








Preface

Understanding the mechanism of a socio-economic system requires more than
an understanding of the individuals that comprise the system. It also requires
understanding how individuals interact with each other, and how the aggre-
gated outcome can be more than the sum of individual behaviors. This book
contains the papers fostering the formation of an active multi-disciplinary
community on socio-economic systems with the exciting new fields of agent-
based modeling and econophysics.

We especially intend to increase the awareness of researchers in many
fields with sharing the common view many economic and social activities as
collectives of a large-scale heterogeneous and interacting agents.

Economists seek to understand not only how individuals behave but also
how the interaction of many individuals leads to complex outcomes. Agent-
based modeling is a method for studying socio-economic systems exhibiting
the following two properties: (1) the system is composed of interacting agents,
and (2) the system exhibits emergent properties, that is, properties arising
from the interactions of the agents that cannot be deduced simply by aggre-
gating the properties of the system’s components. When the interaction of
the agents is contingent on past experience, and especially when the agents
continually adapt to that experience, mathematical analysis is typically very
limited in its ability to derive the outcome.

Many physicists have contributed to a better understanding of large-scale
properties of socio-economic systems, and they open the new research field,
“econophysics”. An international scientific development has started to gain
new insight into the dynamics of socio-economic systems by using methods
originally developed in statistical physics and complex theory. This book also
covers the current achievements in this rapidly changing field.

This book contains selected papers presented at the 9-th International
Workshop on Heterogeneous Interacting Agents (WEHIA), which was held at
Kyoto University, Japan, from May 27 to 29, 2004. From the broad spectrum of
activities, leading experts presented important papers and numerous practical
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problems appear throughout this book. We also encouraged papers dealing
with applications of agent-based modeling.

WEHIA was initiated as a result of the growing recognition of the im-
portance of agent-based modeling to study large-scale socio-economic sys-
tems at University of Ancona, Italy in 1996. The annual series of WEHIA
serve for sharing the most recent theoretical applications and methodolog-
ical advances on agent-based approaches throughout economists, physicists,
computer scientists, and other scientists in professionals. The main goals of
WEHIA have been to promote interactions and cross-fertilization among dif-
ferent approaches to understanding complex and emergent behaviors and to
mange large-scale socio-economic systems.

WEHIA confers especially to encourage papers at the cutting-edge of other
approaches that are relevant socio-economic systems. By bringing together
three different emerging fields, economics, echonophysics and computer sci-
ence under the same umbrella, WEHIA stresses the expanding importance
of importance close communication and cooperation of the three areas for
the future scientific and technological development. The genuinely interdisci-
plinary approach will enable researchers and students to expand their socio-
economic knowledge and to draw up concepts for future interdisciplinary aca-
demic achievement.

Based on the success of WEHIA for many years, the new association, “The
society for Economic Science with Heterogeneous Interacting Agents” (ES-
HIA) (www.es-hia.org) will be launched in 2006. The official society journal,
“Journal of Economic Interaction and Coordination” (JEIC) will be published
from Springer in 2006. The new society, ESHIA especially features in-depth
coverage of important areas and aims to contribute scientific ally in three di-
rections: (1) To examine theoretical and methodological issues of agent-based
modeling. (2) To discuss multi-agents based simulations and demonstrate ap-
plicability in order to study complex economic behaviors. (3) To contribute
to develop methodological tools of agent-based modeling and apply them to
complex economic and social problems.

We could solicit many high quality papers that reflect the result of the
growing recognition of the importance of the areas. All papers have received a
careful and supportive review, and we selected 22 papers out of 94. The con-
tributions were submitted as a full paper and reviewed by senior researchers
from the program committee. All authors revised their earlier versions pre-
sented at the workshop with reflecting criticisms and comments received at
the workshop. The editors would like to thank the program committee for the
careful review of the papers and the sponsors and volunteers for their valuable
contribution. We hope that as a result of reading the book you will share with
us the intellectual excitement and interest in this emerging discipline.

We are grateful to the many people who have made this symposium pos-
sible. First and foremost, we thank the authors for providing manuscripts on
time and in a standard format. We also thank the many referees who gen-
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erously contributed time and Dr. Hiroshi Sato to ensure the quality of the
finished product.

Finally, we would like to acknowledge the support and encouragement of
many peoples in helping us getting this book to be published. Especially the
publication of this book and the 9th WEHIA are financially supported by the
grant from the Commerative Organization for the Japan World Exposition
(’70), Hayasibara Foundation, Kozo Keikaku Engineering Inc. We would like
also thank for the grant-in-aid for Scientific Research (C) No.15201038, Japan
Society for the promotion of Science (JSPS).

October 2005 Akira Namatame
Taisei Kaizoji

Yuji Aruka
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Five Years of Continuous-time Random Walks
in Econophysics

Enrico Scalas

DISTA, Università del Piemonte Orientale, Via Bellini 25/G, 15100 Alessandria,
Italy and INFM Unità di Genova, Via Dodecaneso 33, 16146 Genova. Italy
scalas@unipmn.it

Summary. This paper is a short review on the application of continuos-time ran-
dom walks to Econophysics in the last five years.

1 Introduction

Recently, there has been an increasing interest on the statistical properties
of high-frequency financial data related to market microstructural properties
[1, 2, 3, 4, 5, 6]. High-frequency econometrics is now well established after
research on autoregressive conditional duration models [7, 8, 9, 10].

In high-frequency financial data not only returns but also waiting times
between consecutive trades are random variables [11]. This remark is present
in a paper by Lo and McKinlay [12], but it can be traced at least to pa-
pers on the application of compound Poisson processes [13] and subordinated
stochastic processes [14] to finance. Models of tick-by-tick financial data based
on compound Poisson processes can also be found in the following references:
[15, 16, 17].

