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PREFACFE

Reliable model-based prognoses of the initiation and propagation of
cracks in concrete plays an important role for the durability and in-
tegrity assessment of concrete and reinforced concrete structures. To
this end, a large number of material models for concrete cracking
based on different theories (e.g., damage mechanics, fracture mechan-
ics, plasticity theory and combinations of the mentioned theories) as
well as advanced finite element methods suitable for the representation
of cracks (e.g., the Extended Finite Element Method and Embedded
Crack Models) have been developed in recent years.

The focus of the Advanced School on ” Numerical Modeling of Con-
crete Cracking” at the International Centre for Mechanical Sciences
(CISM) at Udine in May 2009 was laid on numerical models for de-
scribing crack propagation in concrete and their applications to nu-
merical simulations of concrete and reinforced concrete structures.
The lectures of this course formed the basis for this book. Its aim
s to impart fundamental knowledge of the underlying theories of the
different approaches for modelling cracking of concrete and to provide
a critical survey of the state-of-the-art in computational concrete me-
chanics.

This book covers a relatively broad spectrum of topics related to
modelling of cracks, including continuum-based and discrete crack
models, meso-scale models, advanced discretization strategies to cap-
ture evolving cracks based on the concept of finite elements with em-
bedded discontinuities and on the extended finite element method, re-
spectively, and, last but not least, extensions to coupled problems such
as hygro-mechanical problems as required in computational durability
analyses of concrete structures.

Innsbruck and Bochum,

March 2011,
Giinter Hofstetter Giinther Meschke
University of Innsbruck Ruhr-University Bochum

Austria Germany
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Damage and Smeared Crack Models

Milan Jirasek

Czech Technical University in Prague, Czech Republic

1 Isotropic Damage Models

Continuum damage mechanics is a constitutive theory that describes the progres-
sive loss of material integrity due to the propagation and coalescence of micro-
cracks, microvoids, and similar defects. These changes in the microstructure lead
to a degradation of material stiffness observed on the macroscale. The term “con-
tinuum damage mechanics” was first used by Hult in 1972 but the concept of
damage had been introduced by Kachanov already in 1958 in the context of creep
rupture (Kachanov, 1958) and further developed by Rabotnov (1968); Hayhurst
(1972); Leckie and Hayhurst (1974). The simplest version of the isotropic dam-
age model considers the damaged stiffness tensor as a scalar multiple of the initial
elastic stiffness tensor, i.e., damage is characterized by a single scalar variable. A
general isotropic damage model should deal with two scalar variables correspond-
ing to two independent elastic constants of standard isotropic elasticity. More
refined theories take into account the anisotropic character of damage; they repre-
sent damage by a family of vectors (Krajcinovic and Fonseka, 1981), by a second-
order tensor (Vakulenko and Kachanov, 1971) or, in the most general case, by a
fourth-order tensor (Chaboche, 1979). Anisotropic formulations can be based on
the principle of strain equivalence (Lemaitre, 1971), or on the principle of energy
equivalence (Cordebois and Sidoroff, 1979) (the principle of stress equivalence is
also conceptually possible but is rarely used).

In the present chapter, we will focus on isotropic damage models and on smeared
crack models, which incorporate anisotropy in a simplified way. Anisotropic
damage models based on tensorial description of damage will are treated e.g. in
Lemaitre and Desmorat (2005).

1.1 One-Dimensional Damage Model

Damage models work with certain internal variables that characterize the den-
sity and orientation of microdefects. To introduce the basic concepts, we start from
the case of uniaxial stress. For the present purpose, the material is idealized as a



) M. Jirasek

1 1 &
(a) ANAAANS i;iii v AN (C) - i~iii§i - v ANAAANS (_ﬁﬂz
e TE== ]
A A<A
1 g 1 A2< €3
Ol A VEE==SE] GA
iji v AAAN GIA - v o~ j A AAAN Q)’A
A=A A=A <A

Figure 1. Representation of a uniaxial damage model as a bundle of parallel elastic
fibers breaking at different strain levels

bundle of fibers parallel to the direction of loading (Fig. 1a). Initially, all the fibers
respond elastically, and the stress is carried by the total cross section of all fibers,
A (Fig. 1b). As the applied strain is increased, some fibers start breaking (Fig. 1c).
Each fiber is assumed to be perfectly brittle, which means that the stress in the fiber
drops down to zero immediately after a critical strain level is reached. However,
since the critical strain is different for each fiber, the effective area A (i.e., the area
of unbroken fibers that can still carry stress) decreases gradually from A = A to
A = 0. We have to make a distinction between the nominal stress o, defined as the
force per unit initial area of the cross section, and the effective stress o, defined as
the force per unit effective area. The nominal stress enters the Cauchy equations
of equilibrium on the macroscopic level, while the effective stress is the “true”
stress acting in the material microstructure.! From the condition of equivalence,
oA = A, we obtain

A

o=, o @)
The ratio of the effective area to the total area, A /A, is a scalar characterizing the
integrity of the material. In damage mechanics it is customary to work with the
damage variable defined as

A A-A A4

A A A )
where Ag = A—A is the damaged part of the area. An intact (undamaged) material
is characterized by A = A,i.e.,by D = 0. Due to propagation of microdefects and

'Of course, detailed micromechanical analysis would reveal local oscillations of the stress fields
dependent on the specific defect geometry, and the representation of the actual stress distribution by
one averaged value—the effective stress—is just a simplification for modeling purposes.
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Figure 2. Evolution of effective stress &, damage variable D and nominal stress o
under a) monotonic loading, b) non-monotonic loading

their coalescence, the damage variable grows and at late stages of the degradation
process it attains or asymptotically approaches the limit value D = 1, correspond-
ing to a completely damaged material with effective area reduced to zero. In the
simplest version of the model, each fiber is supposed to remain linear elastic up to
the strain level at which it breaks.> Consequently, the effective stress & is governed
by Hooke’s law,

o= FEe 3)
Combining (1)-(3) we obtain the constitutive law for the nominal stress,
o= (1—D)Ee )

