set. For Q C P, set | Q = {z € P |
x < y forsome y € Q} and 1Q = {z € P | z > y for some y € Q}; for
Q = {z} we write just |z and fz, respectively. A set () is said to be decreasing
or increasing if @ =1Q or Q@ =1Q), respectively. For partially ordered sets P
and P, a mapping ¢ : P — P’ is order-preserving providing ¢(z) < ¢(y)
whenever x < y.

A Priestley space (P;<,7) is a partially ordered set (P, <) endowed with
a compact topology 7 which is totally order-disconnected (namely, for any
x,y € P such that x £ y there exists a clopen decreasing set () C P such that
z € Qandy € Q).

As shown by Priestley [Pri70], [Pri72], the category of non-trivial distribu-
tive (0, 1)-lattices together with all (0, 1)-lattice homomorphisms is dually
isomorphic to the category of Priestley spaces together with all continuous
order-preserving maps. The equivalence functors are usually given as

P(L) = {z | L # = a prime ideal of L}, P(h)(z) = h '[z],
D(X) ={U | U= C X clopen }, D(f)(U) = f[U];

P(L) is endowed with a suitable topology and ordered by inclusion.

Since every Heyting algebra is a distributive (0, 1)-lattice, it is to be ex-
pected that the category of all non-trivial Heyting algebras is dually isomor-
phic to a well-defined subcategory of the category of all Priestley spaces. And
indeed, the Priestley spaces X dual to Heyting algebras are precisely those
with the additional property that tU is clopen whenever U is clopen. Such
Priestley spaces will be called

h-spaces,
and if L, M are Heyting algebras then the Heyting homomorphisms h : L — M
correspond to the Priestley maps f such that, moreover,

flz) =1f ().

Such maps will be referred to as
h-maps.
It is this dual equivalence that we will use in order to establish our result.
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2 The Construction

The Posets

Set X ={n € N | n > 5} and decompose this set as follows. Start with

X, ={5}, ¢(2)=5
Xo = X1 = {6,7,8,9,10}, ¢(3) = 10,

and further proceed inductively: if Xy = {#(k) + 1,0(k) +2,...,¢(k + 1)} is
already defined (and, hence, ¢(k) and ¢(k + 1) too), take, for each element
o(k) +j € Xk, a set Xjy1,; determined as follows

Xiy11 ={o(k+1)+1,...,0(k+1)+¢(k)+ 1}, the first ¢(k) + 1 natural
numbers after ¢(k + 1),

Xit12 ={op(k+1)+d(k)+2,0p(k+1)+d(k)+3,....o(k+1)+24(k)+3},
the next ¢(k) + 2 natural numbers after ¢(k + 1) + (k) + 1,

where, in general, for 1 < j < ¢(k + 1) — ¢(k), ‘
X1y = {o(k+ 1)+ (G = Dok) + (3) +1,...,0(k+1) +jo(k) + (731)},

the next ¢(k) + j natural numbers after ¢(k + 1) + (j — 1)p(k) + ().

Then set

é(k+1)—¢(k)
Xpp1 = {8k + D)+ Lok + 1) +2,..,0k+2} = | = Xppaye

=1
For triples x, y, z of distinct elements belonging to the same X, choose distinct

m(z,y,2) ¢ X
and set
T ={7(z,y,2) | 7,y,2}
and
Y =XUTU{w}

where w is an element ¢ X UT.
Now choose a countably infinite system Q of quadruples {z;,x2, 23,24}
such that

e for every ¢ = {x1,x2, 23,24}, ¢ C X}, for some k, and
e if pgeQ p#q,then png=10.

For A C QQ set
Z(A)=YUA

and define an order C on Z(A) by

wC z for all z € Z(A),
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and by transitivity from the successor relation < where

z,y,2 < 7(2,y,2),
x; < {x1, 22, x3,24} for {x1,20,23,24} € A,
and for € Xj41,5, < ¢(k) + j.
Note that
1z is finite for all x € Z(A) \ {w}.
To simplify the notation define the degree
d(n)=n for ne€X,

d (r(z,y,2)) =3,
d (q) = 4 for q € A;

for w the degree is undefined.

The Topology

Z(A) is endowed with the topology in which
U is open iff either w ¢ U or Z(A) \ U is finite.
Thus we have

Observation 2.1. The clopen sets are precisely the finite M not containing w

and the complements of such sets,and hence the TM with clopen M are clopen.
If x is not C y then y ¢tz and 1z is clopen. Thus,

each Z(A) with the order T and the topology just defined is an h-space.

From this we immediately obtain
Fact 2.2. All the Heyting algebras D(Z(A)) are countable.
In the sequel, f will always be an h-map Z(A4) — Z(B).

Lemma 2.3. 1. f(w) =w.
2. If f(M) = {z} for an infinite M C Z(A) then x = w.

Proof. 1. {f(w)} = f(Jw) =1f(w); hence }f(w) has just one element.
2. For an infinite M we have w € M. Thus, w = f(w) € f(M) C

f(M) = {x}.

A branch of an element z € Z(A) is any |y with y < z. Note that the
degree d(z) defined above is the number of distinct branches of z.

Lemma 2.4. 1. Ift = 7(x1,22,23) (resp. ¢ = {x1,22,23,24} € A) and
f(zi) T f(t) (resp. f(q)) for all i then we cannot have d(f(t)) > 4 (resp.
d(f(q) = 5)-
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2. If t = 1(x1,22,23) and f(z;) T f(t) for all i then we cannot have two
f(xi), f(xj), i # j in the same branch ly of f(t).

3. If ar,as,a3 < a € Z(A) are distinct, f(a1) C f(a2) C
f(a) then all the f(a;) are in the same branch of f(a).

Proof. 1. LF(t) = F(I£) = {F()}U Lf(21)U LF(22)U Lf(zs) (resp. {£(g)}U 4
Fx)U Lf (22)U Lf (23)U Lf(x4)) and hence |f(t) cannot have more than
three (resp. four) branches.

2. 1 f(t) consists of at least three branches and hence it cannot be covered
by ly and just one more branch.

3. By 2, a € X UA. Consider t = 7(a1,a2,a3). By 2, f(t) = f(a2) or
f(t) = f(as). Then either f(as) C f(a2) or f(a2) C f(as). O

Observation 2.5. The map

f(a) and f(a3) C

const, = const’*B : Z(A) — Z(B)
defined by const,(x) = w for all x € Z(A) is an h-map.

(This is the Priestley image of the unique trivial homomorphism between
the corresponding Heyting algebras, each of which has precisely one minimal
prime ideal.)

3 The Result

Lemma 3.1. For a # w such that f(a) # w one cannot have d(f(a)) < d(a).

Proof. It f(b) C f(a) for all b < a we are led to a contradiction by 2.4.3: let
C consist of all the ¢ < f(a). Then there have to be two distinct by,bs with
f(b;) C ¢ for some ¢ € C and we have an 2 C a such that ¢ = f(z). Now 2 C b
for some b < a and we have f(b1), f(b2) C f(b) (of course, b can be one of the
b;). Now by 2.4.3 all the f(b) with b < a are in the same branch of f(a), a
contradiction.

Thus, there is an a1 < a9 = a such that f(a1) = f(a) and as d(a1) > d(ap)
we can repeat the procedure to obtain

ag > ai > ag > --- with f(al) = f(a),
and by 2.3.2 we have f(a) = w contradicting the assumption. [

Thus in particular
fIXU{w}] € X U{w}.
In the following four lemmas, f is, as before, an h-map Z(4) — Z(B), but

since all the facts are relevant for the restriction X U {w} — X U {w} only
(and since | (X U{w}) = X U{w}), we can use expressions such as f(a) = a,

f(f(a)), or f(L a) = | f(a).
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Lemma 3.2. If a € X and f(a) # w then f(a) C a and f(f(a)) = f(a). If
f(a) C a, we have an a' C a such that a’ = f(a) = f(a’).

Proof. We already know that d(f(a)) > d(a), hence if f(a) # w we have
f(a) € X. Suppose that d(f(a)) > d(a). Then we cannot have f(b) C f(a) for
all b < a since in such a case

fla) = {f@}uJ{ru) 1 b < a}

cannot cover Jf(a).

Hence for some a; < a we have f(a1) = f(a). Now d(a;) > d(a). If we still
have d(f(a)) > d(a1), we can repeat the argument and ultimately we obtain
a=ap = a = - = ap with f(a;) = f(a), d(a;) < d(f(a)) for i < k, and
d(ar) = d(f(a)) (by 3.1 we cannot have d(ay) > d(f(a))). Since d(ax) > 5,
ar, and f(a) = f(ag) are in X and hence ar = f(ax) by the equality of the
degrees.

Lemma 3.3. If for an a € X one has f(a) = a then f is identical on the
whole of la.

Proof. Let x C a be an element with the shortest path z < 1 < --- < a such
that f(z) C z. As Ja = f(la), z = f(y) C y for some y C a. But then y is
one of the x; which is a contradiction, by Lemma 3.2. O

Lemma 3.4. If there is an & € X such that f(x) = b T z then there is a
y € X such that f(y) =u C y and b,u are incomparable.

Proof. f(b) = b and hence f is identical on |b. Choose by # b2, b; < b; thus
f(b;) = b;. Let by,bs € Xj. Choose a y € Xy incomparable with b (since
b C x C 5 there exist such incomparable elements). Set

t = 71(b1,b2,y).

Now b; = f(b;) C f(t) (we cannot have an equality as b; are incomparable)
and hence f(y) # w (else (1) = {£(£)}U Ib1U 1bs £LF(1)). Thus, f(y) T y
We cannot have f(y) = y for all such y: in such a case f would be identical
on the whole of X} which would fix all the elements above as well, including
5 and z, contradicting the assumption (if f(a) = a for all a < n € X then
f(n) Jdafor all @ < n and hence f(n) O n; we cannot have f(n) J n though,
since that would imply d(f(n)) < d(n)).

Thus there has to be some such y with v = f(y) C y, and now u is
incomparable with b.

Lemma 3.5. For w # x € X one cannot have f(x) # w and d(f(x)) > d(z).

Proof. Suppose there is such an z. By 3.2 and 3.4 we can choose an instance of
b < a such that f(a) = f(b) = b and that there exists a u € X incomparable
with b such that f(u) = w is in an X; with | < k where b is in X} (this can
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be achieved but exchanging the b and u in 3.4 if necessary). Consider a ¢ < a,
¢ # b and a general z # b,cin Xy. Set t = 7(b, ¢, z). Since f(c) C f(a) = f(b)
we cannot have (see 2.4.2)

f(0), f(c), f(z) T f(D).

Now f(t) cannot be equal to f(z) and distinct from the others since then
b= f(b) C f(t) = f(z) and hence, z being in the same X}, as b, d(f(z)) < d(z)
contradicting 3.1. Thus we have f(¢) equal to either f(c) or f(b) and hence
f(z) T () =b.

Thus, f(X) Clb. Take a v CE u in Xj. Then f(v) = v by 3.3 and we have
a contradiction: v cannot be in |b since u and b are incomparable and the
subposet (X,C) of Z(A) is a tree.

Lemma 3.6. Let f : Z(A) — Z(B) be an h-map. Then either f(X) = {w} or
fn)=n for alln € X.

Proof. By 3.5 and 3.1, f(5) = w or f(5) = 5. Hence f(5) =5 and, by 3.3, f is
identical on X =J5.

Theorem 3.7. Let f : Z(A) — Z(B) be an h-map. Then either f is const,,
or it is the inclusion map Z(A) C Z(B).