Compound Poisson processes are an instance of continuous-time random
walks (CTRWs) [18]. The application of CTRW to economical problems dates
back, at least, to the 1980s. In 1984, Rudolf Hilfer discussed the application
of stochastic processes to operational planning, and used CTRWs as tools for
sale forecasts [19]. The revisited and augmented CTRW formalism has been
applied to high-frequency price dynamics in financial markets by our research
group since 2000, in a series of three papers [20, 21, 22]. Other scholars have
recently used this formalism [23, 24, 25]. However, already in 1903, the PhD
thesis of Filip Lundberg presented a model for ruin theory of insurance compa-
nies, which was later developed by Cramér [26, 27]. The underlying stochastic
process of the Lundberg-Cramér model is another example of compound Pois-
son process and thus also of CTRW.

Among other issues, we have studied the independence between log-returns
and waiting times for stocks traded at the New York Stock Exchange in Oc-
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tober 1999. For instance, according to a contingency-table analysis performed
on General Electric (GE) prices, the null hypothesis of independence can be
rejected with a significance level of 1 % [28]. We have also discussed the
anomalous non-exponential behaviour of the unconditional waiting-time dis-
tribution between tick-by-tick trades both for future markets [21] and for stock
markets [28, 29]. Different waiting-time scales have been investigated in differ-
ent markets by various authors. All these empirical analyses corroborate the
waiting-time anomalous behaviour. A study on the waiting times in a contem-
porary FOREX exchange and in the XIXth century Irish stock market was
presented by Sabatelli et al. [30]. They were able to fit the Irish data by means
of a Mittag-Leffler function as we did before in a paper on the waiting-time
marginal distribution in the German-bund future market [21]. Kyungsik Kim
and Seong-Min Yoon studied the tick dynamical behavior of the bond futures
in Korean Futures Exchange (KOFEX) market and found that the survival
probability displays a stretched-exponential form [31]. Finally, Ivanov et al.
[33] confirmed that a stretched exponential fits well the survival distribution
for NYSE stocks as we suggested in [28]. Moreover, just to stress the relevance
of non-exponential waiting times, a power-law distribution has been recently
detected by T. Kaizoji and M. Kaizoji in analyzing the calm time interval
of price changes in the Japanese market [32]. We have offered a possible ex-
planation of the anomalous waiting-time behaviour in terms of daily variable
activity [29].

The aforementioned empirical results are important as market microstruc-
tural models should be able to reproduce such a non-exponential behaviour
of waiting-time distributions in order to be realistic. However, the rest of this
paper focuses on the theory and is divided as follows: in Section 2, CTRW
theory is presented as applied to finance. Finally, in Sec. 3, a summary of
main results is presented together with a discussion on the direction of future
research.

2 Theory

Random walks have been used in finance since the seminal thesis of Bachelier
[34], a work completed at the end of the XIXth century, more than a hundred
years ago. After a rather long period in which the ideas of Bachelier were
neglected, they were further developed until recent times [35, 36].

Our approach to random walks in finance is related to that of Clark [14]
and to the introductory part of Parkinson’s paper [37]. It is a purely phe-
nomenological approach. There is no assumption on the rationality or the
behaviour of trading agents and it is not necessary to assume the validity of
the efficient market hypothesis [38, 39]. However, as briefly discussed above,
even in the absence of a microfoundation, a phenomenological model can still
be useful to corroborate or falsify the consequences of behavioural or other
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assumptions on markets. The model itself can be corroborated or falsified by
empirical data.

In order to model tick-by-tick data, we use the so-called continuous-time
random walk (CTRW), where time intervals between successive steps are ran-
dom variables, as discussed by Montroll and Weiss [18]. In physics, CTRWs
have been introduced as models of diffusion with instantaneous jumps from
one position to the next. For this reason they can be used as models of price
dynamics as well.

Let S(t) denote the price of an asset at time t. In a real market with a
double-auction mechanism, prices are fixed when buy orders are matched with
sell orders and a transaction (trade) occurs. It is more convenient to refer to
returns rather than prices. For this reason, we shall take into account the
variable x(t) = logS(t): the logarithm of the price. For a small price variation
∆S = S(ti+1) − S(ti), the return r = ∆S/S(ti) and the logarithmic return
rlog = log[S(ti+1)/S(ti)] virtually coincide.

CTRWs are essentially point processes with reward [40]. The point process
is characterized by a sequence of independent identically distributed (i.i.d.)
positive random variables τi, which can be interpreted as waiting times be-
tween two consecutive events:

tn = t0 +
n∑

i=1

τi; tn − tn−1 = τn; n = 1, 2, 3, . . . ; t0 = 0. (1)

The rewards are (i.i.d.) not necessarily positive random variables: ξi. In the
usual physical intepretation, the ξis represent the jumps of a diffusing par-
ticle, and they can be n-dimensional vectors. Here, only the 1-dimensional
case is studied, but the extension of many results to the n-dimensional case
is straightforward. The position x of the particle at time t is given by the
following random sum (with N(t) = max{n : tn ≤ t} and x(0) = 0):

x(t) =
N(t)∑
i=1

ξi. (2)

In the financial interpretation outlined above, the ξi’s have the meaning of log-
returns, whereas the positions or rewards x(t) represent log-prices at time t.
Indeed, the time series {x(ti)} is characterised by ϕ(ξ, τ), the joint probability
density of log-returns ξi = x(ti+1) − x(ti) and of waiting times τi = ti+1 − ti.
The joint density satisfies the normalization condition

∫ ∫
dξdτϕ(ξ, τ) = 1. It

must be again remarked that both ξi and τi are assumed to be independent
and identically distributed (i.i.d.) random variables. This strong assumption
is useful to derive limit theorems for the stochastic processes described by
CTRWs. However, in financial time series, the presence of volatility clustering,
as well as correlations between waiting times do falsify the i.i.d hypothesis.
The reader interested in a review on correlated random variables in finance is
referred to chapter 8 in McCauley’s recent book [41].
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In general, log-returns and waiting times are not independent from each
other [28]. By probabilistic arguments (see [18, 21, 42]), one can derive the
following integral equation that gives the probability density, p(x, t), for the
particle of being in position x at time t, conditioned by the fact that it was
in position x = 0 at time t = 0:

p(x, t) = δ(x)Ψ(t) +
∫ t

0

∫ +∞

−∞
ϕ(x− x′, t− t′) p(x′, t′) dt′ dx′, (3)

where δ(x) is Dirac’s delta function and Ψ(τ) is the so-called survival function.
Ψ(τ) is related to the marginal waiting-time probability density ψ(τ). The two
marginal densities ψ(τ) and λ(ξ) are:

ψ(τ) =
∫ +∞

−∞
ϕ(ξ, τ) dξ

λ(ξ) =
∫ ∞

0

ϕ(ξ, τ) dτ, (4)

and the survival function Ψ(τ) is:

Ψ(τ) = 1 −
∫ τ

0

ψ(τ ′) dτ ′ =
∫ ∞

τ

ψ(τ ′) dτ ′. (5)

Both the two marginal densities and the survival function can be empirically
derived from tick-by-tick financial data in a direct way.

