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Preface

The present book is a translation and an expansion of lecture notes corre-
sponding to a course of Mathematics of Control delivered during four years
at the École Nationale des Ponts et Chaussées (Marne-la-Vallée, France) to
Master students. A reduced version of this course has also been given at the
Master level at the University of Paris-Sud since eight years. It may there-
fore serve as lecture notes for teaching at the Master or PhD level but also as
a comprehensive introduction to researchers interested in flatness and more
generally in the mathematical theory of finite dimensional systems and con-
trol.

This book may be seen as an outcome of the applied research policy pi-
´

aiming not only at academic excellence, but also at collaborating with in-
dustries on specific innovative projects to enhance technological innovation
using the most advanced know-how. This influence, though indirectly visible,
mainly concerns the originality of some of the topics addressed here which
are, in a sense, a theoretic synthesis of the author’s applied contributions
and viewpoints in the control field, continuously elaborated and modified
in contact with the industrial realities. Such a synthesis wouldn’t have been
made possible without the scientific trust and financial support of many com-
panies during periods ranging from two to ten years. Particular thanks are
due to Elf, Shell, Ifremer, Sextant Avionique, Valeo, PSA, IFP and Micro-
Controle/Newport, and to all the outstanding engineers of these companies,
from which the author could learn so much. The author particularly wishes
to express his gratitude to Frédéric Autran and Bernard Rémond (Valeo),
Alain Danielo and Roger Desailly (Micro-Controle), and Emmanuel Sedda
(PSA).

The largest part of this book, dealing with flatness and applications, is
inspired by works in collaboration, successively, with Benôıt Charlet and
Riccardo Marino, and then with Michel Fliess, Philippe Martin and Pierre
Rouchon. The author addresses his warmest thanks to all of them for many
fruitful discussions, in particular those in which the notion of differential

vii
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flatness could be brought to light. Some of the material used in the Singular
Perturbation Chapter has been elaborated with Pierre Rouchon and Yann
Creff, starting with a collaboration with Elf on distillation control. Their
contributions are warmly acknowledged.

The author is also indebted to all his former PhD students, and particularly
Michel Cohen de Lara, Guchuan Zhu, Régis Baron, Jean-Christophe Ponsart,
Philippe Müllhaupt, Balint Kiss, Rida Sabri, Thierry Miquel, Thomas Devos
and Jérémy Malaizé, in addition to the previously cited ones, Benôıt Charlet,
Philippe Martin, Pierre Rouchon and Yann Creff, for their skillful help to
develop various applications of flatness in particularly interesting directions.

The author also wishes to warmly thank all his colleagues of the Centre Au-
tomatique et Systèmes, and more particularly Guy Cohen, Pierre Carpentier
and Laurent Praly for their constant scientific trust and friendly encourage-
ments during more than twenty years.

He would also like to especially acknowledge a recent fruitful collaboration
with Felix Antritter of the Bundeswehr University, München, on symbolic
computation of flatness conditions.

The first part of this manuscript was translated into english when the au-
thor visited the Department of Mathematics and Statistics of the University
of Kuopio, Finland, from April to June 2006, as an Invited Professor funded
by a Marie Curie Host Fellowship for the Transfer of Knowledge (project
PARAMCOSYS, MTKD-CT-2004-509223), and was used as lecture notes
for a course delivered during this period. The author is not only indebted to
Markku Nihtilä, Chairman of this department, for his kind invitation, but
also for his stimulating discussions and encouragements without which this
book would not yet be finished. Many thanks are also addressed to Petri
Kokkonen for his most efficient and enthusiastic help in the exercise sessions
and in his careful reading of a draft version of this manuscript.

This manuscript has also been used as lecture notes for a two months
intensive course given in March and April 2007 at the School of Electrical
Engineering and Computer Science of the University of Newcastle, Australia,
at the invitation of Jose De Dona and his group, where the decision to ap-
pend a second part, dealing with industrial applications, has been taken. The
author particularly wishes to express his profound thanks to Jose De Dona,
Maria Seron, Jaqui Ramage and Graham Goodwin.

The author is also deeply indebted to Prof. Claus Hillermeier of the
Bundeswehr University, München, for his kind invitation to publish this
manuscript in the Springer collection he is supervising.

J. Lévine
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Chapter 1

Introduction

This book is made of two parts, Theory and Applications.
In the first Part, two major problems of automatic control are addressed:

trajectory generation, or motion planning , and tracking of these trajectories.
In order to make this book as self-contained as possible we have included

a survey of Differential Geometry and Dynamical System Theory. The view-
point adopted for these topics has been tailored to prepare the reader to the
language and tools of flatness-based control design, that is why we have pre-
ferred to place them ahead in Chapters 2 and 3 rather than to release them
in an Appendix.

Recalls of linear system theory are also provided in Chapter 4, such as
controllability and the corresponding Brunovský canonical form, since they
constitute a first solution to the trajectory generation and tracking problems,
which are generalized in the next chapters to flat systems, using a different
approach, leading to simpler calculations.

The last chapters (from Chapter 5 to Chapter 8), are then devoted to
the analysis of Lie-Bäcklund equivalence and flat systems. Note that a large
part of Chapter 6 is devoted to the characterization of flat systems. This
part, not essential to understand the examples and applications of flatness
all along, may be skipped at first reading. However, the reader interested in
this essential but difficult theoretical aspect, still full of unsolved questions,
may find there a self-contained presentation.

