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PREFACE

Reliable model-based prognoses of the initiation and propagation of
cracks in concrete plays an important role for the durability and in-
tegrity assessment of concrete and reinforced concrete structures. To
this end, a large number of material models for concrete cracking
based on different theories (e.g., damage mechanics, fracture mechan-
ics, plasticity theory and combinations of the mentioned theories) as
well as advanced finite element methods suitable for the representation
of cracks (e.g., the Extended Finite Element Method and Embedded
Crack Models) have been developed in recent years.

The focus of the Advanced School on ”Numerical Modeling of Con-
crete Cracking” at the International Centre for Mechanical Sciences
(CISM) at Udine in May 2009 was laid on numerical models for de-
scribing crack propagation in concrete and their applications to nu-
merical simulations of concrete and reinforced concrete structures.
The lectures of this course formed the basis for this book. Its aim
is to impart fundamental knowledge of the underlying theories of the
different approaches for modelling cracking of concrete and to provide
a critical survey of the state-of-the-art in computational concrete me-
chanics.

This book covers a relatively broad spectrum of topics related to
modelling of cracks, including continuum-based and discrete crack
models, meso-scale models, advanced discretization strategies to cap-
ture evolving cracks based on the concept of finite elements with em-
bedded discontinuities and on the extended finite element method, re-
spectively, and, last but not least, extensions to coupled problems such
as hygro-mechanical problems as required in computational durability
analyses of concrete structures.

Innsbruck and Bochum,
March 2011,

Günter Hofstetter Günther Meschke
University of Innsbruck Ruhr-University Bochum
Austria Germany
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Damage and Smeared Crack Models

Milan Jirásek

1 Isotropic Damage Models

scribes the progres-
sive loss of material integrity due to the propagation and coalescence of micro-
cracks, microvoids, and similar defects. These changes in the microstructure lead
to a degradation of material stiffness observed on the macroscale. The term “con-

concept of
context of creep

the isotropic dam-
age model considers the damaged stiffness tensor as a scalar multiple of the initial
elastic stiffness tensor, i.e., damage is characterized by a single scalar variable. A
general isotropic damage model should deal with two scalar variables correspond-
ing to two independent elastic constants of standard isotropic elasticity. More

eneral case, by a
ations can be based on
the principle of energy
of stress equivalence is

els and on smeared
ay. Anisotropic

damage models based on tensorial description of damage will are treated e.g. in

1.1 One-Dimensional Damage Model

racterize the den-
sity and orientation of microdefects. To introduce the basic concepts, we start from
the case of uniaxial stress. For the present purpose, the material is idealized as a
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Figure 1. Representation of a uniaxial damage model as a bundle of parallel elastic

respond elastically, and the stress is carried by the total c
A

drops down to zero immediately after a critical strain level
ective area Ā (i.e., the area

dually from Ā = A to
Ā = 0. We have to make a distinction between the nominal stress σ
force per unit initial area of the cross section, and the effective stress σ̄
the force per unit effective area. The nominal stress enters
of equilibrium on the macroscopic level, while the effective stress is the “true”
stress acting in the material microstructure.1 From the condition of equivalence,
σA = σ̄Ā, we obtain

σ =
Ā

A
σ̄

The ratio of the effective area to the total area, Ā/A, is a scalar characterizing the
integrity ith the
damage variable

D = 1− Ā

A
=

A− Ā

A
=

Ad

A

whereAd = A−Ā al
is characterized by Ā = A, i.e., by D = 0

1

ation of the actual stress distribution by
ation for modeling purposes.
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Figure 2. Evolution of effective stress σ̄, damage variable D and nominal stress σ

their coalescence, the damage variable grows and at late stages of the degradation
process it attains or asymptotically approaches the limit value D = 1, correspond-
ing to a completely damaged material with effective area red

n linear elastic up to
the strain level at which it breaks. σ̄ is governed

σ̄ = Eε

inal stress,

σ = (1−D)Eε

he damage variable
on the applied strain,

D = g(ε)

onstitutive law, which provides one
possible framework for coupling of damage with other dissipative phenomena, such as plasticity.
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Function g affects the shape of the stress-strain diagram and can be directly iden-
ress, damage variable,

and nominal stress in a material that remains elastic up to the peak stress is shown
ing by an increasing

applied strain ε vel ε2
that induces damage D2 = g(ε2)
aged area remains constant and the material responds as an elastic material with a