The integral equation, eq. (3), can be solved in the Laplace-Fourier domain.
The Laplace transform, g̃(s) of a (generalized) function g(t) is defined as:

g̃(s) =
∫ +∞

0

dt e−st g(t) , (6)

whereas the Fourier transform of a (generalized) function f(x) is defined as:

f̂(κ) =
∫ +∞

−∞
dx eiκx f(x) . (7)

A generalized function is a distribution (like Dirac’s δ) in the sense of S. L.
Sobolev and L. Schwartz [43].

One gets: ˜̂p(κ, s) = Ψ̃(s)
1

1 − ˜̂ϕ(κ, s)
, (8)

or, in terms of the density ψ(τ):

˜̂p(κ, s) =
1 − ψ̃(s)

s

1

1 − ˜̂ϕ(κ, s)
, (9)

as, from eq. (5), one has:
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Ψ(s) =
1 − ψ̃(s)

s
. (10)

In order to obtain p(x, t), it is then necessary to invert its Laplace-Fourier
transform ˜̂p(κ, s). As we shall see in the next subsection, for log-returns in-
dependent from waiting times, it is possible to derive a series solution to the
integral equation (3).

2.1 Limit Theorems: The Uncoupled Case

In a recent paper, Gorenflo, Mainardi and the present author have discussed
the case in which log-returns and waiting times are independent [42]. It is
the so-called uncoupled case, when it is possible to write the joint probability
density of log-returns and waiting times as the product of the two marginal
densities:

ϕ(ξ, τ) = λ(ξ)ψ(τ) (11)

with the normalization conditions
∫
dξλ(ξ) = 1 and

∫
dτψ(τ) = 1.

In this case the integral master equation for p(x, t) becomes:

p(x, t) = δ(x)Ψ(t) +
∫ t

0

ψ(t− t′)
[∫ +∞

−∞
λ(x− x′) p(x′, t′) dx′

]
dt′ (12)

This equation has a well known general explicit solution in terms of P (n, t),
the probability of n jumps occurring up to time t, and of the n-fold convolution
of the jump density, λn(x):

λn(x) =
∫ +∞

−∞
. . .

∫ +∞

−∞
dξn−1 . . . dξ1λ(x− ξn−1) . . . λ(ξ1). (13)

Indeed, P (n, t) is given by:

P (n, t) =
∫ t

0

ψn(t− τ)Ψ(τ) dτ (14)

where ψn(τ) is the n-fold convolution of the waiting-time density:

ψn(τ) =
∫ τ

0

. . .

∫ τ1

0

dτn−1 . . . dτ1ψ(τ − τn−1) . . . ψ(τ1). (15)

The n-fold convolutions defined above are probability density functions for
the sum of n independent variables.

Using the Laplace-Fourier method and recalling the properties of Laplace-
Fourier transforms of convolutions, one gets the following solution of the in-
tegral equation [44, 42, 45, 46]:

p(x, t) =
∞∑

n=0

P (n, t)λn(x) (16)
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Eq. (16) can also be used as the starting point to derive eq. (12) via the
transforms of Fourier and Laplace, as it describes a jump process subordinated
to a renewal process [14, 47].

Let us now consider the following pseudodifferential equation, giving rise
to anomalous relaxation and power-law tails in the waiting-time probability:

dβ

dτβ
Ψ(τ) = −Ψ(τ), τ > 0, 0 < β ≤ 1; Ψ(0+) = 1, (17)

where the operator dβ/dtβ is the Caputo fractional derivative, related to
the Riemann–Liouville fractional derivative. For a sufficiently well-behaved
function f(t), the Caputo derivative is defined by the following equation, for
0 < β < 1:

dβ

dtβ
f(t) =

1
Γ (1 − β)

d

dt

∫ t

0

f(τ)
(t− τ)β

dτ − t−β

Γ (1 − β)
f(0+), (18)

and reduces to the ordinary first derivative for β = 1. The Laplace transform
of the Caputo derivative of a function f(t) is:

L
(

dβ

dtβ
f(t); s

)
= sβ f̃(s) − sβ−1f(0+). (19)

If eq. (19) is applied to the Cauchy problem of eq. (17), one gets:

Ψ̃(s) =
sβ−1

1 + sβ
. (20)

Eq. (20) can be inverted, giving the solution of eq. (17) in terms of the Mittag-
Leffler function of parameter β [48, 49]:

Ψ(τ) = Eβ(−τβ), (21)

defined by the following power series in the complex plane:

Eβ(z) :=
∞∑

n=0

zn

Γ (βn + 1)
. (22)

The Mittag-Leffler function is a possible model for a fat-tailed survival func-
tion. For β = 1, the Mittag-Leffler function coincides with the ordinary ex-
ponential function. For small τ , the Mittag-Leffler survival function coincides
with the stretched exponential:

Ψ(τ) = Eβ(−τβ) � 1 − τβ

Γ (β + 1)
� exp{−τβ/Γ (β + 1)}, 0 ≤ τ � 1, (23)

whereas for large τ , it has the asymptotic representation:
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Ψ(τ) ∼ sin(βπ)
π

Γ (β)
τβ

, 0 < β < 1, τ → ∞. (24)

