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FOREWORD

Practical interests in flow control have no longer to be demon-
strated. Flow control has motivated rapid developments in the past
two decades in experiments, flow stability theory and computational
fluid dynamics (CFD). Recent advances in experimental studies in-
clude applications of more and more sophisticated actuators and sen-
sors. However, up to now, most of the results are predominantly
related to open loop, at most, adaptive approaches. Early closed-loop
applications of control methods were in noise control based on anti-
noise concepts. These studies established the pioneering link between
fluid mechanics and control theory. However, in most aerodynamic
applications, turbulent flows are encountered. Due to the intrinsic
nonlinearities, turbulence gives rise to a large variety of temporal
and spatial scales of more or less organized nature. Turbulence has re-
mained one of the last not satisfactorily resolved physical phenomenon
of practical importance in engineering sciences. It is obvious that the
complexity of these flows is so pronounced that simpler – if this term
can be used for turbulent flows – descriptions need to be derived.

The encountered complexity is observed at three levels. First, the
characterization of the flow itself is complex and depends on the type
of available information (e.g. sensors). Any state information is by
nature incomplete or of excessive extent for turbulent flows. Second,
the effect of any actuator is by nature 3D and unsteady, thus difficult
to characterize. Third, the complete modelling of the flow (CFD),
its sensitivity to perturbations, etc. exceeds available computer power
by many orders of magnitudes, particularly for online capability in
experiment. In the same vein, the predominantly (locally) linear ap-
proaches of control theory need to be adapted to the reality of the
complex, turbulent flow characteristics. This leads to different levels
of fluid mechanics one has to take into account. These levels can start
from a detailed fluid mechanics characterization, including the more
or less organized nature of the turbulent flows, the so called white-box
model and end with entirely black and eventually ’empty-box’ models.

The communities of flow control, applied mathematics and tur-
bulence in fluids have then to work altogether in a close manner.
Each domain enriches the other for the dedicated goal of controlling
different types of flows. No currently available approach can be re-



tained, due to the variability of the physics to be controlled (e.g. flow
separation, drag, lift, mixing, noise generation and fluid structure in-
teractions). The present volume is written by leading experts of flow
control and represents the state of the art of the different approaches
whose complementarity will open new areas by mutual fertilization.

Jean-Paul Bonnet
Research Director, CNRS

Institut Pprime, CNRS – Université de Poitiers – ENSMA



PREFACE

Active turbulence control is a rapidly evolving new field of fluid dy-
namics with large industrial importance. Several developments serve
as catalyzers. Actuators and sensors have become increasingly more
powerful, cheaper and more reliable to be considered for practical ap-
plications. In fact, aeronautic, car and other transport-related indus-
tries work at active turbulence control solutions for selected demon-
strators. Examples are the high-lift configuration of an airfoil or drag
reduction of cars. The past stigma of active control as proof of a
inferior aerodynamic design is replaced by the realization that active
control is a critical enabler for future performance enhancements. Not
much phantasy is required to envision a not-too-far future in which
active control will be commonly seen on cars, trains, airplanes, he-
licopters, wind energy plants, air-conditioning systems, and virtually
all flow related products. Active turbulence control is having an im-
pact of epic proportions.

Active control requires at minimum parameter adjustments for
flow conditions and occasionally in-time response using flow sensors.
Hence, active control generally requires — or at least benefits — from
a closed-loop scheme for optimal performance. Closed-loop control
has clearly been demonstrated to be superior to (blind) open-loop con-
trol in many cases. Performance of closed-loop control does not only
depend on the chosen actuators and sensors. It critically depends also
on the control logic with its underlying model.

Model development and control design for closed-loop flow con-
trol is the focus of this book. Wiener (1948) discriminates between
black-, grey-, and white-box models. The black-box models identify
the dynamics between the input (actuation) and the output (sensing)
from data — ignoring any other aspect of the flow. The white boxes
represent the full-state representation, here: Navier-Stokes discretiza-
tions. And the grey boxes resolve a small yet relevant portion of the
full state dynamics, here: the evolution of coherent structures. All
models have their relative merits and shortcomings. Black-box mod-
els represent the behavior of experiments with accessible accuracy.
On the downside, physical understanding of coherent structures and
associated nonlinearities is discarded. Navier-Stokes discretizations
are accurate representations of the flow but come with a large com-



putational load. This computational expense is a large challenge for
control design and too large for any foreseeable operation in experi-
ments. Reduced-order models for the coherent-structures are a good
compromise between required resolution and necessary simplicity for
online-capability in experiment. Their price is a large experience in
model development. For later reference, we add to Wiener’s clas-
sification model-free approaches (or ’empty boxes’) which make only
qualitative assumptions about the dynamics.

The authors describe the current state on closed-loop flow con-
trol from various, necessarily biased experimental and computational
angles. In particular, we have attempted to provide a book with ele-
mentary self-consistent descriptions of the main methods. Thus, our
book may serve also as guide through the large jungle of myriad of
publications in the field. Topics include the complete span of flow
control based on white-box models (first two chapters), grey-box mod-
els (second two chapters) and black- to empty-box models (final two
chapters):

These lecture notes originate from a course held at the Centre
International des Sciences Mécqniques (CISM) in Udine, Italy in
September 2008. The Editors thank Prof. W. Schneider for the kind
invitation to this course. We thank the CISM staff and the Rector
Prof. G. Maier for dependable, professional support in all technical
aspects of the course. The beautiful city of Udine, the cooperating
late-summer weather, and the magnificent Palazzo del Torso provided
the perfect forum for many memorable interactions during class-room
time, breakfast, lunch and dinner. We thank the authors for their ex-
cellent lectures and equally illuminating chapters. Each chapter con-
denses a long-term research and teaching effort of the corresponding
authors. We thank the participants for coming with large curios-
ity and penetrating questions, making our course a lively worthwhile
event.