E2 = (1 − D2)E. This means that, during unloading
luated from the largest

previously reached strain and not from the current strain ε
troduce an internal variable κ characterizing the maximum strain level reached in
the previous history of the material up to a given time t, i.e., to set

κ(t) = max
τ≤t

ε(τ)

where t is not necessarily the physical time—it can be any monotonically increas-
ing parameter controling the loading process. The damage ev
then replaced by equation

D = g(κ)

that remains valid not only during monotonic loading but also during unloading
and reloading. The evolution of the effective stress, damage variable, and nominal

upon a complete
removal of the applied stress, the strain returns to zero (due to elasticity of the

e into account any
ferent from the initial

virgin state, because the damage variable is not zero and the stiffness and strength
mobilized in a new tensile loading process are smaller than their initial values. The

le D.
in the form σ = Esε

where Es = (1−D)E
κ f(ε, κ) = ε−κ

-Tucker form,

f ≤ 0, κ̇ ≥ 0, κ̇f = 0

κ can never be smaller than ε, and the second con-
dition means that κ cannot decrease. Finally, according to the third condition, κ
can grow only if the current values of ε and κ are equal.

The basic ingredients of the uniaxial damage theory are summarized as follows:
• the stress-strain law in the secant format,

σ = Esε
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• the equation relating the apparent stiffness to the damage variable,

Es = (1−D)E

• the law governing the evolution of the damage variable,

D = g(κ)

• the loading function
f(ε, κ) = ε− κ

specifying the elastic domain Eκ = {ε | f(ε, κ) < 0}, i.e., the set of states
for which damage does not grow, and

•

1.2 Damage Models with Strain-Based Loading Functions

Simple Models with One Damage Variable. The simplest extension of the uni-
axial damage theory to general multiaxial stress states is achieved by the isotropic

e models are based
on the simplifying assumption that the stiffness degradation is isotropic, i.e., stiff-
ness moduli corresponding to different directions decrease proportionally, inde-
pendently of the direction of loading. Since an isotropic elastic material is char-
acterized by two independent elastic constants, a general isotropic damage model
should deal with two damage variables. The model with a single variable makes
use of an additional assumption that the relative reduction
cients is the same, in other words, that the Poisson ratio is not affected by damage.

EEES = (1−D)EEE

where EEE is the elastic stiffness tensor of the intact material, and D is the damage
EEES is the secant stiffness that relates the total

strain to total stress, according to the formula

σ = EEES : ε = (1−D)EEE : ε

effective stress tensor

σ = EEE : ε

σ = (1 −D)σ
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Similar to the uniaxial case, we introduce a loading function f specifying the
elastic domain and the states at which damage grows. The loading function now
depends on the strain tensor, ε, and on a variable κ that controls the evolution of
the elastic domain. Physically, κ is a scalar measure of the largest strain level ever
reached in the history of the material. States for which f(ε, κ) < 0 are supposed

y if the current
state reaches the boundary of the elastic domain. This is described by the loading-

loading function in the
form

f(ε, κ) = ε̃(ε)− κ

where ε̃ is the equivalent strain, i.e., a scalar measure of the strain level.
plays a role similar

to the yield function in plasticity, because it directly affects the shape of the elastic
n as the Euclidean

norm of the strain tensor,

ε̃ = ‖ε‖ = √ε : ε =
√
εijεij

or as the energy norm,

ε̃ =

√
ε : EEE : ε

E
=

√
1

E
Eijklεijεkl

where Eijkl are the components of the elastic stiffness tensor EEE and normalization
E is introduced in order to obtain a strain-like quantity. Each

certain shape of the elas-
tic domain in the strain space and can be transformed into the stress space. For

ection onto the principal
strain plane and in the principal stress plane for the case of plane stress and Pois-

ν = 0.2. The domains are elliptical and symmetric with respect to the
sponse to tensile and

compressive loadings.
For concrete and other materials with very different behaviors in tension and

uivalent strain. Micro-
cracks in concrete grow mainly if the material is stretched, and so it is natural to
take into account only normal strains that are positive and neglect those that are

uivalent strain (Mazars,

ε̃ = ‖〈ε〉‖ =
√
〈ε〉 : 〈ε〉
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or to its energetic counterpart,