On the other hand, any inclusion A C B, with A, B C Q can be extended
to an inclusion h-map Z(A) C Z(B).

Proof. If f(5) = w then f(X) = {w} by monotonicity. Now if for y € T or
y € A one should have f(y) = z # w we had |z # f(ly) = {f(y)} U{w}.
Thus, also f(y) = w.

If f(5) # w then f is identical on X. This also fixes T, since for
t = 7(x,y,2), v,y,2 C f(t) and equality is impossible since x,y,z are in-
comparable, and since any other element greater then all the z,y, z has too
many branches to be covered by f(Jt). Finally for ¢ = {1, 22, 23,24} € A one
cannot have f(q) € T by 3.1. Since the z; are incomparable, f(q) coincides
with none of the f(x;) = z; and hence, by 2.4.1, f(¢q) ¢ X. By monotonicity,
f(q@) # w and hence f(q) € B. But there is only one p € Q such that z; C p
for i = 1,2, 3,4, namely ¢ itself. The second statement is obvious.

As above, denote by N the set of all natural numbers.

Theorem 3.8. There exist countable almost rigid Heyting algebras H(A) as-
sociated with the subsets A C N such that

e if A¢ B there is no non-trivial homomorphism H(A) — H(B), and
e if A C B there exists exactly one non-trivial homomorphism H(A) —
H(B).

Consequently there exist 2% countable almost rigid Heyting algebras such that
the only homomorphism between any two distinct of them is the trivial one.
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Proof. The first part immediately follows from 3.7 and 2.2.

For the second statement it suffices to observe that there are 2¥ many
subsets of N such that no two of them are in inclusion.

For any N C N consider the set

N={2n|neN}U{2n+1|n¢N}.

Then N, C N, only if N; = No. 0
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Summary. We use ergodic-theoretical tools to study various notions of “large” sets
of integers which naturally arise in theory of almost periodic functions, combinatorial
number theory, and dynamics. Call a subset of IN a Bohr set if it corresponds to
an open subset in the Bohr compactification, and a piecewise Bohr set (PWB) if
it contains arbitrarily large intervals of a fixed Bohr set. For example, we link the
notion of PWB-sets to sets of the form A+B, where A and B are sets of integers
having positive upper Banach density and obtain the following sharpening of a recent
result of Renling Jin.

Theorem. If A and B are sets of integers having positive upper Banach density,
the sum set A+B is PWB-set.

AMS Subject Classification. 37TA45.
Keywords. Bohr sets, Banach density, measure preserving system, Kronecker factor.

1 Introduction to Some Large Sets of Integers

In combinatorial number theory, as well as in dynamics, various notions of
“large” sets arise. Some familiar notions are those of sets of positive (upper)
density, syndetic sets, thick sets (also called “replete”), return-time sets (in
dynamics), sets of recurrence (also known as Poincaré sets), (finite or infinite)
difference sets, and Bohr sets. We will here introduce the notion of “piecewise-
Bohr” sets (or PWB-sets), as well as “piecewise-Bohry” sets (or PWBg-sets),
and we’ll show how they arise in some combinatorial number-theoretic ques-
tions.

We begin with some basic definitions and elementary considerations. We’ll
say that a subset A C Z has positive upper (Banach) density, d*(A) > 0,

* V. Bergelson was partially supported by NSF, grant DMS-0345350.
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if for some § > 0, there exist arbitrarily large intervals of integers J =
{a,a+1,...,a +1— 1} with |J‘9f‘ > §. (Here |S| is the cardinality of the
set S; d*(A) = Lu.b.{d as above}.) Syndetic sets are special cases of sets
with positive upper density. Namely, A is syndetic if for some [, every inter-
val J of integers with |J| > [ intersects A. Clearly d*(A4) > 1/l in this case.
We'll say a set A is thick if it contains arbitrarily long intervals; thus A is
syndetic & Z\A is not thick & AN B # () for any thick set B. For any
distinct r integers {a1,as,...,a,} the set {a; —a;|]1 < i < j < r} is called
an r-difference set or a A,-set. Every thick set contains some r-difference
set for every r. This is obvious for r = 2, and inductively, if A is thick
and if A contains the (r — 1)-difference set formed from {a,...,a,_1}, by
choosing a, in the middle of a large enough interval in A, we can complete
this to an r-difference set. It follows that for any r, a set that meets every
r-difference set is syndetic. An example of this is the set of (non-zero) differ-
ences A— A={z—y:x,y € A,z #y} when A has positive upper density.
For if d*(A) > 1/r and if the numbers a1, as,...,a, are distinct, the sets
A+ ay, A+ as,..., A+ a, cannot be disjoint; so, for some 1 < i < j < r,
aj —a; € A — A. One conclusion which is behind much of our subsequent
discussion is that if A has positive upper density, then A — A is syndetic. We
shall see in §3 that d*(A) > 0 implies that A — A is a piecewise-Bohr set.

Definition 1.1. S C Z is a Bohr set if there exists a trigonometric polynomial

m .
P(t) = 3 cpe™t, with the Ny real numbers, such that the set
k=1

S"'={n e€Z:Rey(n) >0}

is non-empty and S D S'. When (0) > 0 we say S is a Bohry set. (Compare
with [Bilu97]).

The fact that a Bohr set is syndetic is a consequence of the almost period-
icity of trigonometric polynomials. It is also a consequence of the “uniform
recurrence” of the Kronecker dynamical system on the m-torus

(01302;---0m) — (01+)\1;02+)\2;---;0m+)\m)-

Indeed, it is not hard to see that a set S C Z is Bohr if and only if there exist
m €N, o« € T™ and an open set U C T™ suchthatSD{nEZ:naEU}.

Alternatively we can define Bohr sets and Bohrg sets in terms of the topol-
ogy induced on the integers Z by imbedding Z in its Bohr compactification.
Namely, a set in Z is Bohr if it contains an open set in the induced topology,
and it is Bohry if it contains a neighborhood of 0 in this topology.

We can apply the foregoing observations regarding A — A to dynamical
systems. We shall be concerned with measure preserving systems (X, B, u,T),
where (X, B, 1) is a probability space, T: X — X a measurable measure pre-
serving transformation. We assume (for simplicity) that the system is ergodic
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(T7'A = Afor A € B = pu(A)u(X\A) = 0). The ergodic theorem then
ensures that for A € B with u(4) > 0, the orbit {T™z},cz of almost ev-
ery z visits A along a set of times V(z,A) = {n : T"z € A} of positive
density. If we set Ry(4) = {n: ANT ™A # (0} (the return time set of A),
then for any z, Ri(A) D V(z,A) — V(z,A). Hence R;(A) is syndetic. We
can define a smaller set R(A) = {n : p(ANT"A) > 0} = R(A') where
A= A\ U{(ANnT™A4) : y(ANT"™A) = 0}, and it follows that R(A) is
also syndetic. This can be seen directly as well (and for arbitrary measure
preserving systems), but the present argument illustrates the connection of
dynamics to combinatorial properties of sets. We shall call sets containing sets
of the form R(A), where u(A) > 0, RT-sets (for return time). A set meeting
every RT-set is called a Poincaré set since Poincaré’s recurrence theorem gives
content to the property by implying that R(A) is never empty for u(A) > 0
even if T is not ergodic. These are also known in the literature as intersec-
tive sets. (See [Ruz82]). Much is known about these (see [Fur81], [B-M86|,
[BH96], [BFM96]). In particular {n";n = 1,2,...} is a Poincaré set for each
r=123,...

For a family F of subsets of Z it is customary to denote by F* the dual
family: 7* = {S C Z:VS' € F,SNS’ # }. Note that {syndetic} = {thick}*,
{thick} = {syndetic}* and {RT'} = {Poincaré}*, {Poincaré} = {RT}*.

We have seen above that a AZ-set is necessarily syndetic. One of our
objectives is to sharpen this statement.

We will need the notion of a “PW-F” set for a family F of subsets of Z.
“PW” stands for “piecewise” and if S € F and @ is a thick set then we
shall say SN Q is PW-F (or SN Q € PW-F). Clearly this notion is useful
only for families of syndetic sets. “PW-syndetic” is itself a useful notion. Van
der Waerden’s theorem [GRS80] implies that syndetic sets contain arbitrarily
long arithmetic progressions. In fact this is true for PW-syndetic sets. Unlike
the family of syndetic sets, the latter have the “divisibility” property: if S is
PW-syndetic and S = S; U Sy U---U S is a finite partition, then some
S; is PW-syndetic, see [Bro71]. A recent result of Renling Jin [Jin02] is the
following;:

Theorem 1.2. If A,B C Z and d*(A) > 0, d*(B) > 0, then A+ B is PW-
syndetic.

We will sharpen this to

Theorem 1. If A,B C Z and d*(A) > 0, d*(B) > 0, then A+ B is a PW-
Bohr set (PWB-set).

In particular d*(A) > 0 will imply that A— A is a PW-Bohr set. More precisely
it is a PW-Bohry (PWBy)-set. This will also follow from our earlier observation
that it is a A¥-set for sufficiently large 7, and from

Theorem II. For each r > 2, a A}-set is PW-Bohry.
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It is not hard to see that the prefix “PW” is indispensable in these the-
orems. For example A = (J[10",10" 4+ n] has d*(A) = 1 but A + A is not
syndetic. Also since z2 + 3® = 23 has no solution in non-zero integers, it fol-
lows that the set of non-cubes S = Z\{n%n = +£1,£2,+3,...} is a A} set.
But by Weyl’s equidistribution theorem S is not a Bohrg-set. (See Theorem 4.1
below for a stronger form of this observation.)

From Theorem I we shall deduce the following result which should be
compared with a theorem due to Ruzsa ([Ruz82], Theorem 3) which states
that if d*(A) > 0, then A + A — A is a Bohr set. (Both Ruzsa’s theorem
and our result can be viewed as improvements on a theorem of Bogoliouboff
([Bog39], [Fel54]) which implies that if d*(A4) > 0, then A — A+ A — Ais a
Bohr set.)

Corollary 1.3. If A, B,C are three subsets of 7 with positive upper density
and one of them is syndetic, then A+ B + C is a Bohr set.

2 Measure Preserving Systems, Time Series, and
Generic Schemes

In this section we introduce a basic tool which will be needed repeatedly: the
correspondence between data given on large intervals of time (“time series”)
and measure preserving dynamical systems. This tool has been used previously
under the name “correspondence principle” (see e.g., [Ber96]) and here we
present it in a more general form. We repeat the definition of a measure
preserving system which was given informally in §1.

Definition 2.1. A measure preserving system is a quadruple (X,B,u,T)
where (X, B, u) is a probability space where we assume B is countably gen-
erated, and T is a measurable, invertible, and measure preserving map,
T:X — X. The system is ergodic if every measurable T-invariant set has
measure 0 or 1.

For a measurable function f: X — C we denote by Tf the function
Tf(x) = f(Tx). We take note of the ergodic theorem (see, for example,
[Kre85]):

Theorem 2.2. If (X,B,u,T) is a measure preserving system and f € L' (X,
B, ), then

N—1
1 ey
JJEHOONT;TJE f

exists almost everywhere. If f € LP(X,B,u), 1 < p < oo, the convergence is

in LP as well. If the system is ergodic then f = [ fdu a.e., so that the average
of the sequence {f(T"xz)} equals a.e. the average of f over X.
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Sequences of the form {f(T"x)},<n<p are referred to as “time series”. In
a certain sense the ergodic theorem enables one to reconstruct a dynamical
system from “time series data”. We shall make this precise in the notion of
“generic schemes” which we proceed to define. In the next definitions the
indices [ and r range over the natural numbers.