Poitiers, Poznań and Boston in February 2010
Bernd Noack, Marek Morzyński and Gilead Tadmor

on behalf of the whole co-author team



CONTENTS

Flow Control and Constrained Optimization Problems
by L. Cordier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Global Stability Analysis for Linear Dynamics
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Flow control and constrained optimization
problems

Laurent Cordier

Institut Pprime, CNRS – Université de Poitiers – ENSMA, UPR 3346,

Département Fluides, Thermique, Combustion, CEAT, 43 rue de l’Aérodrome,

F-86036 Poitiers Cedex, France

Abstract Constrained optimization is presented as a key enabler

for answering numerous important questions in the heart of flow

control. These problems range from the extraction of Proper Or-

thogonal Decomposition modes and tools from linear control theory

to optimal control which can be applied to any type of non-linear

systems. The determination of optimal growth disturbances is pre-

sented as a particular case of constrained optimization. The chap-

ter shall provide a complete description for deriving analytically

and solving numerically any specific formulation of constrained op-

timization.

1 Introduction

The objective of this chapter is to present within the unified framework of
constrained optimization problems, different numerical tools which change
completely our ideas on flow control in the last decade. We will see in par-
ticular that reduced-order modeling based on Proper Orthogonal Decompo-
sition modes (see the contribution by B. Noack et al. in this book), as well
as classical techniques of linear control (Linear Quadratic Regulator and
Linear Quadratic Gaussian methods) and optimal control, have in common
the resolution of a constrained optimization problem. Beyond that, we will
also show that the concept of optimal disturbances, introduced in stability
theory to explain the transition to turbulence of linearly stable flows, can
be also formulated as a constrained optimization problem and, if needed, be
solved simultaneously to a control problem. Lastly, we will highlight that
inverse methods (model identification or parameter estimation) can be in-
terpreted as a particular constrained optimization problem. The objective
is to give the possibility to the interested reader of rapidly developing by
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him/her-self the analytical and numerical solutions to the constrained op-
timization problem of his/her interest. The choice was thus made to detail
as much as possible the different stages.

The current chapter is organized as follows: In section 2.1, we introduce
the issues of flow control and present, for facilitating future discussions,
the different actors on the control scene. Then we introduce the linearized
framework, often used in flow control, and finish by formulating a series of
questions related directly to different aspects of flow control. In section 2.2,
we give some essential elements of linear control theory and continue in sec-
tion 2.3 by an introduction of model reduction seen under the specific angle
of projection methods. In section 3, we focus on the fundamental aspects
of optimal control theory. At this stage, the presentation will remain very
similar to what can be found in Gunzburger (1997a) and more recently in
Gunzburger (2003). Section 4 considers the case of LQR control for a generic
system and shows that the solution of a high-dimensional Riccati differential
equation is necessary to determine the feedback control law that minimizes
the value of the cost function. Section 5 highlights that the determination of
optimal disturbances corresponds to a constrained optimization problem for
which the control is the initial condition of the dynamical system. Lastly,
sections 6 and 7 consider the case where the constraint corresponds to a
time-dependent partial differential equation, linear and nonlinear respec-
tively. Section 7 finishes with some numerical results of optimal control for
the Burgers equation.

2 Elements of control theory and model reduction

2.1 Flow control

First, in section 2.1.1, we give the scope of flow control and introduce the
terminology necessary to present constrained optimization problems as a
main topic in modern fluid mechanics. Then, in section 2.1.2, we introduce
the linearized framework used in linear control theory. Finally, in section
2.1.3, we list different types of problems which can appear within the frame-
work of flow control while insisting on their similarity.

2.1.1 Scope and objectives of flow control

2.1.1.1 General points The goal of a flow control system is to achieve
some desired objective by manipulating properly the flow configuration
(physical properties, volume forcing or boundary conditions). Based on
the type of actuation, either passive (no energy expenditure) or active, and
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on the means by which the control evolves in response to changes in the
flow, open-loop or closed-loop, different strategies can be considered (see
Gad-el-Hak, 2000, for a discussion on this classification). By nature, pas-
sive control strategies are similar to shape optimization. Determining the
shape that a surface of revolution must have to offer the least resistance
to the motion goes back to Newton (end of 17th century) and involved the
invention of the calculus of variations. We will see in section 3.1.1 that
this question can be formalized as a constrained optimization problem by
simply modifying the space on which the solutions are required. In open-
loop, the parameters of the actuators are set once for all at the design stage
and remain constant throughout the optimization procedure whatever the
changes undergone by the flow. With this type of strategy, the sensitivity
of the system to external disturbances or to error modeling (change in the
parameters of the system) is then important. In addition, stabilizing an
unstable solution - what may sometimes be interesting from a point of view
of the performances - becomes difficult. For these reasons, we will consider
throughout this chapter the case of closed-loop control or feedback control
where there exist sensors for measuring at least partially the effects of the
control on the system.

2.1.1.2 Terminology In the control literature1, the mathematical mo-
del of the system to be controlled is called plant. In general, this model
only approximates the behavior of the physical system. We will go back to
this point and to the consequences in terms of optimization in section 2.3.
The corresponding state variables of the plant is noted x. The objective
of a control system is to make the reference output z behave in a desired
way by manipulating the plant input u (see Fig. 1). The reference input
r specifies the desired behavior of the reference output. In feedback flow
control the measured plant output y is fed back into the controller for de-
termining the control. Compared to u, the disturbance input w consists
of those inputs to the plant that are generated by the environment. It in-
cludes one contribution coming from the state disturbances w1 and another
contribution coming from the measurement noise w2. In the idealized case
called full-state configuration (see Fig. 1(a)), the entire state x is assumed
to be available for the controller. In the general case called observer-based

1Here, and in the rest of the chapter, we decide to use the standard notations in text-

books of control theory to familiarize the reader coming from fluid mechanics to these

notations. Then, otherwise stated, u denotes the control and not a velocity field.

Moreover, quantities expressed in boldface correspond to vector quantities.
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w(t)

u(t)

xx

x
z(t)

y(t)

r(t)

Plant

Controller

(a) Full state configuration.

w(t)

u(t)

u(t) x

x̂

x̂

z(t)

y(t)

r(t)

Plant

Controller

Observer

(b) Observer-based configuration.

Figure 1. Typical block diagrams for feedback control.
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configuration (see Fig. 1(b)), the plant states that are not measured di-
rectly is estimated by an observer. Thereafter, all the quantities with a hat
correspond to estimated variables: for instance, x̂ are estimated states.