ε̃ =

√
〈ε〉 : EEE : 〈ε〉

E

where McAuley brackets 〈.〉 denote the “positive part” operator. For scalars, 〈x〉 =
max(0, x), i.e., 〈x〉 = x for x positive and 〈x〉 = 0 for x negative. For symmetric
tensors, such as the strain tensor ε, the positive part is a tensor having the same
principal directions nI as the original one, with principal values εI replaced by
their positive parts 〈εI〉. The subscript I

nvention because the
principal strains εI
spectral decomposition

ε =
3∑

I=1

εI nI ⊗ nI

the positive part of ε is expressed as

〈ε〉 =
3∑

I=1

〈εI〉nI ⊗ nI

Since (nI ⊗ nI) : (nJ ⊗ nJ) = δIJ =
rewritten as

ε̃ =

√√√√ 3∑
I=1

〈εI〉2

principal stress

ε̃ =
1

E
max

I=1,2,3
〈EEE : ε〉I =

1

E
max

I=1,2,3
〈σI〉

or

ε̃ =
1

E
‖〈EEE : ε〉‖ = 1

E

√√√√ 3∑
I=1

〈EEE : ε〉2I =
1

E

√√√√ 3∑
I=1

〈σI〉2

where 〈σI〉 = 〈EEE : ε〉I , I = 1, 2, 3, are the positive parts of principal values of
tly corresponds to the

Rankine criterion while the latter rounds off the corners in the octants with more
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Figure 4. Biaxial strength envelope for concrete and its approximation by isotropic
uivalent strain

ε̃ =
(k − 1)I1ε
2k(1− 2ν)

+
1

2k

√
(k − 1)2

(1− 2ν)2
I2
1ε +

12kJ2ε
(1 + ν)2

where
I1ε = 1 : ε = 3 εV

J2ε =
1

2
e : e = 1

2
ε : ε− 1

6
I21ε

is the second deviatoric strain invariant, and k is a model parameter that sets the
ratio between the uniaxial compressive strength fc and uniaxial tensile strength
ft
ellipsoidal shapes but their centers are shifted from the origin along the hydrostatic
axis (except for the special case with parameter k = 1, which corresponds to the

rtional to
√
J2ε

The uniaxial tensile strength and uniaxial compressive str
but the shape of the elastic domain in the tension-compression quadrant of the prin-
cipal stress plane does not correspond to experimental data
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An important advantage of isotropic damage models is that the stress evalua-
tion algorithm is usually explicit, without the need for an iterative solution of one
or more nonlinear equations. The choice of a loading functio
endows the variable κ with the meaning of the largest value of equivalent strain
that has ever occured in the previous deformation history of the material up to its

d to

κ(t) = max
τ≤t

ε̃(τ)

For a prescribed strain increment, the corresponding stress is evaluated simply
by computing the current value of equivalent strain, updating the maximum previ-
ously reached equivalent strain and the damage variable, and reducing the effective

valent strain one may
have to extract the principal strains or principal stresses. This can be done very
easily, since closed-form formulas for the eigenvalues of symmetric matrices of
size 2× 2 or 3× 3 are available.

The damaged stiffness tensorEEES = (1−D)EEE
stress to total strain and plays the role of the tangent stiffness only for unloading
with constant damage (f < 0 or ḟ < 0
for loading with growing damage (f = 0 and ḟ = 0
between stress and strain increments or rates. The damage rate can be expressed in
terms of the strain rate using the consistency condition ḟ = 0 with the rate of the

t with the rate form

Ḋ =
dg
dκ

κ̇ =
dg
dκ

˙̃ε =
dg
dκ

∂ε̃

∂ε
: ε̇

For convenience, we introduce symbols g′ for the derivative dg/dκ of the damage
function, and η for the second order tensor ∂ε̃/∂ε obtained by differentiation of
the expression for the equivalent strain with respect to the strain tensor. Substitut-
ing Ḋ = g′η : ε̇

σ̇ = (1 −D)EEE : ε̇−EEE : ε Ḋ = (1−D)EEE : ε̇− σ̄ (g′η : ε̇) = EEEed : ε̇

where σ̄ = EEE : ε is the effective stress and

EEEed = (1−D)EEE − g′σ̄ ⊗ η

note that for a model with
tensor η is given by

η =
∂ε̃

∂ε
=

1

2

√
ε : EEE : ε

E

1

E
2EEE : ε =

σ̄

Eε̃
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and the resulting elasto-damage stiffness tensor

EEEed = (1−D)EEE− g′

Eε̃
σ̄ ⊗ σ̄

exhibits major symmetry (Eed
ijkl = Eed

klij

strain, this kind of symmetry is lost.

