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Preface

Graphics processing units (GPUs) have been revolutionizing the way computer
graphics and visualization are practiced. Driven by the computer-games in-
dustry and its demand for efficient hardware support for 3D graphics, GPUs
have dramatically increased in performance and functionality within only a
few years. Although graphics hardware is primarily designed for the fast ren-
dering of 3D scenes, it can also be used for other types of computations.
In fact, GPUs have evolved to programmable processors that can facilitate
applications beyond traditional real-time 3D rendering.

This book addresses scientific visualization as one application area that
significantly benefits from the use of GPUs. In general, scientific visualization
has become an important tool for visual analysis in many scientific, engineer-
ing, and medical disciplines. For example, scientists and engineers regularly
use visualization to interpret simulations of air or water flow in computational
fluid dynamics. Another example is the medical imaging of 3D CT (computer
tomography) or MRI (magnetic resonance imaging) scans. The interactive
exploration of data sets is becoming increasingly more important with the
growing amount and complexity of those data sets: the user – as an expert
in his or her field – uses visualization as a tool to investigate the data and
extract insight from it.

This book focuses on efficient visualization techniques, which are the pre-
requisite for interactive exploration. High performance is primarily achieved
by algorithms specifically designed for GPUs and their special features. Other
aspects discussed in this work include parallelization on cluster computers
with several GPUs, adaptive rendering methods, multi-resolution models, and
non-photorealistic rendering techniques for visualization. This book also ad-
dresses the effectiveness of visualization methods, which can be improved by
taking into account perceptual aspects and user interaction. Covering both
the theoretical foundations and practical implementations of algorithms, this
text provides a basis to understand and reproduce modern GPU-based visu-
alization approaches.
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This work constitutes my Habilitationsschrift, written at the University of
Stuttgart. Being a research thesis, this Habilitationsschrift aims at describing
visualization methods on a scientific level. Therefore, the intended audience
includes researchers and students of computer science who are interested in
interactive visualization methods. This book may serve as a starting point to
delve into the current research in GPU-based visualization. It may also serve as
reading material for a course that covers scientific visualization on an advanced
undergraduate or a graduate level. This work also includes a discussion of
practical issues such as how algorithms are mapped to GPU programs or
performance characteristics of implementations. Therefore, practitioners and
software developers might also find this book interesting.

The reader is expected to have a basic background in scientific visual-
ization, but not in GPU-based visualization methods. In addition, some fa-
miliarity with GPU programming is recommended. Although this book does
not cover these background topics in detail, it nevertheless contains some in-
troductory material on the basics of visualization and GPU programming. In
particular, a wealth of references is provided to guide the reader to background
reading.

How to Read This Book

This book is structured in a way that it can be read from cover to cover.
However, you may also pick out some passages that are most interesting to
you, and you may read through the book in non-sequential order. This section
gives some hints on what topics are covered in which chapter and which parts
of the book are built on other parts.

It is recommended reading the introductory Chap. 1 because it describes
basic concepts used to organize the book. In particular, the abstract visualiza-
tion pipeline is discussed along with a classification scheme for visualization
methods (Sect. 1.1). Throughout this book, visualization techniques are re-
lated to the three main stages of the visualization pipeline, namely filtering,
mapping, and rendering. This chapter also covers fundamentals of GPUs (in
Sect. 1.2) that can be skipped if you are already familiar with GPU program-
ming. In addition, Sect. 1.3 presents methods and goals of this work.

The main part of the book is organized in three large chapters on 3D
scalar field visualization (Chap. 2), vector field visualization (Chap. 3), and
perception-oriented and non-photorealistic rendering (Chap. 4). To a large
extent, each of these chapters represents a portion of the book that can be read
independently of the other main chapters. However, a few interdependencies
are present as outlined below.

Chapter 2 addresses methods for direct volume visualization of 3D scalar
fields. It is recommended reading the basics of volume rendering as laid out in
Sects. 2.1–2.3. Sections 2.1 and 2.2 describe the underlying optical model and
the volume rendering pipeline. Section 2.3 discusses basic volume rendering
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methods, focusing on real-time GPU rendering. In particular, texture-based
volume rendering (also called texture slicing) is described because it is the
method of choice in this work. A multi-bricking approach for 3D texture-
based rendering is introduced in Sect. 2.4. This approach maintains an ap-
proximately constant rendering performance for real-time applications. Sec-
tions 2.5 and 2.6 discuss advanced topics that could be read independently.
Section 2.5 focuses on a number of new techniques for volume clipping that
allow for complex clipping geometries. Clipping plays an important role in
improving the perception of a 3D data set because it enables the user to ex-
plore otherwise hidden internal parts of the data set. Here, object-space and
image-space clipping methods are compared, pre-integrated volume clipping
is described, and issues of consistent volume shading are discussed. The visu-
alization of very large, time-dependent volume data is addressed in Sect. 2.6.
One element of this large-data approach is parallelization on a cluster com-
puter with commodity-of-the-shelf GPUs. Another element is wavelet com-
pression in combination with adaptive rendering. Chapter 2 concludes with a
brief summary of the described volume rendering techniques.

Chapter 3 discusses techniques for vector field visualization, with the focus
on texture-based methods. Section 3.1 is recommended as basis for this chap-
ter because it presents the fundamental concept of particle tracing. Section 3.2
provides an overview and a classification of vector field visualization methods.
This section contains an extensive list of references, serving as a good start-
ing point to delve into state-of-the-art vector field visualization. Section 3.3
continues with a more detailed discussion of texture-based vector field vi-
sualization. It describes semi-Lagrangian texture advection and shows how
advection can be used for dense, noise-based vector field visualization and
sparse, dye-based visualization alike. In part, this section relies on volume
rendering techniques that are described in Chap. 2 (especially Sects. 2.1–
2.3). Section 3.3 is recommended as basis for the following sections of this
chapter. These subsequent sections cover advanced topics and can be read in-
dependently of each other. A novel level-set advection scheme is introduced in
Sect. 3.4 to overcome numerical diffusion that is inherent to semi-Lagrangian
dye advection. While the methods discussed so far work in Cartesian 2D and
3D space, Sect. 3.5 addresses vector field visualization on curved surfaces, for
example, on the boundary surface of an automobile model enclosed by wind
flow. A hybrid object-space and image-space method is introduced to achieve
an efficient, yet accurate dense flow representation. Section 3.6 describes a
generic framework for the visualization of time-dependent vector fields. This
framework comprises all relevant previous visualization methods and allows
us to compare them on a mathematical basis. In addition, the flexibility of the
framework leads to the development of novel visualization approaches. The
final section of Chap. 3 summarizes the presented flow visualization methods.