Definition 2.3. An array is a sequence {J;} of intervals of integers, J; =
{ag,ap +1,...,b;} for which |J)|=b —a;+1— o0 as | — 0.

Definition 2.4. A scheme ({J;}, {€L}) is an array {J;} together with a doubly
indexed set of complez-valued functions {€L} where, for each r, £.(n) is defined
for n € J; and, for each r, the functions {¢.;1 = 1,2,...} are uniformly
bounded. For n ¢ J; we take £.(n) = 0. The {£L} will be referred to as time
series. They are defined on all of 7 but only the values on J; have significance.
The following notion relates closely to that of a “stationary stochastic process”.

Definition 2.5. A process (X,B,u,T,®) consists of a measure preserving
system (X,B,u,T) together with an at most countable ordered set & =
{¢1,92,...} of L>®-functions on X such that B is the o-algebra generated
by the functions of ® and their translates under T. (When the p; are com-
plex valued we assume ® closed under conjugation). A process is ergodic if the
underlying measure preserving system is ergodic.

Finally we have

Definition 2.6. A scheme ({J;}, {€.}) is generic for a process (X, B, u, T, ®)
if for every m and for every choice of i1,i2,..,im and j1,jo,-.-,Jm (the
indices here need not be distinct):

1
lim - S ¢ el Vol ; .
Jim 57 2t e 0t ki) 0
= /lesOMTJZSOlZ T]msolmdu
X

It will be convenient to introduce the countable family ®* consisting of
the products appearing in (1):
= {¢ =T"¢; Tpi - T 5, }
The corresponding time series have the form

¢'(n) =&, (n+ )€, (n+j2) - & (n+ jm),

and when (1) holds, we say that {('}represents 1.
It will be convenient in the sequel to regard ®* as the increasing union of
o0
finite sets, ®* = |J ®}. The subscript h has no significance other than as an

h=1
index with ® C ®3 C--- C & C ---.
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We note that the ergodic theorem implies that if (X, B, u,T) is ergodic,
then for almost every zo € X, the scheme ({.J;}, {¢L} is generic for the process
(X,B,u, T, ®) with J; = [1,1] and &L(n) = ¢, (T"x0) independently of /.

The main result of this section goes in the opposite direction, and will
attach to an arbitrary scheme an ergodic process. First we need the notions
of subarrays and subschemes.

Definition 2.7. An array {H,} is a subarray of {J;} if | = L; is a monotone
increasing function from N to N and Hj is a subinterval of Jr,.

Definition 2.8. A scheme ({H;},{n.}) is a subscheme of ({J;},{¢L}) if {H;}
is a subarray of {J;} : Hy C Jr,, and 1. is the restriction of & to Hj.

Our main result in this section is

Theorem 2.9. For any scheme ({J;},{¢.}) there exists a subscheme and an
ergodic process for which the subscheme is generic.

Proof. First we will pass to a subscheme which is generic for a process
(X,B, 1, T,®) which is not necessarily ergodic. For each r, let A, C C be
a compact set with £.(n) € A, for all l and n. Let A = [[ A, and let X = A%
We denote by &, the point in AZ with &L = (..., &L(=1),£L(0),&£L(1),...) and
form El = (&, d,..) ¢ A? = X. X is a compact metrizable space and we

form the measures 1
V) = —— (S n &l (2)
1 25,7

where T: X — X denotes the shift map Tw(n) = w(n + 1). Since |.J;| — oo,
any weak limit of a subsequence of v; is T-invariant, and we let v be some
such limit: v = lim vz,. It is not hard to see that ({Jr,},{¢L1}) is generic for
the process (X, B,v, T, ®) where B is the Borel o-algebra of sets in X and
® = {1, ps,...} with ¢, the functions on AZ given by ¢,(w) = w(0)(r). By
ergodic decomposition there will be an ergodic measure y whose support is a
subset of the support of v. Any point in the support of y is a limit of points
of the form T"¢" with n € J; and | — oo, by (2). Since p is ergodic, almost
every point w in its support is generic for u, in the sense that averages of a
given bounded measurable function along the orbit of w tend to the integral
of the function. In particular for functions in ®* we have:

k+N-—1
N > Tl T4, - Timep;, (T"w) — /T”%lT”% s Ty, dp
n==k

3)
uniformly for |k| < N.

We can find N sufficiently large that the difference of the two sides in (3)
is < e for all TV, ---Timp; € ®%. We then choose ¢! close enough
to w, n € Jj, so that the difference of the two sides of (3) remains < ¢ with
w replaced by T"E!. Since n € J;, assuming ! sufficiently large, we will have
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H =h+kn+k+N-—1] C J; for some k with |k|] < N. We now let
e = 0, h oo, and choose an appropriate subsequence of [; rescrambling
the information in (3) we find a subscheme ({H;}, {¢L}) which is generic for
(X,B,u,T,®).

Scholium to Theorem 2.9. If for some r,

1
limsup —| Y &(n)| >0,

=00 |Jl| ned;

we can add the condition that the corresponding ¢, does not vanish a.e. This
follows from the fact that the measure v satisfies [ ¢,dv # 0 and so v must
have an ergodic component with [ ¢,du # 0.

We remark that in the case of ergodic processes, given a generic scheme,
“many” subschemes will again be generic. This is made precise in the follow-
ing: For any process (X, B, u,T,®), ®* is countable and we fix an increasing
family of finite sets ®; C ®* increasing to ®*. Given a scheme ({J;},{¢L})
and fixing [, and letting ¢ > 0, we shall say that an interval H C J; is
e-h-generic for the process (X, B, u, T, ®) if (1) holds approximately; i.e, if for
every 1) € ®; and corresponding time series (' (n).

i 3 < = [ v

neH

<e. (4)

Assume now a process (X, B, u, T, ®) given with ®* = | J @} as above, and let
({T1},{€L}) be a generic scheme for the process.

Proposition 2.10. If (X, B, u, T, ®) is an ergodic process, then for any e > 0
and h € N there exists pg € N so that for any p > po there exists a positive
number ly(e, h, p) so that for 1 > ly(g, h,p), at least (1 —)(|J;| —p+1) of the
(|Ji]| = p + 1) intervals of length p in J; are e-h-generic for the process.

Letting p and [ grow we see, according to the proposition, that the intervals
J; can be replaced by many choices of subintervals, and the scheme will remain
generic. It is easy to see that this is not true for non-ergodic processes (where
time series have different statistical behavior along different intervals of time).

Proof of Proposition 2.10. It suffices to treat a single function and the cor-
responding time series. For if for each of the |®}| functions in ®; we have
(1 —e1)(J il —p+ 1) “ei-generic” intervals with £1|®}| < &, the number of
intervals common to all of these will not be less than (1 —¢)(|J;] —p + 1),
and these intervals are €;-h-generic, and so also e-h-generic. So let ¢ € ®*.

p—1
Ergodicity assures that for p large, % > T%) is L?-close to [ ¢dpu, and so
q=0

JGEr) (/)
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p—1

is small. Fix p and set n(n) = % qZ:O ¢((n+q). n and ¢ have the same long-term
averages,
2 1
MX; (n(m) = [ o) :717;1"" (IJIZ; )(f¢du)

+ (f ¢du)

— [ ( T%) — (v’

which is small for large p. But this implies that most 7(n) are close to [ du
as asserted in the proposition.

3 Some Examples of PW-Bohr Sets

3.1 Fourier Transforms

Our first example of PW-Bohr sets will lead to three more in the following
subsections.

Theorem 3.1. Let w be a non-negative measure on T = R/Z with a non-
trivial discrete (atomic) component, and let & denote its Fourier transform:
@(n) = [e2mitndw(t). If

T

S ={n:Rew(n) >0},
then S is a PW-Bohry set.

Proof. Let wy denote the discrete component of w: wg = Y., w({\})dx where
AEA
A consists of all the atoms of w . Let Ag be a finite subset of A so that

wi(Ao) > 3wq(A). Set

,(/}(7.) — Z wd(A)GQﬂ'iAT

AEAq

and let By be the Bohrg set: By = {n : Ret)(n) > 2wq(Ao)}. The measure
w — wq is continuous and so by Wiener’s theorem (see [Kre85], p.96)

N

=0

o(n) — Galm)|

im —
N 2N + 1 ZN

It follows that Q' = {n : ‘d}(n) - d)d(n)‘ Fw (Ao)} has density 0 so that
Q =7Z\Q' is a thick set.
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In BO N Q,
Rew(n) > Rewy(n) — swa(Ao)
> Retp(n) — wa(A\Ao) — 3wa(Ao)
> Rep(n) — qwa(A) — jw (Ao)
> %wd(AO) — §wd(A ) — %wd(Ao) =0
so that BoNQ C S. It follows that S is PWBy. (]

3.2 Positive Definite Sequences

Theorem 3.2. Let {a(n)}necz be a positive definite sequence of non-negative
N
reals for which lim 5 2N+1 > a(n)>0. Then S ={n:a(n) >0} is a PWB,
N

n——_
set.

Proof. By Herglotz’s theorem a(n) = &(n) for some non-negative measure w
on T [Hel83], and the hypothesis of the theorem implies that w{0} > 0. The
previous theorem applies and so S is PWBy. O

3.3 Return Time Sets

A consequence of the foregoing is that RT-sets are PW-Bohry sets. Re-

call a return time set has the form S O R(A) = {m:u(ANT""A4) > 0}

where (X, B, u,T) is a measure preserving system, A € B and u(A4) > 0. If

a(n) = p(ANT~™A) we can write a(n) = [ fT"fdu with f = 14 and T is
N

a unitary operator. It is easily checked that Y a(n —m)z,Z, > 0 for any
m,n=1
Z1,%2,...,xN, and so {a(n)} is a positive definite sequence. We also have

1 N .
s g0y / T fdy — / fPrfdu,

where Pr is the self-adjoint projection of L?(X,B,u) to the subspace of
T-invariant functions. Since [ Prfdu = p(A), it follows that Prf # 0, and
since [ fPrfdu = [ fP}fdu = [(Prf)*dp > 0 the hypotheses of Theo-
rem 3.2 are fulfilled. This proves

Theorem 3.3. RT sets are PW-Bohry.

3.4 Difference Sets of Sets of Positive Upper Density

Proposition 3.4. Let {J;} be an array and, for each 1, let S; C J; with |S;| >
8|Jy| for fized 6 > 0. Then |J(S; — S;) is PW-Bohry.
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This leads immediately to
Theorem 3.5. If d*(S) > 0, then S — S is PWBy for S C Z

Proof of Proposition 3.4. We form the scheme ({.J;},{¢'}), where the usual
index r is suppressed since it takes only one value, and we define ¢'(n) =
1s,(n). We pass to a subscheme which is generic for a process (X, B, u, T, {¢})
where, according to the scholium following Theorem 2.2, ¢ is not almost
everywhere 0. By the construction (A = {0,1}), ¢ takes on the values 0, 1
and so o = 14 for A € B, u(A4) > 0. By definition of a generic scheme

pANT FA) = /ckacpd,u = lim m Z Em)e(n +k)
neH;

which will be > 0 only if & € |J(S; — S;). This proves the proposition. [

In the sequel we will use a stronger version of Proposition 3.4. Let us say
that a set @ is uniformly thick if for every I € N | 3" € N so that every
interval J of length I’ meets @ in a set containing an interval of length I. This
n+N

will happen if ~ > 1lg(j) — 1 uniformly in n. If w is a continuous measure
] n+1

on T then Wiener’s Theorem can be sharpened to

1 n+N
= 3 BP0
j=n+1

uniformly in n. Using this in the proof of Theorem 3.1 we find that the set S
of that theorem is the intersection of a Bohrg-set and a uniformly thick set.
If we call a set a UPW-Bohrg set if it contains intersection of a Bohr set and
a uniformly thick set, we can replace PW-Bohrg throughout this section by
UPW-Bohrg. For later reference we re-write Proposition 3.4 in its strength-
ened form as

Proposition 3.6. Let {.J;} be an array and for each l, let S; C J; with |S;| >
0| Jy| for fixed 6 > 0. Then |J(S; — S;) is a UPW-Bohry set.

