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PREFACE

This book contains an edited version of the lecture notes used for the Course
”Dynamical Analysis of Vehicle Systems - Theoretical Foundations and Advanced
Applications” offered at the Centre International des Sciences Mécaniques (CISM)
during the Fiszdon Session. The Course took place in CISM’s Palazzo del Torso
i Udine, Italy, 23 - 27 October 2006. The Course was well attended by engi-
neers from academia and industry, with a total number of 45 persons from twelve
countries.

This volume presents an integrated approach to the common fundamentals of
rail and road vehicles based on multibody system dynamics, rolling wheel contact
and control system design. The mathematical methods presented allow an efficient
and reliable analysis of the resulting state equations, and may also be used to
review simulation results from commercial vehicle dynamics software.

The book will also provide a better understanding of the basic physical phenom-
ena of vehicle dynamics most important for the engineering practice in research
and in industry. Particular attention will be paid to developments of future road
and rail vehicles. Again, mechatronic trains and mechatronic cars show many
similarities which result in an interdisciplinary stimulation of the design concepts
used. The automation of individual vehicle traffic on roads, and on rail, is an
important point of issue in the future: Drivers reading the newspaper, watching
television, surfing the Internet while their vehicles automatically find their way
to the desired destination - rapid and secure. The course features two recent de-
velopments. The Railcab is an individual vehicle on existing railway tracks with
point-to-point link in a complex controlled network. The Driver Assistance Sys-
tems are devices to control distance and keep in lane on existing roads, relieving
the driver and leading to a significant tmprovement in driving safety and comfort.

The Course was originally initiated together with Professor Karl Popp, Uni-
versity of Hanover, Germany who passed away unexpectedly. The Lecturers and
the Editor of this volume agreed to continue and, thus, the Course was delivered
in memoriam of Professor Karl Popp, too. We thank Professor Giulio Maier,
Rector of CISM, for the kind support during the final coordination of the Course.
Further, the CISM staff is acknowledged for the excellent organisation. Finally,
Professor Paolo Serafini is gratefully acknowledged for his encouragement to pub-
lish these lecture motes and his patience while it took longer to complete their
editing in book form.

Werner Schiehlen
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Vehicle and Guideway Modelling:
Suspensions Systems

Werner Schiehlen

Institute of Engineering and Computational Mechanics, University of Stuttgart, Germany

Abstract Performance, safety and comfort of a vehicle are related to its low fre-
quency motions. The corresponding mechanical models are characterized for all
kinds of vehicles by stiff parts represented as rigid bodies and soft components like
springs, dampers and actuators. The method of multibody systems is most ap-
propriate for the analysis of vehicle motions and vibrations up to 50 Hz. In this
contribution the derivation of the equations of motions of multibody systems is
shown step by step up to the computer-aided evaluation of these equations.

Starting with kinematics for rigid body vehicle systems, the foundations of dy-
namics together with the principles of d’Alembert and Jourdain are used to get the
equations of motion. Then, some aspects of multibody dynamics formalisms and
computer codes for vehicle dynamics are discussed. Further, models of randomly
uneven guideways are presented. Performance criteria for ride comfort and safety
are considered. Finally, the analysis of the suspension of a car model is presented
in detail.

1 Kinematics

The elements of multibody systems for vehicle modelling, see Figure 1, include rigid
bodies which may also degenerate to particles, coupling elements like springs, dampers
or force controlled actuators as well as ideal, i.e. rigid kinematical connecting elements
like joints, bearings, rails and motion controlled actuators. The coupling and connection
elements are generating internal forces and torques between the bodies of the system
and external forces with respect to the environment. Both of them are considered as
massless elements. The kinematical constraints resulting from the connecting elements
may be holonomic or nonholonomic, scleronomic or rheonomic, respectively. Holonomic
constraints reduce the motion space of the system while nonholonomic constraints reduce
the velocity space in addition. The constraint equations are called rheonomic if they
depend explicitly on time, and scleronomic otherwise. Real vehicle systems are subject to
holonomic constraints only which may be given by geometrical or integrable kinematical
conditions. However, in more simplified models, e.g. rolling of a rigid wheel or wheelset
on a rigid plane, nonholonomic constraints may occur. Some configurations of holonomic
connecting elements are listed in Table 1 depending on the number of degrees of freedom
characterizing the remaining possibilities of motion. Now the motion of vehicle parts will
be described mathematically depending on space and time. This is the task of kinematics.
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Table 1. Configurations of holonomic connecting elements

Degrees of Freedom

1 2 3

Motion

Rotary || Revolute Joint | Universal Joint Spherical Joint

Linear || Prismatic Joint Planar Joint

Mixed Screw Joint Cylindric Joint | General Planar Joint

1.1 Frames of Reference for Vehicle Kinematics

A prerequisite for the mathematical description of position, velocity and accelera-
tion of a mechanical system is the definition of appropriate frames of reference. The
frames required in vehicle dynamics are shown in Figure 2 with the details summarized
in Table 2. There will be used only right-handed Cartesian frames with the unit base
vectors e, |e,| = 1 where the Greek indices generally take the integers 1, 2, 3. A basis
or frame {O, e, }, respectively, is completely defined by its origin O and its base vectors
e,. For distinction between different frames the upper right index is used if necessary.
The inertial frame {OI ,efj} serves as the general reference frame, in particular for the
evaluation of the acceleration. The given trajectory of the vehicle is assumed to be a
space curve with the moving frame {OB,ef)B also known as Frenet frame or moving
trihedron. The origin OF is moving with a given speed tangential to the trajectory. The
reference frame {O%, elf} is closely related to the moving frame. Its origin and the first
unit vector coincide with the moving frame OF = OB eff = eP. The second base vector
el however, is parallel to the guideway surface considering the bank of the road or the
track, respectively, pointing to the right with respect to the direction of motion.