Damage evolution can be characterized by the dependence of the damage variable
on the applied strain,
D= g(e) 5)

In general, the fictitious “fibers” can obey any (nonlinear) constitutive law, which provides one
possible framework for coupling of damage with other dissipative phenomena, such as plasticity.
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Function g affects the shape of the stress-strain diagram and can be directly iden-
tified from a uniaxial test. The evolution of the effective stress, damage variable,
and nominal stress in a material that remains elastic up to the peak stress is shown
in Fig. 2a. This description is valid only for monotonic loading by an increasing
applied strain €. When the material is first stretched up to a certain strain level €,
that induces damage Dy = g(e2) and then the strain decreases (Fig. 1d), the dam-
aged area remains constant and the material responds as an elastic material with a
reduced Young’s modulus E; = (1 — D2)E. This means that, during unloading
and partial reloading, the damage variable in (4) must be evaluated from the largest
previously reached strain and not from the current strain €. It is convenient to in-
troduce an internal variable x characterizing the maximum strain level reached in
the previous history of the material up to a given time ¢, i.e., to set
k(t) = maxe(T) (6)
T<t
where t is not necessarily the physical time—it can be any monotonically increas-
ing parameter controling the loading process. The damage evolution law (5) is
then replaced by equation
D = g(x) )

that remains valid not only during monotonic loading but also during unloading
and reloading. The evolution of the effective stress, damage variable, and nominal
stress in a non-monotonic test is shown in Fig. 2b. Note that, upon a complete
removal of the applied stress, the strain returns to zero (due to elasticity of the
yet unbroken fibers), i.e., the pure damage model does not take into account any
permanent strains. Nevertheless, the material state is different from the initial
virgin state, because the damage variable is not zero and the stiffness and strength
mobilized in a new tensile loading process are smaller than their initial values. The
loading history is reflected by the value of the damage variable D.

To gain further insight, we rewrite the constitutive law (4) in the form 0 = Ee
where F; = (1 — D)F is the apparent (damaged) modulus of elasticity. Instead of
defining the variable x through (6), we introduce a loading function f (g, k) = e—k
and postulate the loading-unloading conditions in the Kuhn-Tucker form,

<0, £20, £f=0 ®)

The first condition means that x can never be smaller than ¢, and the second con-
dition means that x cannot decrease. Finally, according to the third condition, x
can grow only if the current values of € and « are equal.
The basic ingredients of the uniaxial damage theory are summarized as follows:
e the stress-strain law in the secant format,

o= FEse €))
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o the equation relating the apparent stiffness to the damage variable,
E,=(1-D)E (10)
o the law governing the evolution of the damage variable,
D = g(k) (11)

o the loading function
flew)=c—r (12)

specifying the elastic domain &, = {¢| f(e, k) < 0}, i.e., the set of states
for which damage does not grow, and
o the loading-unloading conditions (8).

1.2 Damage Models with Strain-Based Loading Functions

Simple Models with One Damage Variable. The simplest extension of the uni-
axial damage theory to general multiaxial stress states is achieved by the isotropic
damage model with a single scalar variable. Isotropic damage models are based
on the simplifying assumption that the stiffness degradation is isotropic, i.e., stiff-
ness moduli corresponding to different directions decrease proportionally, inde-
pendently of the direction of loading. Since an isotropic elastic material is char-
acterized by two independent elastic constants, a general isotropic damage model
should deal with two damage variables. The model with a single variable makes
use of an additional assumption that the relative reduction of all the stiffness coeffi-
cients is the same, in other words, that the Poisson ratio is not affected by damage.
Consequently, the damaged stiffness tensor is expressed as

Es = (1—D)E (13)

where E is the elastic stiffness tensor of the intact material, and D is the damage
variable. In the present context, Eg is the secant stiffness that relates the total
strain to total stress, according to the formula

o=Es:e=(1-D)E:e (14)

Clearly, (13) is a generalization of (10), and (14) is a generalization of (9) and (4).
In terms of the effective stress tensor, defined as

o=E:¢ (15)
equation (14) can alternatively be written as

o=(1-D)o (16)
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Figure 3. Loading surfaces for various definitions of equivalent strain
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which is the multidimensional generalization of (1).

Similar to the uniaxial case, we introduce a loading function f specifying the
elastic domain and the states at which damage grows. The loading function now
depends on the strain tensor, €, and on a variable « that controls the evolution of
the elastic domain. Physically, « is a scalar measure of the largest strain level ever
reached in the history of the material. States for which f(e, k) < 0 are supposed
to be below the current damage threshold. Damage can grow only if the current
state reaches the boundary of the elastic domain. This is described by the loading-
unloading conditions (8). It is convenient to postulate the loading function in the
form

fle,r) =£E(e) — K (17)

where € is the equivalent strain, i.e., a scalar measure of the strain level.