4 The Hierarchy of Families of Large Sets

We consider the following families of “large sets”:

(a) Bo = Bohrg sets

(b) RT = return time sets

(¢) UAZ = sets which for some r meet every (S — S)\{0} provided |S| > r
(d) PWBy = piecewise Bohrq sets

(e) PWB = piecewise Bohr sets

(f) PW Syn = piecewise syndetic sets

(g) PD = sets of positive upper Banach density = {S : d*(S) > 0}
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It is easily seen that the first of these families is contained in the second,
the second in the third, the fourth in the fifth and the fifth in the sixth. That
JAX C PWBy is the content of our Theorem II to be proved in §9. In fact all
these inclusions are proper, and in this section we shall show that (b) # (c),
(c) # (d) and (e) # (f). The fact that (a) # (b) follows from work of I. K¥iz
[K#i787] and that (f) # (g) is an exercise.

Theorem 4.1. There are A%-sets which do not contain RT-sets. So (b) # (c).

Proof. We use the fact ([Fur81], [Sar78]) that for every r = 1,2,... the set
P. = {n"},ez is a Poincaré set; i.e., it meets every return time set. Hence
Z\P, does not contain any RT-set. On the other hand, when r > 3,Z\P, is
a Aj-set. For, by Fermat’s theorem, for any distinct a,b,c, we cannot have
b—a,andc—baswellasc—a=(b—a)+ (c—>b) all in P,. i

To prove that (c) # (d) we produce a set of density 0 in Z that contains
a A,-set for every r. The complement of this set cannot belong to any A’.
On the other hand, the complement of a set of density 0 contains arbitrarily
long intervals, and so is thick, and in particular it is PWBg. So we take as a
A,-set a set of the form

DT‘ = {_rqr‘a —(T - 1)q’l”7 ey _qr‘aoa Qry- -y (’I" - 1)‘]1"’7"‘]1"}
Choosing ¢, = r® we can check that the density of |J D, is 0. This proves

Theorem 4.2.
Ja;#PwWB,

Finally we have (e) # (f) by the following:
Theorem 4.3. There are syndetic sets that are not PWB.

Proof. We use considerations from topological dynamics. Let Q = {0,1}%
and define the shift 7 on Q by Tw(n) = w(n +1). If M C Q is a minimal
closed T-invariant subset, M # {0}, then for any w € M, {n : w(n) = 1}
is syndetic. We can choose M so that the system (M,T) is weakly mixing
([Fur81]). Let £ € M and set S = {n : {(n) = 1}. Assume S is PWB; then
S = @ N P where @ is thick and P is a Bohr set. If n = 1p then £ and 7
agree on arbitrarily long intervals and for some {ny,},lim 7™ ¢ = lim T™* ). Let
L = {T™n} ez be the closed invariant set generated by n (so that M NL # 0).
Since M is minimal, M C L. By definition of a Bohr set there is a torus T™,
a rotation R : T™ — T™, R(A) = 0 + «, and an open set U C T™ so that
R™"(0) e U = n(n) =1.Let A = {w : w(0) =1}; then R"(0) e U = T"n € A.
Let Z C T™ be the closed subgroup of T™ generated by a. By [Fur67] (Z, R)
and (M, T) are disjoint, and since both are minimal, Z x M is minimal for
R x T. This implies that {(R™(0),7"n)} is dense in Z x M. But from the
foregoing, when the first coordinate is in U the other is in A. It follows that
UxAisdensein UxM;hence M = A and £ = 1. Choosing M non-degenerate
gives us the example we seek. O
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5 The Sum Set of Positive Density Sets

In this section we will prove Theorem I which asserts that the sum set of two
sets A, B with positive upper density is a PW-Bohr set.
We begin with an elementary lemma.

Lemma 5.1. Let J,J' C 7 be intervals of length 1,1' respectively. Let S C J,
S' C J' be subsets satisfying |S| > dl, |S'| > §'l'. We can find an interval L
and a subset R C L so that for somet, S+ S D R— R+t and such that
|R| > %|L|.

Proof. Without loss of generality we suppose | < I’. For each t € 7Z, form
Ry =SnN(t—S5"). |R:| equals the number of points of S x S’ lying on the line
z +y = t. The number of such lines meeting S x S’ doesn’t exceed [ + ', and
so for some t,
|S x S| _ 881 _ 68
Al BN >

I+ —01+0'= 2
Take R = R; so that R— R C S+ (S' —t), and take L = J. ol

| R¢| >

Theorem I will now follow from

Theorem 5.2. Let {Ji,} be an array (Def. 2.3), and let Sy, C Ji,, with |Sk| >
0|Ji| where 6 > 0. Let {tx} be an arbitrary set of integers. The set A =
U (Sk — Sk + tx) is PW-Bohr.

k=1

Our next step is to reduce Theorem 5.2 to a special case in which the sets Sy

are related. For two sets of integers S’,S”, let us write S’ < S if for some
ce€Z, 58 +ccS". Clearly S’ < S” implies that S’ — S’ c §" — §".

Lemma 5.3. Theorem 5.2 is true in general if it is true for the case that
Sk < Sg41 for each k=1,2,3,....

Proof. We consider the general case of an arbitrary array {J;} with subsets
Sy C Ji. We follow the procedure in the proof of Proposition 3.4 based on
Theorem 2.2 to obtain a subscheme of ({J;},{1s,}) generic for an ergodic
process (X,B,u,T,14) with u(A) > 0. Reindexing and renaming sets we
suppose that ({Jx},{1s,}) is generic for the above process. Note that the
hypothesis of genericity implies that we will still have |Sg| > 6'|Jx| for some
positive ¢'. We now pass to a further subscheme for which S; < S; ;. This is
done as follows. Removing a set of measure 0 from A we can assume that any
non-empty intersection ANT T ANT ™2 AN---NT " A has positive measure.
It follows from the ergodic theorem that there exist points x with T™z € A
for a sequence 7y < 75 < - < 7, < --- (depending on x) with lim 7> < oo.
Thus ANT"ANTAN---NT~™A is non-empty for each r and by our
assumption p(ANT~TANT~AN---NT~™A) > 0 for each r. By genericity
of ({Ji},{1s,}) this implies that translating {0, 7,72, -, 7} by some ¢, we
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will obtain a subset of some Sy, : {¢,c, + T1,¢r 4+ T, -+, cp + T} C Sp(yy. We
now set J;. = [¢;,¢p + 7] C Jy(ry and S) = {cp,c1 + T1 00 + Ty 00 + T )
Then S;. < S,In_,’_l and since S]. C Sk(r), U(Sk — Sk +tr) D U(S. = S, + tk('r'))-
At the same time lim ™= < oo so that Ja > 0 with r = |S]| > alJ}|.

We show now how Theorem 5.2 follows from Proposition 3.6.

Proof of Theorem 5.2. According to the foregoing lemma, we may assume
that for each k, S — Sy C Sk4+1 — Sk+1. For each m = 1,2,3,..., let k(m)
be chosen so that (Sy — Sk) N [—m,m] is a fixed set for k > k(m). Write
Sm = Skim) and 17, = tyn); we will show that (J(S,, — S, + t;,,) is PW-
Bohr. By Proposition 3.6 [J(S), — S;,) is UPW-Bohry; i.e., it contains the
intersection of a Bohry set H and a uniformly thick set ). Thus there is a

trigonometric polynomial ¢(t) = Z aje*it with Ret)(0) > 0 such that for

any n € @, if Rey(n) > 0 then n E U(S,, — SI.). Form ¢, (t) = ¥(t —t),)
and pass to a subsequence {m,} so that these converge uniformly to a poly-
nomial ¢'(t). Let 0 < a < Re(0). By almost periodicity of ¢ (t) it follows
that Ret’(n) > a on a non-empty (and therefore syndetic) set of n. We
can suppose that the subsequence {m,} is such that Re¢’'(n) > « implies
Ret(n —t;, ) > 0 for each p. Form the set Q" = U([=mp,mp] N Q +17,, ).
Suppose Rezp (n) > a with n € Q'. Then for some p, n—t, € [— mp,mp] ﬂQ
and Ret(n —t;,, ) > 0. It follows that n —t;, € (U(S}, —S’ 1)) N [—mp, my).
By the choice of {5}, } this implies n € S, —S,, +t,, . Since @ is uniformly
thick, for large p, [—-m,, mp] N Q contains large intervals and this implies that
Q' is a thick set. This proves that (J(S}, — S}, + t},,) is a PW-Bohr set.

This completes the proof of Theorem I.

Corollary 5.4 (Corollary 1.3 of §1). If A,B,C,C 7Z are three sets with
positive upper density, one of which is syndetic, then A+ B+ C' is a Bohr set.

This will follow from the Theorem I together with the following lemma:

Lemma 5.5. If R is a PW-Bohr set and S is syndetic in Z then R+ S is
Bohr.

Proof. A translate of R will be PW-Bohrg and the opposite translate of S is
syndetic, so we can assume that R is a PW-Bohrg set. This means that there
is a torus T™, an a € T™, a neighborhood U of 0 in T™ and a thick set ) with
RO {n:naeU}NQ. Let V be a neighborhood of 0 in T™ with V -V C U
and let 81, Bs, - .. B € T™ so that T™ = |Jr_, (B + V).

We claim that for some [,1 <1<k ,S+ R D {n:na€ B+ V} which
implies that S+ R is a Bohr set. Assume this isn’t so; then for each [, 3x; with
i € B+ Vandz; ¢ S+R. Let S, =SN{n:na € f;+V}sothat S = S;.
We have z; ¢ S+R and so x;—S;NR = & . Since z;a € 8;+V and Sja C 51+V
we have (z; — S))a CU. Now RD {n:na e U}NQso (x; —S)NR =0
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implies that (z;—S;) C Q¢ , the complement of Q. Equivalently S; C (z;—Q)°¢,
c
soS=US C (ﬂ(ml - Q)) . But the intersection of finitely many translates

of a thick set is thick whereas S is syndetic. This contradiction proves our
assertion.

6 Kronecker-complete Processes

The remaining sections are directed to giving a proof of Theorem II of §1. The
crucial step in this proof is a proposition to be proved in §8 which generalizes
the fact (Theorem 3.5) that d*(A) > 0 implies that A— A is PWBy. To achieve
this generalization we will use once more the correspondence described in §2
between schemes and processes. Another ingredient that will enter is the point
spectrum of an ergodic system, i.e., the eigenvalues of the operator T on the
L2-space of the system. It will be of importance that in a scheme generic for
a process for which non-trivial eigenvalues exist, the eigenfunctions are also
represented. This leads to the notion dealt with in this section of a “Kronecker-
complete process.”