The body-fixed frame {O%, €, } is the principal axis frame of the rigid body K; located
in its center of mass C;. This frame describes uniquely the position in space of the body.
Finally, there is defined a local frame {0-7'76{;} to describe constraint elements between
bodies. It is oriented according to the local specifications like the direction of a joint
axis. In the following a frame is simply identified by its name (upper right index) only.

1.2 Kinematics of a Rigid Body in an Inertial Frame

First of all some definitions and remarks on the nomenclature are presented. The
position of a particle P in space is uniquely defined by the position vector z represented
in the inertial frame {Of,el} by its coordinates z., as

T = x1€1 + T2es + T3€3 . (11)
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Figure 1. Multibody models of vehicles:
a) road vehicle, b) rail vehicle, c¢) magnetically levitated vehicle
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body K;

trajectory B

Figure 2. Frames of reference

This set of coordinates may be summarized in a column matrix 2’ often simply called a
vector, i.e.,
Ty
.’L‘I: To E[J?l To .%‘3]
T3

B (1.2)

where upper right index defines the frame in which the coordinates are measured. This
index will often be deleted if there isn’t any possibility for a mix-up of frames or if there
is used only one frame identified in the text. The goal is to present all vector and tensor
quantities in one common frame, e.g. the inertial frame I. Then, it is possible, to integrate
subsystems easily into the complete system.

For a particle P moving in time its coordinates are time-dependent, too, and they de-
fine a trajectory in space. The mathematical representation results in the vector equation
x = z(t) equivalent to three scalar equations according to the three degrees of freedom of
the particle in the three-dimensional space. The velocity v(¢) and the acceleration a(t)
of the particle follow by differentiation with respect to time as

I
o(t) = d;”t(t), v(t) =g (t)=[ &1 o a5 ], (1.3)
o) = L0 gy ol a0 = [ B ] (1.4)
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Table 2. Frames of reference

Frame of reference || Origin of frame | Orientation of axis

Inertial frame o! el, el in horizontal plane
{0 el} space fixed el
eP = e; tangential to trajectory
Moving trihedron | OF B .
. e; = e, normal to trajectory
OF e trajectory-fixed
{07, e} FAJECROTYIRE e? = e, bi-normal to trajectory
R —
e =e;
Reference frame OF R .
- es' in guideway plane
O" e trajectory-fixed )
{07, e} Tl e e® normal to guideway plane
Oi = Ci
Body-fixed frame . D .
yriped tam body-fixed in e, principle inertia axes
Oi ei
{07, ei} center of mass
Local frame o'
S e’ locally specified axes
, € arbitrary ! *

The upper right index refers to the frame of reference in which the operations, in partic-
ular the differentiation, have to be executed. In the inertial frame I the differentiation
of vectors is just performed by differentiation of the scalar coordinates.

The motion of a particle P on a curvilinear trajectory in space may be shown in the
moving frame B, too. The position of the point is uniquely identified by the arc length
s(t) as a generalized coordinate, Figure 3. Then, the position vector r is a function of the
arc length, r = r(s). For the velocity and acceleration vector it yields, see e.g. Magnus
and Miiller (1990),

t) = = = =
v = —g ds ar e UT (1.5)
WBit)y=[s 0 0]",
d'v 2
a(t) = = aie; + ane, = Ve + —e,
)= —4 e et 16)

a®t)y=1[% $2/p 0],

where p is the curvature of the trajectory in point P. Further, it is



6 Vehicle and Guideway Modelling: Suspension Systems

v = § the tangent velocity,
a; = v = § the tangent acceleration, and

2 22
a, =" /p =9 /p the normal or centripetal acceleration.

e €y =é€n e¥ = e, trajectory B
Figure 3. Trajectory of particle P

Special cases of the general motion in space are the motion in a straight line (p — oo ),
and the motion on a circle (p = const). Often the functions s(t), 5(t), §(¢), $(s), §(s), §($)
are depicted in kinematical diagrams for graphical visualization of the motion along a
track.

Figure 4. Position of a rigid body K; in the inertial frame I

The translational motion of a rigid body K; is completely described by the general
relations for a particle applied to a body-fixed point, e.g. the center of mass C; of the
rigid body, and the corresponding position vector r;, see Figure 4. The rotational motion
of a rigid body K; follows from the relative position of two frames where one of them is
a body-fixed frame. For coinciding origins the position of the body-fixed frame 7 relative
to the inertial frame [ is uniquely defined by three rotation angles according to the three
rotational degrees of freedom of a rigid body in space. Both frames are related to each
other by three elementary rotations performed successively around different base vectors
using three rotation angles. If, for example, the frame 7 is revolved around the coinciding
3-axes of frame I and i by the angle ~, the relation of the corresponding base vectors is
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given by the matrix 8'* as shown in Figure 5 and reads as

el cosy —siny 0 e}
el | = | siny cosy 0 e (1.7)
el 0 0 1 el

8" = v,

The row v of the elementary rotation matrix 4 is composed of the coordinates of the

i 1
e; 7 e,

Figure 5. Elementary rotation with angle v around 3-axes

base vector e/ in frame i. The corresponding matrices for positive rotations around the
remaining axes read as

1 0 0 cosf 0 sing
a1=| 0 cosa —sina |, By = 0 1 0 (1.8)
0 sina cosa —sinf3 0 cospf

where the elementary rotation matrices are characterized by the name of the rotation
angle while the index defines the axis of rotation. There are numerous possibilities to
choose the name of the angle and the sequence of the rotation axes used which is not
commutative. In vehicle dynamics the Cardan angles «, 3,y are often used, see Figure 6,
which are different from the well-known Euler angles 1,1, ¢.