Mazars Damage Model.
roduced two dam-

age variables, Dt and Dc

using two different damage functions, gt and gc. Function gt
the uniaxial tensile test while gc corresponds to the compressive test. The dam-

D = Dt under tension and
D = Dc under compression. For general stress states the value of D is obtained
as a linear combination

D = αtDt + αcDc

αt and αc take into account the character of the stress state.
ents are evaluated as

αt =

(
3∑

I=1

εtI〈εI〉
ε̃2

)β

, αc =

(
1−

3∑
I=1

εtI〈εI〉
ε̃2

)β

where εtI , I = 1, 2, 3, are the principal strains due to positive stresses, i.e., the
principal values of εt = CCC : 〈EEE : ε〉, in which CCC = EEE

−1 is the elastic compliance
tensor. The exponent β = 1.06 slows down the evolution of damage under shear
loading (i.e., when principal stresses do not have the same s

β was equal to 1.
αt = 1, αc = 0, and

D = Dt, and if all principal stresses are nonpositive we have αt = 0, αc = 1, and
D = Dc. These are the “purely tensile” and “purely compressive” stress states.
For intermediate stress states the value of D is between Dt and Dc, depending
on the relative magnitudes of tensile and compressive stresses. Functions charac-
terizing the evolution of damage were originally proposed in the form (Mazars,

gt(κ) =

⎧⎨
⎩

0 if κ ≤ ε0

1− (1−At)
ε0
κ
−At exp [−Bt(κ− ε0)] if κ ≥ ε0

gc(κ) =

⎧⎨
⎩

0 if κ ≤ ε0

1− (1−Ac)
ε0
κ
−Ac exp [−Bc(κ− ε0)] if κ ≥ ε0
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Figure 5. Stress-strain curves for Mazars damage model constructed for uniaxial

where ε0 is the equivalent strain at the onset of nonlinearity, and At, Bt, Ac, and
Bc are material parameters related to the shape of the uniaxial stress-strain dia-
grams. To ensure a continuous variation of slope of the compressive stress-strain
curve, it is necessary to satisfy the condition AcBcε0 = Ac − 1, which reduces
the number of independent parameters to four. A sample set of parameters used

ε0 = 10−4, At = 0.81, Bt = 10450, Ac = 1.34, and
Bc = 2537 ood approx-
imation of the stress-strain curves only in the prepeak and e

totically approaches its
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Figure 6. Biaxial failure envelope for Mazars damage model with parameters from
ivalent strain according

limit value (1−At)Eε0 in tension and−(1−Ac)Eε0 in compression. Typically,
At < 1 and Ac > 1, and so the stress under uniaxial tension does not completely
disappear and under uniaxial compression it changes sign from negative to posi-

etting Dc = 1 when
gc(κ) Dt = 1 when κ exceeds a cer-

ng the sudden jump of
gt such that the tensile

stress asymptotically tends to zero. A suitable formula for gt is e.g.

gt(κ) =

⎧⎪⎨
⎪⎩

0 if κ ≤ ε0

1− ε0
κ

exp

(
− κ− ε0
εf − ε0

)
if κ ≥ ε0

where ε0 and εf are parameters.
The Mazars model allows an independent control of the tensile and compres-

sive stress-strain curves and provides a good approximation of the biaxial failure
envelope of concrete (locus of peak stress states under plan

er the shape of the
failure envelope is not realistic in the region of biaxial co

A partial improvement of the shape of the failure envelope is obtained if the
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equivalent strain is adjusted by the multiplicative factor

γ =

√√√√ 3∑
I=1

(σ−
I )

2

3∑
I=1

|σ−
I |

where σ−
I = −〈−σI〉 are the negative parts of principal stresses. The adjustment is

done only if at least two principal stresses are negative and none of them is positive.