Perception-oriented rendering and non-photorealistic rendering are dis-
cussed in Chap. 4. This chapter focuses on the third stage of the visual-
ization pipeline – the rendering stage. It is recommended reading the brief
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discussion of previous work in Sect. 4.1. Sections 4.2–4.5 can be read inde-
pendently of each other because they cover different aspects of perception-
oriented and non-photorealistic rendering. Section 4.2 addresses the influence
of color on the visual perception of moving patterns. Based on an extensive
review of psychophysics and psychology literature, a set of design guidelines
is derived for effective animated visualization. These guidelines are especially
useful for texture-based flow visualization; therefore, some background read-
ing in Chap. 3 is recommended. Section 4.3 improves depth-perception by
utilizing perception-oriented color cues. In particular, depth-dependent inten-
sity and saturation modifications are employed. Section 4.4 introduces non-
photorealistic rendering methods that improve the perception of spatial struc-
tures in complex tone-shaded illustrations. A view-dependent transparency
model is proposed in Sect. 4.4.2, whereas alternative cutaway methods are
described in Sect. 4.4.3. These tone-shaded illustrations are tightly connected
to non-photorealistic volume rendering and volume clipping. Therefore, some
background reading in Chap. 2 is recommended. Non-photorealistic halftoning
approaches are explicated in Sect. 4.5; here, the focal point is frame-to-frame
coherent halftoning and a generic GPU-based concept for G-buffer opera-
tions. Frame-to-frame coherent halftoning relies on texture advection as a
basic technique. Therefore, background material from Sect. 3.3 is useful for
understanding Sect. 4.5. Chapter 4 ends with a summary of presented render-
ing methods.

Following the main part outlined above, Chap. 5 concludes this book.
This chapter classifies the visualization methods discussed in this book and
puts them in context. The appendix contains lists of figures, tables, and color
plates, as well as a bibliography, an index, and color plates.
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1

Introduction

Visualization has become an essential part in today’s engineering, research,
and business workflows. The typical amount of data that originates from nu-
merical simulations or sensor measurements is very large and, thus, visual-
ization is indispensable for understanding this data. The ever increasing per-
formance of supercomputers and resolution of scanning devices is a challenge
that requires us to keep on developing improved visualization methods.

This book addresses this challenge in manifold ways. Both the efficiency
and effectiveness of visualization methods are improved. High efficiency is
achieved by using appropriate algorithms and data structures. This work
specifically considers the usage of the fast graphics processing units (GPUs)
of modern graphics hardware to obtain high performance – the performance
gain can be as much as two to three orders of magnitude compared to a
CPU (central processing unit) implementation. The effectiveness of visualiza-
tion methods is improved by taking into account perceptual aspects and an
appropriate representation of the underlying data model.

Efficiency and effectiveness are not completely separated but interlinked:
a highly efficient visualization method is the prerequisite for an interactive
application, which, in return, leads to significantly improved effectiveness.
For example, an interactive exploration may promote spatial perception by
motion parallax or result in a better understanding of the large parameter
space that controls data generation and visualization. Particularly interesting
is real-time visualization for time-dependent data. Increased efficiency can lead
to a qualitatively improved effectiveness because it might make the difference
between a visualization that allows for effective user interaction and a non-
interactive inefficient implementation.

The use of GPUs for high-performance visualization is motivated by several
aspects. First, GPUs typically have more transistors than CPUs. For exam-
ple, an NVIDIA GeForce 6800 Ultra GPU comprises 222 million transistors,
whereas an Intel Pentium 4 EE (Extreme Edition) CPU contains 29 mil-
lion transistors for the processor core and 149 million transistors for the L2
(level 2) cache [419]. Second, the speed of GPUs and their number of transis-
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tors increase faster than described by Moore’s law for CPUs. Third, graphics
hardware has wide data paths to its memory, and efficient bilinear and tri-
linear reconstruction of texture data is available. Fourth, the programming
model for GPUs is rather restricted and results in highly parallel execution
and deep pipelining. Finally, a transfer of visualization results to the graphics
board for final display is superfluous for GPU-based implementations.

1.1 Visualization Pipeline and Classification of
Visualization Methods

An abstract visualization pipeline is used throughout this book to structure
the large variety of visualization methods. This pipeline approximately follows
the description by Haber and McNabb [149] – up to some slight modifications.
Figure 1.1 sketches the elements of the visualization pipeline.

Input to the visualization pipeline is acquired from a data source, such as
a numerical simulation, a measurement of physical data, or a database. This
raw data is transformed by the filtering stage of the visualization pipeline
into abstract visualization data. Typical filtering operations are denoising by
convolution with a filter kernel or data enhancement by segmentation. The
next stage is visualization mapping, which constructs a renderable representa-
tion from visualization data. The renderable representation has extension in
space and time, and it contains attribute fields that may comprise geometry,
color, transparency, reflectance, and surface texture. A typical example for a
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Fig. 1.1. Abstract visualization pipeline
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mapping operation is the application of a color table that assigns colors to
input data values. Finally, the rendering stage generates a displayable image
from the renderable representation. Typical rendering operations include view
transformations, scene illumination, and shading.

For some visualization algorithms, it may be difficult to find a clear and
unique assignment of algorithmic elements to the filtering, mapping, or ren-
dering stages. GPU-based methods, in particular, often require a reordering
of the conceptual visualization pipeline to achieve an efficient implementa-
tion. Examples for such a reordering are given for corresponding visualization
methods when their details are discussed later in this work. Nevertheless, the
concept of the visualization pipeline has proven to be useful in classifying and
comparing different visualization methods. For example, this scheme has been
successfully used as a basis for teaching visualization courses (see the article
by Rotard, Weiskopf, and Ertl [352]). Therefore, all visualization techniques of
this book are analyzed by taking into account the concept of the visualization
pipeline.

As pointed out in Fig. 1.1, a user may potentially interact with all three
stages of the visualization pipeline. Interaction plays a crucial role through-
out this work because the large parameter space that controls data acquisition
and visualization can only be explored interactively. As a prerequisite, visu-
alization techniques need to be efficient to allow for real-time application.