The resulting rotation matrices S Tt which present the relation between frames I and
1 are obtained by the corresponding matrix multiplications

S”(avﬂv’y):alﬂQ’Y?)a Sli(waﬁaw):1p319lso3‘ (19)

Since matrix products are not commutative, the sequence of the elementary rotations
has to be strongly observed. The Cardan and Euler angles, respectively, are defined by
successive rotations around the 1-, 2-, 3-axis and 3-, 1-, 3-axis, respectively, starting from
the inertial frame I. The sequence of the elementary rotations is uniquely identified by
the sequence of the indices of the elementary rotation matrices as shown in (1.9).

The rotation matrices are orthogonal matrices

s (3”) T (s“) T8 det§ = +1 (1.10)
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Figure 6. Spatial rotation with Cardan angles «a, (3, ¥

where the inversion is also represented by the exchange of the upper indices. The inverse
rotation matrix is simply found by transposition of the original rotation matrix s’
Using Cardan angles the rotation matrix reads explicitly as

4 cfBey —cfBsy sf
sl (o, B,7) = | casy+ sasfey  cacy — sasfsy  —sach (1.11)
sasy — casfey  sacy + casfsy  cacl

where the abbreviations ¢ and s stands for cos and sin, respectively. In applications
often small rotations are found, «, 3,7 < 1, resulting in the linearized rotation matrix

s ( - L = _/6’
o, B,7) = 75 1 1a : (1.12)
— (0%

This result is also obtained if the elementary rotation matrices are linearized and multi-
plied with each other. Due to the vector property of small rotations the sequence of the
multiplications has no longer to be considered. For small rotations the Cardan angles
may be assigned directly to the rotational motions around the body-fixed axes, Figure 7.
In vehicle engineering the following notations are used,

«  roll motion,
B pitch motion,
v yaw motion.

The coordinates of a vector & read differently for different frames. The relation
between the coordinates 2’ in frame i and the coordinates x in frame I is given by the
transformation law for vector coordinates as

' =8"z!" and 2! =8z’ (1.13)

respectively, what is easily proven by (1.10). Please observe that the same indices appear
in both forms in a neighbouring sequence. This property is often helpful in applications.
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Driving direction

el
Roll
> «
Cl & Z C‘—Peé
s 1 5 Pitch
Dy
of el l Yaw
e;

I
€3

Figure 7. Notation of rotary vehicle motions

Further, it has to be pointed out that the rotation matrix S is a function of time, S = S(t),
what has to be considered for time derivations.

The position of a rigid body K; in the inertial frame is uniquely described by the
position quantities {r;,8"*} which characterize the body-fixed frame {C? e }. During
motion the position quantities are functions of time. Thus, the position coordinates of
an arbitrary particle P of the rigid body read in the inertial frame I as

rl(t)=rl(t)+p'(t), p'(t)=8"()p", (1.14)

where in the body-fixed frame it yields p’ = const, see also Figure 4.

The motion of a rigid body K; will be now presented in the inertial frame I, too. The
change of the position of its particle P with respect to time relative to frame I is found
by differentiation of (1.14) as

M) =#l6)+ 8" (e =+ (&) + 8" ()8 (V) (1) . (1.15)

The first term on the right-hand side represents the translational velocity of the origin
C; of the body-fixed frame 7. The second term is obviously related to the rotation of the
body-fixed frame and represents the body’s rotation. This term will now be discussed in
more detail. The matrix product [$(£)8™ (¢)] is screw symmetric, i.e., [o] = —[o] * , what
follows immediately from the differentiation of the orthogonality condition S(t)S T (t)=FE
according to (1.10):

D—-|Q_‘

t - (1.16)

[S(t)sT(t) = 818" +SBS (¢)
$6)S™ () + [S(t)sT(t)} ~0.
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The matrix product [e] will be abbreviated by the symbol @ (¢) and identified by the
corresponding three coordinates w, = w, () as follows

. I N T LT 0 w3 w2 w1
$ (s”) =88 =@l ()= w5 0 —w |, wh=|w |. (L17)
—Wwy  Wwq 0 w3

Both quantities, the screw symmetric tensor @!, and the corresponding rotational ve-
locity vector w%i , respectively, describe the rotational motion of system i or body Kj,
respectively, relative to the inertial frame I. The upper indices indicate that both quan-
tities are represented in the inertial frame . If there is no chance for mixing up the
frames the upper and lower index I is simply deleted. The screw symmetric tensor cor-
responding with a vector (e) is identified by the symbol () and it replaces the vector
product

Wp=wxp. (1.18)

In coordinates, in any frame, one gets accordingly

0 —ws wo p1 Waop3 — W3pP2
(:Jp = ws 0 —Ww1 P2 = w3p1 — Wi1pP3 . (119)
—wy Wi 0 P3 Wip2 — wap1

This notation of the vector product is most valuable for numerical computations since
the vector product is not defined in matrix calculus.

The rotational velocity vector w’, in the body-fixed frame i follows from transforma-
tion or direct evaluation, respectively. The application of transformation (1.13) to (1.19)
results in

&), =8"0}8" =87 (§"'s") s = 578" = (s) e (1.20)

The first and second term of (1.20) represents the transformation law for tensor coor-
dinates where the same indices appear again in a neighbouring sequence, the first and
last term show the direct evaluation. The vector corresponding to (1.20) is w’; = S”w!,
where the transformation law for vector coordinates has been used again.