2.1.1.3 Plant modelling The next stage is the determination of the
system of equations for the plant (Fig. 2). Starting from a physical system
and some measured data, the modelling phase consists of deriving a set of
Partial Differential Equations (PDEs) or Ordinary Differential Equations
(ODEs). In the first case, after discretization in space of the PDEs with
any numerical method (finite element, finite volume, . . . ), a set of ODEs
is obtained. Sometimes the ODEs are discretized in time as well, yielding
discrete-time dynamical systems. Here, to simplify the presentation, we
will concentrate on continuous-time systems. Finally, since any dynamical
system can be reduced to a first-order system of differential equations by
changing the set of variables, we obtain a non-linear state space model given
by

S :

⎧⎨⎩ ẋ(t) = f(t, x(t), u(t), w(t)),
z(t) = h(t, x(t), u(t), w(t)),
y(t) = g(t, x(t), u(t), w(t)),

where x(t) ∈ Rnx , u ∈ Rnu , w ∈ Rnw , y(t) ∈ Rny and z ∈ Rnz . The
non-linear functions f , g and h are defined accordingly.

Physical system + Data

S : ODEs
Discretization

PDEs

Modelling

Figure 2. Broad framework of the determination of the plant equations
(after Antoulas, 2005).

2.1.2 Linearized framework

Often, in practice, the non-linear system f is linearized around an operating
condition of interest. To simplify the future notations, we will assume that
the system does not depend explicitly on time and suppress for the moment
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the dependance on the external disturbance w writing for the plant equa-
tions ẋ(t) = f(x(t), u(t)). Depending on the applications, this operating
condition can be a particular solution of the unsteady dynamical system f ,
that is to say f(xe(t), ue(t)) = 0 or an equilibrium point of f characterized
by ẋe = f(xe, ue) = 0. In the domain of flow instabilities, this equilibrium
point corresponds to a steady solution of the Navier-Stokes equations.

We then introduce the first-order perturbations x̃(t) and ũ(t) such that

x(t) = xe(t) + x̃(t) and u(t) = ue(t) + ũ(t).

Expanding f in a Taylor series about (xe, ue), we obtain

ẋe(t) + ˙̃x(t) =f(xe(t), ue(t)) + Jx(xe(t), ue(t))x̃(t) + Ju(xe(t), ue(t))ũ(t)

+higher order terms

where Jx (respectively Ju) is the Jacobian matrix of f with respect to x

(respectively u):

(Jx)ij =
∂fi

∂xj
with 1 ≤ i ≤ nx ; 1 ≤ j ≤ nx

and

(Ju)ij =
∂fi

∂uj
with 1 ≤ i ≤ nx ; 1 ≤ j ≤ nu.

Neglecting the higher order terms and letting

A(t) = Jx(xe(t), ue(t)) and B(t) = Ju(xe(t), ue(t))

we obtain the linearized state space model

˙̃x(t) = A(t)x̃(t) + B(t)ũ(t)

where A(t) ∈ R
nx×nx is the state matrix and B(t) ∈ Rnx×nu is the input

matrix.

Similarly, the nonlinear functions z = h(x, u) and y = g(x, u) may
be linearized around the equilibrium point, resulting in a linear, parameter
time-varying (LPTV) system given by

SLPTV :

⎧⎨⎩ ẋ(t) = A(t)x(t) + B(t)u(t),
z(t) = C1(t)x(t) + D1(t)u(t),
y(t) = C2(t)x(t) + D2(t)u(t),

where for convenience the notation of the fluctuations was removed.
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The state model SLPTV can be further simplified when the system is
time-invariant. Adding the linearized contribution from the external dis-
turbances, the system becomes

ẋ(t) = Ax(t) + B1w(t) + B2(t)u(t),
z(t) = C1x(t) + D11w(t) + D12u(t),
y(t) = C2x(t) + D21w(t) + D22u(t).

This is the more general class of model that we can consider for linear-
time invariant (LTI) systems. Throughout this chapter, we will restrict our
attention to the simplified2 linear system

SLTI :

⎧⎨⎩ ẋ(t) = Ax(t) + Bu(t),
z(t) = C1x(t) + D1u(t),
y(t) = C2x(t) + D2u(t),

(1)

where C1 ∈ Rnz×nx and C2 ∈ Rny×nx are the output matrices and where
D1 ∈ Rnz×nu and D2 ∈ Rny×nu are the input to output coupling matrices.
A dynamical system with single input (nu = 1) and single output (ny = 1)
is called a SISO (single input and single output) system, otherwise it is
called MIMO (multiple input and multiple output) system. When this is
not necessary, we will not mention the variable z thereafter.

The advantage of linear systems is that the state, solution of (1), can be
found explicitly from the input and the initial conditions (see Zhou et al.,
1996):

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ) dτ

where the matrix exponential is defined by the power series:

eAt = I + At +
1

2!
A2t2 +

1

3!
A3t3 + · · ·

The reference and measured plant outputs are then generated as a func-
tion of the initial conditions and the input:

z(t) = C1e
Atx(0) +

∫ t

0

C1e
A(t−τ)Bu(τ) dτ + D1u(t)

and

y(t) = C2e
Atx(0) +

∫ t

0

C1e
A(t−τ)Bu(τ) dτ + D2u(t).

We will see in section 2.2.2 the consequences in terms of observability
and controllability of the system S.

2B1 = D11 = D21 = 0, B � B2, D1 � D12 and D2 � D22.
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2.1.3 Different types of problems

Within the general framework of flow control, various types of problems can
be considered:

Problem 1: How to determine the control law u to apply to the dynamical
system S to minimize a given norm3 of z?

In lack of particular assumption on the model, this problem is
designated as optimal control. The model f can then be a Direct
Numerical Simulation (Bewley et al., 2001), a Large Eddy Simulation
(El Shrif, 2008) or a reduced-order model (see section 2.3) obtained by
Proper Orthogonal Decomposition (Bergmann et al., 2005; Bergmann
and Cordier, 2008).