In addition to the structure of the visualization pipeline, a more detailed
taxonomy is useful for classifying visualization methods. Following Bergeron
and Grinstein [17] and Brodlie [31], the dimensionality of independent vari-
ables (on the domain) and the dimensionality of dependent variables (i.e., data
type) are important categories. Therefore, visualization methods are ordered
according to their data type, starting with scalar data in Chap. 2. Vector
fields, which are more complex than scalar fields, are discussed in Chap. 3.
In addition, the dimensionality of the domain plays an important role in sub-
structuring this chapter on vector field visualization. Chapters 2 and 3 cover
all steps of the visualization pipeline for the specific cases of scalar and vector
fields, whereas Chap. 4 focuses on the rendering stage. This chapter discusses
perception-oriented and non-photorealistic rendering methods that could be
applied to scalar field and vector field visualization, but also to a much wider
range of visualization applications.

A third category that can be used to classify visualization methods is the
type of data structure that holds the data set. The data structure is impor-
tant from an algorithmic point of view and therefore influences the design
of visualization algorithms. Throughout this book, visualization techniques
for different data structures are discussed. Usually, data is represented by a
set of data points located in the domain space. The data structure forms a
grid if a connectivity between data points is established. In contrast, scattered
data does not have such a connectivity. We can distinguish two classes of
grids: structured and unstructured grids. Structured grids have an implicitly
given connectivity, whereas unstructured grids need their connectivity explic-
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itly stored. Examples of structured grids are Cartesian, uniform, rectilinear,
or curvilinear grids. Cartesian, uniform, and rectilinear grids have all their
cells aligned with the coordinate axes of the domain. A Cartesian grid has
the same overall grid spacing regardless of direction. A uniform grid has an
equidistant spacing along each of the directions, although the spacing is inde-
pendently chosen for the different directions. A rectilinear grid has varying cell
sizes. A curvilinear grid exhibits the most flexibility by allowing for deformed
cells, provided the topological structure is still regular. A typical example of
an unstructured grid is a grid consisting of simplical cells, i.e., a tetrahedral
grid in the 3D case. More details on these basic grid types and other, more
advanced grid structures are given in the book by Schroeder et al. [382].

1.2 GPU Rendering Pipeline

This book discusses efficient visualization algorithms for GPUs. The basic
properties of GPUs, their programming model, and the underlying render-
ing pipeline are outlined in this section. The stages of the GPU rendering
pipeline are only briefly reviewed; detailed background information on the
traditional fixed-function pipeline can be found in a textbook by Foley et
al. [122] or the OpenGL programming guide [496]. Additional information on
using programmable graphics hardware is given in Cg manuals [118, 312] and
documentations of the OpenGL shading language [207] and Direct3D [288],
which is part of DirectX.

Figure 1.2 sketches the GPU rendering pipeline. A 3D graphics application
communicates with graphics hardware via a 3D API (application program-
ming interface). Typically, either OpenGL or Direct3D are used as 3D API.
3D scenes are usually described by a boundary representation (BRep) formed
by a collection of primitives. In most cases, primitives are triangles defined
by vertices. Vertex information consists of geometric position and further at-
tributes such as normal vector, texture coordinates, color, or opacity.

Primitives are sent from CPU to GPU as a stream of vertices, which are
then transformed by the vertex processor. In the traditional fixed-function
graphics pipeline, vertex processing accomplishes transform and lighting op-
erations. A vertex of the input geometry is transformed from its original ob-
ject coordinates into subsequent world, eye, and normalized clip coordinates
by multiplication with respective matrices for model, view, and normalization
transformations. Matrix formulations of these affine or projective transforma-
tions are adequate because all computations are based on homogeneous coor-
dinates. Lighting is usually based on the Blinn-Phong model and performed
with respect to eye coordinates. GPUs allow the programmer to replace these
fixed-function vertex operations by a flexible vertex program (OpenGL lingo)
or vertex shader (Direct3D lingo).

Primitives are converted into fragments after vertex processing. Today’s
GPUs exclusively process triangles at these stages of the pipeline; i.e., prim-
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itive and triangle are synonymous in this context. During primitive assembly
and rasterization the following operations are executed. Individual vertices of
the vertex pipeline are organized into primitives, and primitives are clipped
against the viewing frustum. At the transition from the vertex pipeline to the
fragment pipeline, rasterization employs scanline conversion to generate the
fragments covered by an input triangle. At the same time, vertex attributes
are interpolated for fragments that lie inside the input triangle. Position co-
ordinates are transformed from normalized clip space into normalized device
coordinates by a homogeneous division by the w clip coordinate. Also, the
viewport transformation to window coordinates is applied. Primitive assem-
bly, rasterization, and interpolation are fixed and cannot be programmed by
the user.

The subsequent fragment processor modifies fragment attributes and ap-
plies textures. Texture lookup can make use of efficient built-in bilinear or
trilinear texture interpolation. Analogously to the vertex processor, fragment
processing can either be used as a traditional fixed-function element or freely
specified in the form of a fragment program (OpenGL lingo) or pixel shader
(Direct3D lingo).

The final raster operations combine the current fragment with pixel in-
formation given at the same position in the frame buffer: first, the alpha,
stencil, and depth tests (the latter is also called z test) are executed; then, if
a fragment passes all tests, it may be directly written into the frame buffer or
composited with frame buffer information by blending.

1.2.1 Programming Model

GPU-based visualization methods utilize the programmability of the vertex
processor and fragment processor stages. Typical operations for the vertex
processor comprise the calculation of quantities that can later be interpolated
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linearly via scanline conversion. For example, texture coordinates can be gen-
erated to attach a 3D vector field stored in a 3D texture to a surface that
cuts through the vector field. Much more important, however, is the fragment
processor because it allows us to compute information on a per-fragment level.
Moreover, an efficient access to texture data is only possible at this stage.
Therefore, the visualization methods of this book make extensive use of pixel
shaders.