The strength under biaxial compression is now equal to the uniaxial compressive

larger but the present version of the model does not allow an independent control of
the biaxial compressive strength. For stress paths that do not generate any tensile
strains, the model response is purely linear elastic. This means that nonlinear

n though the factor γ
σ, exactly the same value is obtained

with σ replaced by the effective stress σ = EEE : ε, because σ = (1−D)σ and the
factors 1−D ancel
out. So the model remains fully explicit in the sense that stresses can be evaluated
by straightforward substitution, without any iterations on the material point level.

l of all isotropic
damage models:

1. For a proportional loading path in the stress space the ratio between indi-
the model can-

not capture the experimentally observed dilatancy (volume
at post-peak stages of the uniaxial compression test and of the shear test.

verse contraction,
whereas in reality the transverse strain would approach zero after the forma-
tion of a macroscopic crack.

odel completely
loses stiffness not only in the direction of loading but also in the transverse
directions.

lace to the origin.
This could be acceptable for unloading from tension but certainly not for
unloading from compression.

icated models

the development of combined damage-plastic models, to be mentioned in chap-
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pplications because
it is relatively simple, easy to implement, and computation

2 Smeared Crack Models

The concept of isotropic damage is appropriate for materials weakened by voids,
but if the physical source of damage is the initiation and propagation of micro-
cracks, isotropic stiffness degradation can be considered

e highly oriented
racter of the damaged

stiffness and compliance matrices.
utive models devel-

te or rock under predom-
inantly tensile loading. They will be referred to as smeared crack models (in the

There is some confusion in the literature because the expression “smeared
crack” is often perceived as a counterpart of “discrete crack” and, in this sense,
any softening continuum model (even if it is based on plastic

eserve this term
for a more narrow class of models, which share some common features with but
are different from plasticity and damage. Similar to plasti
decompose the total strain into an elastic part and an inelastic part (called here the

strain due to crack opening is related directly to the traction transmitted across the
crack plane.

The origins of smeared crack models for concrete fracture date back to the

and shear tractions across the crack were treated using the so-called retention fac-
allow rotation of

imulated the devel-

crack model was later extended to multiple non-orthogonal cracking (de Borst and

ack model suf-

lations on meshes that are not aligned with the crack directions. This phenomenon
pollutes the numerical results and may lead to a misprediction of structural ductil-
ity and of the failure pattern. A remedy based on transition from the rotating crack
description to a scalar damage model was proposed in Jirásek and Zimmermann
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σ σ

εe εc

m

n

Figure 7. n elastic
ystem aligned with the

crack

2.1 One-Dimensional Smeared Crack Model

Smeared crack models decompose the total strain into two parts — one corre-
sponds to the deformation of the uncracked material, and the other is the contri-
bution of cracking. The response of the uncracked material can be governed by
a general nonlinear material law but usually is assumed to be
one-dimensional setting, the strain decomposition is written as

ε = εe + εc

and the elastic strain εe

σ = Eεe

The crack strain, εc, represents in a smeared manner the additional deformation
due to the opening of cracks. The additive strain decomposit
to a rheological model in which an elastic spring is coupled in series with a unit
representing the contribution of the crack, as schematical
the coupling is serial, both units transmit the same stress, σ.

strain vanishes and the overall response is linear elastic. A crack is initiated when
the stress reaches the tensile strength of the material, ft. A constitutive law gov-
erning the stress evolution after crack initiation is needed.

d by the crack drops
al level, such an ap-

proach leads to results that are not objective with respect to the mesh size, as will
tion, and also to avoid
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unrealistic stress jumps, it is necessary to describe the loss of cohesion as a gradual
rmation of a macroscopic

stress-free crack is in a heterogeneous material preceded by the initiation, growth
and coalescence of a network of microcracks. For the purpose of modeling, we
replace such a complicated system of small non-contiguous cracks by an equiv-
alent cohesive crack, which can still transmit stress. This cohesive stress is then

train,

σ = f c(εc)

where the appropriate form of function f c

Based on a comprehensive analysis of experimental results, Reinhardt et al.
m

σ = f c(εc) ≡ ft

{[
1 +

(
c1ε

c

εf

)3
]
exp

(
−c2ε

c

εf

)
− e−c2

(
1 + c31

) εc

εf

}

where ft is the uniaxial tensile strength, εf is the strain at which the crack becomes
stress-free, and c1 and c2 are dimensionless material parameters controling the
shape of the softening curve. Their default values recommen
are c1 = 3 and c2 = 6.93. The corresponding softening curve is plotted in Fig. 8
in terms of dimensionless stress σ/ft and normalized crack strain 5.136 εc/εf

eters ft and εf fully
c1 and c2, and their change

is respectively equivalent to vertical and horizontal rescaling of the normalized
curve.

ntal results but
is relatively complicated. Acceptable results are usually obtained with simpler
relations such as the exponential law