In the second Part, the applications have been selected according to their
pedagogical potentials, to illustrate as many control design techniques as
possible in various industrial contexts: control of various types of motors,
magnetic bearings, cranes and aircraft automatic flight design.

1
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2 1 Introduction

1.1 Trajectory Planning and Tracking

The problems of trajectory generation, or motion planning, and tracking of
these trajectories are studied in the context of finite dimensional nonlinear
systems, namely systems described by a set of nonlinear differential equations,
influenced by a finite number of inputs, or control variables.

In practice, a system represents our knowledge of the evolution of some
variables with respect to time, and the control variables are often designed as
the inputs of the actuators driving the system. They may be freely chosen in
order to achieve some tasks, or may be subject to constraints resulting from
technological restrictions.

Numerous examples of such systems may be found in mechanical systems
driven by motors (satellites, aircraft, cars, cranes, machine tools, etc.), electric
circuits or electronic devices driven by input currents or voltages (converters,
electromagnets, motors, etc.), thermal machines driven by heat exchangers
or resistors, chemical reactors, chemical, biotechnological or food processes
driven by input concentrations of some chemical components, or mixtures of
these examples.

The notion of trajectory generation, or motion planning, corresponds to
what we intuitively mean by preparing a flight plan or a motion plan in ad-
vance. More precisely, it consists in the off-line generation of a path, and the
associated control actions that generate the path. This path is supposed to
relate a prescribed initial point to a prescribed final point, in open-loop, i.e.
based on the knowledge of the system model only, in the ideal case where dis-
turbances are absent, and without taking account of possible measurements
of the system state. Such a trajectory is often called reference or nominal
trajectory, and the associated control the reference or nominal control. This
notion is quite natural in the context of controlled mechanical systems such
as aircraft, cars, ships, underwater vehicles, cranes, mechatronic systems, ma-
chine tools or positioning systems. It is also of interest in many other fields
such as chemical, biotechnological or food processes, where we may want to
change the concentration of a chemical component from its present value to
another one in a fast but smooth way, for energy savings or productivity
increase, or some other reason.

The tracking aspect concerns the design of a control law able to follow
the reference trajectory even if some unknown disturbances force the system
to deviate from it. For this purpose, this control law must take into account
additional information, namely on-line measurements, or observations, from
which the deviations at every time with respect to the reference trajectory
can be deduced. In practice, such observations are provided by sensors. The
class of controls that take into account the system state observations, is gen-
erally called feedback or closed-loop control. Without deviation (i.e. without
disturbances), the control coincides with its reference, but as soon as a devi-
ation is detected, the closed-loop control law must ensure the convergence of
the system to its reference trajectory. The type of convergence (local, global,
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exponential, polynomial, etc. ) that can be guaranteed, its rate, sometimes
called time constant of the closed-loop system, and other robustness proper-
ties versus disturbances, modelling errors, etc. , will also be addressed in this
book.

These two problems are particularly easy to solve for the class of nonlinear
systems called differentially flat , or shortly flat, systems, introduced by M.
Fliess, P. Martin, P. Rouchon and the author (Fliess et al. [1992a,b]) and
actively developed since then (see e.g. the surveys and books by Martin et al.
[1997], Lévine [1999], Rudolph [2003], Rudolph et al. [2003], Sira-Ramirez and
Agrawal [2004], Rudolph [2003], Rudolph et al. [2003], Müllhaupt [2009]).

Most of the examples and applications of differential flatness of this book
could have been presented using only elementary and intuitive mathematics.
Though insufficiently precise for a mathematician, the mathematical ambi-
guities may be balanced by their physical evidence. However, if the reader
wants to acquire a deeper understanding and/or wishes to solve more ad-
vanced problems, a precise mathematical background and a rigorous descrip-
tion of flat systems and their properties are required. Unfortunately, the cor-
responding mathematics are not easy. Their proper background comes from
the theory of manifolds of jets of infinite order Krasil’shchik et al. [1986],
Zharinov [1992]. Since at present no self-contained presentation of this the-
ory for control systems is available, we have decided to privilege this aspect
in this book, while keeping the mathematical level as accessible as possible.
Nevertheless, applications also receive a prominent place in this book (Part
II) to present flat systems from every angle.

1.2 Equivalence and Flatness

To give an intuitive idea of differential flatness, a flat system is a system whose
integral curves (curves that satisfy the system equations) can be mapped in
a one-to-one way to ordinary curves (which need not satisfy any differential
equation) in a suitable space, whose dimension is possibly different than the
one of the original system state space.

This definition can be made rigorous by introducing several notions and
tools: we need to work with mappings that are one-to-one between vector
spaces or manifolds of different dimension, and infinitely differentiable. Ac-
cording to the well-known constant rank theorem (see section 2.3), such map-
pings don’t exist between finite dimensional manifolds. Therefore, it may
only become possible if the original manifolds can be embedded in infinite
dimensional ones. A classical way to realize this embedding consists in us-
ing the natural coordinates together with an infinite sequence of their time
derivatives, called jets of infinite order (see e.g. Krasil’shchik et al. [1986],
Zharinov [1992]).
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In this framework, if two manifolds of jets of infinite order are mapped in
a one-to-one and differentiable way, we say that they are Lie-Bäcklund equiv-
alent . More precisely, two systems are said Lie-Bäcklund equivalent if and
only if there exists a smooth one-to-one time-preserving mapping between
their integral curves (trajectories that are solutions of the system differential
equations) which maps tangent vectors to tangent vectors, in order to pre-
serve time differentiation. Going back to our above stated intuitive definition
of flatness, a flat system is Lie-Bäcklund equivalent to a system whose in-
tegral curves have no differential constraints (ordinary curves), that we call
trivial system. Thus, finally, a system is flat if and only if it is Lie-Bäcklund
equivalent to a trivial system.