From (1.15) and (1.17) it follows for rigid body K;

vl (t) =i (t) + (e (1) - (1.21)

Considering (1.18), this is the relation for rigid body kinematics well-known from each
mechanics textbook as

v(t) = v;(t) +wri(t) x p(t). (1.22)

The relations (1.21) or (1.22), respectively, represent the motion of a rigid body composed
by an absolute translational velocity v; of the body-fixed reference point O' = C? , and a
rotation with the angular velocity wy;. The fundamental kinematical quantities { v;,wy;}
are also denoted as twist characterizing uniquely the motion of a rigid body.



W. Schiehlen 11

1.3 Kinematics of a Rigid Body in a Moving Reference Frame

From a mathematical point of view the kinematical description of the motion of a rigid
body is most convenient in the inertial frame I resulting in a more simple representation
of the fundamental laws of mechanics. In engineering applications, however, a moving
reference frame R related to the vehicle or the guideway, respectively, turns out to be
more adequate. The frame R allows a problem-oriented choice of the coordinates and
an efficient description of the forces and torques acting on the system. Moving reference
frames are also useful in experiments since many measurement data are not related to
the inertial frame. The choice of the reference frame R depends on the problem under
consideration. In many cases the frame R characterizes the large nonlinear reference
motion of a vehicle while the small deviation from the reference motion results in linear
kinematical relations even for rotations.

In the following the motion of a rigid body is represented in a moving reference frame
R the motion of which is known in the inertial frame I by the position vector rg(t) of
its origin, and rotation matrix SIR(t), see Figure 8. This means that the translational
and angular guidance velocities are also known, v}, = 'f‘%, dﬂ R= STRGHL according to
(1.3) and (1.17). Considering Figure 8, the absolute position quantities {r;,S?"} of the
rigid body reads as

ri(t) =rR(t) + 8" (Or (1) (1.23)

STty = 8T8 (¢) . (1.24)

The absolute motion {v;,wr;} of the rigid body K; is now found by formal differentiation

Figure 8. Position of a rigid body in the reference frame R

in frame I and subsequent transformation in frame R as

V() = v () + OTR() TR (E) + (L) (1.25)
whl =wh, LWk, (1.26)

Due to the rotation of the frame R the guidance motion and the relative motion charac-
terized by the indices IR and Ri , respectively, are not simply added but there appears
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an additional term in (1.25). This implies the well-known law of differentiation in a
rotating frame

d? dR

E’r(t) = Er(t) +wrr(t) xr(t) . (1.27)

By formal differentiation or application of (1.27) to (1.25) and (1.26) one gets finally
the absolute translational and rotational acceleration of the rigid body K; again written
in the reference frame R as

R ~ ~ ~ . .
al’(t) =af + (“’IR +W?RW?R) TR+ 2T R (1.28)
"R |, ~R R
afi(t) = @7y + @rrwr; + Wh; - (1.29)

Thus, in addition to the guidance and relative acceleration the Coriolis acceleration with
the characteristic factor 2 is found for translations.

1.4 Kinematics of Multibody Systems

So far only one free rigid body K; was considered the position of which is uniquely
described in the inertial frame I as
’I‘iI = [ril T2 Tig}T, Sh ESZ :Sz(amﬂmﬁyz) . (130)

There are six position coordinates which are summarized in a 6 x 1- column matrix,
simply called local position vector, as

i(t) = [ririaris o Bi i) | (1.31)

For a free multibody system consisting of p disassembled rigid bodies K;, i = 1(1)p,
there remain 6p position coordinates resulting in a 6p x 1 global position vector of an
unconstrained system

z(t) =[xl ...... z )T, (1.32)

Assembling the free system there appear constraints between the position coordinates
and their derivatives. In realistic models of vehicles only holonomic constraints are found
restricting the motion of the position coordinates by geometric or integrable kinematic
constraints. These constraints are implicitly described by algebraical equations which
may be time-dependent (rheonomic), too,

pj(@,t)=0, j=1(1)q. (1.33)

Due to ¢ constraints there remain f linear independent position coordinates character-
izing f = 6p — q degrees of freedom. The f independent position coordinates are also
called generalized coordinates and may be summarized in a f x 1- column matrix as
global position vector of the constraint system

y(t)=lyr...... yr) " (1.34)
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By (1.33) and (1.34) the vector « is an explicit function of the f generalized coordinates
representing the constraints explicitly,

z =xz(y,t) . (1.35)

The choice of generalized coordinates is not unique. E.g., some of the local position
coordinates (absolute coordinates) or differences between local coordinates (relative co-
ordinates) may be chosen as generalized coordinates. However, there exists a unique
relation between different sets of generalized coordinates represented by a regular, time-
invariant f x f -matrix T resulting in the transformation

yt) =Ty (t), (1.36)

where y and y are the corresponding global position vectors. The position variables
(1.30) may be rewritten for the whole system as

ri(t) =ri(y,t), 8T(t) =8i(t) = Si(y.t), i=1(1)p. (1.37)

The corresponding velocity variables {v;,w;}, w; = wy; are obtained by differentiation
as

. or; . Or; .