Problem 2: Now let us assume that the control system design corresponds
to state feedback i.e. u = Kx for the full state configuration or
u = Kx̂ for the observer-based configuration. Then how to determine
the control law u, or equivalently the gain matrix K, to apply to S
to minimize a given norm of z?

If the system S is Linear Time Invariant (LTI) then the problem
is called Linear Quadratic Regulator or LQR, see section 4 or in Burl
(1999).

Problem 3: Let ŷ be the estimated value of the output based on the esti-
mated state x̂. For an LTI system S, the state space system for the
observer is

˙̂x(t) = Ax̂(t) + B2u(t) + L (y(t) − ŷ(t)) ,
ŷ(t) = C2x̂(t)

(2)

where L is the observer gain matrix.

Then how to determine the gain matrix L so that x̂ is roughly
equal to x? This question corresponds to the observer design. It can
be shown (see section 2.2.2) that this problem is dual to the control
problem described at the previous item.

Problem 4: How to determine one or more parameters of the system S
knowing the input x and the corresponding output y?

Depending on the authors, this question corresponds to the esti-
mation of physical parameters or data inversion (Tarantola, 2005), to
systems’ identification (Juang and Phan, 2001) or to model calibration
(see Cordier et al., 2010, for an application to reduced-order models
derived by POD).

3An exact definition will be given in section 3.1.2.
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Problem 5: The model S being known, how to determine the input u to
apply to S to obtain given output y?

This question, which is very similar to that of the first item, cor-
responds to a problem of data inversion.

Problem 6: How to determine the initial condition x0 which maximizes
the energetic amplification of the dynamical system S?

With this question, we can introduce the concept of optimal dis-
turbances and optimal growth (Schmid and Henningson, 2001). We
will see an application in section 5 for the linearized channel flow.

All these problems are sufficiently generals to appear in many scientific
disciplines sometimes very distant from each other (engineering, medical or
social sciences, . . . ). In addition, these problems clearly all involve at a
different level the resolution of a constrained optimization problem (mini-
mization for the great majority, maximization for the problem of optimal
disturbances). The solution of constrained optimization problems will thus
be the object of a detailed description in section 3.

2.2 Input-output framework

In section 2.1.2 we learned how, starting from a nonlinear model of dynamics
S resulting from any physical modeling, to determine a linear-time invariant
system. Is this step sufficient for control? On one hand, the answer is
affirmative because there exist many methods of control dedicated to the
linearized systems. On the other hand, we will now see that in general it
is necessary to be much more careful since the mapping of measurements y

(output) to the control u (input) is crucial to have a chance of success for
the control.

2.2.1 Similarity transformations

The objective of this section is to demonstrate that the equations of the
state-space system are not unique. Starting from the state-space system
(1), reproduced here for convenience:

ẋ(t) = Ax(t) + B2u(t),
y(t) = C2x(t) + D2u(t)

we consider a new state vector

x̃(t) = T
−1x(t)

where T is a constant, invertible transformation matrix. Since T is invert-
ible, we have x(t) = Tx̃(t) and ẋ(t) = T ˙̃x(t) (T independent of time). We
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then obtain immediately a new state-space system defined in terms of the
state x̃:

˙̃x(t) =
(
T−1AT

)
x̃(t) +

(
T−1B2

)
u(t),

y(t) = (C2T) x̃(t) + D2u(t)

In summary, the new state-space model is generated by using the follow-
ing similarity transformations:

A −→ T
−1AT ; B2 −→ T

−1B2 ; C2 −→ C2T ; D2 −→ D2.

Since there exists an infinite number of state representations for a given
system, a natural question is then how we can determine the transformation
T best adapted to control?

2.2.2 Controllability and observability

This section addresses the following fundamental questions:
1. Can we always control a flow?

2. Can the state of a system be estimated from the measurements?
In practice, the answers to these questions provide a guide to the selection
of actuators and sensors, and are also useful for developing controllers and
observers.

Controllability describes the ability of the control u to influence the state
x. Conversely, observability describes the ability to reconstruct the state x

based on available measurements y. To simplify the description, consider
SLTI given by (1) with D2 = 0. In this case, the output y is given (see
section 2.1.2) by:

y(t) =

∫ t

0

C2e
A(t−τ)B2u(τ) dτ︸ ︷︷ ︸

T1

+ C2e
Atx(0)︸ ︷︷ ︸
T2

.

The term T1 defines a mapping from the space of the control u to the
space of the state x. Since this map is linear, the image is a subspace of the
state-space Rnx called the controllability subspace. This subspace depends
only on the matrices A and B2, and is denoted SC . Similarly, the term T2

defines a mapping from the space of the state x to the space of measurement
y. Since this map is also linear, the image is a subspace of the state-space
R

ny called the observability subspace. This subspace depends only on the
matrices C2 and A, and is denoted by SO. The kernel of this linear map
forms a subspace, called the unobservable subspace. Since for these states,
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unit sphere ellipsoid of radii λc
k

λc
1

λc
2

C

Figure 3. Geometric interpretation of the controllability operator: map-
ping of unit sphere onto ellipsoid. The direction corresponding to λc

1 is more
controllable than the direction corresponding to λc

2.

y = 0, it means that the elements of the kernel4 may be added to any
another initial state without changing the output.

2.2.2.1 Controllability Suppose the system defined in (1) is stable.
Then, for x(−∞) = 0, the state at time zero x(0) = x0 is given by

x0 =

∫ 0

−∞

e−AτB2u(τ) dτ.

This defines the controllability operator C by x0 = Cu. In geometric
terms analogous to the moment of inertia tensor, C defines a controllability
ellipsoid in the state space, with the longest principal axes along the most
controllable directions (see Fig. 3).

The controllability gramian is an nx×nx matrix whose eigenvectors span
the controllability subspace. It is defined5 for the system (1) as

Wc(t) = CCH =

∫ t

0

eAτ B2 BH
2 eAHτ dτ (3)

where the exponent H denotes the transconjugate operator (transpose con-
jugate).