Therefore, it becomes clear that the study of flat systems passes through
the study of Lie-Bäcklund equivalence, a notion that plays a central role in
this book. In addition, the notion of flatness may be interpreted as a change of
coordinates that transforms the system in its “simplest” form, where calcula-
tions become elementary since the coordinates and the vector field describing
the system are “straightened up”. Recall that a transformation straightens
out coordinates, curves, surfaces, vector fields, distributions (families of vec-
tor fields), etc. . if they are changed into lines, planes, constant vector fields,
orthonormal frames, etc. . In particular, the integration of differential equa-
tions or partial differential equations in these coordinates may be done ex-
plicitly, as far as the associated straightening out transformations may be
obtained.

These considerations indeed strongly suggest that the language of Differ-
ential Geometry is particularly well adapted to our context. However, the
usual finite dimensional standpoint is too narrow for our purpose and its
extension to manifolds of jets of infinite order seems difficult to circumvent.
For the sake of completeness, we first introduce the reader to classic finite
dimensional tools (Part I, Chapter 2), and then to their extension to jets of
infinite order (Part I, Chapter 5).

Other approaches are indeed possible: finite dimensional differential ge-
ometric approaches Charlet et al. [1991], Franch [1999], Shadwick [1990],
Sluis [1993], differential algebra and related approaches Fliess et al. [1995],
Aranda-Bricaire et al. [1995], Jakubczyk [1993], infinite dimensional differ-
ential geometry of jets and prolongations Fliess et al. [1999], van Nieuwstadt
et al. [1998], Pomet [1993], Pereira da Silva and Filho [2001], Rathinam and
Murray [1998].

In the framework of linear finite or infinite dimensional systems, the no-
tions of flatness and parametrization coincide as remarked by Pommaret
[2001], Pommaret and Quadrat [1999], and in the behavioral approach of
Polderman and Willems [1997], flat outputs correspond to latent variables of
observable image representations Trentelman [2004] (see also Fliess [1992] for
a module theoretic interpretation of the behavioral approach).
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1.3 Equivalence in System Theory

Several equivalence relations have been studied to characterize system equiv-
alence by various transformation groups. Traditionally, geometric objects are
said to be intrinsically defined when their definition is not affected by change
of coordinates (diffeomorphism) Boothby [1975], Chern et al. [2000], Choquet-
Bruhat [1968], Demazure [2000], Dieudonné [1960], Kobayashi and Nomizu
[1996], Olver [1995], Pham [1992]. In other words, two geometric objects are
said equivalent if there exists a diffeomorphism mapping the first one into
the second and vice versa. In the same spirit, system equivalence by static
feedback has been introduced to deal with the equivalence of systems un-
der static feedback action in an intrinsic way, namely independently of the
choice of coordinates where the system and/or the control inputs are ex-
pressed. They yield classifications (i.e. partition of the set of systems into
cosets) and canonical forms (“simplest” system representatives of the cosets)
of major interest, such as the ones provided by Brunovský for linear control-
lable systems Brunovský [1970] (see also Rosenbrock [1970], Wolovich [1974],
Tannenbaum [1980], Kailath [1980], Antoulas [1981], Polderman and Willems
[1997], Sontag [1998] and, for extensions in the nonlinear case Sommer [1980],
Jakubczyk and Respondek [1980], Hunt et al. [1983b], Marino [1986], Charlet
et al. [1989, 1991], Gardner and Shadwick [1992], Isidori [1995], Nijmeijer and
van der Schaft [1990], Marino and Tomei [1995]). However, equivalence rela-
tions which only involve static state feedback appear to be too fine to study
flat systems. They are finer than the Lie-Bäcklund one which corresponds
to the equivalence under a special class of dynamic feedback called endoge-
nous dynamic feedback Martin [1992], Fliess et al. [1995], Martin [1994], van
Nieuwstadt et al. [1994], Aranda-Bricaire et al. [1995], Pomet [1993], van
Nieuwstadt et al. [1998], Fliess et al. [1999], Lévine [2006], that strictly con-
tains the class of static feedback.

1.4 Equivalence and Stability

In the stability analysis of closed-loop systems, the notion of equivalence,
though different than the previously discussed ones and called here topological
equivalence, is also most important: in the introduction to dynamical system
theory (Chapter 3), we emphasize on the equivalence between the behavior
(stability or instability) of a nonlinear system around an equilibrium point
and the one of its tangent linear approximation.

If the latter tangent linear approximation is hyperbolic (if it has no eigen-
value on the imaginary axis of the complex plane), the nonlinear system
can be proved to be topologically equivalent to its tangent linear approxima-
tion. More precisely (Hartman-Grobman’s Theorem), hyperbolic systems can
be shown to be equivalent to a linear system made up with two decoupled
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linear subsystems, the first one being stable and the second one being unsta-
ble. These subsystems respectively live in locally defined invariant manifolds
called stable and unstable, their respective dimensions corresponding to the
number of eigenvalues, counted with their multiplicities, of the tangent linear
approximation at the equilibrium point with negative and positive real parts.