'Uz(t) = ’l"l(t) = 8yTy + E = JTZ(yat)y +vz(y7t) ’ (138)
83i . (981' . —

wi(t) = 8i(t) = oyt? + o = IRy, 0y + @iy, 1) (1.39)

where 0s; describes the 3 x 1-vector of the infinitesimal rotation following from the
rotation matrix analogously to the rotational velocity (1.17) as

0 —85i3 8Si2 8Si1
(9:9'2 = 88’13? = 85,»3 0 —(9Si1 s 8S¢ = (98,’2 . (140)
*881'2 8si1 0 asig

The 3 x f-functional or Jacobian matrices Jr; , J g; of translation and rotation, respec-
tively, identify the relation between the local and the generalized or global coordinates.
The formation of these matrices is defined using the rules of matrix multiplication as
shown for the translation matrix

Ori  Ori ori1
oy 0y 8yf
8ri 1 6ri2 87‘1'2 87"1'2
=0r;| = | =Jpr; = . 1.41
oy* <8yT> g oy Oyo dyy (1.41)
Ooy1 Oy dyr |

From (1.38) and (1.39) one obtains by a second differentiation the acceleration vari-
ables {a;,;} depending on the position vector y and its derivatives,

6’01' . 4 8’Ui
T " ot

ai(t) = 0i(t) = Jri(y, 1)§ + (1.42)
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ai(t) =) = Ty 0 + i+
For scleronomic, time-invariant constraints the partial time derivatives in (1.38), (1.39),
(1.42) and (1.43) are vanishing.

In addition to the real motions, the virtual motions are required in the next chap-
ter dealing with dynamics. A virtual motion is defined as an arbitrary, infinitesimally
small variation of the position completely compatible with the constraints at any time.
Rheonomic constraints are considered to be frozen at the time under consideration. The
symbol ¢ of the virtual motion has the properties

(1.43)

or#0, 0t=0. (1.44)
The symbol § follows the rules of calculus, i.e., it yields
d(er)=cor, O(ri+ry) =0r +dry, or(y) = a(?y—ery . (1.45)
Thus, the virtual motion of a multibody system reads as
or; =Jridy, 0si=Jridy, i=1(1)p. (1.46)

This completes the kinematics for rigid body vehicle systems.

2 Dynamics

For the generation of the equations of motion of multibody systems, in addition to
kinematics, the inertia of the bodies and the acting forces have to be considered. The
Newton-Euler approach, also called the synthetic method, uses the free body diagram re-
sulting in full set of local equations which may be reduced by the principles of d’Alembert
and Jourdain to the equations of motion. The Lagrangian approach, representing the
analytical method, is based on energy considerations and the equations of motions are
found directly but without any information on the reaction forces.

2.1 Inertia Properties

The inertia of a rigid body K; is characterized by its mass m; and its inertia tensor
Ic;. The coordinates of the inertia tensor read in the body-fixed frame {C;, el } , see
Figure 4, as

, I Lo I3
It :/(prEfppT)dm: Iy Iy I3 | =const. (2.1)
g I3y I3o I3z

C;

The vector p = p* = [p1 p2 pg]T describes a material point with mass dm with respect to
the center of mass C; and E means the 3 x 3-identity matrix. The inertia tensor I, is
symmetric and positive definite, and constant in the body-fixed frame.

The coordinates of the inertia tensor depend on the mass distribution and on the
choice of the reference frame. For a parallel displacement of the body-fixed frame from
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the center of mass C; to an arbitrary body-fixed point O; characterized by the vector s
one gets
Ly =15+ (sTsE —ssT)m; . (2.2)
Thus, the diagonal elements of an inertia tensor are minimal for the center of mass.
For a homggeneous, purely rotational displacement by the rotation matrix S* from
frame e}, to e; around the center of mass the transformation law for tensors applies as

by =8TI08" or Iy, =8"IL,ST . (2.3)

Please note that the inertia tensor may be time-variant if the frame {C;, e} is not body-
fixed. This is especially true if the inertial frame is chosen, i’ = I, due to §* = §%/ (t).

For all reference points there exists a special body-fixed frame in which the off-diagonal
elements of the inertia tensor are vanishing, e.g.,

Io; =diag (I I I3] = const . (2.4)

The remaining diagonal elements [, are called principal moments of inertia with reference
to C; and the corresponding axes are the principal inertia axes. Both quantities follow
from the eigenvalue problem

(I,E —IL)x, =0. (2.5)
Thus, the principal moments of inertia are the eigenvalues of the matrix I ZCZ and the
eigenvectors z,, = e define the principal inertia axes which have to be unit vectors
zlz, = 1.

2.2 Newton-Euler Equations

The synthetic method is based on the laws of Newton (1687) and Euler (1758) relating
the translational motion represented by the momentum p of a body K to the sum of the
external forces f and the rotational motion represented by the moment of momentum
ho to the sum of the external torques lp,

d’ d’

a5 @
The time derivatives of the momentum p and the moment of momentum ho have to
be evaluated in the inertial frame I. The common reference point O of the moment of
momentum and the resulting external torque may be an inertially fixed point like the
origin of the inertial frame, O = Oy, or the moving center of mass of the body, O = C.

The fundamental laws (2.6) will now be applied to the rigid body K;, i = 1(1)p, of
a multibody system and appropriate frames are chosen. First of all, the bodies K; are
dismantled and the constraints are replaced by reaction forces acting then externally on
the bodies involved in the same amount but with opposite sign according to the coun-
teraction principle (action = reaction). Further, the center of mass is used as reference
point for all bodies, O = C;.

In the inertial frame I momentum and moment of momentum for a rigid body K;
using the inertia properties m; ,I¢c; read as

ho =lo . (2.6)

p! =mwl;, m;=const, (2.7)
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hey = Igw!, Io;=1I5,(t) . (2.8)
where v}, and w! mean absolute velocities. Introducing (2.7) and (2.8) in (2.6) and
omitting the index C one finally gets Newton’s and Euler’s equations

H = f m; = const , (2.9)

I'ol volrle! =11, I1I=I1). (2.10)

In a second step these equations are transformed in a body-fixed frame resulting in
mo! = fi m; = const , (2.11)

Io! +&iT'w! =19,  I!=const. (2.12)
Equations (2.9) and (2.10), and (2.11) and (2.12) look completely identical. If there is
only one body like in gyrodynamics, then, (2.12) is preferable due to the time-invariance
of the inertia tensor. In multibody dynamics, however, this advantage is fading.