4The kernel or null space of a linear transformation is the set of vectors that map to

zero. If we associate a matrix A to the linear transformation, the null space of A is

the set of all vectors x for which Ax = 0.
5The controllability gramian and later the observability gramian (section 2.2.2.2) can be

defined in a more general way by considering a weighted inner product (see appendix

A or Ilak 2009).
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If the system (1) is stable, we can consider the infinite horizon Gramian
(t −→ +∞) and forget the dependance on time. Since Wc is clearly self-
adjoint, it admits a set of real, non-negative eigenvalues λc

k and orthonormal
eigenvectors xc

k. The eigenvalues are a measure of the amount of control
energy required to obtain the corresponding eigenvectors. For two states,
xc

1 and xc
2 with ‖xc

1‖2 = ‖xc
2‖2 where ‖ · ‖2 denote the classical L2 norm

(‖x‖2
2 = xHx) then if

λc
1 = (xc

1)
H

Wcx
c
1 = ‖xc

1‖
2
Wc

> ‖xc
2‖

2
Wc

= (xc
2)

H
Wcx

c
2 = λc

2

it means that xc
1 is more controllable than xc

2.
When the size of the system S is not too high, the controllability gramian

can be determined6 directly as the solution of a Lyapunov7 equation given
by:

AWc + WcA
H + B2B

H
2 = 0.

By definition, the dynamical system (1), or equivalently the pair (A, B2)
is said to be state controllable if and only if, for any initial state x(0) = x0

and any final state xf , there exists an input u(t) such that x(tf ) = xf for
tf − t0 < +∞. Unfortunately, this criterion is not very usable. In practice,
the controllability of a system will be verified using one or the other of the
following equivalent criteria8 (Lewis and Syrmos, 1995; Zhou et al., 1996;
Skogestad and Postlethwaite, 2005):

1. Kalman criterion

rank
([

B2 AB2 A2B2 · · ·Anx−1B2

])
= nx.

2. Wc > 0.
3. Wc is full-rank.
4. Im(C) = Rnx .
Finally, let

Eu �

∫ 0

−∞

‖u‖2
2 dt =

∫ 0

−∞

uH(t)u(t) dt,

6The proof is based on the time differentiation of (3). It can be found in section A7 of

Burl (1999).
7A common way to solve continuous-time Lyapunov equation is with the function lyap

of Matlab or with the Slicot library that can be found in http://www.slicot.net.
8We remind that the rank of a matrix A corresponds to the maximal number of linearly

independent rows or columns of A. Moreover, a symmetric matrix A is said positive

definite (simply denoted A > 0) if xHAx > 0 for all non-zero vectors x. Finally,

Im(f) denotes the image of the operator f . If f is a mapping from E to F , then

Im(f) = {y ∈ F such that f(x) = y, for some x ∈ E}.
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unit sphere ellipsoid of radii λo
k

λo
1

λo
2

O

Figure 4. Geometric interpretation of the observability operator: mapping
of unit sphere onto ellipsoid. The direction corresponding to λo

1 is more
observable than the direction corresponding to λo

2.

with u(t) defined for t ∈]−∞; 0], be the past input energy, it can be shown
(Mehrmann and Stykel, 2005) that:

Eumin
= min

u
Eu = xH

0 W−1
c x0.

2.2.2.2 Observability We now consider the similar notions as in the
previous section but for the output. We will thus follow a similar structure
of presentation.

Suppose the system (1) is in some initial state x(0) = x0 and u(t) = 0

for t ∈ [0; +∞[. Integrating the dynamics (1), it yields:

y(t) = C2e
Atx(0) (4)

which defines the observability operator O by y(t) = Ox0. Similarly to what
we have made in section 2.2.2.1 for the controllability, we can analyze this
operator in geometric terms (see Fig. 4). Here, O defines an observability
ellipsoid in the state space, with the longest principal axes along the most
observable directions.

The observability gramian is an nx ×nx matrix whose eigenvectors span
the observability subspace. It is defined for the system (1) as

Wo(t) = OHO =

∫ t

0

eAHτ CH
2 C2 eAτ dτ. (5)

For a stable system, observability can be characterized only by the infi-
nite horizon Gramian (t −→ +∞) and we can forget the explicit dependance
on time in Wo. The eigenvalues λo

k of Wo are a measure of the amount of
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state energy required to obtain the corresponding eigenvectors xo
k. Obvi-

ously, we have the result that for two states, xo
1 and xo

2 with ‖xo
1‖2 = ‖xo

2‖2

then if

λo
1 = (xo

1)
H

Wox
o
1 = ‖xo

1‖
2
Wo

> ‖xo
2‖

2
Wo

= (xo
2)

H
Wox

o
2 = λo

2

it means that xo
1 is more observable than xo

2.
When the dimension of S is not too high, a common way of determining

the observability gramian Wo is to solve the following Lyapunov equation:

AHWo + WoA + CH
2 C2 = 0.

By definition, the dynamical system (1), or equivalently the pair (A, C2)
is said to be state observable if and only if, for any time tf > 0, the initial
state x(0) = x0 can be determined from knowledge of the input u(t) and
output y(t) in the interval [0; tf ]. In practice, the observability of a system is
verified through one of the following equivalent criteria (Lewis and Syrmos,
1995; Zhou et al., 1996; Skogestad and Postlethwaite, 2005):

1. Kalman criterion

rank

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

C2

C2A
...

C2A
nx−1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ = nx.

2. Wo > 0.
3. Wo is full-rank.
4. ker(O) = 0.
To conclude this section, let

Ey =

∫ +∞

0

‖y‖2
2 dt =

∫ +∞

0

yH(t)y(t) dt,

with y(t) defined for t ∈ [0; +∞[, be the future output energy, it can be
shown easily by substituting (4) in Ey that

Ey = xH
0 Wox0.

2.2.2.3 Duality Duality is an important concept in linear control the-
ory because, used advisedly, it can saved a considerable time in the deriva-
tion of properties for the systems under investigation. To go further, we
will initially admit that for any primal system defined by (1), that is to say

S :

{
ẋ(t) = Ax(t) + B2u(t),
y(t) = C2x(t)
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we can associate another state-space system, known as dual system, and
given by

Sdual :

{
ξ̇(t) = AHξ(t) + CH

2 ζ(t),
η(t) = BH

2 ξ(t).