In the non hyperbolic case, a nonlinear system may be shown to be topo-
logically equivalent to a system made up with a linear stable subsystem and a
linear unstable subsystem, obtained as before from the linear tangent approx-
imation, and completed by a nonlinear neutral one, coupled to the previous
linear ones. These subsystems respectively live in locally defined stable, un-
stable and centre manifolds (Shoshitaishvili’s Theorem).

Singularly perturbed systems are introduced in this framework in Sec-
tion 3.3, which extends the previous approach to control systems. We par-
ticularly insist on the links between singularly perturbed systems, multiple
time scales and hierarchical control.

1.5 What is a Nonlinear Control System?

1.5.1 Nonlinearity versus Linearity

Before talking about nonlinearity, let us discuss the definition of linearity.
First, linearity is a coordinate dependent property since a linear system might
look nonlinear after a nonlinear change of coordinates. Take the following
elementary example: ẋ = u in a sufficiently small neighborhood of the initial
condition x0 = 0, and transform x into ξ =

√
x+ 1 and u into v = u. We

have ξ̇ = ẋ
2
√
x+1

= u
2ξ . Therefore, the transformed system, namely ξ̇ = v

2ξ is
no more linear.

Note that in the previous transformation, ξ doesn’t depend on u and is
invertible in the sense that x = ξ2 − 1, and v is also invertible as a function
of u1. Clearly, the set of transformations that enjoy these properties forms a
group with respect to composition, and the linearity property of the system
thus depends on this group2. More precisely, a system is said linear if it can
be transformed into a linear system by a transformation of this group. The
number of linear systems thus depends on the “size” of the group. This is why
transformations depending on the input and its successive time derivatives,
generating a larger group than the above mentioned one, will be introduced
later.
1 this transformation is actually a local C∞ diffeomorphism: in addition to its local in-

vertibility, it is of class C∞ in a neighborhood of x0 = 0, with C∞ inverse.
2 indeed, the smoothness of the transformations, which may be Ck for any k ≥ 2 or
analytic, is also part of the group definition.
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Linear systems form a distinguished class in the set of nonlinear systems
since they enjoy simpler properties as far as controllability, open-loop stabil-
ity/instability, stabilizability, etc. are concerned. Therefore, they should be
detected independently of the particular choice of coordinates in which they
are expressed.

1.5.2 Uncontrolled versus Controlled Nonlinearity

In order to outline some fundamental differences between linear and non-
linear systems we may start with stability aspects for uncontrolled systems,
by considering a linear system perturbed by a small nonlinearity, that sig-
nificantly modifies the behavior of the original linear system. We next show
that, once the system is controlled, what counts is the control efficiency to
attenuate or remove the phenomenon created by the open-loop nonlinearity,
as presented in the next example.

An introductory Example

This example is presented in three steps. We first start with a linear non
controlled system, a spring with linear stiffness (force exerted by the spring
proportional to its length variation), with a nonlinear perturbation, that may
physically result from a defect of the spring, and modelled as a small nonlinear
perturbation of the stiffness coefficient. It turns out that this small defect
creates a big change in the system behavior, that doesn’t exist in linear
systems. At a second step, we connect the system with a passive device,
that may be interpreted as a special case of feedback control, and show how
the system behavior is locally modified. Finally, the third step consists in
replacing the passive device by an active one to globally transform the original
nonlinear system behavior into a linear one that may be tuned as we want.

k

l+xO x

m

G

Fig. 1.1 Spring and mass
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Uncontrolled nonlinear perturbation

Consider a system made of a mass and an undamped spring of pulsation ω
whose position, denoted by x, satisfies :

ẍ+ ω2x = 0 (1.1)

with the spring stiffness k related to the pulsation ω by ω =
√

k
m , m being

the mass of the rigid body attached to the spring.
Setting ẋ = v, the expression v2 + ω2x2, proportional to the mechanical

energy of the spring, remains constant along any trajectory of (1.1) since
d
dt (v

2 + ω2x2) = 2ẋ(ẍ+ ω2x) = 0. In other words, in the (x, v)-plane (phase
plane), these trajectories are the ellipses of equation v2 + ω2x2 = C, where
C is an arbitrary positive constant, and thus are closed curves around the
origin, whose focuses are determined by the initial conditions (x0, v0). We
indeed recover the classical interpretation that once the spring is released
from its initial position x0 with initial velocity v0, it oscillates forever at the
pulsation ω. This motion is neither attenuated nor amplified.

However, if the spring stiffness is not exactly a constant, even very close
to it, but if this aspect has been neglected, a very different behavior may be
expected.

Assume in fact that the spring stiffness is a linear slowly decreasing func-
tion of the length : k(x)

m = ω2 − εx, with ε > 0 small, which means that
the pulling force produced by the spring is k(x)x = ω2x− εx2. The spring’s
dynamical equation becomes

ẍ+ ω2x− εx2 = 0 (1.2)

a nonlinear equation because of the x2 term. Setting as before v = ẋ, we
easily check that the expression (the mechanical energy up to a constant)

Eε(x, v) = v2 + x2(ω2 − 2
3
εx) (1.3)

is such that d
dtEε(x, v) = 0 along the integral curves of (1.2), and thus re-

mains constant with respect to time. The perturbed spring trajectories are
therefore described by the curves of equation Eε(x, v) = Eε(x0, v0) shown on
Figure 1.2. We see that for a small initial length and velocity, the spring’s
behavior is not significantly changed with respect to the previous linear one.
On the contrary, for larger initial length and velocity, the spring becomes too
sluggish and thus unstable.