We begin by recalling the notion of the “Kronecker factor” of an ergodic
system: Let (X,B,u,T) be an ergodic measure preserving system. There is
a compact abelian group Z and an element a € Z whose multiples {na}
are dense in Z, and a map m: X — Z which is measurable and measure
preserving with respect to Haar measure dz on Z, and such that for a.e.
2 € X, n(Tz) = m(z) + o. If x € Z is a character on Z then f = y o7 is an
eigenfunction of T: f(Tx) = x(n(z)+a) = x(a)f(z), and every eigenfunction
of T in L*(X,B,p) is a multiple of one derived from a character. (Z,a) is
unique up to isomorphism and is called the Kronecker factor of (X,B,u,T).
The eigenvalues of T are {x(a)}, .z, so that Z = the dual group to the
(discrete) group of eigenvalues of T'. The system (X, B, u, T') is weakly mizing
if and only if there are no eigenvalues other than 1 if and only if Z is the
trivial one-element group. The discussion in this section will be vacuous in
the case of weakly mixing systems.

We turn to processes. When we speak of an eigenfunction f we will assume

f#0.

Definition 6.1. A process (X, B, u,T,®) is Kronecker-complete if it is er-
godic and if every eigenfunction of T is proportional to some function in ®.

Note that for an ergodic system, if Tf = Af for a measurable f, it is easily
seen that |A\| = 1 and that |f(z)| is constant a.e., so that f € L>(X, B, u).
Also note that T'f1 = Af1,Tfo = Afa implies that fi/f> is invariant so that
by ergodicity, fi, fo are proportional. Thus a process is Kronecker-complete
if ® contains some eigenfunction for each eigenvalue. Under our standing
hypothesis that B is a countably generated o-algebra, the set of eigenvalues
is at most countable. As a result we can always “complete” a non-Kronecker-
complete process. The principal result in this section states that if a scheme
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is generic for a non-Kronecker-complete process, by augmenting the process
and the scheme and passing to a subscheme, we will obtain a scheme generic
for a Kronecker-complete process.

Theorem 6.2. Let ({J;},{¢}) be generic for an ergodic process (X, B, u, T, ®).
Denote by A the subgroup of the unit circle S' consisting of eigenvalues of T
on L?(X,B,pn). We can find eigenfunctions 1y for each A\ € A and a sub-
scheme ({Hy},{nk}) so that setting n§(n) = A" independent of k and letting
U = {¢a}ren, the process (X, B, u, T, ®U ) will be Kronecker-complete, and
the scheme ({Hy}, {€¥} U {nk}) will be generic for (X, B,u,T,®U V).

In the weak mixing case we merely need to adjoin the function 1 to the
process and to the scheme. In the general case we proceed by successively
adjoining eigenfunctions, passing to a subarray at each stage. We will thus
obtain a sequence of subarrays which is “decreasing” and a sequence ®, =
S U{Ty,,Py,,..., Py, } of sets of functions with the corresponding {n,(ak)} u
{1y Mgy - - - » Mx, } Of representative time series. Our final scheme is obtained
by choosing from successive schemes intervals that are “c-h-generic” for the
final process (X,B,u,T,® U ¥) with ¢ \, 0, h ~o00. Such intervals will be
found in the array for ®,, with n sufficiently large.

Adjoining a single eigenfunction will also entail a procedure of suc-
cessive approximation. We assume given a scheme ({J;},{¢.}) generic for
(X,B,u, T,®) and we wish to adjoin an eigenfunction for the eigenvalue \.
Fix an eigenfunction f,Tf = Af, with |f| = 1. Since we have fixed the rep-
resentative time series for the eigenfunction as n, where ny(n) = A", the
corresponding ¢, to be adjoined will be some multiple cf, |¢| = 1. Our task
is to find subintervals of J; that give better and better representation for the
augmented ® U {cf} in a sense analogous to e-h-genericity (§2). In our proce-
dure of successive approximation we can let ¢ vary, since a subsequence will
converge to a fixed value for which the intervals that have been found will still
provide good representation. We form ®* from ® as in §2, and express ®* as
a union ®* = |J®; of increasing finite subsets. Now {cf} enters the picture
and we say that the interval J C J; is “e-h-m-generic” for (X, B, u, T, ®Ucf)
if for every ¢ € ®; and the corresponding time series ¢/, and for a an integer
with 0 <a < m,

<e. (5)

EPIGIONCE R

neJ b'e

Note that for a = 0 this is e-h-genericity. What will be shown for the proof of
the theorem is the existence of e-h-m-generic intervals inside .J; for large [ for
arbitrary €, h, m, and putting these together we obtain the subscheme that is
sought.

In establishing (5) we will use the following lemma.
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Lemma 6.3. Let ai,as,...,an be N complex numbers and form, for a,b =
0,1,2,..., the averages
1 XN
— a—=b
b) = N i_Elal-al-.

There is a function §(e,p) > 0 for e > 0 and p € N so that if |[u(a,b) — 1| <
d(e,p) for 0 < a,b < p, then 36 so that

1 N
—Z|ai—5|2p<5
Ni:l

Proof. We form the average

1 _
N2 Z i — ™ = 5 > (i —ay)P (@ — @)

4,j=1 ,j=1

= PO (B)ua, ¢ )ulp—a, p—q)

The latter expression is continuous in the (p + 1)? expressions {u(q,q'),
0 < ¢, ¢ < p} and we can evaluate it for u(q,q') = 1 by setting all o; = 1.
Since the expression in question vanishes when «; = 1, it follows that we can
find (e, p) > 0 so that the hypothesis of the lemma implies

lZ(iilai—aﬂ) <e.
N — ]\71,:1

But this implies that for some index j the inside averageis < ¢, so with 8 = «;
we get the desired result.

Proof of Theorem 6.2. We have seen that to prove the theorem we have to
show the existence of long intervals .J inside .J; for sufficiently large [, for
which (5) is valid, where ¢ ranges over ®;, f is an eigenfunction Tf = Af,
and the ¢'(n) are the time series representing ¢ in the respective .J;, and the
exponent “a” ranges from 1 to m.

Our assumption in Definition 2.5 that the functions of ® generate the
o-algebra B for the process (X, B, u, T, ®) implies that linear combinations of
functions in ®* will approximate any function in L?(X, B, u) in the LP-norm,
for any p, 1 < p < oc. We wish to approximate f and for any ¢; > 0 we
can find ¢ in the linear space spanned by ®* with ||o — f||L« < &1 where ¢ =
g(m) > 8 will be made explicit further on. Taking appropriate combinations
of the time series ¢!(n) representing o in the given scheme, we find that
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1 () @) (o ) () — [ rmn
(6)

We’re going to apply Lemma 6.3 with p = 2 to the N = K|.J;| numbers:
arn =2 C(n+k)C(n) O0<k<K-1, nelJ

where ¢ = ¢!. K will be arbitrary and [ will be large. We have

u(a,b) = w - Z > A 0+ B+ R) () Cn)”

k=0 neJ;

When [ is large this is close to [, & Sy AO=9*6b54T* (595 dp. The latter
expression will be within &5 of

K-1 K-1
[ & AT T T = [ g 30N = 1
X k=0 X k=0

where g5 = g5(¢1) — 0 as 1 — 0, using the fact that o is close to f in L®
and the total exponent in the integrals above is 2a 4+ 2b < 8, and the fact that
T*f = Xk f. Having chosen e; sufficiently small, we find by Lemma 6.3 that
for | large we can find f; so that

KJl %‘/\ kC(n + k)Cn) — Bi

‘4 < & (7)

where ¢ is given.
We wish to use (7) to estimate

17 Z‘C”"'k )¢(n )—/\kﬂzC(n)r:

N |

%%Z\ S+ B0~ B 1K) < Vet

—2
where 07 = 30 () = by e C)2 T, and by (6), 67 —
[lo|*du as I — oo. Since ||o — f|la < &1 the latter expression is < (1 + &1)*
and we can assume this < 4. We get for large [

2
k
K|J| Z‘CTL-I-ICK 2 Bl((n)‘ <2\/5_ (8)
Finally we wish to use this to estimate

1 1 2
% T %‘C(n + k) = XEBiG ()|
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and for this we need an estimate of

2

K|J|Z‘<n+k|c< 2=t )| ©
As 1 — oc, (9) approaches
/<|0|4Tk|a|2 9o T |of? +Tk|o|2>d,u. (10)

The corresponding expression for f instead of o vanishes so that for some C,
the expression in (10) is bounded by Ce;, and the same will be true for (9)
when [ is large. Combining this with (8) gives

K|JI|Z‘<n+k )\kﬂlC( )‘ < ez =-¢e3(er)

for large I, where e3(e1) — 0 for 1 — 0.
Using the Hilbert space inequality

= lolf® < (liall + Jjol) ffu = o]

we find for large [

11
ngK(”"'kW - fT 617 ZK

k,n

2l <C'e

from which it follows that |f;] — 1. To summarize the foregoing, we have
shown that for any ¢ > 0 we can find a function ¢ with time series ¢!(n) and
v with || = 1 so that for [ sufficiently large, and any K,

1 1 2
% T >|cin+ k) = Neqd' )| <.
k,n
To apply this to (5) we let 1 < a < m and we estimate for a time series
¢'(n)
1 _ [ [
sz‘ Cn+h) = A (¢m)” “g (n+ k)| (11)

Writing 2% — y® = (z — y)(z* ! + 2% 2y + --- + y*~ 1) we obtain for large
that the expression in (11) is bounded by M./ where

a—1
w=a(Y + o Zlcl e+ DP I P o+ B )
7=0
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If ¢! represents the function ¢, the limit of the foregoing expression, as [ — oo,

18 . 1
& > [ THoP el T o
k=0

and provided g(m) > 2m + 2 with [|o — f||z« < 1, the expression in (11) will
be bounded by C'||pl|L«veE, C' = C'(m).

In all the estimates for averages over 0 < k < K, n € J;, if the overall
average is < 0, then for at least half of the n € J;, the average over k cannot
exceed 26. For large I, we let N; C J; consist of the n with {n,n+1,...,n+
K -1} C J; and

1(( n+k) —)\“k(’yzCl(n))a)fl(n-l-k)
0

We now refer to Theorem 2.9 applied to the functions of,, 1 < a < m,
¢ € ®; which are in the linear span of ®*. These functions are represented

K—

<20 ¢llrvE.  (12)

k=

a
in the given scheme by (Cl (n)) ¢ (n), and with § > 0 given, there will be a
K so that for sufficiently large [, the inequalities

1 K-1

f X (¢ m) s - [ oo

hold for most n € J; provided |J;| > K. This implies that (12) and (13) will
hold simultaneously for most n € N; for which we will then have

<0 (13)

K-1
‘ <0+ 2C"lgllpa V.

o A () ¢k = [ oo

k=0

Set c1., = A"y ' ¢!(n) ! and we can write

<leanl* (5 +2C"IlnavE) (14)

K—1

1

% Z AR el 4 k) — cﬁn/aanpdu
k=0

We write n € Nj if (14) is valid.

(15)

K-—1

1

& XN k) b, [ o] <
k=0

el (8 +20"[pllza V) + leval”e”llpllzmsllo = fllzmes

If J is the interval {n,n + 1,...,n + k — 1} then (15) has the form (5)
if the right hand side can be made small and if |¢; | is close to 1. All this
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can be achieved by choosing ¢ with ||o — f]||r« small, and finding n; € J; for
which (15) holds with |c;n| = || 71¢!(n)| =@ close to 1. The domain of n is
N, which depends on (!, but |N/|/|Ji] is bounded from below. It suffices to
show that by choosing ||o — §||L« small we will have (for ¢! representing o)

‘K(” (n)| — 1‘ < 8 for a preassigned 6 > 0 for most n € .J;. But this follows
from the fact that

kS (€r =) = (=)

as | — oo and the latter expression is small if || — f|| is small. With this we
have completed the proof of Theorem 6.2. O

Corollary 6.4. If an ergodic process is Kronecker-complete, it has a generic
scheme whereby eigenfunctions are represented by the time series cxA" for all
intervals of the array {J;}.