Here, ξ is the dual state vector, and ζ and η contain the dual inputs and
outputs. Comparing S and Sdual it can be seen that we can deduce the dual
system from the knowledge of the primal system with the transformations:

A −→ AH and B2 −→ CH
2 . (6)

Duality of controllability and observability From the transforma-
tions (6) and the definitions (3) and (5), it is evident that the controllability
gramian of the primal system is equal to the observability gramian of the
dual system, and vice versa. As a consequence, the following results hold:

1. S (A, B2) is controllable if and only if Sdual

(
AH , BH

2

)
is observable,

2. Sdual

(
AH , CH

2

)
is controllable if and only if S (A, C2) is observable.

Duality of the control problem and the observer design If we
now consider the cost function

Jy =

∫ T

0

‖y‖2
2 dt

and the corresponding cost function

Jη =

∫ T

0

‖η‖2
2 dt

based on the dual system, it can easily be proved9 that Jy = Jη. This
property is fundamental in control theory since it can be employed to de-
termine the observer gain matrix L for the observer design (see problem
2.1.3 in section 2.1.3) based on the solution of the dual control problem.
Indeed, let xe(t) = x(t) − x̂(t) be the state error, the main purpose of

state observer design is to minimize J =

∫ T

0

‖xe‖
2
2 dt where x̂ is given by

9Essentially, the proof is based on two results:

1. the transformations (6), and

2. the following equalities

Jy = trace
(
C2WcCH

2

)
= trace

(
BH

2 WoB2

)
(see Burl, 1999, p. 113).
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(2). An elegant method of determination of the observer gain matrix then
consists in minimizing the same functional J but by introducing the dual
problem of the initial system (Huerre, 2006). We then arrive at a Linear
Quadratic Regulator problem whose solution is already known (see section
4). Consequently, we will not detail thereafter the observer design (see clas-
sical textbooks Zhou et al., 1996; Burl, 1999; Skogestad and Postlethwaite,
2005, for instance) and we will concentrate on the control problem.

2.2.2.4 Balanced truncation The notions of controllability and ob-
servability, as defined respectively in sections 2.2.2.1 and 2.2.2.2, give us a
means of deciding whether a state affects the system’s input-output map:
if a state is unobservable, it does not affect the output, and if a state is
uncontrollable, it is unaffected by the input. In terms of model reduction
dedicated to control (see section 2.3), in opposition to model reduction for
physical understanding, it is then capital to preserve controllable and ob-
servable modes, but in which proportion? A simple answer was given by
Moore (1981) for stable, linear, input-output systems. This method called
balanced truncation consists in transforming the state space system into a
balanced form whose controllability and observability Gramians become di-
agonal and equal (balanced realization), together with a truncation of those
states that are both difficult to reach and to observe.

Starting from the similarity transformations given in section 2.2.1, it can
be easily shown that the controllability and observability gramians become:

Wc −→ T
−1Wc

(
T
−1
)H

and Wo −→ T
HWoT.

In the system of coordinates defined by T, we thus have for a balanced
realization:

T
−1Wc

(
T
−1
)H

= T
HWoT = Σ =

⎡⎢⎣ σ1

. . .

σnx

⎤⎥⎦
where the Hankel singular values σi are real, positive and ordered by con-
vention from largest to smallest. An equivalent way of finding the bal-
ancing transformation T is to compute the eigendecomposition of WcWo

(WcWo = TΣ2T−1). It can be shown (Burl, 1999) that a balanced real-
ization exists whenever the system is stable and minimal10. A geometric
interpretation of the balanced truncation is given in Fig. 5.

10A state space system is minimal if and only if the system is controllable and observable

(Zhou et al., 1996). Moreover, a minimal realization of the system is associated with

a matrix A of smallest possible dimension.
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SC = SO

SC

SO

Figure 5. Geometric interpretation of the balanced truncation. SC and SO

are respectively the controllability and observability subspaces.

An attractive feature of balanced truncation is that there exists a priori
error bounds that are close to the lower bound achievable by any reduced-
order model (Zhou et al., 1996, for instance). Let G denote the transfer
function11 of the LTI system (1) and Gr the corresponding transfer function
of a reduced-order model of order r. It can be proved that, in any reduced-
order model, the lower bound for the H∞ error12 is

‖G − Gr‖∞ ≥ σr+1

and that the upper bound for the error obtained by balanced truncation is
given by

‖G − Gr‖∞ ≤ 2

nx∑
j=r+1

σj .

If the Hankel singular values are decreasing sufficiently fast, it means that
the error norm of the reduced-order model of order r is very close to the
lowest possible value.

11For a SISO system, the transfer function G from u to y is defined as

G(s) = Y (s)/U(s)

where U(s) and Y (s) are the Laplace transform of u(t) and y(t). Moreover, it can be
demonstrated that for an LTI system, we have

G(s) = C2 (sI − A)−1 B2 + D2

where I is the identity matrix.
12The H∞ norm of the system is defined in terms of the transfer function G as:

‖G‖∞ = sup
ω

σ1 (G(jω))

where σ1 (A) corresponds to the maximum singular value of the matrix A and ω

represents frequency.
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The procedure of balanced truncation is very attractive in terms of con-
trol but the determination of the controllability and observability gramians
via the solution of Lyapunov equations is not computationally tractable for
very large systems. In addition, the original method suggested by Moore
(1981) is limited to the linear systems. These limitations were raised re-
cently by Lall et al. (2002) and then by Rowley (2005) who introduced
approximation methods of gramians based only on snapshots of the primal
and dual systems (see section 2.2.2.3). The initial method suggested by
Lall et al. (2002) was to first estimate the two gramians, and then in a
second time to perform the balanced truncation. The main contribution
presented in Rowley (2005) is a specific algorithm that can be used to de-
termine the balanced truncation directly from snapshots of the system i.e.
without needing to compute the gramians themselves. This method is called
Balanced POD for deep connections that it shares with POD. The reader
will find all the details of the numerical setting in Rowley (2005).