Fragment processing can be considered as a streaming model of computa-
tion [38]. The streaming model extends the SIMD (single instruction, multiple
data) concept that was used as abstraction of the OpenGL architecture [324],
where each rendering pass implements a SIMD instruction that performs a ba-
sic arithmetic operation and updates the frame buffer atomically. The stream
programming model represents computational locality that is not present in
the SIMD model. The key elements are streams and kernels. A stream con-
sists of a set of data elements for which similar computations are executed.
A streaming processor applies a computing kernel to all elements of an input
stream and writes the results into an output stream. Dally et al. [70] and
Buck et al. [38] discuss how the stream model supports programs with high
arithmetic and computational intensity (i.e., a large ratio of arithmetic opera-
tions to memory bandwidth). Figure 1.3 depicts the basic execution model of
a GPU that applies to fragment and vertex processing alike. A graphical input
element (e.g., a vertex or a fragment) is transmitted through read-only input
registers into the shader program. The result of shader execution is written
to output registers. The shader program has read and write access to tem-
porary registers, and read-only access to textures and constants. Therefore, a
shader can be regarded as a stream kernel that is applied to stream data held
in input registers or textures. Please note that vertex programs used to have
no access to texture; however, with Shader Model 3 compliant GPUs (e.g.,
NVIDIA GeForce 6 and GeForce 7 series), texture access is also available in
vertex programs.

Although the streaming model slightly restricts the broader functionality
of GPUs, it is well-suited for most visualization methods of this book. Efficient
visualization techniques thrive on a good mapping to the streaming model. For
example, such a mapping has to achieve a uniform kernel structure with a high
degree of parallelism, no branching, and little or no conditional expressions.
A regular data access to textures is highly advantageous to utilize optimized
data paths to internal memory. If possible, efficient built-in bilinear or trilinear
interpolation should be exploited. The stream output often needs to be re-used
as input to a subsequent stream computation. In this case, the output register
is directly transferred into a texture by using the efficient render-to-texture
functionality of GPUs.

A number of specific GPU properties should be taken into account. First,
the accuracy of GPUs is usually limited and might vary along the rendering
pipeline. For example, color channels in the frame buffer or in textures have
a typical resolution of eight bits, whereas fragment processing may take place



1.2 GPU Rendering Pipeline 7

Shader

Input Registers

Output Registers

Textures

Constants

Temp Registers

Program

Fig. 1.3. Programming model for current GPUs (after [38]). A shader program
processes a single input element and writes the result to an output register

at higher precision. Even floating-point accuracy within textures and frag-
ment processing, which is provided by modern GPUs, is not comparable to
double-precision numbers, which are available on CPUs. Second, the number
of instructions might be limited. Therefore, the algorithms have to be de-
signed in a way that allows a concise implementation – sometimes at the cost
of accuracy – or a less efficient multi-pass rendering approach has to be pur-
sued. Similarly, the number of indirection steps in fragment processing (i.e.,
dependent texture lookups) may be restricted. Third, an efficient abortion
of a fragment program (texkill command) is not possible on many GPUs.
Therefore, the early z test is often (mis)used to emulate such a program abor-
tion. Fourth, GPUs can simultaneously apply numerical operations to four
different color channels (red, green, blue, alpha) of a register, which can be
used for an efficient implementation. Fifth, a read-back of information from
GPU to main memory should be avoided because the bandwidth from GPU
to CPU can be significantly smaller than the bandwidth from CPU to GPU.
Finally, a simultaneous read and write access to textures is not specified; e.g.,
an in-place replacement of texel information is not feasible. This problem can
be overcome by a ping-pong rendering scheme: two copies of a texture are
held, one for the read access to “old” information (regular texture read) and
the other one for writing “new” information (with a render-to-texture oper-
ation); after each computational step, both textures are swapped and their
roles are exchanged, i.e., a ring buffer with two elements is employed.

Although GPUs have a potential to increase visualization performance by
more than one order of magnitude, an inappropriate implementation or al-
gorithm could decrease the speed of a GPU version significantly, compared
to a reference CPU version. Therefore, the above issues and restrictions have
to be carefully taken into account. Specific problems and their solutions are
discussed throughout this work in the context of respective visualization al-
gorithms.
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1.2.2 APIs and Effect Files

Another issue is the choice of API for GPU programming. High-level scene
graph APIs, such as OpenInventor, OpenGL Performer, OpenSceneGraph, or
OpenSG, are not considered in this book because they anyway employ low-
level APIs for GPU configuration and actual rendering. Therefore, only the
widespread low-level APIs OpenGL and Direct3D are used in this work.

GPU programs can be developed on assembler level or with high-level
shading languages. Typical assembly-like programming environments are ARB
vertex programs and ARB fragment programs for OpenGL and vertex shader
and pixel shader programs for Direct3D. The advantage of assembler-level
shaders is the direct control of shader instructions, which allows for hand-
coded optimization. The disadvantages are a time-consuming and error-prone
shader development and program codes that are difficult to read and main-
tain. These problems are overcome by high-level shading languages, such as
the OpenGL shading language [207], Direct3D’s HLSL [288], or NVIDIA’s
Cg [118, 312]. These high-level shading languages for GPUs are all very sim-
ilarly structured, oriented along the C programming style, and strongly in-
fluenced by the Renderman shading language [152]. Old GPU programming
concepts such as NVIDIA’s register combiners or texture shaders [210] do
not play a role in this book because they are vendor-specific and inflexible.
However, references to older publications based on such GPU programming
models are sometimes included in the text.

In addition to actual vertex and pixel shaders, states of the graphics
pipeline strongly influence rendering results, i.e., GPU programming is more
than shader development. Traditionally, different parts of the program source
code (for example, in the C++ code) are responsible for setting graphics
states. Effect files (FX files) were introduced in Direct3D 8 and further en-
hanced in Direct3D 9 [288] to simplify GPU programming. They encapsulate
the whole setup and programming of the graphics pipeline within a so-called
effect. An effect is described by a character string or an external text file and
thus this concept is mainly referred to as effect file. The source code respon-
sible for the GPU programming is decoupled from the main program code,
which deals with CPU programming. In this way, a better maintainability and
readability of the source code for both parts is achieved.

1.3 Methods and Goals

The goal of this book is the development of methods that improve both the
efficiency and effectiveness of visualization. Efficiency mainly concerns tech-
nical aspects of algorithms, data structures, and implementations, whereas
effectiveness is strongly affected by perceptual issues related to the human
observer and domain knowledge for a specific application.
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A wide spectrum of subgoals requires an equally broad and interdisci-
plinary set of methods. Typical methods from practical computer science are
concerned with the use of efficient algorithms and memory-friendly data struc-
tures with fast access. Due to the restricted programming model of GPUs,
specific algorithms that are efficiently supported by GPUs are developed. Al-
gorithms are typically validated by running tests on their implementation,
along with performance measurements. Actual implementation on GPUs is
indispensable to verify these algorithms because GPU programming is sub-
ject to various subtle pitfalls. Moreover, visualization methods are discussed
in the context of the generic visualization pipeline to show differences and
analogies. Parallelization on distributed-memory architectures, such as clus-
ter computers, is another computer-science approach used in this book.