Suppose now that we have a generic scheme for a Kronecker-complete
process, (X,B,u,T,®) and let A C S! be the group of eigenvalues of the
process. If we identify the Kronecker factor of (X,B,u,T) with Z = A we
can define a canonical map 7w: X — Z. Namely for A € A there is a unique
eigenfunction ¢, on X with Ty = Ay, and which is represented in the
scheme by na(n) = A\". We set @ € Z = A to correspond to the inclusion
map of A — S : a(\) = ). Notice that since nx,x, = 7r, 7, We will have
Prixa = Pr1Pra- This means that for a.e. z € Xa P12 (CU) = P (CU)(,O)\Q (il?)
so that if we define 7(z)(\) = ¢ (z), then for a.e. z,w(z) € A = Z. Moreover
T(T2)() = ¢a(Tx) = Apr(2) = a(Nr(@)(N) = (@ + 7(2))(V); so 7(Tz) =
m(z) + a. The mapping 7 is measurable since all ¢, are measurable, and so
the foregoing gives an explicit map of X to its Kronecker factor. This map
will play a role in §7.

Note that for A € A, the eigenfunction ¢, on X can be identified with
x om, where y is the character on Z given by x(z) = z(\) where Z is identified
with A, since x(7(z)) = m(z)()\) = @x(z) by definition of 7. Since the time
series representing ¢y is A" = y(na), we conclude:

Proposition 6.5. Given a scheme generic for a Kronecker-complete process
(X,B,u, T, ®), if ™ is the canonical map of X to its Kronecker factor (Z,a)
then for any continuous function 1 on Z, v ow can be adjoined to ®, and it
will be represented by the time series {1)(na)}.

Proof. 1 can be approximated uniformly by linear combinations of {¢}.

7 Weighted Ergodic Averages for Kronecker-complete
Processes

Let (X, B, i, T, ®) be a Kronecker-complete process and ({.J;}, {£L}) a generic
scheme. We shall show how to evaluate L2-limits of weighted ergodic averages
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Z fl Tnf
ner

for feL?(X,B,u) and ¢ representing a function ¢ € ®. By our assumption
(X,B,u,T) is ergodic so that + Z T"f — [ fdw in L% Since T is a con-

|Jz| Z = /fd,u

neJ;

traction we can write

for any array {J;}. This will be generalized for processes that are Kronecker-
complete, except that the limits taken are weak L2-limits.

Recall from §6 the notion of Kronecker factor and the canonical map
m: X — Z where Z is a compact abelian group and n(Tz) = w(z) + .
All eigenfunctions on X are, up to constant multiples, of the form x o 7
where y is a character on Z. The set of all functions in L*(X, B, u) of the
form v o 7,4 € L?(Z) form a subspace that is spanned by eigenfunctions. If
f € L*(X,B,u) we denote by E(f|Z) the unique function in L?(Z) so that
E(f|Z) o denotes the orthogonal projection of f to the subspace L?(Z) o .
E(f|Z) = 0 & f is orthogonal to all eigenfunctions in L?(X, B, u). We will
make use of an operation on L'(Z) related to (but not the same as) convolu-
tion:

f0Of (2 /fl z +u) fo(u)du

Proposition 7.1. Let ({J;}, {£L}) be generic for the Kronecker-complete pro-
cess (X,B,u, T, ®), let f € L?(X,B,pn), and let ¢ € ® be represented by the
time series &'. Then

Zsl )T f - [E(f12)0E(|2)] o n (16)

ner
where — signifies weak convergence in L*(X, B, ).

Proof. It suffices to consider two cases: (a) E(f|Z) =0, (b) f is an eigenfunc-
tion.

In the first case, for any g in L?(X,B,u) , the sequence { [ T"f - gdu}
satisfies

1 n+N / 2
~ > | TFf-gdu| — 0
Nk:n—H N—=o00

uniformly in n, so that the left hand side of (16) goes to 0 weakly, and the
proposition is verified. We turn to case (b) with f = ¢x. To A € A we as-
sociate the character y on A with x(z) = z(\). Then x o w(z) = w(2)(\) =
ox(r) = f(z), and E(f|Z) = x. In this case the right hand side of (16)
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is [xOE(p|Z2)]om = (fE(go|Z)xdz>x o m. We evaluate the left hand side

z
of (16): . .
- 1 T — A" )
|Jl|nez;lf<n> f w% s

which by genericity converges to (f <p>\cpdu)f. Since ¢y € L*(Z) o 7, we
can replace ¢ by its projection to this subspace which is E(p|Z) o 7. Since
x = x o™ we now have

/wwpduz /XE(<P|Z)dZ

X 4

and since f = x o, this proves the proposition. O

8 A Condition for PW-Bohr,

We know from Theorem 3.5 that if @*(S) > 0 for a subset S C Z, then S—S is
PW-Bohrg. We can rephrase this as saying that if for each s € S, S—sNB = ()
for a subset B C 7Z, then the complement of B is PW-Bohrg. In this section

we show that it will suffice for this conclusion that d* ((S —s)N B) = 0 for
each s € S. In §9 we’ll see how this leads to a proof of Theorem II.

Proposition 8.1. Let A C Z and B = Z\ A and let S C 7 with d*(S) > 0. If
for every s € S, d* ((S —-s)N B) =0, then A is a PW-Bohry set.

Proof. Let {J;} be an array with % — B > 0. Set &(n) = 1a(n),

&L =1p(n), €&(n) = 15(n) and consider the scheme ({J;} {¢!, &L, €LY). By The-
orem 2.9 we can find a subscheme generic for an ergodic process (X, B, u, T, @)
where ® includes @1, @9, 3 which are respectively represented by ¢!, &, €4, By
the scholium to Theorem 2.9 we can assume (3 is not a.e. 0. Since (ffl))2 = ffl)
we find ¢? = ¢; a.e. and so ¢; take values 0, 1. We write ¢ = 15, @2 = 15,
@3 = 1g with A,B,S € X, u(S) > 0, and AU B = X. Using Theorem 6.2
we can also assume that the process (X, B, u, T, ®) is Kronecker-complete and
that the eigenfunctions {ypx} of the process are represented by time series
na(n) = A™. We will also make use of the canonical map m: X — Z, where
(Z, ) is the Kronecker factor of (X, B, u,T).

We now apply Proposition 7.1 to this subscheme generic for the Kronecker-
complete process with @1, @2, 3 € ®, and where we again denote the array
of intervals by {J;}. We will take f = ¢ = 15 = ¢35 which is represented by
€L (n) = 15(n). We conclude that in the weak L2-topology,
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1

il S 1sm)T g — (fOf) o (17)

neJ;
where f = E(15|Z). The function f is bounded and non-negative with

[ fdz = pu(S) > 0 so it is non-trivial. We note that since f € L>®(Z), the
function F' = fOf is continuous on Z.

We turn now to the hypothesis that d* ((S —s)N B) =0 for s € S. This
implies that
1
— 1 1 — 0
71 Z B(n)ls(n+s)

neJ;
or

/IBTslgd,u =0.

In particular, averaging over s € S:

1 n
T > ls(n)/T lelgdu — 0. (18)
neJ;

But by (17), the limit in (18) is

/Foﬂ'-lédu (19)

and so the latter integral vanishes. We again apply the generic scheme where
according to Corollary 6.4, F' o 7 is represented by {F(na)}, a non-negative
almost periodic sequence with

> F(na) — /Fdz >0

1
| l| neJ;

Since the integral in (19) vanishes we can write

1

T > F(na)lp(n) — 0

neJ;
Let H be the Bohry set for which F(na) > 6 where 0 > 0 is chosen so that
H is non-empty. Then

> 1u(n)lg(n)

neJ;

> 1u(n)

neJ;

Y. luna(n)

neJ;

> 1u(n)

neJ;

— 0

whence

— 1.

This implies that there are arbitrarily long intervals L; C J; for which
HNL =HNANL, C A. Hence HN|JL; C A from which it follows that
A is PW-Bohrg. This proves Proposition 8.1. O
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9 Application to Aj-sets

We shall apply the foregoing results to prove Theorem IT of §1. We recall that
a subset A C Z is a A}-set, r = 2,3,... if for distinct numbers =1, 22, ..., 2.,
some difference z; — z;, i < j belongs to A. More generally we will need

Definition 9.1. If S C Z we shall write A € AX(S) if for x1,22,...,2, € S,
x; # x5 for i # j, there exists i < j with x; — x; € A.

In the sequel, A and B denote complementary sets in Z, B = Z\A. If
0 € B we denote by B’ the set B\{0}.

Lemma 9.2. The following are equivalent for a set S C Z:
(a) A€eAr,(5)
(b) AeA; (B’ n(S— s)) for every s € S.

Proof. (a) = (b): Suppose 1,2, ...,2z, € B'N(S—s). Form the (r+1)-tuple
$,8+ 1,8+ T2,...,5+x, and apply (a). (b) = (a): Let zg, z1, 22,..., 2, be
distinct elements in S. If {z1 — zo, 2 — 0, . .., T, — To} doesn’t meet A, then
this is an r-tuple in B’ N (S — zg) and we can apply (b). [

We recall Theorem II:
Theorem II. For anyr =2,3,..., if A is a A}-set then A is a PW-Bohry.

Proof. We assume A is not PW-Bohrg. By Proposition 8.1 this will imply that
whenever d*(S) > 0 there must be some s € S with d* (B Nn(s - s)) > 0.

This will give us an inductive procedure to obtain sets S; with d*(S;) > 0.
Start with S = Z and we find d*(B) > 0. Set S; = B’, there exists
s1 € Sy with d*(BN (S1 —s1)) > 0. Set Sy = B'N (S; — s1) and con-
tinue with Sgy1 = B' N (Sk — sk), sk € Sk. Now apply the foregoing lemma.

AeAN s AcANZ)=> Ac A;t_l(B’ N (z - 50)) = A () = A€

A, (B’ N(S1— 51)) = A¥_,(S2) = --- We continue with A € A*_,(S},) for
k=0,1,...,7r — 2. Finally 4 € A}(S,_2). At each stage we have d*(S) > 0.
But d*(S,—2) > 0 = S,_2 — S,_2 is PW-Bohrg; and A € A%(S,_,) =
AD S, 5 — 85, 5. This proves the theorem.
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Summary. We define an analogue of the the concept of J. H. Conway’s number
games for games of multiple players. We define the value of such number game as
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1 Introduction

There are many different mathematical meanings of the word ‘game’. Regard-
less of the kind of games we consider, people agree that games of n players
are much more difficult to understand for n > 2 than for n < 2. In this paper,
we consider deterministic ‘combinatorial’ games, i.e. games where each player
in each position has a well defined set of moves, which, in a fixed way, change
the position to another position (in fact, it is clear that there is no point in
distinguishing between positions and games, so we can substitute the word
‘game’ for the word ‘position’ everywhere). For some recent work on combi-
natorial games, see [Now02]. The main result of this paper is to analyze a
certain, very special, class of combinatorial games for multiple players.