2.3 Model reduction

In section 2.2.2.4, model reduction was already evoked when the least con-
trollable and observable modes of the system were truncated based on the
decrease of the Hankel singular values. In this section, we will first justify
the interest of reduced-order modeling for flow control (section 2.3.1), and
then present in a general way the current methods of model reduction while
giving an emphasis on projection-based methods (section 2.3.2).

2.3.1 Need for reduced-order modeling

For a wing considered at cruising flight conditions i.e. for a Reynolds num-
ber of about 107, Spalart et al. (1997) considered that to obtain numerically
a converged solution, it is necessary to integrate the Navier-Stokes equations
during about 5 106 time steps on about 1011 grid points. Then, in spite of
the recent and considerable progresses of computers, it remains difficult to
solve numerically problems where

- either, a great number of resolution of the state equations is necessary
(continuation methods, parametric studies, optimization problems or
optimal control,. . . ),

- either a solution in real time is searched (active control in closed-loop
control for instance).

Not surprisingly, the reduction of the costs of solving nonlinear state
equations became a major issue in many scientific disciplines ranging from
linear algebra to computer graphics. Sometimes, as it is the case in fluid me-
chanics/turbulence, model reduction has a long tradition but the objective
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is more centered on the improvement of the understanding of the physical
mechanisms. Let us quote for example13:

- Prandtl boundary layer equations (Schlichting and Gersten, 2003),

- Reynolds-Averaged Navier-Stokes models (Chassaing, 2000),

- Large Eddy Simulation (Sagaut, 2005),

- Low-order dynamical system based on Proper Orthogonal Decompo-
sition (Aubry et al., 1988),

- Reduced-order models based on global modes (Åkervik et al., 2007),
to name a few. Since less than ten years, the methods of model reduction are
mainly considered in fluid mechanics for flow control. Lately, these methods
progressed considerably under the efforts of the applied mathematicians
who were interested in flow control. It is this specific point of view that is
retained in the following presentation of the model reduction methods.

2.3.2 Overview of model-reduction methods

Broadly speaking, model order reduction techniques fall into two major
categories:

1. projection-based methods,

2. non-projection based methods.
The first group corresponds to the methods that are currently the most

used in fluid mechanics. Therefore, this approach will be detailed in section
2.3.2.1. The second group consists mainly of such methods as Hankel op-
timal model reduction and state-residualization. More information can be
found for these methods in Antoulas (2005).

2.3.2.1 Projection-based methods The projection-based methods can
be used for dynamical models going from general nonlinear systems given14

by

S :

{
ẋ(t) = f(t, x(t), u(t)),
y(t) = g(t, x(t), u(t)),

to LTI models

SLTI :

{
Eẋ(t) = Ax(t) + B2u(t),
y(t) = C2x(t) + D2u(t),

13The traditional numerical methods used to solve partial derivative equations (finite

difference, finite volume, finite element, spectral method,. . . ) can also be classified

in the framework of reduced-order models since these methods consist in reducing an

infinite-dimensional problem to a finite-dimensional one (discretized problems).
14To simplify the formulations, we did not consider in this section the contribution of

the disturbances w to the models.
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written here in the so-called descriptor form. The matrix E is not necessarily
invertible but, when it is the case, the traditional LTI formulation is found.
For these two systems, the state variables x and output variables y are
respectively of size nx and ny.

The objective of reduced-order modeling is to determine for S and SLTI

the corresponding simplified models

Ŝ :

{
˙̂x(t) = f̂(t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)),

and

ŜLTI :

{
Ê ˙̂x(t) = Âx̂(t) + B̂2u(t),

ŷ(t) = Ĉ2x̂(t) + D̂2u(t)

where the control u is unchanged. These simplified models are now called
reduced-order models since x̂ ∈ Rr with r � nx and y 	 ŷ ∈ Rny . A
simplified description of model reduction is given in Fig. 6.

S : ODEs Ŝ : Low number of ODEs

Simulation

Control

Reduced-order
modelling

Figure 6. Broad framework of reduced-order modelling (after Antoulas,
2005).

If we want that these reduced-order models can be really usable for the
applications concerned, it is necessary that the methods used to derive these
simplified models satisfy various constraints:

1. Small approximation error for all admissible input signals u i.e.

‖y − ŷ‖ < ε × ‖u‖ with ε a tolerance.

It means that we need to have estimates of computable error bounds.
2. Stability and passivity (no generation of energy) preserved.
3. Procedure of model reduction numerically stable and efficient.
4. If possible, automatic generation of models.
In what follows we will describe an algorithm that can be used to derive

a reduced-order model of any dynamical system. This algorithm, called
Petrov-Galerkin projection, is based on a general bi-orthogonal projection



Flow Control and Constrained Optimization Problems 21

basis. Let V and W be two15 bi-orthogonal matrices of size C
nx×r, and

Q ∈ Cnx×nx be the weight matrix such that

WHQV = Ir

where Ir is the identity matrix of size r. In the first step of the algorithm,
x is projected on the space spanned by the columns of V i.e. x = V x̂. In
the second step, this projection is inserted in the dynamical system where
we have introduced the residual R of the state equations. At this stage, we
obtain for S {

R = V ˙̂x(t) − f(t, V x̂(t), u(t)),
ŷ(t) = g(t, V x̂(t), u(t)),

and for SLTI {
R = EV ˙̂x(t) − AV x̂(t) − B2u(t),
ŷ(t) = C2V x̂(t) + D2u(t).

The last step corresponds to a weak projection of the residual on the
space spanned by the columns of W i.e. WHQ R = 0r. Finally, we obtain
the reduced-order model Ŝ where

Ŝ :

{
f̂(t, x̂(t), u(t)) = WHQ f̂(t, V x̂(t), u(t)),
ĝ(t, x̂(t), u(t)) = g(t, V x̂(t), u(t)),

and the reduced-order model ŜLTI where

Â = WHQAV, B̂2 = WHQB2,

Ĉ2 = C2V, D̂2 = D2,

Ê = WHQEV.

For the choice of the matrices V and W , various possibilities exist for
the linear systems:

1. In the case of Krylov methods (Gugercin and Antoulas, 2006), it corre-
sponds to the projection on the Krylov subspace of the controllability
gramian coupled with an identification of the moments of the transfer
function.