σ = f c(εc) ≡ ft exp

(
− εc

εf

)

where εf is a material parameter controling the steepness of the softening curve,

the crack strain—it always depends on the gauge length along
From the physical point of view it is more meaningful to characterize the cracking material by the so-
called traction-separation law, which links the cohesive stress transmitted by the crack to the crack

n across the width of the fracture process
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or the bilinear law

σ = f c(εc) ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ft

(
1− εc

εb

)
+ σb

εc

εb
if 0 ≤ εc ≤ εb

σb

εf − εc

εf − εb
if εb ≤ εc ≤ εf

0 if εf ≤ εc

where εb and σb are the coordinates of the point at which the softening curve
changes slope, and εf is the strain at which the cohesive stress vanishes. The
normalized softening curves corresponding to the Reinhard

8. The parameters
have been determined such that the area under all the curves i
is clear that the deviations of the exponential and bilinear

tening curve, also plot-
ted in Fig. 8, substantially differs from the nonlinear ones and, for concrete, can
be used only as a very rough approximation.

ed crack model
ress-strain curve has a

linear pre-peak branch and a softening branch, and for each g
and ft it is easy to compute the corresponding total strain as the sum of the elastic
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ft ft
εe εcεcεe

σσ

ε ε

σ

εe c

Figure 9. Total stress-strain curve obtained by summing the elastic strain and the
crack strain

σ

ε

σ

ε

σ

εc c c

Figure 10.

stress for a given
strain increment, starting from a state at which all variables are known. For this
purpose, the increment of the crack strain must be determine

cracking unit. This
condition leads to the equation

E(ε− εc) = f c(εc)

describing the internal equilibrium in the rheological mod ε is
the given strain at the end of the step and εc is the unknown to be determined. For

is nonlinear and needs to be solved iteratively. Since the functions describing
eads to very fast

monotonic convergence.
For general applications, possible unloading must be taken into account and

is that unloading
ered as permanent,

erfect crack closure can
be assumed, with vanishing crack strain upon complete stres
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losure certainly reduces
the inelastic part of strain, but it is partially hindered by the roughness of the crack

ophisticated models
aiming at application to cyclic loading even consider nonlinear unloading, with
stiffness recovery upon crack closure and with hysteresis effects. From the com-
putational point of view, the equation to be solved during unloading has the same

f c.
To cover the general case, including possible unloading, one should introduce

a history variable κ, representing the maximum previously reached value of εc,

σ = f c(εc, κ)

The evolution of κ can formally be described by the loading-unloading conditions

εc − κ ≤ 0, κ̇ ≥ 0, (εc − κ) κ̇ = 0

2.2 Multi-Dimensional Smeared Crack Models

ε = εe + εc

σ = EEE : εe

The crack strain, εc, represents in a smeared manner the additional deformation
have different sizes,

shapes and orientations. They are not necessarily planar and their faces are rough.
refore, we consider

an equivalent computational crack which is perfectly planar and its direction is
n

sliding are affected only by the traction vector acting on the crack plane, i.e., by

tc = n · σ
crack, based on the unit

vector n normal to the crack and on mutually orthogonal unit vectors m and l in
the crack plane. With respect to such local coordinate system, the traction acting
on the crack plane can be represented as

tc = σnnn + σnmm + σnll

where σnn = tc · n = n ·σ · n is the normal traction and σnm = tc ·m = n ·σ ·m
and σnl = tc · l = n · σ · l are the shear tractions.

The traction components are linked to the crack opening and sliding by the
that opening of the
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crack contributes only to the normal strain εcnn in the direction perpendicular to
the crack, and sliding of the crack only to the shear strains γc

nm and γc
nl in planes

perpendicular to the crack. These are the crack strain components expressed with
respect to the local coordinate system with unit base vectors n, m and l. The cor-
responding strain components in global coordinates are obtained by the standard

rite

εc = εcnnn⊗ n + γc
nm(n⊗m)sym + γc

nl(n⊗ l)sym = (n⊗ ec)sym

where
ec = εcnnn + γc

nmm + γc
nll

onjugate with tc.
aw

σ = EEE : (ε− n⊗ ec)

in which ec minor
symmetry of EEE, the symbol of symmetric part at n⊗ ec can be omitted.