Mathematical methods are equally important to achieve efficient visual-
ization techniques. For example, appropriate numerical methods have to be
employed for differential equations and level-sets, wavelets are used for multi-
resolution modeling and compression, and reconstruction and filter theory
plays a significant role in analyzing convolution-based vector field visualiza-
tion.

The last major aspect takes into account human perception and cognition
because visualization techniques have to target comprehension by a human
observer. This book thrives on knowledge from fields like psychophysics, psy-
chology, and neurophysiology to achieve perception-oriented rendering. Lit-
erature in these fields is analyzed to find formalized methods that can be
transferred into a computer program. Likewise, well-established experience
from artists, designers, and illustrators is condensed into perception-guided
and non-photorealistic rendering algorithms.

The generic goals of efficiency and effectiveness are pursued for specific but
widely useful applications: the visualization of 3D scalar fields and vector fields
in 2D and 3D. Interactivity plays a crucial role in all applications because it
greatly enhances their effectiveness. For example, interactivity allows a user
to explore the large parameter space of visualization and data generation,
it promotes spatial perception by motion parallax, and naturally represents
temporal changes of time-dependent data. Real-time capable visualization is a
requirement achieved by efficient GPU techniques that accelerate the complete
visualization pipeline.



2

Visualization of 3D Scalar Fields

Volume rendering is a widely used technique in many fields of application,
ranging from direct volume visualization of scalar fields for engineering and
sciences to medical imaging and finally to the realistic rendering of clouds or
other gaseous phenomena in visual simulations and virtual environments. In
recent years, texture-based volume rendering on consumer graphics hardware
has become a popular approach for direct volume visualization. The perfor-
mance and functionality of GPUs have been increasing rapidly, while their
prices have been kept attractive even for low-cost PCs.

Volume rendering targets the visualization of 3D scalar fields. A time-
dependent scalar field, in general, is a map

s : M × I −→ R ,

where M is an m-dimensional manifold with boundary and I ⊂ R is an open
interval of real numbers. An element t ∈ I serves as a description for time,
x ∈ M is a position in space, and the result of s yields the associated scalar
value.

For the more specific case of volume rendering, data is given on a flat 3D
manifold. A corresponding 3D time-dependent scalar field is described by

s : Ω × I −→ R , (x, t) �−→ s(x, t) .

This scalar field is defined on the 3D Euclidean space Ω ⊂ R
3 and depends on

time t ∈ I. For a stationary 3D scalar field, the time-dependency is obsolete:

s : Ω −→ R , x �−→ s(x) .

This chapter focuses on the visualization of scalar fields without explicit time-
dependency: either the input data set is already stationary or just a single time
step of a time-dependent data set is considered at a time.

The basic idea of direct volume visualization is to simultaneously show all
important aspects of a data set in a single image. Semi-transparent render-
ing has to be applied to represent a full 3D data set on a 2D image plane.
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Section 2.1 describes the prevalent optical model used for semi-transparent
volume rendering. Essentially, viewing rays starting at the camera are tra-
versed through the data set. Color contributions are accumulated while step-
ping along a viewing ray. This image synthesis process can be structured via
the volume rendering pipeline, which consists of the stages data traversal,
interpolation, gradient computation, classification, shading, and compositing
(see Sect. 2.2).

The volume rendering pipeline can benefit from direct GPU support. Sec-
tion 2.3 describes basic volume rendering methods, focusing on real-time GPU
rendering. To a large extent, this chapter addresses the visualization of data
sets given on uniform grids. This type of grid has a natural representation
via 3D textures or stacks of 2D textures. Both the scalar data set and its
gradients can be held in these textures. An advantage of a GPU is that inter-
polation on textures is efficient due to built-in hardware support. Section 2.3
also discusses alternative methods that support unstructured grids, especially
tetrahedral grids. Furthermore, Sect. 2.3 shows how data traversal can be
implemented using graphics hardware and how classification, shading, and
compositing can be handled by fragment processing.

The stages of the volume rendering pipeline can be related to the steps
of the more abstract visualization pipeline. The classification stage can be
identified as the mapping step, whereas shading and compositing can be con-
sidered as rendering step. Direct volume visualization exemplifies the fact that
the visualization pipeline should be regarded as a conceptional pipeline. The
actual implementation shows that a direct combination of the three steps
may be more efficient than a clear separation with a subsequent execution
of the steps of the visualization pipeline. For volume rendering, the order of
operations is significantly modified – the roles of the outer processing of the
visualization pipeline (the filtering, mapping, and rendering steps) and the
inner loop (stepping along a viewing ray) are exchanged.

This chapter particularly focuses on two aspects of direct volume visualiza-
tion. The first one is volume clipping, which is discussed in detail in Sect. 2.5.
Clipping provides a means of selecting regions of the data set on a purely
geometric basis and plays a decisive role in understanding 3D volumetric data
sets because it allows the user to cut away selected parts of the volume based
on the position of voxels in the data set. Clipping reduces the domain of the
data set to be visualized; therefore, clipping can be regarded as an example of
a selection process (with respect to the domain), which is part of the filtering
step of the visualization pipeline. From an alternative point of view, one may
associate clipping with the mapping step (in the form of a space-dependent
mapping to opacities) or the rendering step (as a clipping of the renderable
geometry). Clipping shows that the assignment to the different steps of the
visualization pipeline is not always unique. In this chapter, however, clipping
is considered as part of the filtering step. The second important aspect covered
in this chapter is the efficient rendering of large volume data sets. Section 2.6
addresses large-data visualization by applying compression techniques, adap-
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tive rendering, and parallel processing on GPU clusters. A complementary
multi-bricking approach leads to constant frame rates for volume rendering
with 3D textures, independent of the viewing positions (see Sect. 2.4). Both
volume clipping and large-data visualization rely on efficient texture-based
volume rendering as a basic technique (see Sect. 2.3).