2. For balanced realizations, this choice corresponds to the projection on
dominant modes of the controllability and observability gramians as
already discussed in section 2.2.2.4.

15When V �= W , it corresponds to an oblique projection, and when V ≡ W it is called

Galerkin projection or orthogonal projection.
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3. For instabilities, the projection is made on the global and adjoint
global modes (Schmid and Henningson, 2001; Barbagallo et al., 2009).

4. Finally, in the case of the Proper Orthogonal Decomposition (Lumley,
1967; Sirovich, 1987), it corresponds to the projection on the subspace
determined optimally with snapshots of the system (see the contribu-
tion by B. Noack et al. in this book).

For the non-linear systems, the situation is different because, until now,
there exists only the Proper Orthogonal Decomposition what explains its
intensive use in the past years.

3 Optimal control theory

3.1 Constrained optimization problems

3.1.1 Abstract description

All the constrained optimization problems appearing in fluid mechanics and
heat transfers (shape optimization, active flow control, optimal growth, con-
trol of thermal systems, . . . ) can be described mathematically by the fol-
lowing quantities16 (Gunzburger, 1997a, 2003):

state variables φ which describe the flow. Depending on the problem,
these variables might be mechanical or thermodynamic, for instance
velocity vectors, pressure, temperature, . . .

control parameters c. In practice, these variables occur as boundary con-
ditions of the state equations17, when the control is applied at the
boundaries of the domain, or directly as a source term in the state
equations if the control is distributed inside the domain (volume forc-
ing). In data assimilation (meteorology, oceanography) and for opti-
mal growth (see section 5) these control parameters intervene as initial
conditions. According to the application, these parameters might be
velocities prescribed at the boundaries (suction/blowing), heat flux or
temperature at a wall, or for a shape optimization problem (Moham-
madi and Pironneau, 2001), it might be variables allowing to describe

16To simplify the presentation, all the variables are here considered as scalars. However,

the method extends naturally to the case of vectorial variables. For instance, an optimal

control problem is solved for the Linear Quadratic Regulator approach in section 4, and

for the three-dimensional Navier-Stokes equations in Bewley et al. (2001) or El Shrif

(2008).
17Here, we use the traditional terminology in optimal control and call state equations,

the equations which govern the dynamics of the system. Other terminologies are primal

or direct equations.
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geometrically the shape of the boundary. In this last case, the control
parameters are rather called design variables.

a cost or objective functional J which describes a measure of the ob-
jectives we wish to achieve. It might be drag minimization, maximiza-
tion of lift or heat flux, stabilization of a temperature, flow targets,
. . . This functional J depends on the state variables φ and on the
control parameters c, i.e. J (φ, c).

physical constraints F which represent the evolution of the state vari-
ables φ in terms18 of the control parameters c with respect to the
physical laws. Mathematically, these constraints are noted:

F (φ, c) = 0.

In fluid mechanics, these constraints correspond generally to the Navier-
Stokes equations and their associate initial and boundary conditions.
If a problem of optimal disturbance is concerned then the initial condi-
tion is imposed as a constraint (see section 5). If the control is exerted
at the boundaries of the flow domain, the boundary condition can also
be included as constraint (see section 6 for an example). Moreover, we
will see in section 3.1.2 that an additional constraint must in general
be added so that the problem is well posed mathematically.

Finally, the constrained optimization problem can be stated in the fol-
lowing way:

determine the state variables φ and the control parameters c,
such that the objective functional J is optimal (minimum or
maximum according to the case) under the constraints F .

3.1.2 Ill-posed optimization problem and choice of the cost

functional

The choice of the cost functional J is central in an optimization problem.
From a mathematical point of view, the physical quantity to be optimized
is represented by

J = M

where M is an appropriate measure of any physical quantity of interest:
drag, lift, disturbance energy, . . . The choice of this cost functional is essen-
tial in practice so that the optimization problem is well posed. This choice

18Rigorously, it would be necessary to note the variables φ(c) because φ depend on the

control variables c via the constraints. However, to reduce the notations, we will note

the state variables simply as φ.
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is sometimes difficult to achieve. For instance, it is not obvious to know in
advance if it is better to choose as cost functional a measure of the drag to
minimize this quantity. In some cases (Bewley et al., 2001; El Shrif, 2008),
it seems that it is preferable to minimize the averaged kinetic energy of the
flow in order to minimize the drag. In addition, beyond the mathematical
difficulty that is raised, we can imagine that the implementation of the con-
trol will be eased if the cost functional is based on a relevant quantity for
the physics of the problem.

In general, there is no explicit relation between the objective to be
reached and the control variable. This can involve that the optimization
problem is ill-posed and that its solution is then divergent. To solve this
difficulty, the cost of the control should be limited19. Let Mc be a measure
of the cost of the control, this limitation can be done:

1. By adding an additional constraint to the physical constraints (F )

This constraint corresponds to a maximum value which should
not be exceeded by the control cost. Let (Mc)max be an arbitrary
positive constant, the problem is then equivalent to impose that Mc ≤
(Mc)max. In optimization, the inequality constraints make intervene
optimality conditions known as Karush-Kuhn-Tucker (Bonnans et al.,
2003) which are often delicate to take into account. For this reason,
it is generally preferred to retain equality type constraints which can
be imposed more easily using Lagrange multipliers (see section 3.2).
It will thus be sufficient to set an additional constraint of the type
Mc = Mu

c where Mu
c > 0 is a cost imposed by the user, to do not

have to change the nature of the optimization problem to be solved.
2. By modifying the cost functional J

A possible modification of the cost functional is to consider

J = M + �Mc

where � is a positive real constant whose value is fixed by the user
according to the importance given to the cost of the control. If the
value of the parameter � is low then it means that the cost of the
control is not a priority in the practical implementation (low costs of
control). On the contrary, if the value of � is high, then the cost of the
control is a priority (expensive control). A more thorough discussion
is given in section 4 for the LQR control.

19Apart from a mathematical justification, a limitation of the control cost is necessary

since from an economic point of view the ratio saving/cost is a determining factor.