For a virgin material, ec = 0 and the response is linear elastic. The compu-
tational crack is initiated when the stress state reaches the strength envelope, i.e.,
a certain limit surface in the stress space. Traditional smeared crack models con-
trol crack initiation by the Rankine criterion of maximum principal stress. Some
models aiming at the description of fracture under shear and compression exploit

on criterion should also
specify the initial orientation of the crack. For example, the Rankine criterion pos-
tulates that, at crack initiation, the crack plane is perpendicular to the direction of
maximum principal stress.

ane and the nor-
mal n onceptually
different approaches are possible:
• Fixed crack models freeze the crack direction and postulate general soften-

ing laws that link all crack strain components to all components of the crack
traction vector.

• Rotating crack models assume that the crack normal always remains aligned
with the current direction of maximum principal strain. The shear compo-
nents of crack strain, γc

nm and γc
nl, and of crack traction, σnm and σnl, are

σ and εc replaced by σnn and εcnn is

2.3 Fixed Crack Model

at the moment
the Rankine condition,
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the crack plane initially transmits a normal traction (equa
d but the principal

axes can rotate. The crack plane in general transmits shear tractions that produce
relative sliding of the crack faces, represented by shear components of crack strain.

ction is taken as
proportional to the shear crack strain, with a proportionality factor βG, where G
is the shear modulus of elasticity and β < 1 is the so-called shear retention factor

listic because such a
cohesive crack is allowed to transmit large shear tractions even when it is widely

it usually has to be
set to a very small value, e.g. β = 0.01, to limit the spurious stress transfer that
could lead to the so-called stress locking. A better remedy is to make β variable,

possible to formulate the relation between tc and ec in the spirit of damage theory,
with a scalar damage parameter depending on an equivalent crack strain that is
computed from ec.

Whatever choice is made, the cohesive law can be written in the total form

tc = fc(ec)

ṫ
c
= Ec · ėc

where Ec = ∂fc/∂ec is the second-order tangent crack stiffness tensor.
The traction vector tc

strain vector ec, must be equal to the projection of the stress tensor, which can be

tc = n ·EEE : ε− n ·EEE : (n⊗ ec) = n ·EEE : ε− E · ec

where E = n · EEE · n

ically corresponds to the internal equilibrium condition between the tractions in
the elastic unit and in the crack unit:

n ·EEE : ε− E · ec = f c(ec)

For a given strain increment, the unknown crack strain ec can be computed by

Raphson method. Substitution of ec

stress.

tresses build up around the band of crack-
ing elements. This pollutes the numerical results and leads to an overestimated energy dissipation
and nonzero residual strength of a cracked structure.
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nsor, which links the
stress rate to the strain rate. From the rate form of the internal equilibrium condi-

n ·EEE : ε̇− E · ėc = Ec · ėc

the crack strain rate
ėc = (E + Ec)−1 · (n ·EEE) : ε̇

form of the stress-strain law,

σ̇ = EEE : (ε̇− n⊗ ėc) = EEE : ε̇−EEE : [n⊗ (E+Ec)−1] · (n ·EEE) : ε̇ = EEET : ε̇

with the tangent stiffness tensor of the elastic-cracking material given by

EEET = EEE− (EEE · n) · (E + Ec)−1 · (n ·EEE)

2.4 Rotating Crack Model

ional crack is
allowed to rotate and is assumed to remain perpendicular to the direction of maxi-

in a certain plane, the
ack propagates un-

der general loading, it can deviate from the original plane and become non-planar.
Also, new cracks in planes that are not parallel with the initial crack plane can be

ection of the equivalent
computational crack.

Alignment of the crack with the principal directions implies that the shear com-
ponents of the crack strain, γc

nm and γc
nl

to ec = εcnnn

σ = EEE : (ε− Nεcnn)

where, for convenience, the second-order tensor n⊗n is denoted as N. The normal
traction on the crack plane can be evaluated by an appropriate projection of the
stress tensor:

σnn = n · σ · n = N : σ = N : EEE : ε− N : EEE : Nεcnn

At the same time, this traction is linked to the normal crack strain, εcnn, by a scalar

σnn = f c(εcnn)



24 M. Jirasek

e internal equilibrium
condition

N : EEE : ε− N : EEE : Nεcnn = f c(εcnn)

r unknown εcnn in-
stead of the vectorial unknown ec.

ss is given by EEE =
λ1⊗1+2μIIIS where λ and μ IIIS is the symmetric fourth-

N : EEE = λ1+2μN and N : EEE : N = λ+2μ,

λ1 : ε+ 2μN : ε− (λ+ 2μ)εcnn = f c(εcnn)

where 1 : ε is the trace of the strain tensor and N : ε = n · ε · n
strain normal to the crack, which is in fact equal to the maximum principal strain.
Similar to the one-dimensional case, the crack strain εcnn can be obtained by the

ar or piecewise
the stress tensor.