In some sense, the expression defining the equivalent strain plays a role similar
to the yield function in plasticity, because it directly affects the shape of the elastic
domain. The simplest choice is to define the equivalent strain as the Euclidean
norm of the strain tensor,

E=lle|| =Ve:e= /e (18)

or as the energy norm,

. e:E:e 1
=N T T \/EEijkz&jEkz (19)

where E;;1; are the components of the elastic stiffness tensor IE and normalization
by Young’s modulus E is introduced in order to obtain a strain-like quantity. Each
particular definition of equivalent strain corresponds to a certain shape of the elas-
tic domain in the strain space and can be transformed into the stress space. For
illustration, Fig. 3(top) shows the elastic domains in projection onto the principal
strain plane and in the principal stress plane for the case of plane stress and Pois-
son’s ratio v = 0.2. The domains are elliptical and symmetric with respect to the
origin. Consequently, there would be no difference in the response to tensile and
compressive loadings.

For concrete and other materials with very different behaviors in tension and
in compression, it is necessary to adjust the definition of equivalent strain. Micro-
cracks in concrete grow mainly if the material is stretched, and so it is natural to
take into account only normal strains that are positive and neglect those that are
negative. This leads to the so-called Mazars definition of equivalent strain (Mazars,
1984)

e=l{e)ll = V() : () (20)
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or to its energetic counterpart,

() :E: (e)

P 1)

oy
I

where McAuley brackets (.) denote the “positive part” operator. For scalars, (z) =
max(0, x), i.e., () = x for x positive and (x) = 0 for = negative. For symmetric
tensors, such as the strain tensor €, the positive part is a tensor having the same
principal directions n; as the original one, with principal values e; replaced by
their positive parts (¢7). The subscript I ranges from 1 to 3 (the number of spatial
dimensions) but it is not subject to Einstein’s summation convention because the
principal strains £; are not components of a first-order tensor. In terms of the

spectral decomposition
3

E:Zz?[’n[@n[ (22)
I=1

the positive part of € is expressed as
3
(e) = Z<€1> nyng (23)

Since (n; @ ny) : (ny ® ny) = d;; = Kronecker’s delta, definition (20) can be
rewritten as

3
E= | (en)? (24)

The elastic domains corresponding to (20) and (21) are shown in Fig. 3(center).
If a model corresponding to the Rankine criterion of maximum principal stress
is desired, one may use the definitions

(25
or

(26)

where (o7) = (E : )7, I = 1,2,3, are the positive parts of principal values of
the effective stress tensor (15). The former definition exactly corresponds to the
Rankine criterion while the latter rounds off the corners in the octants with more
than one positive principal stress; see Fig. 3(bottom).
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Figure 4. Biaxial strength envelope for concrete and its approximation by isotropic
damage models with Rankine and modified Mises definition of equivalent strain

An alternative formula, called the modified von Mises definition (de Vree et al.,
1995), reads

k—1)I 1 k—1)2 12k J.
g bzDhe 1 J(E=1) 12 2 27)
2k(1—2v) 2k \ (1—2v)2 (1+4v)?
where
115:128238\/ (28)
is the first strain invariant (trace of the strain tensor),
Joe=jere=le:e— LT (29)

is the second deviatoric strain invariant, and & is a model parameter that sets the
ratio between the uniaxial compressive strength f. and uniaxial tensile strength
ft. The elastic domains corresponding to the modified von Mises definition have
ellipsoidal shapes but their centers are shifted from the origin along the hydrostatic
axis (except for the special case with parameter £k = 1, which corresponds to the
standard von Mises definition, with equivalent strain proportional to /J2.).

The uniaxial tensile strength and uniaxial compressive strength can be fitted,
but the shape of the elastic domain in the tension-compression quadrant of the prin-
cipal stress plane does not correspond to experimental data for concrete (Kupfer
et al., 1969) and the shear strength is overestimated, see Fig. 4.
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An important advantage of isotropic damage models is that the stress evalua-
tion algorithm is usually explicit, without the need for an iterative solution of one
or more nonlinear equations. The choice of a loading function in the form (17)
endows the variable x with the meaning of the largest value of equivalent strain
that has ever occured in the previous deformation history of the material up to its
current state; cf. (8). In other words, (6) can be generalized to

k(t) = maxé(r) (30)

T<t

For a prescribed strain increment, the corresponding stress is evaluated simply
by computing the current value of equivalent strain, updating the maximum previ-
ously reached equivalent strain and the damage variable, and reducing the effective
stress according to (14). Depending on the definition of equivalent strain one may
have to extract the principal strains or principal stresses. This can be done very
easily, since closed-form formulas for the eigenvalues of symmetric matrices of
size 2 X 2 or 3 x 3 are available.

The damaged stiffness tensor Es = (1 — D)E introduced in (13) links the total
stress to total strain and plays the role of the tangent stiffness only for unloading
with constant damage (f < 0 or f < 0). To construct the tangent stiffness tensor
for loading with growing damage (f = 0 and f = 0), we need to find the link
between stress and strain increments or rates. The damage rate can be expressed in
terms of the strain rate using the consistency condition f = 0 with the rate of the
damage loading function evaluated from (17) and combining it with the rate form
of equation (11):

- dg. dg. dgog

D=—f(="—=">—

dw dw dk Oe

For convenience, we introduce symbols g’ for the derivative dg/dx of the damage

function, and 7 for the second order tensor 92/Je obtained by differentiation of

the expression for the equivalent strain with respect to the strain tensor. Substitut-
ing D=yg 17 : € into the rate form of the stress-strain law (14) we get

D€ €1V

6=(1-DE:é-E:eD=(1-DE:é¢-6(gJn:é)=Eey:¢ (32
where & = IE : € is the effective stress and
Ew=(1-DE-g¢ga®n (33)

is the elasto-damage stiffness tensor. It is interesting to note that for a model with
the equivalent strain based on the energy norm, eq. (19), the tensor 7 is given by

0é 1 1
. S 2E : e = 7

":%_2/75;1&513 jo5
E

(34)
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and the resulting elasto-damage stiffness tensor

/

E.,= (1 - DE — géc"r@é' (35)
exhibits major symmetry (Effkl = Ez?l ;). For other definitions of equivalent

strain, this kind of symmetry is lost.