2.1 Optical Model for Volume Rendering

Direct volume visualization can be derived from optical models for volume ren-
dering and volume shading. Here, a brief overview of a widely used approach
is given. A detailed presentation of the underlying physical and mathematical
models can be found in the review articles by Hege et al. [160] or Max [275].
This chapter follows the terminology used by Max.

By ignoring scattering, the generic equation of transfer for light can be
reduced to the simpler emission-absorption model or density-emitter model
[362]. The respective volume rendering equation can be formulated as the
differential equation

dI(t)
dt

= g(t) − τ(t)I(t) . (2.1)

The amount of radiative energy is described by radiance I(t), and its deriva-
tive with respect to the length parameter t is taken along the direction of light
flow. The source term g(t) describes the emission of light from the participat-
ing medium (and later, through reflection as well). The extinction coefficient
τ(t) defines the rate that light is attenuated by the medium. The optical
properties are determined by a transfer function that assigns a value for the
extinction coefficient and the source term to each sample point of the data set.
Radiance and optical properties are written as scalars, which is appropriate
for luminance-based gray-scale images. A wavelength-dependent behavior or
multiple wavelength bands (for example, red, green, and blue) can be taken
into account by computing these quantities for each wavelength separately.

The volume rendering equation (2.1) can be integrated to compute the
radiance that leaves the volume and finally arrives at the eye point. Integrating
from the initial point t = t0 to the end point t = D along the light direction
results in

I(D) = I0 e

−
D∫

t0

τ(t′) dt′

+

D∫

t0

g(t) e
−

D∫

t

τ(t′) dt′

dt .

The background light that enters the volume at the position t = t0 is denoted
by I0. The radiance that leaves the volume at t = D is described by I(D).
With the definition of transparency,

T (t) = e
−

D∫

t

τ(t′) dt′

,
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one obtains the volume rendering integral

I(D) = I0 T (t0) +

D∫

t0

g(t)T (t) dt . (2.2)

So far, the optical model is restricted to emission and absorption. The visual
realism of volume rendering can be substantially increased by considering
scattering of light. A simple and widely used volume illumination model im-
plements single scattering by assuming that light from an external light source
unimpededly reaches the scattering location. Light attenuation is neglected on
the way from the light source to the scattering point, which is similar to ne-
glecting shadowing in surface graphics. The result of single scattering can
be computed similarly to local illumination models known from surface ren-
dering, such as the Phong or the Blinn-Phong models. The gradient of the
scalar field is used as the normal vector in local illumination because the gra-
dient is identical to the normal vector of an isosurface. In this way, volume
illumination essentially imitates the effect of lighting isosurfaces. The source
term of the volume rendering integral (2.2) can be extended to include local
illumination:

g(x, ω) = E(x) + S(x, ω) . (2.3)

Here, the source term is given with respect to position x, which directly cor-
responds to the length parameter t along the light ray. The non-directional
emissivity E(x) is identical to the source term in the pure emission-absorption
model. The additional scattering term S(x, ω) depends on the position x, the
direction of the reflected light, ω, and the properties of the light source.

The integral in (2.2) is typically approximated by a Riemann sum over n
equidistant segments of length ∆x = (D − t0)/n. The approximation yields

I(D) ≈ I0

n∏

i=1

ti +
n∑

i=1

gi

n∏

j=i+1

ti , (2.4)

where
ti = e−τ(i∆x+t0)∆x (2.5)

is the transparency of the ith segment and

gi = g(i∆x + t0)∆x (2.6)

is the source term for the ith segment. Note that both the discretized trans-
parency ti and source term gi depend on the segment length ∆x. Opacities
αi = 1 − ti are often used instead of transparencies ti. When the RGB color
model is applied, the source term gi is described by its RGB values. The
emissive RGB part is denoted Ci. Therefore, source and opacity terms can
be combined in the form of an RGBA contribution. These terms have to be
adapted if the sampling distance ∆x is changed.
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Although the emission-absorption model is predominant in real-time vol-
ume graphics, it should be pointed out that there exist more advanced ren-
dering algorithms that strive for a higher degree of realism by including fur-
ther elements of global illumination. Background information on the physical
models for advanced global illumination can be found in the physics litera-
ture, for example, in a book by Chrandrasekhar [53]. Light transport can be
regarded as a special case of a generic transport mechanism described by the
Boltzmann equation. Mathematical details of the Boltzmann equation are dis-
cussed, for example, by Duderstadt and Martin [100] or Case and Zweifel [47].
Transport theory can be directly applied to volume visualization, as shown
by Krueger [230, 231], and to image synthesis in general, as shown by Arvo
and Kirk [4].

There are many previous papers on advanced global illumination specif-
ically designed for participating volumetric media. Due to their complexity,
most of these global illumination algorithms are implemented on CPUs and
do not facilitate interactive rendering. Some examples are volume photon
mapping [186, 95], the zonal method for radiosity [360], the use of spherical
harmonics [199], or a method for scattering in layered surfaces [151]. Global
illumination and physics-based light transport for computer graphics in gen-
eral are presented in both breadth and detail in textbooks by Pharr and
Humphreys [333] and Dutré et al. [103]. The overview by Cerezo et al. [51]
focuses on state-of-the-art rendering techniques for participating media.

2.2 Volume Rendering Pipeline

The evaluation of the emission-absorption model for a given data set can be
split into several subsequent stages of the volume rendering pipeline. This
section reviews the volume rendering pipeline only briefly; a more detailed
description is given by Pfister [330]. The following stages are commonly found
in volume rendering techniques: (a) data traversal, (b) interpolation, (c) gra-
dient computation, (d) classification, (e) shading, and (f) compositing.

During data traversal, resampling positions are chosen throughout the
volume. Some kind of interpolation scheme is applied at these positions to
reconstruct the data set at locations that differ from grid points. Typical filters
are nearest-neighbor interpolation or variations of linear filtering. Trilinear
interpolation is most common for uniform grids and is also used in most of
the methods presented in this book.

The gradient of a discretized volumetric data set is typically approximated
by using discrete gradient filters. Many gradient filters are extensions of 2D
edge filters from image processing, e.g., the Sobel operator. Central differences
are a popular way of computing the partial derivatives for the gradient because
they require only a small number of numerical operations.