ing crack model, we

to realize that the crack normal n in general rotates, and so the second-order tensor
N = n ⊗ n is also variable in time. This needs to be taken into account when

equation thus reads

λ1 : ε̇+ 2μN : ε̇+ 2μṄ : ε− (λ+ 2μ)ε̇cnn = Ecε̇cnn

where Ec = df c/dεcnn is the softening modulus. The rates ṅ and Ṅ can be ex-
pressed in terms of the current strain and the strain rate, but the derivation is some-
what tedious. As explained in the footnote, Ṅ = NNN : ε̇ where NNN is a certain
fourth-order tensor depending only on ε and n NNN : ε = O,

According to the fundamental assumption of the rotating crack model, the crack remains perpendic-
ular to the direction of maximum principal strain, i.e., n = p1 is the normalized eigenvector of ε

cipal strain ε1 is strictly greater than the
other two principal strains, ε2 and ε3, the expression for the rate of p1 can be derived by manipulat-
ing the rate form of the relations ε · p

I
= εIp

I
and p

I
· p

J
= δIJ , I, J = 1, 2, 3. The resulting

formula reads

ṗ
1
=

ε̇12p
2

ε1 − ε2
+

ε̇13p
3

ε1 − ε3
where ε̇12 = p

1
·ε̇·p

2
and ε̇13 = p

1
·ε̇·p

3
are the components of the strain rate tensor ε̇ with respect

ard to evaluate Ṅ = ṗ
1
⊗ p

1
+ p

1
⊗ ṗ

1

and convert it to the form Ṅ = NNN : ε̇ where

NNN =
2

ε1 − ε2
(p

1
⊗ p

2
)sym ⊗ (p

1
⊗ p

2
)sym +

2

ε1 − ε3
(p

1
⊗ p

3
)sym ⊗ (p

1
⊗ p

3
)sym
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te corresponding
to a given strain rate is easily expressed as

ε̇cnn =
λ1 : ε̇+ 2μN : ε̇

λ+ 2μ+ Ec
=

N : EEE

λ+ 2μ+ Ec
: ε̇

o the direct relation
between the rates of stress and strain,

σ̇ = EEE : (ε̇− Ṅεcnn − Nε̇cnn) = EEE : ε̇−EEE : NNN : ε̇ εcnn −EEE : N
N : EEE

λ+ 2μ+ Ec
: ε̇

EEE : NNN = 2μNNN

EEET = EEE− 2μεcnnNNN−
EEE : N⊗ N : EEE

λ+ 2μ+ Ec

The rotating crack model is probably the simplest model that can take into ac-
count cracking-induced anisotropy within a framework close to continuum damage

r of drawbacks, ana-

it is not thermodynamically consistent. This can be demonstrated by looking at
lid not only in the case

of crack growth, but also during unloading (with constant positive modulus Ec

when the pre-cracked material should respond as an anisotropic linear elastic one,
nite tangent stiffness.

emains constant only if
tensors N andNNN remain constant, i.e., if the principal axes do not rotate. As shown

ances the unloading
o nonphysical instabili-

ties.

2.5 Rotating Crack Model with Transition to Scalar Damage

ethod, it is neces-
sary to avoid stress locking, which arises on meshes not aligned with the crack
directions and is caused by the poor kinematic representation of the discontinu-

s to spurious stress
transfer, which pollutes the numerical results and may result into a misprediction
of structural ductility and of the failure pattern.

A typical example of stress locking in a fracture simulation is presented in Fig.
constant-strain trian-

gular elements. The macroscopic crack is initiated at the notch tip and propagates
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Figure 11.
ack pattern for the

isplacement has been
applied, the specimen should break completely, and the resisting force should van-

placement diagram
does not tend to zero but to a non-negligible residual value of the resisting force,
which then remains roughly constant, or even slightly increases (dashed curve in

in the cracking ele-
ng stresses vanish.

The stress-strain law is designed in such a way that the stress transfered across
a crack is zero as soon as the crack opening reaches a certain critical value. For

occurs due to shear stresses transfered across the crack. The rotating crack model
does not produce any shear stress on the crack faces but it still locks. The origin