The differences with respect to the original linear system are thus twofold:

1. the only equilibrium point of the linear system (1.1) is the origin (0, 0)
whereas system (1.2) has two equilibria (0, 0) and (ω

2

ε , 0);
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Fig. 1.2 Destabilization of the spring caused by its nonlinear stiffness

2. the linear system behavior is purely oscillatory, whereas the perturbed
nonlinear one is oscillatory near the origin but unstable for larger initial
conditions.

Adding a damper

This phenomenon is well-known on truck’s trailers or on train wagon bogies
where it is necessary to add a damper to dissipate the energy excess stored
in the spring when released. In fact, the appending of a damper may be
interpreted as a feedback: in (1.2), a frictional force Kv, proportional to the
velocity, is added, which amounts to consider that the system is controlled
by the force u = Kv :

ẍ+ ω2x− εx2 + u = ẍ+ ω2x− εx2 +Kv = 0. (1.4)

Doing the previous calculation again, dEε
dt along an arbitrary trajectory of

(1.4), we find that dEε
dt = −2Kv2 < 0, which proves that the function Eε

is monotonically decreasing along the trajectories of (1.4). It is readily seen
that, for |x| < ω2

ε , the function Eε is strictly convex and admits the origin
x = 0, v = 0 as unique minimum. Consequently, the decreasing rate of Eε
along the trajectories such that |x| < ω2

ε implies that the trajectories all
converge to the origin, and thus that the system is stabilized thanks to the
damper
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Active control

The stability can be improved yet if the damper is replaced by an active
hydraulic jack for instance. Indeed, if the force u produced by the damper
can be modified at will, it suffices to set

u = −ω2x+ εx2 +K1x+K2v

with K1 > 0 and K2 > 0, and the equation (1.4) becomes the exponentially
stable linear differential equation

ẍ = −K1x−K2ẋ.

The thread followed in this simple example is quite representative of one
of the main orientations of this course: we first analyze the nonlinearities that
might influence the non controlled system, and then various feedback loop
designs to compensate some or all of the unwanted dynamical responses are
studied.



Part I

THEORY



Chapter 2

Introduction to Differential Geometry

This Chapter aims at introducing the reader to the basic concepts of differ-
ential geometry such as diffeomorphism, tangent and cotangent space, vector
field, differential form. Special emphasis is put on the integrability of a fam-
ily of vector fields, or distribution1, according to its role in nonlinear system
theory,

For simplicity’s sake, we have defined a manifold as the solution set to a
system of implicit equations expressed in a given coordinate system, according
to the implicit function theorem. One can then get rid of the coordinate choice
thanks to the notion of diffeomorphism or curvilinear coordinates. Particular
interest is given to the notion of straightening out coordinates, that allow to
express manifolds, vector fields or distributions in a trivial way.

The interested reader may find a more axiomatic presentation e.g. in
Anosov and Arnold [1980], Arnold [1974, 1980], Boothby [1975], Cheval-
ley [1946], Choquet-Bruhat [1968], Demazure [2000], Godbillon [1969], Pham
[1992]. The implicit function theorem, the constant rank theorem and the ex-
istence and uniqueness of integral curves of a differential equation, which are
part of the foundations of analysis, are given without proof. Excellent proofs
may be found in Arnold [1974], Cartan [1967], Dieudonné [1960], Marino
[1986], Pham [1992], Pontriaguine [1975].

Some applications of these methods to Mechanics may be found in Abra-
ham and Marsden [1978], Godbillon [1969] and, in Isidori [1995], Khalil [1996],
Nijmeijer and van der Schaft [1990], Sastry [1999], Slotine and Li [1991],
Vidyasagar [1993], other approaches and developments of the theory of con-
trol of nonlinear systems.

1 a geometric object not to be confused with the functional analytic notion of distribution
developed by L. Schwartz.
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2.1 Manifold, Diffeomorphism

Recall that, given a coordinate system (x1, . . . , xn) and a k-times contin-
uously differentiable mapping Φ from an open set U ⊂ Rn to Rn−p with
0 ≤ p < n, the tangent linear mapping DΦ(x), also called Jacobian matrix
of Φ, is the matrix whose entry of row i and column j is ∂Φi

∂xj
(x).

We start with the following fundamental theorem:

Theorem 2.1. (Implicit Function Theorem) Let Φ be a k-times contin-
uously differentiable mapping, with k ≥ 1, from an open set U ⊂ Rn to
Rn−p with 0 ≤ p < n. We assume that there exists at least an x0 ∈ U such
that Φ(x0) = 0. If for every x in U the tangent linear mapping DΦ(x) has
full rank (equal to n − p), there exists a neighborhood V = V1 × V2 ⊂ U
of x0 in Rn = Rp × Rn−p, with V1 ∈ Rp and V2 ∈ Rn−p, and a k-times
continuously differentiable mapping ψ from V1 to V2 such that the two sets
{x ∈ V1 × V2 |Φ(x) = 0} and {(x1, x2) ∈ V1 × V2 |x2 = ψ(x1)} are equal.

In other words, the function ψ locally satisfies Φ(x1, ψ(x1)) = 0 and the
“dependent variable” x2 = ψ(x1) is described by the p (locally) independent
variables x1.