Mazars Damage Model. A popular damage model specifically designed for
concrete was proposed by Mazars (Mazars, 1984, 1986). He introduced two dam-
age variables, D; and D,, that are computed from the same equivalent strain (24)
using two different damage functions, g; and g.. Function g, is identified from
the uniaxial tensile test while g. corresponds to the compressive test. The dam-
age variable entering the constitutive equations (14) is D = D, under tension and
D = D, under compression. For general stress states the value of D is obtained
as a linear combination

D= OétDt + CMCDC (36)

where the coefficients o; and «.. take into account the character of the stress state.
In the recent implementation of Mazars model, these coefficients are evaluated as

(3 5t1<5l>>ﬂ ( : 5t1<51>>6
a =Y = : ac=[1-Y = (37)

I=1 I=1

where ¢,7, I = 1,2, 3, are the principal strains due to positive stresses, i.e., the
principal values of e, = C : (E : €), in which C = E~! is the elastic compliance
tensor. The exponent 5 = 1.06 slows down the evolution of damage under shear
loading (i.e., when principal stresses do not have the same sign). In the original
version of the model (Mazars, 1984), 8 was equal to 1.

Note that if all principal stresses are nonnegative we have a; = 1, a, = 0, and
D = Dy, and if all principal stresses are nonpositive we have a; = 0, o, = 1, and
D = D.. These are the “purely tensile” and “purely compressive” stress states.
For intermediate stress states the value of D is between D; and D., depending
on the relative magnitudes of tensile and compressive stresses. Functions charac-
terizing the evolution of damage were originally proposed in the form (Mazars,
1984)

0 if k<egg

K) = (38)
9:() 1= (1-4)2 — Ayexp[-Bi(s—=0)] it 52z
0 if k<egg

ge(K) = (39)

1-(1-A)22 — Ajexp[-Bu(k —20)] if &> e
K
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Figure 5. Stress-strain curves for Mazars damage model constructed for uniaxial
tension (top) and uniaxial compression (bottom)

where ¢ is the equivalent strain at the onset of nonlinearity, and A;, By, A., and
B, are material parameters related to the shape of the uniaxial stress-strain dia-
grams. To ensure a continuous variation of slope of the compressive stress-strain
curve, it is necessary to satisfy the condition A.B.cyp = A. — 1, which reduces
the number of independent parameters to four. A sample set of parameters used
by Saouridis (1988) is g = 1074, A; = 0.81, B; = 10450, A, = 1.34, and
B, = 2537. It is important to realize that functions (38)—(39) give a good approx-
imation of the stress-strain curves only in the prepeak and early post-peak regime;
see Fig. 5a. For large applied strains the stress level asymptotically approaches its
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Figure 6. Biaxial failure envelope for Mazars damage model with parameters from
Saouridis (1988): a) original version, b) with adjusted equivalent strain according
to (41)

limit value (1 — A;)Ezq in tension and —(1 — A.) Ee( in compression. Typically,
A; < 1and A, > 1, and so the stress under uniaxial tension does not completely
disappear and under uniaxial compression it changes sign from negative to posi-
tive; see the dotted curve in Fig. 5b. This can be remedied by setting D. = 1 when
gc(k) evaluated from (39) exceeds 1, and by setting D; = 1 when x exceeds a cer-
tain limit; see the solid curve in Fig. 5b. Instead of accepting the sudden jump of
tensile stress, it is more elegant to modify the definition of g; such that the tensile
stress asymptotically tends to zero. A suitable formula for g; is e.g.

0 if Kk <¢gg

£ KR —¢€ .
1——Oexp<— 0) if K>¢gg
R Ef —€o

g1(k) = (40)

where £¢ and € ¢ are parameters.

The Mazars model allows an independent control of the tensile and compres-
sive stress-strain curves and provides a good approximation of the biaxial failure
envelope of concrete (locus of peak stress states under plane stress) under biaxial
tension and under tension combined with compression. However the shape of the
failure envelope is not realistic in the region of biaxial compression; see Fig. 6a.

A partial improvement of the shape of the failure envelope is obtained if the
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equivalent strain is adjusted by the multiplicative factor

(41)

where 0, = —(—o7) are the negative parts of principal stresses. The adjustment is
done only if at least two principal stresses are negative and none of them is positive.
In this way, the shape of the failure envelope becomes more realistic; see Fig. 6b.
The strength under biaxial compression is now equal to the uniaxial compressive
strength. According to the CEB-FIP Model Code (CEBO91) it should be by 20%
larger but the present version of the model does not allow an independent control of
the biaxial compressive strength. For stress paths that do not generate any tensile
strains, the model response is purely linear elastic. This means that nonlinear
effects under highly confined compression, e.g. the so-called Hugoniot curve under
hydrostatic compression, are not reproduced. Note that even though the factor ~
in (41) is defined using the nominal stress o, exactly the same value is obtained
with o replaced by the effective stress o0 = E : €, because o = (1 — D)o and the
factors 1 — D appearing both in the numerator and the denominator of (41) cancel
out. So the model remains fully explicit in the sense that stresses can be evaluated
by straightforward substitution, without any iterations on the material point level.

Mazars model suffers by certain deficiencies that are typical of all isotropic

damage models:

1. For a proportional loading path in the stress space the ratio between indi-
vidual strain components remains constant. Consequently, the model can-
not capture the experimentally observed dilatancy (volumetric expansion)
at post-peak stages of the uniaxial compression test and of the shear test.
Under uniaxial tension, the model predicts unlimited transverse contraction,
whereas in reality the transverse strain would approach zero after the forma-
tion of a macroscopic crack.