Accordingly, for small τ , the probability density function of waiting times
ψ(τ) = −dΨ(τ)/dτ behaves as:

ψ(τ) = − d

dτ
Eβ(−τβ) � τ−(1−β)

Γ (β)
, 0 ≤ τ � 1, (25)

and the asymptotic representation is:

ψ(τ) ∼ sin(βπ)
π

Γ (β + 1)
τβ+1

, 0 < β < 1, τ → ∞. (26)

The Mittag-Leffler function is important as, without passage to the diffu-
sion limit, it leads to a time-fractional master equation, just by insertion into
the CTRW integral equation. This fact was discovered and made explicit for
the first time in 1995 by Hilfer and Anton [50]. Therefore, this special type
of waiting-time law (with its particular properties of being singular at zero,
completely monotonic and long-tailed) may be best suited for approximate
CTRW Monte Carlo simulations of fractional diffusion.

For processes with survival function given by the Mittag-Leffler function,
the solution of the master equation can be explicitly written:

p(x, t) =
∞∑

n=0

tβn

n!
E

(n)
β (−tβ)λn(x), (27)

where:
E

(n)
β (z) :=

dn

dzn
Eβ(z).

The Fourier transform of eq. (27) is the characteristic function of p(x, t)
and is given by:

p̂(κ, t) = Eβ [tβ(λ̂(κ) − 1)]. (28)

If log-returns and waiting times are scaled according to:

xn(h) = hξ1 + hξ2 + . . . + hξn, (29)

and:
tn(r) = rτ1 + rτ2 + . . . + rτn, (30)

the scaled characteristic function becomes:

p̂h,r(κ, t) = Eβ

[
tβ

rβ
(λ̂(hκ) − 1)

]
. (31)

Now, if we assume the following asymptotic behaviours for vanishing h and r:

λ̂(hκ) ∼ 1 − hα|κ|α; 0 < α ≤ 2, (32)
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and
lim

h,r→0

hα

rβ
= 1, (33)

we get that:
lim

h,r→0
p̂h,r(κ, t) = û(κ, t) = Eβ [−tβ |κ|α]. (34)

The Laplace transform of eq. (34) is:

˜̂u(κ, s) =
sβ−1

|κ|α + sβ
. (35)

Therefore, the well-scaled limit of the CTRW characteristic function coincides
with the Green function of the following pseudodifferential fractional diffusion
equation:

|κ|α˜̂u(κ, s) + sβ ˜̂u(κ, s) = sβ−1, (36)

with u(x, t) given by:

u(x, t) =
1

tβ/α
Wα,β

( x

tβ/α

)
, (37)

where Wα,β(u) is given by:

Wα,β(u) =
1

2π

∫ +∞

−∞
dκ e−iκuEβ(−|κ|α), (38)

the inverse Fourier transform of a Mittag-Leffler function [51, 52, 53, 54, 55].
For β = 1 and α = 2, the fractional diffusion equation reduces to the

ordinary diffusion equation and the function W2,1(u) becomes the Gaussian
probability density function evolving in time with a variance σ2 = 2t. In the
general case (0 < β < 1 and 0 < α < 2), the function Wα,β(u) is still a
probability density evolving in time, and it belongs to the class of Fox H-type
functions that can be expressed in terms of a Mellin-Barnes integral as shown
in details in ref. [52].

The scaling equation, eq. (33), can be written in the following form:

h � rβ/α. (39)

If β = 1 and α = 2, one recognizes the scaling relation typical of Brownian
motion (or the Wiener process).

In the passage to the limit outlined above, ˜̂pr,h(κ, s) and ˜̂u(κ, s) are asymp-
totically equivalent in the Laplace-Fourier domain. Then, the asymptotic
equivalence in the space-time domain between the master equation and the
fractional diffusion equation is due to the continuity theorem for sequences
of characteristic functions, after the application of the analogous theorem
for sequences of Laplace transforms [56]. Therefore, there is convergence in
law or weak convergence for the corresponding probability distributions and
densities. Here, weak convergence means that the Laplace transform and/or
Fourier transform (characteristic function) of the probability density function
are pointwise convergent (see ref. [56]).
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2.2 Limit Theorems: The Coupled Case

The diffusive limit in the coupled case is discussed by Meerschaert et al. [57].
The coupled case is relevant as, in general, log-returns and waiting times are
not independent [28]. Based on the results summarized in [42] and discussed
in [58, 59], it is possible to prove the following theorem for the coupled case:

Theorem

Let ϕ(ξ, τ) be the (coupled) joint probability density of a CTRW. If, under the
scaling ξ → hξ and τ → rτ , the Fourier-Laplace transform of ϕ(ξ, τ) behaves
as follows: ˜̂ϕh,r(κ, s) = ˜̂ϕ(hκ, rs) (40)

and if, for h → 0 and r → 0, the asymptotic relation holds:

˜̂ϕh,r(κ, s) = ˜̂ϕ(hκ, rs) ∼ 1 − µ|hκ|α − ν(rs)β , (41)

with 0 < α ≤ 2 and 0 < β ≤ 1. Then, under the scaling relation µhα = νrβ ,
the solution of the (scaled) coupled CTRW master (integral) equation, eq. (3),
ph,r(x, t), weakly converges to the Green function of the fractional diffusion
equation, u(x, t), for h → 0 and r → 0.

Proof

The Fourier-Laplace transform of the scaled conditional probability density
ph,r(x, t) is given by:

˜̂ph,r(κ, s) =
1 − ψ̃(rs)

s

1

1 − ˜̂ϕ(hκ, rs)
. (42)

Replacing eq. (41) in eq. (42) and observing that ψ̃(s) = ˜̂ϕ(0, s), one asymp-
totically gets for small h and r:

˜̂ph,r(κ, s) ∼ νrβsβ−1

νrβsβ + µhα|κ|α , (43)

which for vanishing h and r, under the hypotheses of the theorem, converges
to: ˜̂p0,0(κ, s) = ˜̂u(κ, s) =

sβ−1

sβ + |κ|α , (44)

where ˜̂u(κ, s) is the Fourier-Laplace transform of the Green function of the
fractional diffusion equation (see eq. (36)). The asymptotic equivalence in the
space-time domain, between p0,0(x, t) and u(x, t), the inverse Fourier-Laplace
transform of ˜̂u(κ, s), is again ensured by the continuity theorem for sequences
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of characteristic functions, after the application of the analogous theorem for
sequences of Laplace transforms [56]. There is convergence in law or weak
convergence for the corresponding probability distributions and densities.