Example 2.1. Consider the function Φ from R2 to R defined by Φ(x1, x2) =
x2

1 + x2
2 − R2 where R is a positive real. Clearly, a solution to the equation

Φ = 0 is given by x1 = ±
√
R2 − x2

2 for |x2| ≤ R. The implicit function
Theorem confirms the existence of a local solution around a point (x1,0, x2,0)
such that x2

1,0 + x2
2,0 = R2 (e.g. x1,0 = R, x2,0 = 0), since the tangent linear

mapping of Φ at such point is: DΦ(x1,0, x2,0) = (2x1,0, 2x2,0) 6= (0, 0), and
has rank 1.

Note that there are two local solutions according to whether we consider
the point (x1,0, x2,0) equal to

(√
R2 − x2

2,0, x2,0

)
or to

(
−
√
R2 − x2

2,0, x2,0

)
.

The notion of manifold is a direct consequence of Theorem 2.1:

Definition 2.1. Given a differentiable mapping Φ from Rn to Rn−p (0 ≤ p <
n), we assume that there exists at least an x0 satisfying Φ(x0) = 0 and that
the tangent linear mapping DΦ(x) has full rank (n − p) in a neighborhood
V of x0. The set X defined by the implicit equation Φ(x) = 0, is called
differentiable manifold of dimension p. Otherwise stated:

X = {x ∈ V |Φ(x) = 0}. (2.1)

The fact that this set is non empty is a direct consequence of Theorem 2.1.
If in addition Φ is k-times differentiable (resp. analytic), we say that X is a
Ck differentiable manifold, k = 1, . . . ,∞ (resp. analytic –or Cω–).

If non ambiguous, we simply say manifold.
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Fig. 2.1 The sphere of R3

Example 2.2. The affine (analytic) manifold: {x ∈ Rn|Ax − b = 0} has di-
mension p if rank (A) = n− p and b ∈ ImA.

Example 2.3. The sphere of R3 centered at C, of coordinates (xC , yC , zC), and
of radius R, given by {(x, y, z) ∈ R3|(x−xC)2+(y−yC)2+(z−zC)2−R2 = 0},
is a 2-dimensional analytic manifold (see Fig. 2.1).

The concept of local diffeomorphism is essential to describe manifolds in
an intrinsic way, namely independently of the choice of coordinates in which
the implicit equation Φ(x) = 0 is stated).

Definition 2.2. Given a mapping ϕ from an open subset U ⊂ Rp to an open
subset V ⊂ Rp, of class Ck, k ≥ 1 (resp. analytic), we say that ϕ is a local
diffeomorphism of class Ck (resp. analytic) in the neighborhood U(x0) of a
point x0 of U if ϕ is invertible from U(x0) to a neighborhood V (ϕ(x0)) of
ϕ(x0) of V and if its inverse ϕ−1 is also Ck (resp. analytic).

Indeed, if we consider the manifold X defined by (2.1), and if we in-
troduce the change of coordinates x = (x1, x2) = ϕ(z) = (ϕ1(z1), ϕ2(z2))
where ϕ = (ϕ1, ϕ2) is a local diffeomorphism of Rn, with ϕ1 (resp. ϕ2) lo-
cal diffeomorphism of Rp (resp. Rn−p), the expression x2 = ψ(x1) becomes
ϕ2(z2) = ψ(ϕ1(z1)), or z2 =

(
ϕ−1

2 ◦ ψ ◦ ϕ1

)
(z1), which means that the same

manifold can be equivalently represented by x2 = ψ(x1), in the x-coordinates,
or by z2 = ψ̃(z1), with ψ̃ = ϕ−1

2 ◦ψ ◦ϕ1, in the z-coordinates. It results that
the notion of manifold doesn’t depend on the choice of coordinates, if the
coordinate changes are diffeomorphisms.

R .C
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We also introduce the slightly weaker notion of local homeomorphism. We
say that ϕ is a local Ck (resp. analytic) homeomorphism if ϕ is of class Ck

(resp. analytic), locally invertible and if its inverse is continuous.

Local diffeomorphisms are characterized by the following classical result:

Theorem 2.2. (of local inversion) A necessary and sufficient condition
for ϕ to be a local Ck diffeomorphism (k ≥ 1) in a neighborhood of x0 is that
its tangent linear mapping Dϕ(x0) is one-to-one.

We also recall:

Theorem 2.3. (constant rank) Let ϕ be a Ck mapping (k ≥ 1) from a
m-dimensional Ck manifold X to a r-dimensional Ck manifold Y .

(i) for every y ∈ ϕ(U) ⊂ Y , ϕ−1({y}) is a m− q-dimensional Ck subman-
ifold of X;

(ii) ϕ(U) is a q-dimensional Ck submanifold of Y .

In particular,

(i)’ if m ≤ r, ϕ is injective from U to Y if and only if rank (Dϕ(x)) = m
for every x ∈ U (thus ϕ is a homeomorphism from U to ϕ(U)).

(ii)’ if m ≥ r, ϕ is onto from U to V , an open subset of Y , if and only if
rank (Dϕ(x)) = r.

The notion of curvilinear coordinates provide a remarkable geometric inter-
pretation of a diffeomorphism. In particular, one can find (locally) an adapted
system of curvilinear coordinates in which the manifold X given by (2.1) is
expressed as a vector subspace of Rp. It suffices, indeed, to introduce the
curvilinear coordinates:

y1 = Φ1(x), . . . , yn−p = Φn−p(x), yn−p+1 = Ψ1(x), . . . , yn = Ψp(x),

the independent functions Ψ1, . . . , Ψp being chosen such that the mapping

x 7→ (Φ1(x), . . . , Φn−p(x), Ψ1(x), . . . , Ψp(x))

is a local diffeomorphism. In that case, we say that we have (locally) “straight-
ened out” the coordinates of X since

X = {y|y1 = · · · = yn−p = 0}.