2. When subjected to a large extension in one direction, the model completely
loses stiffness not only in the direction of loading but also in the transverse
directions.

3. No permanent strain is generated, i.e., unloading takes place to the origin.
This could be acceptable for unloading from tension but certainly not for
unloading from compression.

Deficiencies 1 and 2 motivate the development of more sophisticated models

that take into account the anisotropy induced by damage. Deficiency 3 motivates
the development of combined damage-plastic models, to be mentioned in chap-
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ter 4. Nevertheless, Mazars model remains quite popular in applications because
it is relatively simple, easy to implement, and computationally efficient.

2 Smeared Crack Models

The concept of isotropic damage is appropriate for materials weakened by voids,
but if the physical source of damage is the initiation and propagation of micro-
cracks, isotropic stiffness degradation can be considered only as a first rough ap-
proximation. More refined damage models take into account the highly oriented
nature of cracking, which is reflected by the anisotropic character of the damaged
stiffness and compliance matrices.

In this section, we will look at a particular class of constitutive models devel-
oped specifically for quasibrittle materials such as concrete or rock under predom-
inantly tensile loading. They will be referred to as smeared crack models (in the
narrow sense).

There is some confusion in the literature because the expression “smeared
crack” is often perceived as a counterpart of “discrete crack” and, in this sense,
any softening continuum model (even if it is based on plasticity or damage) could
be labeled as a “smeared crack model”. However, we prefer to reserve this term
for a more narrow class of models, which share some common features with but
are different from plasticity and damage. Similar to plasticity (see chapter 4), they
decompose the total strain into an elastic part and an inelastic part (called here the
crack strain). Instead of postulating a yield condition and a flow rule, the inelastic
strain due to crack opening is related directly to the traction transmitted across the
crack plane.

The origins of smeared crack models for concrete fracture date back to the
sixties (Rashid, 1968). Initially, the crack direction was assumed to remain fixed,
and shear tractions across the crack were treated using the so-called retention fac-
tor (Suidan and Schnobrich, 1973). Later, it was proposed to allow rotation of
the axes of material orthotropy (Cope et al., 1980), which stimulated the devel-
opment of rotating crack models (Gupta and Akbar, 1984). The original fixed
crack model was later extended to multiple non-orthogonal cracking (de Borst and
Nauta, 1985).

As shown by Jirasek and Zimmermann (1998a), the rotating crack model suf-
fers by stress locking (spurious stress transfer), which arises in finite element simu-
lations on meshes that are not aligned with the crack directions. This phenomenon
pollutes the numerical results and may lead to a misprediction of structural ductil-
ity and of the failure pattern. A remedy based on transition from the rotating crack
description to a scalar damage model was proposed in Jirdsek and Zimmermann
(1998b).
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(a) b)
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Figure 7. (a) Schematic representation of the smeared crack model as an elastic
unit coupled in series to a crack unit, (b) local coordinate system aligned with the
crack

2.1 One-Dimensional Smeared Crack Model

Smeared crack models decompose the total strain into two parts — one corre-
sponds to the deformation of the uncracked material, and the other is the contri-
bution of cracking. The response of the uncracked material can be governed by
a general nonlinear material law but usually is assumed to be linear elastic. In
one-dimensional setting, the strain decomposition is written as

e=¢e+¢&° (42)
and the elastic strain €€ is related to stress by Hooke’s law
o = Ee° (43)

The crack strain, €€, represents in a smeared manner the additional deformation
due to the opening of cracks. The additive strain decomposition (42) corresponds
to a rheological model in which an elastic spring is coupled in series with a unit
representing the contribution of the crack, as schematically shown in Fig. 7a. Since
the coupling is serial, both units transmit the same stress, o.

Initially, the material is assumed to be in its virgin (uncracked) state, the crack
strain vanishes and the overall response is linear elastic. A crack is initiated when
the stress reaches the tensile strength of the material, f;. A constitutive law gov-
erning the stress evolution after crack initiation is needed.

In early studies it was assumed that the traction transmitted by the crack drops
to zero immediately after crack initiation. On the structural level, such an ap-
proach leads to results that are not objective with respect to the mesh size, as will
be explained in Section 3.1. To ensure proper energy dissipation, and also to avoid
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unrealistic stress jumps, it is necessary to describe the loss of cohesion as a gradual
process. Physically, this is justified by the fact that the formation of a macroscopic
stress-free crack is in a heterogeneous material preceded by the initiation, growth
and coalescence of a network of microcracks. For the purpose of modeling, we
replace such a complicated system of small non-contiguous cracks by an equiv-
alent cohesive crack, which can still transmit stress. This cohesive stress is then
considered as a (usually decreasing) function of the crack strain,

o= fe) (44)

where the appropriate form of function f¢ should be identified from experiments.>
Based on a comprehensive analysis of experimental results, Reinhardt et al.
(1986) and Hordijk (1991) proposed a softening law in the form

e 3 . .
o=f)=feq |1+ (£> exp (—£> —e (14d) =} @3)
er Ef

where f; is the uniaxial tensile strength, € s is the strain at which the crack becomes
stress-free, and ¢; and co are dimensionless material parameters controling the
shape of the softening curve. Their default values recommended by Hordijk (1991)
are ¢c; = 3 and ¢y = 6.93. The corresponding softening curve is plotted in Fig. 8
in terms of dimensionless stress o/ f; and normalized crack strain 5.136 /¢
(the factor 5.136 leads to a unit area under the curve). Parameters f; and € fully
define the Reinhardt-Hordijk law with default values of ¢; and c2, and their change
is respectively equivalent to vertical and horizontal rescaling of the normalized
curve.