Equation (2.12) is also known as Euler’s equation of gyrodynamics. It can be found
with the moment of momentum given in the body-fixed frame from (2.6) directly using
the law of differentiation in a rotating frame (1.27),

ar . . . , , o

ahz =h;+wh;=1;, hi=Iw;. (2.13)
Finally, in an arbitrarily moving reference frame R Newton’s and Euler’s equations are
also available, see e.g. Schiehlen and Eberhard (2004),

mili’:Ri +m,; |:’;f}*3 +(:JR + GJR(ZJR)"'R;‘ + 2(“l-}}:i".‘Ri = fl ’ (214)

Twg; + @il wg; (2.15)
+[Iiwr +@rliwp + @rwpispl; + 20 riliwr] =1; .

Now, the coordinates of all vectors and tensors are related to the reference frame R where
;; means that the second time derivation has to be made before in the inertial frame.
As a matter of fact, a large number of additional inertia forces and torques appear due
to the relative motion.

The Newton-Euler equations represent a set of 6p scalar equations for 6p unknowns
which are composed of unknown velocity and position variables and unknown reaction
forces and torques. In an unconstrained system reactions do not exit, i.e., there are 6p
ordinary differential equations (ODEs) to be solved. In a completely constrained system
motion does not occur at all, i.e., altogether 6p algebraical equations have to be solved. In
vehicle dynamics, due to a certain number of constraints between the bodies, motions and
reactions appear featuring a set of differential-algebraical equations (DAEs). However,
by the principles of dynamics, a minimal set of f ODEs can be found facilitating the
solution and simulation of the problem.
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2.3 Principles of d’Alembert and Jourdain

Equations of motion represent a minimal set of ordinary differential equations (ODEs).
They can be found from the Newton-Euler equations by elimination of the reaction forces
and torques. This is achieved computationally efficient by the principles of dynamics
considering the virtual work of a constrained multibody system. For this purpose the

external forces acting on the dismantled bodies of the system are subdivided into applied

forces fz(a) and torques lga) as well as reaction forces fgr) and torques lz(-r). The latter

ones do not contribute to the virtual work of the system
P
oW =3 (F7 e +17 sy =0, (2.16)
i=1

where the virtual motions dr;,ds; are known from (1.46). Equation (2.16) can be in-
terpreted as a generalized orthogonality condition. For this purpose, in addition to the
generalized coordinates y, generalized reaction forces g;, j = 1(1) ¢, are introduced and
summarized in a ¢ X 1-vector as

gty =1lg1......... g " (2.17)

The number of generalized constraint forces is determined by the number ¢ of constraints.
The local constraint forces and torques follow from the implicit constraint equations

(1.33) as
q q
Op,; Ox
Z Z Ja;p'% a T :gTF’lT"i ’ (218)

q
(r Op; Ox .
T = Z = Zgjax—%asT —g"FL,  i=1(1)p. (2.19)
j=1 1

In matrix notation the 3 x ¢- Jacobians Fp; , F'g; are found from (2.18) and (2.19), and
the condition (2.16) is rewritten as

. (2.20)
_ T T T _
=" (F7Jri+ FlJr)oy=0.

Finally, the global 6p x ¢- distribution matrix Q, and the global 6p x f- Jabobian matrix
J are introduced

(2.21)

Then, one gets from (2.20) simply

Q'7=7'Qg=0, (2.22)
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what clearly shows the generalized orthogonality between motion and constraint. The
orthogonality condition or the vanishing virtual work, respectively, is independent from
the coordinates chosen, and it is valid for all constrained mechanical systems.

D’Alembert’s principle (1743) follows now from the Newton-Euler equations (2.9) and
(2.10) after subdividing the external forces

Fi=F4 O =1 41, (2.23)

and considering the orthogonality (2.16) as

[(mzv, — fge))T(STi + (Ii(bi +w; Liw; — ll(-e))T(SSi] =0. (2.24)

P
i=1
Obviously, the reaction forces are eliminated in (2.24).

Analogously Jourdain’s principle (1908) can be stated which is based on the fact that

the virtual power of the reaction forces is vanishing, too,

P
0P =" [f 7 8w+ 1w = 0. (2.25)
=1

The virtual velocities §'v; , d’w; are arbitrary, infinitesimal small variations of the veloci-
ties completely compatible with the constraints at any time and at any position. Thus,
it yields

dv;i 40, dw;#0, §r;=0, §s;=0, §t=0. (2.26)

Moreover, the symbol ¢’ follows the rules of calculus. Then, it remains Jourdain’s prin-

ciple as
P

Z [(ml'vl — fge))Tél’Ui + (Iiu.li +¢I)iliwi — lEe))Té’wi} =0. (227)
i=1
Similar to d’Alembert’s principle all the reactions disappeared. However, the virtual
displacements are replaced by the virtual velocities and the sometimes cumbersome eval-
uation of the virtual rotations is dropped. Further, Jourdain’s principle handles nonlinear
and nonholonomic constraints, too, which may appear in controlled vehicle systems.

In the American literature Jourdain’s principle is referred to as Kane’s equations and
the virtual velocities are denoted as partial velocities, see Kane and Levinson (1985).
Applying these principles for the generation of the equations of motion, the reactions
have not to be considered at all. Therefore, the principles may be also classified as an
analytical approach.

2.4 Energy Considerations and Lagrange’s Equations

An alternative for the generation of the equations of motion is the analytical method
by Lagrange (1788) based on energy considerations. The kinetic energy T of a rigid body
reads as

1 1
T = 5””“’20 + iwIcw , (2.28)
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where the inertia properties { m, I} and the velocity properties { ve,w} are related to
the center of mass. The kinetic energy is composed by the translational and rotational
energy of the body, it is a scalar quantity which may be computed in different frames,
too.