An important consequence of the above theorem is the following corollary
showing that in the case of marginal densities with finite first moment of wait-
ing times and finite second moment of log-returns, the limiting density u(x, t)
is the solution of the ordinary diffusion equation (and thus the limiting pro-
cess is the Wiener process). The corollary can be used to justify the popular
Geometric Brownian Motion model of stock prices, here with expected return
set to zero. Again, in order to derive this result, no reference is necessary to
the Efficient Market Hypothesis [38, 39].

Corollary

If the Fourier-Laplace transform of ϕ(ξ, τ) is regular for κ = 0 and s = 0, and,
moreover, the marginal waiting-time density, ψ(τ), has finite first moment τ0

and the marginal jump density, λ(ξ), is symmetric with finite second moment
σ2, then the limiting solution of the master (integral) equation for the coupled
CTRW is the Green function of the ordinary diffusion equation.

Proof

Due to the hypothesis of regularity in the origin and to the properties of
Fourier and Laplace transforms, we have that:

˜̂ϕh,r(κ, s) = ˜̂ϕ(hκ, rs) ∼ ˜̂ϕ(0, 0) +

+
1
2

(
∂2 ˜̂ϕ
∂κ2

)
(0,0)

h2κ2 +

(
∂ ˜̂ϕ
∂s

)
(0,0)

rs =

= 1 − σ2

2
h2κ2 − τ0rs, (45)

and as a consequence of the theorem, under the scaling h2σ2/2 = τ0r, one
gets, for vanishing h and r:

˜̂p0,0(k, s) = ˜̂u(k, s) =
1

s + k2
, (46)

corresponding to the Green function (36) for α = 2 and β = 1, that is the
solution of the Cauchy problem for the ordinary diffusion equation.

3 Summary and Outlook

In this paper, a discussion of continuous-time random walks (CTRWs) has
been presented as phenomenological models of tick-by-tick market data.
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Continuous-time random walks are rather general and they include compound
Poisson processes as particular instances. Well-scaled limit theorems have been
presented for a rather general class of CTRWs.

It is the hope of this author that this paper will stimulate further research
on high-frequency econometrics based on the concepts outlined above. There
are several possible developments.

First of all, one can abandon the hypothesis of i.i.d. log-returns and waiting
times and consider various forms of dependence. In this case, it is no longer
possible to exploit the nice properties of Laplace and Fourier transforms of
convolutions, but, still, Monte Carlo simulations can provide hints on the
behaviour of these processes in the diffusive limit.

A second possible extension is to include volumes as a third stochastic
variable. This extension is straightforward, starting from a three-valued joint
probability density.

A third desirable extension is to consider a multivariate rather than uni-
variate model that includes correlations between time series.

The present author is currently involved in these extensions and is eager
to know progress in any direction by other independent research groups. He
can be contacted at scalas@unipmn.it
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Summary. Two new reasons are discussed for sluggish behavior of macroeconomic
variables such as price indices.

One is slow spread of the news of microeconomic idiosyncratic shocks in the
economy, when the economy is organized into tree structures of heterogeneous sub-
groups or clusters of agents or goods. Clusters are not symmetrically treated, but
the concept of ultrametric distances measure disparities or similarities of clusters.

Another is the effects of uncertainties that affect decision processes, such as
about the cost surfaces, or about the shapes of cost landscapes which may have
many local minima which are not known precisely. Effectiveness of many search
algorithm is reduced in the face of this kind of uncertainty. Flat cost landscapes,
called entropic barriers, are discussed as an example.3

1 Introduction

The standard approach such as real business cycle theory is based on the
premise that the microeconomic behavior of the optimizing agents mimics
dynamics of the macroeconomy. This premise is wrong, because we see that
macro- and micro-behavior are clearly different in many aspects, such as in
their speeds of responses.

Two of the causes for sluggish responses are familiar: complex organi-
zations of macroeconomy, and effects of uncertainty. On complexity of or-
ganization, the existing economic literature treats the phenomena of sluggish
adjustments or responses of economic variables such as prices, wages, or unem-
ployment rates by treating adjusting variables or agents all on equal footing,
that is, without introducing some notions of similarity or closeness between
various heterogeneous groups of variables or agents.

It is true that some rudimentary notion of social distances between dif-
ferent clusters of agents is found in economic literature, such as agents being

3 For some other aspects of uncertainty, see Aoki, Yoshikawa, and Shimizu (2002).
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placed at sites of lattices. However, no explicit notions of similarity, correla-
tions or distances between various groups of variables or agents are examined.
No models with more formal notion of distances among different groups of
agents apparently exist.

The manner of how news of idiosyncratic disturbances of some types or
price changes spreads through the macroeconomy need be analyzed in more
systematic manner by introducing some notion of distance between clusters
of agents.

In our view, attempts at dealing with groups of agents in the economic
literature do not go far enough. We introduce the notion of hierarchically
structured clusters of goods or producers as an essential ingredient in models
designed to explain sluggish adjustment processes.

This paper analyzes a particular aspect of the macroeconomy, namely
adjustment speeds of macroeconomic price indicies. We use the concept of
ultrametrics as measure of distances between clusters.

Since the publication of Keynes’ General Theory (1936), inflexibility or
ridigity of prices has been always a forcal point of macroeconomics. Many
economists take inflexibility of prices as a sign of agents’ irrationality. They
argue that well organized market forces should make prices flexible. In this
paper we explain that prices are necessarily slow to change in large economies.