The Reinhardt-Hordijk law (45) gives the best fit of experimental results but
is relatively complicated. Acceptable results are usually obtained with simpler
relations such as the exponential law

50
o= 1) = frewo () 6)
ef
where € is a material parameter controling the steepness of the softening curve,

*Due to the localized character of the cracking zone, it is not possible to give an objective definition of
the crack strain—it always depends on the gauge length along which the (average) strain is measured.
From the physical point of view it is more meaningful to characterize the cracking material by the so-
called traction-separation law, which links the cohesive stress transmitted by the crack to the crack
opening, defined as the integral of all inelastic deformation across the width of the fracture process
zone. This will be discussed in detail in chapter 3.
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Figure 8. Normalized plot of various softening laws
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(47)

where ¢, and oy, are the coordinates of the point at which the softening curve
changes slope, and ¢ is the strain at which the cohesive stress vanishes. The
normalized softening curves corresponding to the Reinhardt-Hordijk law (45), ex-
ponential law (46) and bilinear law (47) are compared in Fig. 8. The parameters
have been determined such that the area under all the curves is equal to unity. It
is clear that the deviations of the exponential and bilinear curves from Reinhardt’s
curve are relatively small. On the other hand, the linear softening curve, also plot-
ted in Fig. 8, substantially differs from the nonlinear ones and, for concrete, can
be used only as a very rough approximation.

Equations (42)—(44) fully define the one-dimensional smeared crack model
(provided that the strain increases monotonically). The stress-strain curve has a
linear pre-peak branch and a softening branch, and for each given stress between 0
and f; it is easy to compute the corresponding total strain as the sum of the elastic
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Figure 9. Total stress-strain curve obtained by summing the elastic strain and the
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Figure 10. Various types of unloading

strain and the crack strain, as shown in Fig. 9.

Numerical simulations typically require the evaluation of stress for a given
strain increment, starting from a state at which all variables are known. For this
purpose, the increment of the crack strain must be determined such that the final
stress in the elastic spring be equal to the final stress in the cracking unit. This
condition leads to the equation

E(e = &%) = [°(¢°) (48)

describing the internal equilibrium in the rheological model in Fig. 7a. Here, € is
the given strain at the end of the step and €€ is the unknown to be determined. For
a linear (or bilinear) softening law, equation (48) is linear (or piecewise linear) and
can be solved exactly. For general softening laws such as (45) or (46), the equation
is nonlinear and needs to be solved iteratively. Since the functions describing
softening are usually smooth and convex, the Newton method leads to very fast
monotonic convergence.

For general applications, possible unloading must be taken into account and
the cohesive law needs a refinement. The simplest assumption is that unloading
is linear. In one extreme case, the crack strain can be considered as permanent,
similar to plasticity (Fig. 10a). In another extreme case, perfect crack closure can
be assumed, with vanishing crack strain upon complete stress removal (Fig. 10c).
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None of these approaches is fully realistic, because crack closure certainly reduces
the inelastic part of strain, but it is partially hindered by the roughness of the crack
faces and by potential debris inside the cracks (Fig. 10b). Sophisticated models
aiming at application to cyclic loading even consider nonlinear unloading, with
stiffness recovery upon crack closure and with hysteresis effects. From the com-
putational point of view, the equation to be solved during unloading has the same
form as (48), but with a modified function f€.
To cover the general case, including possible unloading, one should introduce
a history variable x, representing the maximum previously reached value of €€,
and rewrite (44) as
o= fe% k) (49)

The evolution of x can formally be described by the loading-unloading conditions

- k<0, £>0, (°—k)ik=0 (50)

2.2 Multi-Dimensional Smeared Crack Models

In a general setting, equations (42)—(43) are written as

e = e°+¢f (51)
o = E:¢&° (52)

The crack strain, ¢, represents in a smeared manner the additional deformation
due to the opening of cracks. In a real material, microcracks have different sizes,
shapes and orientations. They are not necessarily planar and their faces are rough.
For the purpose of modeling, simplifications are needed. Therefore, we consider
an equivalent computational crack which is perfectly planar and its direction is
defined by a unit normal vector n. It is usually assumed that the crack opening and
sliding are affected only by the traction vector acting on the crack plane, i.e., by
the first-order tensor

t=n-o (53)

It is useful to introduce local coordinates aligned with the crack, based on the unit
vector n normal to the crack and on mutually orthogonal unit vectors m and 1 in
the crack plane. With respect to such local coordinate system, the traction acting
on the crack plane can be represented as

t° = oppn + oppm + oyl (54)

where 0,,,, = t°-n = n- o - nis the normal traction and 6,,,,, = t*-m =n-o -m
and 0,,; = t°-1=n- o -1 are the shear tractions.

The traction components are linked to the crack opening and sliding by the
generalized form of the cohesive law. It is natural to assume that opening of the
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crack contributes only to the normal strain €¢,,, in the direction perpendicular to
the crack, and sliding of the crack only to the shear strains . . and +;; in planes
perpendicular to the crack. These are the crack strain components expressed with
respect to the local coordinate system with unit base vectors n, m and 1. The cor-
responding strain components in global coordinates are obtained by the standard
coordinate transformation. In tensorial notation, we can write

€° =, NN+ 7., (0@ M)y + 75 (0@ Dyym = (N @ €)sym (55)

where
C

is the crack strain vector, i.e., a first-order tensor work-conjugate with t°.
Combining (51), (52) and (55), we obtain the stress-strain law

oc=E:(e—n®e) (57)

in which e plays the role of an internal variable. Note that, because of minor
symmetry of E, the symbol of symmetric part at n ® e® can be omitted.