Classification maps properties of the data set to optical properties for the
volume rendering integral (2.2), i.e., it represents the relationship between
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data and the source term g and the extinction coefficient τ . The classification
typically assigns the discretized optical properties Ci and αi, which are com-
bined as RGBA values. Pre-classification first maps grid points of the data
set to optical properties and afterwards applies the interpolation scheme to
the RGBA values. Post-classification, in contrast, first evaluates the interpola-
tion scheme for the input data set and then assigns the corresponding optical
properties.

The mapping to optical properties is represented by a transfer function.
The transfer function typically depends on the scalar value s, which is given
at position x by the term s(x). This leads to a slightly modified description
of the source term via g̃:

g(x) = g̃(s(x)) .

Similarly, the extinction coefficient can be written as τ̃ according to

τ(x) = τ̃(s(x)) .

An analogous description can be applied for the RGBA transfer function used
in the discrete approach. Additional parameters are often included in transfer
functions, e.g., gradient magnitude or even higher-order derivatives [212, 217]
in multi-dimensional transfer functions. Volume shading can be incorporated
into transfer functions by adding an illumination term, as shown in (2.3). The
design of useful transfer functions, in general, is a crucial aspect of volume
visualization that attracts a lot of attention [331].

The discretized volume rendering integral (2.4) can be iteratively com-
puted by compositing. Two types of compositing schemes are most com-
mon: front-to-back and back-to-front compositing. Front-to-back compositing
is used for stepping along viewing rays from the eye point into the volume.
The front-to-back iteration equations are

Cdst ← Cdst + (1 − αdst)Csrc ,

αdst ← αdst + (1 − αdst)αsrc .

Color is accumulated in Cdst and opacity is accumulated in αdst. The sub-
script dst is an abbreviation for “destination”, denoting a variable that can
be modified by an update operation. The transfer function assigns the color
contribution Csrc and opacity αsrc as a representation of the optical proper-
ties at the current location on the ray. The subscript src is an abbreviation
for “source”. The same terminology of “source” and “destination” is used by
OpenGL in the context of frame-buffer blending. In fact, the front-to-back
iteration equation can be implemented by blending, as discussed in Sect. 2.3.
The values Cdst and αdst are initialized with zero before ray traversal. The
iteration ends once the ray has left the volume. Then, background light can be
added, corresponding to the term I0 in (2.2) and (2.4). Finally, Cdst contains
the color that is transported to the eye.
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Back-to-front compositing is an alternative scheme. Here, a viewing ray
is traversed from the backside of the volume to the eye. The corresponding
iteration equation is

Cdst ← (1 − αsrc)Cdst + Csrc .

Again, color is accumulated in Cdst, and Csrc and opacity αsrc are assigned
by the transfer function. Background light is used to initialize Cdst. Note that
opacity does not need to be accumulated to compute the final color.

In addition to these compositing schemes, a number of alternative ap-
proaches might be used. For example, maximum intensity projection (MIP)
is useful in some medical imaging applications. Sometimes, the simplified
emission-only or absorption-only models are applied, which only consider the
emission term or the absorption term, respectively. The MIP, emission-only,
and absorption-only schemes share the advantage of being order-independent:
their compositing equations are commutative and therefore do not require any
particular traversal order. Thus, they do not need any kind of spatial sorting.
In contrast, the emission-absorption model is order-dependent and requires
spatial sorting, e.g., according to a front-to-back or back-to-front scheme. In
what follows, this book focuses on the compositing schemes for the emission-
absorption model.

Although the volume rendering pipeline provides the usual way of describ-
ing the structure of a volume rendering algorithm, the stages of this pipeline
can be identified with steps of the generic visualization pipeline: classification
corresponds to the mapping step, whereas shading and compositing imple-
ment the rendering step. The other stages (data traversal, interpolation, and
gradient computation) deal with internal data handling and serve as input
for the mapping and rendering steps. Since these data handling stages do
not provide any non-trivial filtering element, they are not considered as part
of the filter step of the visualization pipeline, but are rather included in the
respective mapping and rendering steps.

2.3 Volume Rendering Approaches

Several ways of implementing the generic volume rendering pipeline are dis-
cussed in this section. Volume rendering methods primarily differ in the way
the volume data set is traversed. In particular, methods can be classified ei-
ther as image-order approaches or as object-order approaches. Object-order
methods traverse the 3D volume in its object space and project the volumet-
ric information onto the image plane. Here, this book focuses on 2D and 3D
texture slicing, which are popular object-order approaches directly supported
by graphics hardware (see Sects. 2.3.1 and 2.3.2).

In contrast, image-order methods use the 2D image plane as starting point
for data traversal: the image is scanned and the result of volume rendering is
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computed for each pixel on the image plane. Ray casting (Sect. 2.3.3) is the
most prominent example of image-order volume rendering. There is a large
body of previous work on CPU-based ray casting, but this section primarily
focuses on the recent developments in GPU-based ray casting.

The subsequent sections cover alternative object-order methods: shear-
warp factorization in Sect. 2.3.4, splatting in Sect. 2.3.5, and cell projection
in Sect. 2.3.6. Furthermore, pre-integration is discussed in Sect. 2.3.7 as a
means of improving most of the previously mentioned rendering methods.
Finally, Sect. 2.3.8 briefly presents some variations and extensions of volume
rendering methods.

In general, this book focuses on visualization methods for Cartesian or
uniform grids. Therefore, volume rendering techniques for these types of grids
play a dominant role in this chapter. Nevertheless, alternative methods for
other grid structures, especially tetrahedral grids, are also discussed. The
reader is referred to the following detailed descriptions for information on
supported grid types.

2.3.1 3D Texture Slicing

Texture slicing is a prominent example of an object-order approach for GPU
volume rendering. The specific example of 3D texture slicing – also called 3D
texture-based volume rendering – makes use of image-aligned slices [1, 41, 68].
These view-aligned slices can be considered as 2D proxy geometry for the
actual 3D volume that has to be rendered. The data set itself is stored in a
3D texture that represents volume data given on a Cartesian or uniform grid.
An advantage of 3D texture slicing is its good support by graphics hardware,
which leads to efficient volume rendering. The stages of the volume rendering
pipeline are now described in the context of 3D texture slicing.

For data traversal, view-aligned planar polygons are rendered. Rasteri-
zation generates fragments on the image-aligned slices, producing sampling
positions throughout the volume. Figure 2.1 illustrates the layout of the view-
aligned slices. The view-dependent slice polygons are generated by the CPU
and clipped against the bounding box of the volume. Sampling locations in
the volume are addressed by 3D texture coordinates that are attached to the
vertices of the slice polygons. Trilinear interpolation is a built-in feature of
3D texture mapping on GPUs, i.e., the interpolation scheme is directly and
efficiently supported.