To improve on the existing literature, we need more appropriate notion
than correlation to measure relations among agents or variables, since the
notion of correlation is not transitive as has been known, for example, in the
numerical taxonomy literature. Feigelman and Ioffe (1991) have an example
of three patterns: A=(1, 1, 1, 1), B=(1,1,-1,1) and C=(1,1,1,-1). Calculating
correlations by ρ = (1/4)

∑
i xiyi where xs and ys are the components of the

patterns above, we see that ρA,B = ρA,C = 1/2 but ρB,C = 0.
To avoid this kind of intransitivity of correaltions, which makes correla-

tion unsuitable as a measure of similarity of patterns, we use the notion of
ultrametrics as a measure of distance between clusters of agents. The con-
cept of ultrametrics has been in the literature of mathematics and physics,
especially in spin glass models. For these, see Schikhof (1984), or Mézard,
Parisi and Virasoro (1986), among others. See Aoki (1996, p. 34) for some
elementary explanation of the ultrametrics, and some simple economic appli-
cations. Aoki (2002), and Aoki and Yoshikawa (2003) have a more complex
example of labor market dynamics and Okun’s law,where unemployed workers
from different sectors of economy or different human capitals or job experi-
ences form separate clusters and ultrametrics are used to measure distances
between clusters. This distance is then used to generate probabilities of un-
employed being recalled by a given industry when job openings are created.
Taylor’s well-known analysis of adjustment of wages is different from ours.
He treats groups of workers with different wage contracts as the source of
slow wage/price dynamics. His model and virtually all multi-sector models
treat sectors symmetrically with equal distances between any two sectors.
These groups are not hierarchically arranged. There is no notion of adjust-
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ment speeds as functions of some similarity measures among clusters, Taylor
(1980).

We place clusters of agents as leaves of a tree. Distances between clus-
ters are measured by counting the number of levels one must travel towards
the root of the tree to find a common node shared by the two leaves. This
is called ultrametric distances.4 News, such as that of the arrival of some
idiosyncratic shocks at some sites, spread throughout the tree as stochastic
processes governed by the backward Chapman-Kolmogorov equation, called
the master equaation in this paper, in which transition rates are functions of
ultrametric distances.

2 Tree Models

We use upside down trees to represent hierarchical structures. At the bottom
of a tree we have leaves, also called sites, where each leaf represents a cluster of
agents or a (price of) goods, as the case may be. Agents in the same cluster are
alike in some sense. They may be producers of some close substitute goods, or
they may have similar reaction or decision making delays given a disturbance
of some kind in signals they use, and so on. A number of the leaves, denoted
by m1, share a common node of a tree. These leaves are connected to nodes
located on level 2 of the tree. There are m2 of the nodes which branch out from
a node at level three, and so on.5 In general we have K levels in a tree. The
top of the tree is the root consisting of a single cluster with N = m1m2 · · ·mK

number of clusters or leaves.
Without loss of generality we assume that an exogenous idiosyncratic dis-

turbance occurs at site 1 at time zero. Let this disturbance be felt at site
i at time t with probability Pi(t). The initial condition is P1(0) = 1, and
Pi(0), i �= 1. These P s are governed by the master equation where transition
rates are functions of ultrametric distances. See Aoki(1996, 2002) for several
examples.

We also use another measure to gauge the speed with which news or dis-
turbances travel through the tree. We define the expected distance reached
by the disturbance originated at site 1 by time t, i.e.,

< d(t) >=
∑

i

d(i, 1)Pi(t),

where d(i, 1) is the ultrametric distance between node i and site 1, which is
the source of news or disturbance. This averaged distance indicates how far,
on the average, the news of disturbance has spread through the model.

4 See for example, Aoki (1996, p. 31).
5 Trees need not have symmetric shape or profiles, that is, the number of branches

from a node can be different from node to node.
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3 Two Types of Lags in Tree Dynamics

3.1 Multiplier Lags

Responses of a macroeconomic price index to shocks to one of its component
prices consists of two components. One is the well-known dynamic delays in
multipliers or impluse responses. which are familiar in economics and econo-
metrics. The other is called information lag in this paper. It refers to delays
in the news or effects of exogenous shocks which originated in one sector of an
economy spreading to other sectors stochastically. The multiplier lag is simply
illustrated here by dynamic responses of a second order ordinary differential
equation to a step input changes. Propagations of shocks are treated in this
paper stochastically. This requires solving the master equations for states that
are the leaves of trees.

To illustrate this, it is convenient to use Laplace transforms to relate out-
put responses to input changes as

H(s)Y (s) = U(s),

where s is the Laplace transform variable, Y (s) is the transform of the model
output that is response to change in input, and U(s) the Laplace transform
of input.

We may write this more directly as

Y (s) =
U(s)
H(s)

.

The time domain expression is

d2y

dt
+ (a + b)

dy

dt
+ aby = u.

Here 1/H(s) is called the transfer function. This expression shows how the
signal at the input side of the model is transferred to the output side of the
model. If the input signal to the system at time zero at full constant force,
then, without loss of generality, we can think of the input signal u(t) = 1 for t
positive. Its Laplace transform is U(s) = 1/s. On the other hand, if the signal
gradually appear to this system, we may have something like u(t) = 1 − e−µt

with µ > 0,for t > 0 say. This input is initially zero and graudally reach
its full force after about the time elapse of 4/µ. Its Laplace transform is
U(s) = µ/[s(s + µ)].

As a simple illustration of the difference of these two types of input signals
on y(t), we assume that dynamics are described by a second order ordinary
constant coefficient differential equation with zero initial conditions; y(0) = 0,
and dy(0)/dt = 0. To be very concrete suppose that H(s) = (s + a)(s + b)
with some positive a and b. This is the transfer function of a dynamic system
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described by a second order differential equation with two stable eigenvalues
−a, and −b.

With the step input, the dynamic response is obtained by taking the in-
verse Laplace transform of

Y (s) =
1

s(s + a)(s + b)
=

C

s
+

A

s + a
+

B

s + b
,

where A, B, and Care the constants, C = 1/ab, A = −1/[(b − a)a], and
B = 1/[(b− a)b]. The time response of the pair of input and output with this
transfer function is given by

y(t) = C + Ae−at + Be−bt.