For a virgin material, e = 0 and the response is linear elastic. The compu-
tational crack is initiated when the stress state reaches the strength envelope, i.e.,
a certain limit surface in the stress space. Traditional smeared crack models con-
trol crack initiation by the Rankine criterion of maximum principal stress. Some
models aiming at the description of fracture under shear and compression exploit
more general criteria; see e.g. (Weihe, 1995). The initiation criterion should also
specify the initial orientation of the crack. For example, the Rankine criterion pos-
tulates that, at crack initiation, the crack plane is perpendicular to the direction of
maximum principal stress.

Under pure mode-I conditions, the crack propagates in its plane and the nor-
mal n does not change. Under general mixed-mode conditions, two conceptually
different approaches are possible:

e Fixed crack models freeze the crack direction and postulate general soften-
ing laws that link all crack strain components to all components of the crack
traction vector.

e Rotating crack models assume that the crack normal always remains aligned
with the current direction of maximum principal strain. The shear compo-
nents of crack strain, 7, and ~y,,, and of crack traction, ¢, and o, are
then zero, and the simple law (44) with o and €° replaced by 0., and €5, is
sufficient for the description of the softening process.

2.3 Fixed Crack Model

The fixed crack model freezes the crack direction determined at the moment
of crack initiation. If the initiation criterion is based on the Rankine condition,
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the crack plane initially transmits a normal traction (equal to the tensile strength)
but no shear tractions. Later on, the crack plane remains fixed but the principal
axes can rotate. The crack plane in general transmits shear tractions that produce
relative sliding of the crack faces, represented by shear components of crack strain.

In simplistic versions of the fixed crack model, the shear traction is taken as
proportional to the shear crack strain, with a proportionality factor 3G, where G
is the shear modulus of elasticity and § < 1 is the so-called shear retention factor
(Suidan and Schnobrich, 1973). This is of course not very realistic because such a
cohesive crack is allowed to transmit large shear tractions even when it is widely
open. If the shear retention factor is treated as a constant, it usually has to be
set to a very small value, e.g. 5 = 0.01, to limit the spurious stress transfer that
could lead to the so-called stress locking.4 A better remedy is to make [ variable,
decreasing to zero as the crack opening grows (Cedolin and Poli, 1977). It is also
possible to formulate the relation between t° and e€ in the spirit of damage theory,
with a scalar damage parameter depending on an equivalent crack strain that is
computed from e°.

Whatever choice is made, the cohesive law can be written in the total form

£ = f(e°) (58)
or in the rate (incremental) form
t°=E°. ¢ (59)

where E¢ = 0 f¢/0e¢ is the second-order tangent crack stiffness tensor.

The traction vector t°, which is linked by the cohesive law (58) to the crack
strain vector e°, must be equal to the projection of the stress tensor, which can be
computed from the elastic strain. Combining equations (53) and (57) we get

t“=n-E:e—n-E: n®e)=n-E:e—E-e° (60)

where E = n - E - n is the so-called acoustic tensor. Comparing the right-hand
sides of (58) and (60), we obtain a generalized form of equation (48), which phys-
ically corresponds to the internal equilibrium condition between the tractions in
the elastic unit and in the crack unit:

n-E:e—E-e° = f°e (61)

For a given strain increment, the unknown crack strain e can be computed by
solving (61), which is usually done in an iterative manner, e.g. by the Newton-
Raphson method. Substitution of e into (57) then provides the corresponding
stress.

“In the present context, stress locking means that spurious stresses build up around the band of crack-
ing elements. This pollutes the numerical results and leads to an overestimated energy dissipation
and nonzero residual strength of a cracked structure.
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It is also useful to derive the tangent material stiffness tensor, which links the
stress rate to the strain rate. From the rate form of the internal equilibrium condi-
tion (61),

n-E:é—E-¢ =E° ¢ (62)

the crack strain rate
¢ =([E+E)' - n-E):é (63)

is easily computed. Its substitution into the rate form of (57) then gives the rate
form of the stress-strain law,

c6=E:(e-nee¢)=E:¢-E:nxE+E) ] - n-E):é=Er:& (64)
with the tangent stiffness tensor of the elastic-cracking material given by
Er=E—(E-n)-(E+E°)"'-(n-E) (65)

2.4 Rotating Crack Model

For the rotating crack model (RCM), the plane of the computational crack is
allowed to rotate and is assumed to remain perpendicular to the direction of maxi-
mum principal strain. Of course, if a physical crack resides in a certain plane, the
already formed crack faces cannot rotate. However, if the crack propagates un-
der general loading, it can deviate from the original plane and become non-planar.
Also, new cracks in planes that are not parallel with the initial crack plane can be
initiated. All this is reflected in the model by a change of direction of the equivalent
computational crack.

Alignment of the crack with the principal directions implies that the shear com-
ponents of the crack strain, v, and ¢, are zero. Equation (56) then simplifies

to e = ¢;, n and (57) turns into

o=E: (e —N&,) (66)

where, for convenience, the second-order tensor n ®n is denoted as N. The normal
traction on the crack plane can be evaluated by an appropriate projection of the
stress tensor:

oppn=mn-c-n=N:0=N:E:e-N:E:N&

nn

(67)

At the same time, this traction is linked to the normal crack strain, €}, , , by a scalar
cohesive law analogous to (44):

Onn = fc(gfm) (68)
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Comparing the right-hand sides of (67) and (68), we obtain the internal equilibrium
condition

N:E:e—N:E:Net, = f°(cS,,) (69)

which is analogous to (61) but is simpler, with only one scalar unknown &¢,,, in-
stead of the vectorial unknown e“.