Gradients can be pre-computed for each grid point of the data set and
stored along with the scalar data. For example, the RGB channels can be used
for the gradient and the alpha channel for the scalar value [485]. Data sets
with pre-computed gradients need four times the memory of the original scalar
data, which can be a problem because texture memory is a limited resource
on most, if not all, GPUs. Alternatively, gradients can be computed on-the-
fly during rasterization. Here, only scalar data has to be stored in texture
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Fig. 2.1. 3D texture slicing. View-aligned slices are rendered, leading to sampling
positions marked by dots. The dashed rays indicate onto which pixels the volume
samples are projected

memory, but the evaluation of the gradient needs more numerical operations
and texture accesses than the approach of pre-computed gradients.

Post-classification is implemented by a transfer function in the form of a
color table represented by a texture. During rasterization, the interpolated
scalar value is interpreted as the texture coordinate for a dependent texture
lookup in the transfer function. The dimensionality of the transfer function de-
termines the dimensionality of the dependent texture, i.e., multi-dimensional
transfer functions with up to three different parameters are directly supported.
Pre-classification can be implemented by paletted textures, where the index
that maps to the color palette is stored in the data texture and the color
palette itself represents a 1D transfer function. The shading stage is well-
supported by programmable GPUs because typical illumination models such
as the Blinn-Phong model can be evaluated on a per-fragment level if the
gradient information is available. Even on older graphics hardware, however,
volume shading is possible. For example, Westermann and Ertl [485] intro-
duced ambient and diffuse illumination for texture-based isosurfaces. This
approach could be extended to semi-transparent volume rendering [284, 285].

Compositing is typically implemented by alpha blending with the frame
buffer. Both front-to-back and back-to-front strategies with their respective
compositing equations are supported by alpha blending. Accumulated opac-
ities have to be stored for front-to-back compositing, i.e., an RGBA frame
buffer is required. Current graphics hardware is often restricted to 8-bit res-
olution for the RGBA channels of the frame buffer. Quantization artifacts
can therefore occur when opacity is close to zero; see Bitter et al. [22] for a
thorough discussion of quantization effects. Texture formats with 16-bit or
32-bit resolution can be used to overcome this accuracy problem [110]; here,
compositing is performed by ping-pong rendering with these high-resolution
textures.
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2.3.2 2D Texture Slicing

2D texture slicing is an object-order approach tightly related to 3D texture
slicing. The main difference is that 2D slicing employs object-aligned slices
instead of view-aligned slices. The scalar data set is stored in stacks of 2D
textures that fill the entire bounding box of the volume. Three stacks of tex-
tures are required, one for each of the main coordinate axes. Since 2D slicing
is closely related to 3D slicing, only the differences between both approaches
are mentioned here.

Data traversal is based on rendering slice polygons. Here, however, the
polygons are parallel to one of the faces of the cube-shaped volume data set.
Figure 2.2 illustrates the layout of those axis-aligned slices. One of the three
stacks of 2D textures is chosen as input for the rendering process. The stack
direction is determined by minimizing the angle between viewing direction and
processing axis. Similarly to data traversal, the interpolation stage is affected
by changing from 3D to 2D slicing. Only bilinear interpolation is applied as
the object-aligned slice polygons have a one-to-one correspondence to respec-
tive 2D textures of the data set. Due to more coherent memory access and
fewer numerical operations, bilinear interpolation is faster than trilinear in-
terpolation, i.e., 2D slicing is usually faster than 3D slicing. However, trilinear
interpolation is possible on additional slices [340] by applying multi-texturing.
Similarly, additional copies for three texture stacks can be avoided at the cost
of decreased rendering performance [340]. All other stages (gradient compu-
tation, classification, shading, compositing) are analogous to 3D slicing.

In conclusion, 3D texture slicing offers some advantages compared to the
alternative of using stacks of 2D textures. First, only one third of the texture
memory is required for the 3D texture method; the 3D approach just holds
a single instance of the volume, whereas the 2D approach has to store the
complete volume for each of the three main axes. Second, view-aligned slicing
through a 3D texture avoids the artifacts that occur when texture stacks are
switched. Third, the intrinsic trilinear interpolation in 3D textures directly
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Fig. 2.2. 2D texture slicing. Axis-aligned slices are rendered, leading to sampling
positions marked by dots. The dashed rays indicate onto which pixels the volume
samples are projected
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allows for an arbitrary number of slices with an appropriate resampling on
these slices, i.e., the quality of the rendering can be easily adjusted by adapting
the slice distance. The main advantage of 2D slicing is its support by almost
any graphics hardware and its higher rendering performance.

Most of the rendering techniques in later parts of this book are compatible
with 2D and 3D slicing alike. All other cases are specifically noted.

2.3.3 Ray Casting

Ray casting is an image-order approach for volume rendering. The starting
point is the image plane, which is scanned in a pixel-by-pixel fashion. Typi-
cally, a viewing ray is traversed from the eye point through each pixel into the
volume. For improved image quality, supersampling on the image plane leads
to more than a single ray per pixel. While a ray is being traversed, the volume
rendering integral is evaluated for that ray. The natural compositing order is
front-to-back, i.e., from the eye into the volume. Figure 2.3 illustrates the
principle of ray casting. Ray casting can be regarded as the volume-rendering
analogue of traditional ray tracing for surface-based geometry according to
Whitted [489]. One important difference is that ray casting does not spawn
secondary rays like ray tracing does.

Ray casting is often used for data given on uniform or Cartesian grids.
Here, it is common practice to employ an equidistant sampling along the
viewing rays, as shown in Fig. 2.3. Equidistant sampling leads to the Riemann
sum approximation (2.4) of the volume rendering integral. An interpolation
filter is applied during sampling because the sampling positions usually differ
from grid locations. Trilinear interpolation is the most popular reconstruction
filter for uniform grids.

The ray casting algorithm can be described by the pseudo code from
Fig. 2.4. Data traversal is split in two parts. In the first part – ray setup
– the initial sample position along the ray is determined by computing the
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Fig. 2.3. Ray casting idea. Rays are traversed from the eye into the volume. The
volume is sampled at positions along the rays (indicated by dots) to compute the
volume rendering integral