This y(t) expression shows the multiplier effects of this block or unit of
dynamics with the indicated transfer function. If a < b, then after the time
span of about 4/a units of time, the output nearly settles to a constant, y(t) ≈
1/ab.6 It takes about this much time for the effect of a sudden application of
a step signal at the input to settle down at the output of the model.

With the other input with a gradually rising magnitude such as u(t) =
1 − e−µt, with µ a positive constant much smaller than a and b, then y(t) is
approximately equal to

y(t) =
µ

b− a
[− e−at

a− µ
+

e−bt

b− µ
] +

µ

(a− µ)(b− µ)]e−µt
.

The first two exponential terms are due to the dynamic multiplier effects,
and the third term is due to information transmission delay when u(t) grad-
ually appear at the input terminal of this block or unit with the second-order
dynamics.

This expression is approximately equal to the last term above when µ is
much smaller than a or b. The signal y(t) ≈ (1/ab)(1 − e−λt), which takes
a long time to reach its steady state value. In this case it is the behavior of
input, not the dynamics, that causes the sluggish output.

3.2 Stochastic Spread of News in Trees: An example

We next turn to the second type of lags that exist in trees with several levels
of nodes.

To illustrate our idea simply, we consider two simple economies with four
sectors which are organized in two different ways. One is organized as a one
level tree, and the other as a two level tree. Two-level trees are generally
more sluggish in response than one-level trees. More generally, the larger the
number of levels, the slower the dynamics.

6 If a is larger than b, then the dynamic lag is about 4/b, that is, with two basic
lag structure, it is 4/min(a, b) is the multiplier lag.
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Without loss of generality we assume that exogenous disturnaves are felt
at site 1 at time zero. This disturbance is felt at site i at time t with prob-
ability Pi(t). The initial condition is P1(0) = 1, and Pi(0) = 0, i �= 1. We
pay more attention to the transient behavior than the steady state values of
these probabilities becasue the delays are determined by the transient time
constants.

The probability at site i is changing over time as the difference of the
influx and outflux of probabilities. Denote the transition rate between site i
and j by w(i, j). The master equation which describes the dynamics of the
probabilities is

dPi(t)
dt

= Ii(t) −Oi(t),

where the influx to site i is

Ii(t) =
∑
j �=i

Pj(t)w(j, i),

and
Oi(t) = Pi(t)

∑
j �=i

w(i, j).

For the one level tree with four sites

I1(t) = P2(t)w(2, 1) + P3(t)w(3, 1) + P4(t)w(4, 1),

and
O1(t) = P1(t)[w(1, 2) + w(1, 3) + w(1, 4)],

and with similar expressions for the other Is and Os. There are similar ex-
pressions for the outflows and inflows at other sites as well. We also assumne
that w(i, j) = w(j, i) for all i and j.

Next, we posit that the transition rates w(i, j) depends only on the ultra-
metric distance. Exogenous disturbances is felt first by agents or goods in the
same cluster, and then the news or effects will gradually and stochastically
propagate to other leaves, that is, to other clusters of the trees. Therefore we
speak of the expected changes in price indicies as the results of such shocks
to one cluster.

Thus for the one-level tree

w(i, j) = q < 1,

i �= j, where q = exp(−γd(i, j)) = exp(−γ), for all i and j between 1 and 4,
because the ultrametric distance between any pair of sites is the same, and
where γ is some constant. Later we identify it with the inverse of economic
temperature.

For the two-level tree we have7

7 This model is similar to the one in Aoki (1996, p. 38). Details of analysis differ
somewhat.
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w(1, 2) = w(3, 4) = q,

and
w(1, 3) = w(1, 4) = q2

because d(1, 3) = 2, hence w(1, 3) = exp(−2γ) = q2.
The master equation for the probability vector P(t)of the one level tree

consists of probabilities at the four leaves

dP(t)
dt

= WP(t),

with

W =
[
W1 W2

W2 W1

]
,

where

W1 =
(−3q q

q −3q

)
,

W2 = qe2e
′
2,

where e2 = [1 1]′.
This matrix W has eigenvalue 0 with eigenvector (1 1 1 1)′ , and triple

repeated eigenvalue −4q with three independent eigenvectors (1 1 − 1 − 1)′,
(1 − 1 0 0)′, and (0 0 1 − 1)′.

The probabilities evolve with time according to

P1(t) = 1/4 + (3/4)e−4qt,

and
P2(t) = P3(t) = P4(t) = (1/4) − (3/4)e−4qt.

Approximately after time span of 1/q, the probabilities are all about 1/4.8

It takes about this time span for the initial shock to propagate to all the
sectors. Hence this is the time lag for the shock initialted at sector 1 to spread
probabilistically to all the other sectors, i. e., for macroeconomic price index
to fully reflect the price shock to one of its sectors.9

In the other case, the matrix W is given by

W =
[
W1 W2

W2 W1

]
,

where

8 Note that e−1 = 0.018.
9 All probabilities eventually stop changing and reach some constants, such as 1/4

here. This means that the news of disturbance at site 1 has reached all four sites
equally by then.
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W1 =
(−(q + 2q2) q

q −(q + 2q2)

)
,

W2 = q2e2e
′
2,

where e2 = [1 1]′.
This matrix W has eienvalues 0, with eigenvector (1 1 1 1), eigenvalue

λ1 = −4q2, with eigenvector (1 1 − 1 − 1)′, and double repeated eigenvalue
λ2 = −2(q + q2), with eigenvectors (1 − 1 0 0)′, and (0 0 1 − 1)′. Note that
the magnitude of λ1 is less than that of λ2 because q is less than one. The
associated with eigenvalue λ1 is faster than that associated with eigenvalue
λ2. It represents the escape rate of probability from site 1 to site 2.