If the uncracked material is isotropic, the elastic stiffness is given by E =
M ®142uls where A and y1 are Lamé’s constants and I g is the symmetric fourth-
order unit tensor. In this case, wehave N : E = A\1+2uNand N : E : N = A+ 2y,
and (69) can be written as

Al:e+2uN:e— (A4 2u)es, = fé(es,) (70)

where 1 : e is the trace of the strain tensor and N : € = n - € - n is the (total)
strain normal to the crack, which is in fact equal to the maximum principal strain.

Similar to the one-dimensional case, the crack strain €7, can be obtained by the

Newton method (or in closed form, if the softening law is linear or piecewise
linear). Substitution of the result into (66) then provides the stress tensor.

In order to derive the tangent stiffness tensor for the rotating crack model, we
first convert the internal equilibrium equation (70) to the rate form. It is important
to realize that the crack normal n in general rotates, and so the second-order tensor
N = n ® n is also variable in time. This needs to be taken into account when
differentiating the second term in (70). The resulting rate equation thus reads

M e+ 2uN:é+2uN e — (A +2u)é, = B¢

nn

(71)

where E¢ = df¢/de¢,, is the softening modulus. The rates nn and N can be ex-

pressed in terms of the current strain and the strain rate, but the derivation is some-
what tedious. As explained in the footnote N = N : & where N is a certain
fourth-order tensor depending only on & and n. It can be shown that N : € = O,
and thus the the third term in (71) cancels.

5According to the fundamental assumption of the rotating crack model, the crack remains perpendic-
ular to the direction of maximum principal strain, i.e., n = p; is the normalized eigenvector of €
associated with the largest eigenvalue. If the maximum principal strain €1 is strictly greater than the
other two principal strains, €2 and €3, the expression for the rate of p; can be derived by manipulat-
ing the rate form of the relations € - p; = erpy and p; - p; = 075, 1,J = 1,2, 3. The resulting

formula reads . .
l"l _ €12P2 T £€13P3 72)

€1 —€2 €1 —€3

where €12 = p;-€-p, and €13 = p; -€-p5 are the components of the strain rate tensor € with respect
to the principal coordinate system. It is then straightforward to evaluate N = P, ®p; +p; P

and convert it to the form N = N : & where

2 2
N= (P1 ®P2)sym @ (P1 @ P2)sym + (P1 ® P3)sym @ (P1 ® P3)sym (73)
£1 — €2 €1 — €3
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Based on (71) with the third term dropped, the crack strain rate corresponding
to a given strain rate is easily expressed as

e AM:é+2uN:€ N:E

= = ¢ 74
Enn A+ 2u+ E€ A+2p+EC€ (74)

Substitution of this result into the rate form of (66) leads to the direct relation
between the rates of stress and strain,

N:E .
Nt2put B
(75)
This can be further simplified, since E : N = 2uN (as follows from (73)). The
final formula for the tangent stiffness tensor reads
E:N®N:E

Er =E —2ue$, N — 76
T :U’Enn )\+2M+EC ( )

c=E:(6-Ne, —N&¢, )=E:¢-E:N:é¢c¢, —E:N

The rotating crack model is probably the simplest model that can take into ac-
count cracking-induced anisotropy within a framework close to continuum damage
mechanics. Nevertheless, let us point out that it has a number of drawbacks, ana-
lyzed in detail by Rots (1988) and Jirdsek and Zimmermann (1998a). For instance,
it is not thermodynamically consistent. This can be demonstrated by looking at
formula (76) for the tangent stiffness. Its derivation is valid not only in the case
of crack growth, but also during unloading (with constant positive modulus £°),
when the pre-cracked material should respond as an anisotropic linear elastic one,
and it should be characterized by a constant and positive definite tangent stiffness.
However, formula (76) indicates that the stiffness tensor remains constant only if
tensors N and N remain constant, i.e., if the principal axes do not rotate. As shown
by Jirdsek and Zimmermann (1998a), under certain circumstances the unloading
stiffness can even lose positive definiteness, which leads to nonphysical instabili-
ties.

2.5 Rotating Crack Model with Transition to Scalar Damage

In applications to failure simulation by the finite element method, it is neces-
sary to avoid stress locking, which arises on meshes not aligned with the crack
directions and is caused by the poor kinematic representation of the discontinu-
ous displacement field around a macroscopic crack. This leads to spurious stress
transfer, which pollutes the numerical results and may result into a misprediction
of structural ductility and of the failure pattern.

A typical example of stress locking in a fracture simulation is presented in Fig.
11. A three-point bend specimen (Fig. 11a) is discretized by constant-strain trian-
gular elements. The macroscopic crack is initiated at the notch tip and propagates
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Figure 11. Three-point bending test: a) geometry and loading, b) load-
displacement curves, c) crack pattern for the RC model, d) crack pattern for the
RC-SD model

across the specimen. After a sufficiently large load-point displacement has been
applied, the specimen should break completely, and the resisting force should van-
ish. However, the post-peak branch of the computed load-displacement diagram
does not tend to zero but to a non-negligible residual value of the resisting force,
which then remains roughly constant, or even slightly increases (dashed curve in
Fig. 11b). This is indeed a paradoxical result since strains in the cracking ele-
ments are no doubt sufficiently large to make the corresponding stresses vanish.
The stress-strain law is designed in such a way that the stress transfered across
a crack is zero as soon as the crack opening reaches a certain critical value. For
the fixed crack model with non-zero retention factor (Rots, 1988), stress locking
occurs due to shear stresses transfered across the crack. The rotating crack model
does not produce any shear stress on the crack faces but it still locks. The origin