The definition given above, of course, describes only the ‘static’ aspect of
the rules of a game. The ‘dynamic’ aspects refer to how the game is actually
played. A play by play sequence of moves in a game will be called a ‘match’.
The dynamical rules of matches which we will consider specify a certain order
of the set of players; the players shall move repeatedly in the same order of
play until a certain player cannot move, at which point the match shall end.

* The authors were supported by NSF grant DMS 0305853.
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The player who cannot move shall then be declared the loser of the match.
We shall consider only games where there is no possibility of infinite matches.

Even for such deterministic games, however, it is difficult to make any
conclusions about the course of matches for n > 2. The reason is that unlike
the case of n = 2, there is no natural order of preference of the outcomes
of the game from the point of view of the i’th player. While the i’th player
obviously prefers not to lose, there is no natural reason why he should a
priori prefer one particular other player to lose. Yet, such preferences will
determine strategies, and ultimately the outcome of a match. Preferences can
even change throughout the course of a match. Thus, it is usually said that
few strategic conclusions about deterministic games of n > 2 players can
be made without introducing non-deterministic concepts, perhaps even non-
mathematical concepts (e.g. psychology).

The purpose of this paper is to look at a certain very special class of
deterministic games of n players, for which certain strategical conclusions
can be made in a rigorous mathematical setting, without introducing outside
concepts. The motivation for introducing our particular class of games is that
they generalize the ‘number games’ for 2 players from J. H. Conway’s famous
book [Con01]. For this reason, we shall call this class of games number games
for n players.

Conway number games for 2 players are games to which one can assign a
value which is a ‘number’. Here the word number means element of a certain
ordered field, known as the Conway field C (also known as the surreal numbers
[Con01, ConT72, Knu74]). The Conway field contains, among other things, all
ordinal numbers, as well as any other ordered field: it is a foundational-level
object of set theory (in fact, Conway introduces his own approach to formal
set theory based on number games in [Con01]).

However, this is not the aspect of number games which we will be most
interested in. Rather, the main point of number games is that ‘no player
can possibly improve his own position by making a move’. This, of course,
needs precise definition, (in particular in reference to the word ‘improve’).
Definitions will be provided later. We shall, however, remark here that one
could adopt the point of view that for this reason, number games are generally
strategically uninteresting, since the very meaning of strategy is being able
to take advantage of one’s own move in the best possible way. In number
games, one always makes one’s own position worse by moving. One can also
take another point of view; in some sense, number games are pure consumer
models: we can think of moving in a number game as using up one’s assets
(resources). The player who uses up his resources first dies.

With this in mind, it becomes interesting to try to define analogues of
Conway number games for n players, and analyze what, if any, strategic con-
clusions one can make for such games. In this paper, we do give one possible
definition of such number games for n players. The set of (equivalence classes
of) such games is an n — 1-dimensional vector space over the Conway field.
It is somewhat surprising the set of number games of n players has many of
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the formal properties of number games of 2 players. Also, we shall be able
to make certain strategic conclusions for number games: in particular, each
match will have a well defined ‘loser’ who can always be defeated if all the
other players act ‘in concert’.

This paper is organized as follows: In the next section, we shall present
basic definitions and facts about games and matches which do not involve
numbers. In Section 3, we shall introduce number games, and prove what
we can say about their strategic analysis. Section 4 contains, in some sense,
our hardest result, namely constructing number games of n players with any
given value. The paper has two appendices. In Appendix 1 (section 4), we
draw some diagrams visualizing our concepts for games of three players. This
may be helpful to the reader in understanding what we mean. In Appendix 2
(section 4), we show why our definition of number game cannot be simplified
in one obvious way.

2 Games and Matches

In this paper, a game with set T of players is defined recursively as follows:

1. The empty set () is a game (also called 0).

2. If G; are sets of games for all i € T', then the tuple G = (G;);er is a game.
(G; is the set of possible moves of the player i in the game G; a game is
identified with its initial position.)

3. Every game can be obtained by 1, 2 in a possibly transfinite number of
steps. (This means that for every ordinal «, we have an “«’th generation
of games”, the 0’th generation being the empty game. For a game G of the
a’th generation, every element of every G; must be a game of generation
< a.)

Obviously, only the cardinality of the set 7" matters. We shall mostly con-
sider the case T'= {1,...,n} (in which case we shall simply speak of games
of n players), but it is useful to allow other T"s, notably T' C {1,...,n}.

We shall now introduce our main strategic concept for games of n players.
It is important to notice that this concept does not involve dynamic aspects
of games, i.e. matches.

Specifically, we shall inductively define

G<s0

for a non-empty set S C T if the following conditions hold:

1. If i € S then for all H € G, H <g 0.
2.If i € S and j ¢ S then there exists an H € G, and a set U with
i €U CSU{j}, such that H <y 0.
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We shall write
G~0

if G <7 0. The set S will be called the set of possible losers of the game G.
We shall justify this terminology at the end of this section.

When working with games of n players, we shall use a notational conven-
tion analogous to that established in Conway’s book [Con01], and denote a
“general member” of the set G; by G'. Thus, for example, instead of referring
to something that is true for all H € G;, we instead refer to something that
is true for all G*.

The members of G;, or using the new convention, the G?, are referred to
as i’s options in the game G.

In this notation, the above definition reads as follows:

Inductively define G <g 0 for a non-empty set S C T if the following
conditions hold:

1. If i € S then all G* <(n 0.
2. Ifi € Sand j ¢ S then there exists a G/ and a set U withi € U C SU{j},
such that G <y 0.

Remark. When we are considering games of two players, we are in the context
of Conway [Con01]. There, players are denoted by L and R, so T = {L, R}.
Conway notes that it is easy to prove that all games of 2 players are of one
of the following types: 0, L, R, F'. For 0, the first player loses, in F', the first
player wins, in L (resp. R) the player L (resp. R) wins no matter whose move
it is. In the above notation, S = {L, R} for type 0, S = R for type L, S = L
for type R and S does not exist for type F. The proof is left to the reader as
an exercise.

Lemma 2.1. For each game G, there exists at most one S such that G <g 0.
Proof. Induction: Note that
0<s0if and only if S =T.
Assume the statement true for all G for all i € T.. Then if
G <50,

note that i ¢ S if and only if there exists a G* such that it is not true that
G' <{iy 0, which uniquely characterizes S. (]

We now explain the dynamical significance of G <g 0. To this end, we must
define matches. Assume now that T is finite, and that we have a bijection

o:{1,...,n} = T.

Such bijection will be called an order of play. A match according to the order
of play o is a sequence of games
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(G(G))i=1,...~
where G(1) = G,

G(j +1) € G(j)r) where k(j) =a(j'), j'=j modn,

G(N)k(n) = 0.
Then k(N) is called the loser of the match. Note that
(G(1))j=2,..~

is a match according to the order of play o’ where
o'(j)=o(j +1) for j < n,

o'(n) =a(1).

Note also that by part 3 of our definition of game, it is impossible to have an
infinite match, i.e. an infinite sequence satisfying the properties of a match
without the N. (Proof: induction.)

We now define inductively our main dynamic strategic concept. A player
1 is called the loser of a game G according to the order of play o if

1. If o(1) = i then i is the loser of all its options G according the order of
play o’'.

2. If o(1) # 4, then there exists a G°™) such that i is the loser of G7(!)
according to the order of play o'.

Intuitively speaking, this means that ¢ will lose any match according to
the order of play o, provided that all the other players act “in concert”.

Proposition 2.2. Suppose G <g 0 and suppose that o is any order of play.
Let j be minimal such that o(j) € S. Then o(j) is the loser of the game G
according to the order of play o.

Proof. Induction. If o(1) = 4, then always G* <¢iy 0, so the induction hypoth-
esis applies. If o(1) # i, then there exists a G°(!) such that G°(V) <y 0 for
some i € U C SU {o(1)}. Note that 7 satisfies the induction hypothesis with
G replaced by G°M) | and ¢ replaced by o'. o

With this new dynamic significance applied to our previous definitions, the
definitions can be formulated in a more intuitive way. If we find a set S C T
with G <g 0, then the set S is the set of players who, for some order of play
o, would definitely lose the game if the others acted in concert. This is the
reason the set S can be thought of as the set of possible losers of the game G.
This can yield intuitive versions of 1 and 2 of the previous definition. G <g 0
means:
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1. If 4 € S, then player ¢ is the only possible loser of each of i’s options.

2. If i € Sbut j ¢ S, then player j has an option of which i is a possible
loser. In addition, this option must not add any new possible losers, except
possibly player j himself.

For the purposes of the next section, we shall now define the sum of games:
Define inductively
G+ H
by . .
(G+H);={G+H'}U{G"'+ H}.

The sum of games is understood as follows: playing G + H is the same as
playing the games G and H side by side, so that i’s options in the game G+ H
should be to either “move in G” or “move in H.” If player i chooses to move
in G, he chooses an option G* of the game G, and the game progresses to

the position G* + H. Similarly, moving in H moves the game to some position
G+ H'. Thus, the set of i’s options is defined to be the set {G+H}U{G'+ H}.

3 Number Games

We continue to assume that T is finite, of cardinality n. We shall work with
T-tuples of real numbers (or more generally T-tuples of elements of any or-
dered field F)

9= (gi)ier (1)
which satisfy
> 9:=0.
i€T
Obviously, the set of all such T-tuples is an n — 1-dimensional vector space

over F', which we shall denote by Fp. For S C T, and for the T-tuple (1), we
now write

g<s0 (2)
for the unique set S of all ¢ € T' with
9i = glelf? k-
Note that S is always non-empty. We also write
g<s0

if g <y 0 for some U D S. Note that g <7 0 is equivalent to g <7 0 which is
equivalent to g ~ 0. We shall write

g<sh

if g— h <5 0, and similarly for <g. By abuse of notation, we write <; instead
of <{i}-
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Lemma 3.1. If g <; h, then g; — g; < hy — h; for all j #i.
Proof. g <; h means g —h <; 0, i.e. g; — h; < g; — hj for all j # 1.

Below, we shall need the following construction. For ¢ € T, consider the
function
pi: Fr = Fr_gy

given by

o= (o4 2255)
jer—{i}
(In some cases, we shall also use the symbol p;g instead of p;(g).)

The function p; takes n-tuples in Fr and creates n — 1-tuples in Fr_g;
in the most natural way: it evenly divides up the strength of the i*" element
among all the others.

We now proceed to number games. We begin by recalling briefly Conway
number games of 2 players [Con01]. The main point is that to each pair of

subsets

(A]B)
of the Conway field C, such that for all a € A, b € B we have

a < b,
there is assigned an element
z=v(A|B)yeC (3)
such that, for all a € A, b € B,
a < v(A|B) <b.

More precisely, the Conway field can be defined inductively in this way. Once
again, as in the case of games, for every ordinal « there is the “a’th generation”
of elements of the Conway field; the 0’th generation consists of the number 0.
The Conway field is linearly ordered, and for an element of the form (3) of
generation a, A, B are considered its defining sets (such pair of sets is required
to exist for x to be of the given generation) if all elements of the sets A, B are
of generation < «. One then refers to elements of A (resp. B) as z, (resp. zg),
and writes
x = (zp|zR).

One defines addition in the Conway field inductively by
x+y=(rr+y T +yrlrr +y,T +yr)-

Now elements represented as (3) in different ways may however be equal.
Inductively, an element z of a generation « is > 0 (resp. < 0) if there is no
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xgr which is < 0 (resp. zy, which is > 0). One puts z = 0if 0 < z < 0. One
defines inductively
—x = (-zg| - xr)

and z = y if  + (—y) = 0. Multiplication is then defined by
ry = (Try+TYr—TLyYL, TRY+TYR—TRYR|TLY+TYR—TLYR, TRY+TYL—TRYL)

(based on (z — z1)(y — yr) > 0 etc.).