The probabilities evolve with time as

P1(t) = (1/4 + (1/4)e−λ1t + (1/2)e−λ2t,

P2(t) = (1/4 + (1/4)e−λ1t − (1/2)e−λ2t,

P3(t) = P4(t) = 1/4 − (1/4)e−λ1t.

After time span of 2/q(1 + q), the term e−λ2t is approximately zero. After
time span of 1/q2 all probabilies are approximately equal to 1/4. Note however,
that the time span 1/q2 is much longer than that of 1/q, that is, the two-level
tree is much more sluggish than the one-level tree.

To compare dynamic behavior of this model with the one-level tree, we can
aggregate the tree by defining a two-dimensional state vector with components
S1(t) = P1(t) + P2(t), and S2(t) = P3(t) + P4(t) by defining

Q(t) = SP(t),

where the aggregation matrix S is given by

S =
[

1 1 0 0
0 0 1 1

]
.

The dynamic matrix V for this aggregated vector is given by V =
SWS′(SS′)−1 which has eigenvalues 0 and −4q2.

The vector Q(t) has two components 0.5+0.5e−µt, and 0.5−0.5e−µt with
µ = 4q2.

The dynamics of the one-level tree is much simpler. It has eigenvalues 0
and -4q, the latter with multiplicity 3. We can similarly aggregate the first
two sites and the second two sites separately to produce a two node tree. The
eigenvalue are still 0 and -4q. In other words, after the lapse of time of the
order 1/q, the one-level tree has approximately reached its equilibrium state,
while dynamics of the two-level tree has not.

This fact remains true when one-level trees of K sites is compared with k
level trees with K = 2k. Suppose that we group l of K sites into one cluster,
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and the remaining K − l sites into another. The eigenvalues are 0 and −Kq,
repeated K − 1 times, while those of k level tree are 0 and −(2q)k.

We can show that the larger the number of hierarchies the slower the pro-
cess of disturbance propagation, and response of macro-price index to shocks
to one of the sectors. Ogielski and Stein (1985),10 among several others, have
shown that in the limit of the number of hierarchy going to infinity, the re-
sponse becomes power-law, not exponential decay. See also Paladin et al.
(1985)

3.3 Inflexible Macroeconomic Prices: An Example

We present an example of slow adjustments of some macroeconomic price
(index) composed of prices of goods of several sectors of economy. To be
simple suppose that a price index PI is the weighted average of two sectoral
output prices, QA and QB . We outline how Sector 1 price QA is affected by an
exogenous shock to site 1 price, since effects on QB(t) are similarly anlalyzed.

For concreteness suppose that node A is composed of a two level tree with
two more nodes a and b with two branches each. There are thus four more
basic prices at sites 1 through 4, such as factor prices, prices of intermediate
goods and so on. The two-level hierarchical tree traces out the relations among
these prices. As shown in the previous section, the tree generates spill-over
probabilities of an exogenous shock to one of the basic prices.

The Laplace transform of P(t), dropping subscript b, is

P̂(s) =
1
4s

u0 +
1

2(s + λ2)
u2 +

1
4(s + λ1)

u1,

where s is the Laplace transform variable, us are the column vectors shown
above.

Consequently we can write down the explicit expression for the expected
values of changes in QA, denoted by E[δQ̂A(s)]. Assuming that transmission
lags of the transfer function ha(s), hb(s), hi(s), i = 1, . . . 4 are not as large as
1/q2 , we can extract the slowest decaying term out of this as

E(δQA(t)) ≈ 1
4
ha(−λ1){h1(−λ1) + h2(−λ1)} − hb(−λ1){h3(−λ1+

h4(−λ1)}e−λ1t + · · · ,
where the slowest term is extracted.

In the case where ha(s) = 1/(s + a), hb(s) = 1/(s + b), hi(s) = 1/(s + αi,
i = 1, . . . 4), then a sufficient condition that this term is present is

Proposition When q2 is negligibly small compared with a, b, αi, i = 1, . . . 4,
price QA will exhibit sluggish response to an exogenous price change at site
1 if
10 See Aoki (1996, p. 200) also.
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1
a

(
1
α1

+
1
α2

) �= 1
b
(

1
α3

+
1
α4

).

This condition rules out that effects of exogenous shocks coming from two
subtree branches cancel out.

More generally, structures of interconnections between the basic prices and
QA are conveniently expressed in terms of the Laplace transforms as

E[δQ̂A(s)] =
4∑

i=1

Ĥi(s)E[δq̂i(s)],

with Ĥi(s) being the Laplace transform of the transfer function from site i to
the price QA. The symbol E is the expectation operator, that is the expected
values of changes in the basic price qi with the probabilities of spill-over.

For example, Ĥi(s) could be a simple first order transfer function such as
(s+ci) with some positive constant ci, or more complex second or third order
transfer functions, possibly with complex as well as real roots.

The example of this section illustrates the effects of spill-over delays due
to hierarchical tree structure, in addition to the usual delays due to dynamics
of transmission which are present in the transfer functions.

The macroeconomic price indices thus have two sources of sluggishness;
one is the usual dynamic lags of transfer functions , and the other information
spread or spill-over lags, that is, the lags for the signal to arrive as inputs to
some transfer function that are connected with the price index expressions.

4 Effects of Uncertainty

4.1 Rugged Landscape Problems

Thus far, we have focussed on the tree structure of the economy that is re-
sponsible for producing slow dynamic behavior. This result is generic since it
does not depend on any specific assumptions on the model. We now turn to
another reason for sluggish macroeconomy that has to do uncertainty.

The standard analysis in economics assumes explicitly or implicitly that
agents know the global shape of objective functions, which are smooth and
well-behaved, and constraints. In reality, agents have only local knowledge
at best, and must try to improve their performance by guessing the right
directions to adjust their decision varibles. To do so they face complicated
and often hard optimization problems.

Agents are thus often stuck at some local optimal point or in basins asso-
ciated with local optima, and they may not know of the existence of better
local optima or global ones. ”Rugged or flat landscapes” are the words often
used to indicate that agents do not know which directions they should adjust
their decision variables.