The kinetic energy of a multibody system consisting of the bodies K;, i = 1(1)p,
comprises the kinetic energy of all bodies as

T=35) (W) mwf + W) Tiw], (2.29)

P
i=1

written consistently in the inertial frame I and related to the center of mass C; of each
body K; . If the work of the applied forces is independent of the path, then the forces

have a potential U and it yields
f@ = —grad U, (2.30)

where U is a scalar function of the position. Forces satisfying (2.30) are called conser-
vative, they do not change the total energy of the system. In contrary, non-conservative
forces change the total energy, they are called dissipative since the total energy is de-
creasing. Conservative forces may be due to gravity, fo = mg, or elasticity, fr = —ks.
The corresponding potentials read as

1
Us=mgz, UF:§I€32, (2.31)

where z represents the vertical displacement of the center of mass of a body with mass m
in the direction of gravity with acceleration g, and s means the displacement of an elastic
spring with coeflicient k. To the potentials a constant may be added, i.e., the origin of
a potential can be arbitrarily chosen. The potential energy U of a multibody system
is given by the sum of the body potentials U = > U;. Multibody systems subject to
conservative forces only are called conservative systems. For such systems it yields the
energy conservation law

T+U =Ty + Uy = const . (2.32)

The energy conservation law may be derived from Newton’s and Euler’s law, i.e., it does
not contain no new information. Its application is advantageous for conservative systems
with one degree of freedom to evaluate a relation between the position and velocity
variable. If there are two different positions known, the unknown velocity can be found
from (2.32),

Based on energy expressions, the equations of motion of multibody systems may be
found, too. This will be shown for multibody systems with holonomic constraints. In
contrary to the synthetic method, the body of the system have not to be dismantled,
the system is considered as a whole. For this purpose the generalized coordinates y are
defined, and the position and the velocity variables (1.37), (1.38) and (1.39) are evaluated.
As a result the kinetic energy is available as a function of yy (t) and g (), & = 1(1) f,

T =T(yr, Jx) - (2.33)
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The applied forces and torques are projected in the direction of the generalized coordi-
nates and composed to the generalized forces

Zi: Kayk) 1 (gi)Tlgﬂ , k=1)f, (2.34)

where the rows of the Jacobian matrices (1.41) are used. The generalized forces may be
also found by decomposition of the total work of the applied forces and torques

p f
owe =" [F o + 1165 = 3 qrou - (2.35)

i=1

In any case the reaction forces and torques do not appear.
Now the Lagrangian equations of the second kind read as, see e.g. Magnus and Miiller

(1990),
d /oT oT
4 (ay;) = k=107 (2.36)

For the evaluation of the equations of motion two partial and one total differentiations
have to be performed with respect to one scalar function T (yg,¥x). As a result the
minimal number f of equations of motion is found. However, the reaction forces are
completely lost and cannot be regained.

For conservative systems the generalized forces follow immediately from the potential

ou
=——. 2.
%= o (2.37)
From (2.36) and (2.37) it remains
d [/oT oTr  oU
SEN L R g, k=1(1)f. 2.38
(3yk> Oy Oy L1 (238)

Introducing the Lagrange function L = T — U also called the kinetic potential, then
(2.38) is even more simplified and reads

d [ OL oL
SN2y L—T-U, k=101)f. 2.39
(3%) oY 2 (2:39)

For some engineering applications it is advantageous to use surplus coordinates y; , j =
1(1)f + r, in addition to the f generalized coordinates yx , k = 1(1)f. Then, there exist
r geometric constraints between the surplus coordinates

Pn = Qpn(?j) =0, n= 1(1)T . (240)

The equations of motion are now extended by r Lagrangian multipliers A, ,n = 1(1)r,
representing generalized constraint forces

d [oT &pn o
t(&%) oy = ZA j=1)f +r. (2.41)
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Thus, a set of differential-algebraical equations remain.

3 Equations of Motion

In chapter 2 there has been presented two methods for the generation of the equa-
tions of motion, the synthetic method by Newton-Euler, and the analytic method by
d’Alembert, Jourdain or Lagrange, respectively. The principal steps in the generation
process by Newton-Euler and Lagrange are shown in Figure 9. Common starting point
is the mechanical model of the vehicle composed by the elements of multibody systems.
Common result are the equations of motion, they are identical with both methods if
the same generalized coordinates are used. However, the effort is different. During the
generation of the equations of motion using Lagrange’s equations there appear terms in
g (8T) which are afterwards eliminated by
dt \ 9y, Ay
useless computational effort which is not required with the Newton-Euler approach, see
e.g. Schiehlen and Eberhard (2004). On the other hand in the Newton-Euler equations
the reactions have to be eliminated. Thus, both of these approaches have disadvantages
which are avoided by a combination of the Newton-Euler equations with the principles
presented in Section 2.3. The resulting equations of motion are always ordinary differ-
ential equations (ODEs). However, their form depends on the type of the multibody
system. There are ideal and non-ideal systems, the first ones are characterized by ap-
plied forces and torques independent from any reaction while the second ones show a
such dependency. E.g., gravitational forces, spring and damper forces are independent
from any reactions while sliding friction forces and slip dependent contact forces, regu-
larly found with tires in vehicle dynamics, are a function of the normal or reaction forces,
respectively.

Within the class of ideal systems, ordinary and general multibody systems are dis-
tinguished. Ordinary multibody systems are due to holonomic constraints and applied
forces depending only on position and velocity quantities, they can be always represented
by a system of differential equations of the second order. For nonholonomic constraints
and/or general force laws one gets general multibody systems.