Example 2.4. We go back to the sphere of example 2.3 and introduce the
polar coordinates (ρ, θ, ϕ) corresponding to the transformation Γ from R+×
R/2πZ× R/2πZ to R3, given byx

y
z

 = Γ (ρ, θ, ϕ) =

xC + ρ cosϕ cos θ
yC + ρ cosϕ sin θ
zC + ρ sinϕ

 .
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Clearly Γ is invertible in any of the two open sets defined by the intersection
of R+ × R/2πZ × R/2πZ with {cosϕ > 0} or {cosϕ < 0}, and where the
closed subset {ρ cosϕ = 0}, whose image by Γ is the pair of points of cartesian
coordinates x = xC , y = yC , z = zC ± ρ, is excluded. Γ is of class C∞, and
its local inverse is given (e.g. for cosϕ > 0) by

 ρ
θ
ϕ

 = Γ−1(x, y, z) =



√
(x− xC)2 + (y − yC)2 + (z − zC)2

arctan
(
y − yC
x− xC

)
arctan

(
z − zC√

(x− xC)2 + (y − yC)2

)
 .

Θ is also of class C∞ in the open set

Γ (R+×R/2πZ×R/2πZ∩{cosϕ > 0}) = R2×{z > zC}−{(xC , yC , zC +ρ)}

and thus Γ is a local diffeomorphism.
In polar coordinates, the implicit equation defining the sphere becomes

ρ−R = 0. Therefore, the sphere of R3 is locally equal to the set {ρ = R}.
One can check that the tangent linear mapping of Γ is given by

DΓ =

 cosϕ cos θ −ρ cosϕ sin θ −ρ sinϕ cos θ
cosϕ sin θ ρ cosϕ cos θ −ρ sinϕ sin θ

sinϕ 0 ρ cosϕ


and that det(DΓ ) = ρ2 cosϕ, which precisely vanishes on the closed subset
{ρ cosϕ = 0} where Γ is not injective, in accordance with Theorem 2.2.

2.2 Vector Fields

2.2.1 Tangent space, Vector Field

Assume, as before, that we are given a differentiable mapping Φ from Rn to
Rn−p (0 ≤ p < n), with at least an x0 satisfying Φ(x0) = 0. The tangent
linear mapping DΦ(x) of Φ at x, expressed in the local coordinate system
(x1, . . . , xn), is thus the matrix

(
∂Φj
∂xi

(x)
)

1≤i≤n, 1≤j≤n−p
.

It is also assumed that DΦ(x) has full rank (n − p) in a neighborhood V of
x0, so that the implicit equation Φ(x) = 0 defines a p-dimensional manifold
denoted by X.

We easily check that a normal vector at the point x to the manifold X is
“carried” by DΦ(x), or more precisely, is a linear combination of the rows
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y(t)
x=y(0)

y(0)
.

DΦ(x)

Fig. 2.2 Tangent and normal spaces to a manifold at a point.

of DΦ(x). Indeed, let y(t) be a differentiable curve contained in X for all
t ∈ [0, τ [,with τ > 0 sufficiently small, such that y(0) = x (the existence of
such a curve results from the implicit function Theorem). We therefore have
Φ(y(t)) = 0 for all t ∈ [0, τ [ and thus Φ(y(t))−Φ(x)

t = 0. Letting t converge to 0,

we get DΦ(x).ẏ(0) = 0, where ẏ(0) def= dy
dt |t=0

(see Fig.2.2), which proves that
the vector ẏ(0), tangent to X at the point x, belongs to the kernel of DΦ(x).
Doing the same for every curve contained in X and passing through x, it
immediately results that every element of the range of DΦ(x) is orthogonal
to every tangent vector to X at the point x, Q.E.D.

This motivates the following:

Definition 2.3. The tangent space to X at the point x ∈ X is the vector
space

TxX = kerDΦ(x).

The tangent bundle TX is the set TX =
⋃
x∈X TxX.

Taking into account the fact that DΦ(x) has rank n− p in V ,

dim TxX = dim kerDΦ(x) = p , ∀x ∈ V.

Example 2.5. Going back to example 2.3, the tangent space to the sphere of
R3 at the point (x, y, z) 6= (xC , yC , zC ±R) is

ker ((x− xC) (y − yC) (z − zC)) = span


 (y − yC)
−(x− xC)

0

 ,

 (z − zC)
0

−(x− xC)


and is clearly 2-dimensional.

Definition 2.4. A vector field f (of class Ck, analytic) on X is a mapping
(of class Ck, analytic) that maps every x ∈ X to the vector f(x) ∈ TxX.
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Definition 2.5. An integral curve of the vector field f is a local solution of
the differential equation ẋ = f(x).

The local existence and uniqueness of integral curves of f results from the
fact that f is of class Ck, k ≥ 1, and thus locally Lipschitzian2.

2.2.2 Flow, Phase Portrait

We denote by Xt(x) the point of the integral curve of the vector field f at
time t, starting from the initial state x at time 0. Recall that if f is of class Ck

(resp. C∞, analytic) there exists a unique maximal integral curve t 7→ Xt(x)
of class Ck+1 (resp. C∞, analytic) for every initial condition x in a given
neighborhood, in the sense that the interval of time I on which it is defined
is maximal.