One must prove that this indeed works. We refer the reader to [Con01]
for details, but the following two properties are crucial for our purposes (they
follow quite directly from the inductive definition outlined above):

1. v(0) = 0 and v(G + H) = v(G@) + v(H) where one defines
(A|B) + (C|D) = (v{A|B) + C|v{C|D) + B).

2. If C D A and D D B and for each z € C (resp. y € D) = < v{A|B) (resp.
v(A|B) < y) then
v{C|D) = v(A|B).

Using this, we define inductively a number game of T players as a game
G for which there exists an n-tuple

v(G) € Cr
such that

1. For alli € T, all G* are number games, and v(G?) <; v(G).
2. Foralli #j€T,

0i(G) = 15(G) = ({vi(G) = 13(G) : piv(G) <5 P G}
{0(G) = 05(G7) : pyo(GY) <i 0 (@)))

On first glance, the conditions given in the definition of a number game
do not seem natural, but intuitive meaning can be given to them. First, the
n-tuple v(G) = (v1,v2,...,v,) gives the strengths of the positions of each
player. Larger, positive values of v; indicate better positions for player i;
smaller, negative values indicate worse positions.

Thus, the first statement, that v(G?) <; v(G), can be understood as fol-
lows: Player i’s move from G to G not only hurts player i’s position; it hurts
player 4’s position more than anyone else’s position. This seems natural, as
moving in a number game should never “improve” one’s position compared
to any other player.

The second statement defines the quantity v; — v; for each ¢ and j, which
is understood to be i’s advantage over j in the game G. This advantage is
defined as the number v(A|B), where A is a set of possible advantages i could
have after moving, and B is the set of possible advantages j could have after
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moving. This means that ¢’s advantage in G is more than any advantage
he would have after choosing one of his own options G?, but less than the
advantage he would gain were his opponent to move to any G7.

This would completely explain the definition, however, the sets A and B
have an additional restriction on them. Take, for example, the definition of
the set A, which contains a condition further restricting its members:

A= {vi(G") —v;(G") : piv(GY) < piv(G)}-

The condition v(G?) <; v(G) (disregarding the p;’s) would mean that the
move from G to G must hurt player j’s position the most. The < allows for
this to be nonstrict, namely, that the move may hurt other players just as
much. However, in a number game, i’s moves from G to G* must hurt player ¢
the most, so the condition would never be true without considering the p;.

Recall that the function p; takes n-tuples and creates n — 1-tuples, with
player i’s strength equally distributed among all other players. So, the restric-
tion p;v(G*) <; p;v(G) means that the inequality is true once player i is no
longer considered, namely, that the move from G to G* must hurt player j
at least as much as everyone else, with player i himself excluded. Such moves
G' are called i’s anti-j options, since they do as much damage to player j as
possible.

So, number games can be understood as games G for which each player
has a well-defined strength of position, given by the n-tuple v(G). G having
a well-defined strength means that:

1. In the game G, each player’s options must be number games, and a player’s
move must always damage his own position the most.

2. In the game G, i’s advantage over j is the Conway field element (A|B),
where A is the set of all advantages player ¢ could have if he chose an
anti-j move, and B is the set of all advantages player ¢ could have if his
opponent chose an anti-i move. Thus, player ¢’s advantage over j only
depends on the i- and j-options that are primarily directed against one
another.

Lemma 3.2. The T-tuple v(G), if it exists, is uniquely determined.

Proof. By (1) of the definition of number game and Lemma, 2.1, for all G* we
have ' ‘

vi(G*) — v (G*) < vi(G) —v;(G)
while for all G/ we have

0i(G7) = 0;(G7) > vi(G) = v;(Q).

By property (2) of Conway games, (2) of the definition of number games then
implies

vi(G) = v;(G) = v(vi(G) — v; (G (G7) = v; (G7)) (4)

which recursively determines v(G). [
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Lemma 3.3. A sum of number games is a number game.

Proof. By induction, both conditions (1), (2) are obviously additive. In par-
ticular, in (2), the right hand side for a sum of games contains the Conway
sum of the right hand sides of (2) of the individual games, so we can use
properties (1) and (2) of Conway games. [

Corollary 3.4. (of (4))
v(G+ H) =v(G) +v(H). i
Proposition 3.5. If G is a number game and v(G) <gs 0, then G <g 0.

Recall that v(G) <g 0 means that for each i € S, v; = minger vg. So, this
will show that those players with the least strength of position are exactly
those players who will lose a match of this game for some order of play, if all
others act in concert.

Proof. Induction. By the induction hypothesis, condition (1) in the definition
of number games implies condition (1) for G <g 0.

Suppose condition (2) for number games is valid for G. Choose i ¢ S,
j € S. Then, by definition of v(G) <g 0,

Vi (G) > vy (G)

By (2) for number games and properties of Conway games, there is an option
G' such that ' . .
vi(G') > v;(GY), pv(G*) < piv(G). (5)

The second condition implies that
03(GY) = 0k(GY) < v3(G) — v4(G) < Ofor all k #1.7, (6)
so together with (5) this implies that
0;(G') = min{u,(H)|p € T}.
On the other hand, if k ¢ S, (6) implies that
v; (GY) < vE(GY).

Thus, G <1 0 for some j € T C S U {i}, as required in condition 2 for
G <g 0.

Remark. Since for g € Cr, there is always a unique S C T, S # () with g <s 0,
the converse of the Proposition is also true.

Corollary 3.6. If G is a number game and v(G) = 0 then G ~ 0. (]
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Corollary 3.7. A number game G has an inverse, i.e. a game H such that
G+ H~DO.

Proof. The symmetric group X7 obviously acts on number games by permut-
ing players. Now we obviously have

v| Y oG = > ov(G) =0,

ocEXT cEXT

SO

> oG ~0

ocEXT

by the previous Corollary. ]

4 The Existence Theorem

In this section, we prove that number games of arbitrary values exist.

Theorem 4.1 (Existence theorem). For every g € Cr there exists a num-
ber game G with
v(G) =g.

Proof. We begin by constructing games that are “worth one move” to each
player, then from there games that are “worth z moves” to each player for any
x > 0 € C. Sums and inverses of these games will then be enough to construct
a game with v(G) = g for any g € Cr.

First, we construct the game “1 for each i € T, the game worth one move
to player i. It is constructed by

(i)li = {0}7
1, =0 for j #1i.

In this game, player ¢ has only one option: the move to the zero game. No
other players have any options. This is a number game with

v("1)=""v e Cr

where
() n—1 (&) 1
Vi = ) v; =
n n

For example, for T' = {1, 2, 3}, this construction yields three games:
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@y o("1) = ( 2/3,-1/3,—-1/3)
@1 w(P1) = (-1/3, 2/3,-1/3)
@, /U((S)l) =(-1/3,-1/3, 2/3)

To demonstrate how to check that a game is a number game, we will
check that indeed the games “1 above are number games, with v(G) =
((n=1)/n,—1/n,...,—=1/n). Obviously, it suffices to consider i = 1.

To prove ™1 is a number game, we need to check the two conditions. First,
we must check that all the options of G are number games, which they are,
and additionally, that v(G?) <; v(G) for all i and all G*.

There is only one option to check, namely G = 0 and i = 1. Indeed, O is
a number game, with v(0) = (0,0,...,0). So, to check that v(0) <3 v((l)l), we
need only that

0(0) — (1) <1 0

0,0,...,0) = ((n—=1)/n,—1/n,...,—1/n) <4 0
(=(n—=1)/n,1/n,...,1/n) <1 0

which is true. So, condition (1) for number games is satisfied here.

Now, to check condition (2), we need to make sure that the defini-
tion’s v; — v; match up with what we claimed they were by setting v(G) =
(n=1)/n,=1/n,...,—1/n).

First, check v1 — va. We should get that v1 —vs = (n —1)/n+1/n = 1.
Indeed,

(1)

V] — Uy = v({vl(Gl) — Ug(Gl) :plv(Gl) <spv( 1)}
{01(G?) = v2(G?) : p2v(G?) <1 pov(" 1)}
= o({v1(G") = v2(GY) : p1o(G!) <o p1v<‘”1>}|0>
= v{{v1(0) — v2(0) : p1v(0) <2 pro('1)}/0)
= v(0 — 0]0) (we have (0,...,0)= p1v(0) <2 p1v( 1)1) =(0,...,0))
= v{0/0)
=1.

Checking v — v; is similar for other i. And, checking v; —v; for i,5 # 1 (i # j)
is easy, since we want v; — v; = 0, and indeed, it is

v{{vi( @) = v;(GY) : p(GY) <j piv(T DY
{0:(G7) = 03(G7) = pu(GF) <i pjo( 1))
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= v(0|0)
=0.

Now, we construct games “% for all numbers € C. The game “x is the
game worth x moves to player i.

Lemma 4.2, Given x > 0 € C and i € T, there exists a number game x
such that ) )
v((l)x) =z v((l)l).
For z = 0, the zero game satisfies this condition, so we need only consider
2 > 0. Once this construction is complete, the proof will be nearly finished.
Given z € C, we know that it is constructed by

x = v(L|R)

for some sets L, R of simpler numbers in C. In addition, since z > 0, we have
that all 2% > 0. We can assume without loss of generality that all z” > 0 as
well, so by induction, we may assume that we have already constructed the
“simpler” number games “x* and “x® for all zF € L, 2% € R, and j € T..
Now define an inverse * —x® of “x® as the sum of previously constructed

number games:
) )
—xR = E xR,

k#j

To prove that ” —x® is an inverse of “x®, note that by Corollary 3.7,

we have that every game G has an inverse given by the sum of all the games
that are the result of permuting the players of G. So, it suffices to show that
Y _xR is the sum of the (n!—1) number games which are permutations of the
game G. These permutations are still number games, and they are all given

by “x® for some k:

@ __ R _ <((n —1)-1) ,('i)XR) + (((n - 1)) -Z(k)XR)

k]
= <((n— H-1). %:k“‘)xR) + (;“‘)XR)
= <((n— n!—1) -0) + (Z“‘S&*)

k]

(k)
XR.

>~
RS

J
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Now consider the game G given by

G, = {(i)XL}’
G; = {(j)—xR}, for j # 1.

Claim. G is the game “x that satisfies the lemma, i.e. it is a number game
with v(G) = z - v("1).

To show that G is a number game with the given tuple, we need to check
the conditions (1) and (2) for a number game.

For condition (1), we first need that each option of G is a number game,
which is true by induction. Then we must show that each option G* has
v(G*) <1, v(G).

For player 4, then, we must show that

v(

But by induction, the left-hand side is given by

(1) (i)

xY) <;z-v(1).

z” -'u((i)l),

S0 it must be proven that

e v((i)l) < T 'u((i)

(¥ —2) -v((i)l) <; 0.

1)

This is true: since ¥ — 2 is negative, while the only positive entry of v((i)l)

is in the i*" position, we have that the only negative value of the n-tuple is in
the i*" position. So, it is <; 0.
For other players j, we must show that

'u((j) —x®) <z 'u((i)l).

But by induction, we already know v((j) —x®) is a number game, and since it

is the inverse of “x®, we know v((j) —xR) = —v((j)xR). So, we need to show
((j) xRy < v((i)l)
—o("x) < ao("D)
—zf. 'u((j)l) < T v((l)l)
—2f 1) —20(P1) <5 0