The equations of ordinary multibody systems read as

My, t)§(t) +k(y9,t) =qy,9,1) , (3.1)

where y is the f x 1-position vector of the generalized coordinates, M is the f x f-
symmetric inertia matrix, k is a f x 1-vector of generalized gyroscopic forces including
the Coriolis- and centrifugal forces as well as the gyroscopic torques, and the f x 1-vector
q represents generalized applied forces. The equations of motion resulting from the
analytical method have always the form (3.1) while the synthetic method often requires
some calculations to get a symmetric inertia matrix.

In vehicle dynamics the deviations § (¢) from a reference motion y =y (¢) are often
small,

according to (2.36). This means an

y(t) =yr(t) + () . (3.2)
Then, it follows by a Taylor series expansion under assumption of differentiable vector
functions, and skipping of the second and higher order terms from (3.1) the linearized



22 Vehicle and Guideway Modelling: Suspension Systems
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Figure 9. Generation of equations of motion by the methods of Newton-Euler and
Lagrange
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equations of motion, see also Miiller and Schiehlen (1985),

M(t)g(t) + P)y(t) + Q()i(t) = h(t) , (3.3)

where M (t) is the symmetric, positive definite inertia matrix while P(t) and Q(t) char-
acterize the velocity and position dependent forces and the vector h(t) represents the
external excitations. If all these matrices are time-invariant and subdivided in a sym-
metrical and skewsymmetrical part, then the equations of motion of a linear ordinary
and time-invariant multibody system are found reading as

Mij(t) + (D +G)y(t) + (K + N)y(t) = h(t) , (3.4)
where g was simply replaced by y and the f x f-matrices have the properties
M=M">0, D=D", G=-G', K=K', N=-NT. (3.5)

These matrices have a physical meaning which can be identified after premultiplication
of (3.5) from the left by §" resulting in the total time derivative of an energy expression

' Mij+y ' Dy+y Gy+y ' Ky+9"'Ny=y"h, (3.6)
——— Y M Y~ =
drior+ 0+du4 25 —p (3.7)
dt dt - '

The inertia matrix M determines the kinetic energy T' = %gTM 9 and therefore the iner-
tia forces, from 7" > 0 it follows again the positive definiteness of the inertia matrix. The
damping matrix D defines via Rayleigh’s dissipation function R = %QTDQ the damp-
ing forces while the gyro matrix G describes the gyroscopic forces which do not change
the total energy of the system. The stiffness matrix determines the potential energy
U= %yTK y and, therefore, the conservative position forces while the matrix N identi-
fies the circulatory forces also known as nonconservative position forces. Furthermore, P
describes the power of the external excitation forces. For D =0, N =0 and h =0 the

multibody system is conservative, i.e., the total energy is constant for all motions,
T+ U = const . (3.8)

The matrix properties (3.5) allow often to check the equations of motion with respect to
the physical phenomena involved.

The equations of motion of ordinary multibody systems in nonlinear or linear form,
Egs. (3.1) or (3.3), respectively, are systems of differential equations of second order. For
solution they have to be supplemented by the initial conditions for position and velocity,

y0)=yo. 9(0) =g, (3.9)

The state vector of the vehicle is defined by the position vector and the velocity vector
as

Tr(t) = [Zgﬂ : (3.10)
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where x is the n x 1 -vector of the state variables. For ordinary multibody systems,
and therefore for vehicles, too, it holds n = 2f where f means the number of degrees of
freedom.

With the state vector (3.10) the equations of motion can be easily transfered into the
corresponding state equations. In the nonlinear case it yields

y(t) =y(t)
§it) =M"'(y,t)laly, 9. t) —k(y, 9. t)] (3.11)
.’IIF(t) = aF(:z:F, t),

where a nonlinear n x 1-vector function ar appears. For vehicles with small linear motions
it remains
i?F(t) :AF.’BF(t)+BF’U,F(t) . (312)
where
0 E
~-M~YK+N) -M~YD+G@G)

is the n X n-system matrix, Bp the n X r-input matrix and ug the r x 1l-input vector of
the excitations acting on the vehicle.

For general multibody systems exist a broader variety of standard representations
which will not be discussed in detail. General multibody systems can be uniquely re-
presented by the state equations (3.11) or (3.12), too. However the special form of the
system matrix A is no longer found.

Ap = (3.13)

4 Formalisms for Multibody Systems

The generation of equations of motion for large multibody systems is a nontrivial task
requiring numerous steps during the evaluation of the fundamental relations. Beginning
with the space age in the middle of the 1960s the generation of equations of motion was
more formalized. The resulting formalisms were used for the development of computer
codes for multibody systems, they are the basis of computational multibody dynam-
ics. Twenty-five years later, in 1990, there were known 20 formalisms described in the
Multibody System Handbook (Schiehlen, 1990). Many of them are used today.

Multibody system formalisms are based on Newton-Euler equations or Lagrange’s
equations, respectively, as described in Chapter 2 and 3. Regarding the computational
procedure, numerical and symbolical formalisms are distinguished. Numerical formalisms
supply the elements of the matrices as numbers in the case of linear time-invariant multi-
body systems (3.4). In the case of linear time-variant systems (3.3) and nonlinear systems
(3.1) a numerical formalism provides the numbers in the equations of motion necessary
for each time step required by the simulation programme. In contrary, symbolical for-
malisms generate the equations of motion only once with the computer how it is done
with paper and pencil. The advantage is that variations of the system parameters and,
for time-variant systems, the current time have to be inserted in the symbolical equa-
tions of motion only. Symbolical formalisms are especially helpful for optimizations and
control design.