As a consequence of existence and uniqueness, the mapping x 7→ Xt(x),
noted Xt, is a local diffeomorphism for every t for which it is defined:
Xt(X−t(x)) = x for every x and t in a suitable neighborhood U ×I of X×R,
and thus X−1

t
∣∣U = X−t∣∣U , where we have denoted by ϕ∣∣U the restriction of

a function ϕ to U .
When the integral curves of f are globally defined on R, we say that the

vector field f is complete. In this case, Xt exists for all t ∈ R, and defines a
one-parameter group of local diffeomorphisms, namely:

1. the mapping t 7→ Xt is C∞,
2. Xt ◦Xs = Xt+s for all t, s ∈ R and X0 = IdX .

As already remarked, the items 1 and 2 imply that Xt is a local diffeomor-
phism for all t.

The mapping t 7→ Xt is called the flow associated to the vector field f . It
is also often called the flow associated to the differential equation ẋ = f(x).

It is straightforward to verify that the flow satisfies the differential equation

d

dt
Xt(x) = f(Xt(x)) (2.2)

for all t and every initial condition x such that Xt(x) is defined.
In the time-varying case, namely for a system

2 Recall that a function f from Rp to Rp is locally Lipschitzian if and only if for every

open set U of Rp and every x1, x2 in U , there exists a real K such that ‖f(x1)− f(x2)‖ ≤
K‖x1 − x2‖.
The differential equation ẋ = f(x), with f locally Lipschitzian, admits, in a neighborhood

of every point x0, an integral curve passing through x0 at t = 0, i.e. a mapping t 7→ x(t)
satisfying ẋ(t) = f(x(t)) and x(0) = x0 for all t ∈ I, I being an open interval of R
containing 0.
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ẋ = f(t, x) (2.3)

the corresponding notion of flow is deduced from what precedes by adding a
new differential equation describing the time evolution ṫ = 1, and augmenting
the state x̃ = (x, t), which amounts to work with the new vector field f̃(x̃) =
(f(t, x), 1), which is now a stationary one on the augmented manifold X ×R
of dimension p+ 1.

We call orbit of the vector field f an equivalence class for the equivalence
relation “x1 ∼ x2 if and only if there exists t such that Xt(x1) = x2 or
Xt(x2) = x1”.

In other words, x1 ∼ x2 if and only if x1 and x2 belong to the same maximal
integral curve of f . We also call orbit of a point the maximal integral curve
passing through this point and its oriented orbit the orbit of this point along
with its sense of motion.

The phase portrait of the vector field f is defined as the partition of the
manifold X into oriented orbits.

•
O

x<0 x>0

Fig. 2.3 The 3 orbits of system (2.4).

Example 2.6. The flow of the differential equation on R

ẋ = −x (2.4)

is Xt(x0) = e−tx0. Since e−t is positive for all t, two arbitrary points of R
belong to the same integral curve if and only if they belong to the same half-
line (R+ or R−) or they are both 0, i.e. x1 ∼ x2 is equivalent to sign (x1) =
sign (x2) or x1 = x2 = 0. The system (2.4) thus admits 3 orbits: R+, R− and
{0}, as indicated on Fig. 2.3.

The same conclusion holds for the system ẋ = +x, the only difference
being the orientation of the orbits, opposite to the one of (2.4).

Indeed, the flow and phase portrait do not depend on the choice of coor-
dinates of X: if ϕ is a local diffeomorphism and if we note

z = ϕ(x)

we have
ż =

∂ϕ

∂x
f(ϕ−1(z)). (2.5)
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Thus, denoting by g the vector field on ϕ(X) ⊂ X defined by

g(z) =
∂ϕ

∂x
f(ϕ−1(z))

and Zt the local flow associated to g, one immediately sees that Zt is deduced
from the flow Xt by the formula Zt(ϕ(x)) = ϕ(Xt(x)), or:

Zt ◦ ϕ = ϕ ◦Xt. (2.6)

It results that if x1 ∼ x2, then z1 = ϕ(x1) ∼ z2 = ϕ(x2), which proves that
the orbits of g are the orbits of f transformed by ϕ and the same for their
respective phase portraits.

2.2.3 Lie Derivative

Consider a system of local coordinates (x1, . . . , xp) in an open set U ⊂ Rp.
The components of the vector field f in these coordinates are denoted by
(f1, . . . , fp)T . We now show that to f one can associate in a one-to-one way
a first order differential operator called Lie derivative along f .

Denote, as before, by t 7−→ Xt(x) the integral curve of f in U passing
through x at t = 0.

Definition 2.6. Let h be a function of class C1 from Rp to R and x ∈ U .
We call Lie derivative of h along f at x, noted Lfh(x), the time derivative,
at t = 0, of h(Xt(x)), i.e.:

Lfh(x) =
d

dt
h(Xt(x))|t=0 =

p∑
i=1

fi(x)
∂h

∂xi
(x) .

We also call Lie derivative of h along f , denoted by Lfh, the mapping x 7→
Lfh(x) from U to R.

According to this formula, every vector field f may be identified to the linear
differential operator of the first order

Lf =
p∑
i=1

fi(x)
∂

∂xi
.

It results that, in local coordinates, we can use indifferently the component-
wise or the differential operator expression of f , namely

f = (f1, . . . , fp)T ∼
p∑
i=1

fi(x)
∂

∂xi


