


Theory of Periodic Conjugate Heat Transfer



Mathematical Engineering

Series Editors:

Prof. Dr. Claus Hillermeier, Munich, Germany (volume editor)
Prof. Dr.-Ing. Johannes Huber, Erlangen, Germany
Prof. Dr. Albert Gilg, Munich, Germany
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Preface

The material presented in this book crowns my long-term activity in the field
of conjugate periodic heat transfer. Its first stage had passed under a scientific
supervision of my teacher Professor Labuntsov (1929–1992), since publication in
1977 of our first article and finishing in 1984 with publishing our book in Russian:
Labuntsov D.A., Zudin Y.B., Processes of Heat Transfer with Periodic Intensity.
This stage was marked by defense in 1980 of my doctoral thesis: Zudin Y.B.,
Analysis of Heat Transfer Processes with Periodic Intensity. The subsequent period
of interpreting the already gained results and accumulation of new knowledge had
taken 7 years. Since 1991, I started a new cycle of publications on this subject,
which was crowned in 2007 with the first edition of the present monograph. This
stage was also marked with my habilitation (Zudin Y.B., Approximate Theory of
Heat Transfer Processes with Periodic Intensity, 1996), as well as with fruitful
scientific collaboration with my respected German colleagues Prof. U. Grigull,
Prof. F. Mayinger, Prof. J. Straub, and Prof. T. Sattelmayer (TU München), Prof. W.
Roetzel (Uni BW Hamburg), Prof. J. Mitrovic (Uni Paderborn), Prof. K. Stephan,
Prof. M. Groll, and Prof. B. Weigand (Uni Stuttgart).

The objective of this monograph is to give an exhaustive answer for the question
of how thermophysical and geometrical parameters of a body affect heat transfer
characteristics under conditions of thermohydraulic pulsations. An applied objective
of this book is to develop a universal method for the calculation of the average heat
transfer coefficient for the periodic conjugate processes of heat transfer.

As a rule, it is possible to consider real “stationary” processes of heat transfer
to be stationary only on the average. Actually, periodic, quasi-periodic, and various
random fluctuations of parameters (velocities, pressure, temperatures, momentum
and energy fluxes, vapor content, interphase boundaries, etc.) around their average
values always exist in any type of fluid flow, except for purely laminar flows.
Owing to the conjugate nature of the interface “fluid flow–streamlined body,” both
fluctuation and average values of temperatures and heat fluxes on the heat transfer
surface generally depend on thermophysical and geometrical characteristics of the
heat transferring wall.
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viii Preface

In this connection, a principle question arises about the possible influence of
the material and the thickness of the wall on the key parameter of convective
heat transfer, namely, heat transfer coefficient. The facts of such an influence were
earlier noticed in experimental investigations of heat transfer at nucleate boiling,
dropwise condensation, as well as in some other cases. In these studies, heat transfer
coefficients determined as a ratio of the average heat flux on the surface and
the average temperature difference “wall-fluid” could differ noticeably for various
materials of the wall (and also for its different thicknesses).

In 1977, a concept of a true heat transfer coefficient was proposed for the first
time in the work of Labuntsov and Zudin. According to this concept, actual values
of the heat transfer coefficient (for each point of the heat transferring surface and at
each moment of time) are determined solely by hydrodynamic characteristics of the
fluid flow and consequently do not depend on parameters of the body. Fluctuations
of parameters occurring in the fluid flow will result in respective fluctuations of
the true heat transfer coefficient also independent of the material and thickness of
the wall. Then, from a solution of the heat conduction equation with a boundary
condition of the third kind, it is possible to find a temperature field in the body
(and, hence, on the heat transfer surface) and, as a result, to calculate the required
experimental heat transfer coefficient as a ratio of an average heat flux to an
average temperature difference. This value (determined in traditional heat transfer
experiments and used in applied calculations) should in general case depend on the
conjugation parameters.

A study of interrelations of the heat transfer coefficients averaged based on
different procedures (true and experimental) laid the foundation of the first edition
of this book. A fundamental result obtained in this book was that the average
experimental value of the heat transfer coefficient is always less than the average
true value of this parameter.

The first edition included the following seven chapters.
Chapter 1 presented a qualitative description of the method for investigations of

periodic conjugate convective–conductive problems “fluid flow–streamlined body.”
An analysis of physical processes representing heat transfer phenomena with
periodic fluctuations was also performed.

In Chap. 2, a boundary problem for the twodimensional unsteady heat conduction
equation with a periodic boundary condition of the third kind was analyzed. To
characterize the thermal effects of a solid body on the average heat transfer, a
concept of a factor of conjugation was introduced. It was shown that the quantitative
effect of the conjugation in the problem can be rather significant.

Chapter 3 represented a general solution design for a boundary problem for the
equation of heat conduction with a periodic boundary condition of the third kind.
Analytical solutions were obtained for the characteristic laws of variation of the
true heat transfer coefficient, namely, harmonic, inverse harmonic, stepwise, and
delta-like.

In Chap. 4, a universal algorithm of a general approximate solution of the prob-
lem was developed. On its basis, solutions were obtained for a series of problems at
different laws of periodic fluctuations of the true heat transfer coefficient.
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Chapter 5 dealt with conjugate periodic heat transfer for “complex” cases of
external heat supply: heat transfer at a contact either with environment or with a
second body. A generalized solution for the factor of conjugation for the bodies of
the “standard form” was obtained. A problem of conjugate heat transfer for a case
of bilateral periodic heat transfer was also investigated in this chapter.

In Chap. 6, an analysis was given for the cases of asymmetric and nonperiodic
fluctuations of the true heat transfer coefficient.

Chapter 7 included some applied problems of the periodic conjugate heat transfer
theory such as jet impingement onto a surface, dropwise condensation, and nucleate
boiling.

In Appendix A, proofs were presented of some properties of the two-dimensional
unsteady equation of heat conduction with a periodic boundary condition of the
third kind. Consequences of these proofs allowed establishing limiting values of the
factor of conjugation.

Appendix B represented a study of the eigenfunctions of the solution for the
two-dimensional unsteady equation of heat conduction obtained by the method of
separation of variables.

In Appendix C, the problem of convergence of infinite chain fractions was
considered. A generalization of the proof of the third theorem of Khinchin for the
case where the terms in the fraction possess a negative sign was obtained using the
method of mathematical induction.

In Appendix D, a proof of divergence of infinite series obtained in Chap. 3 for
the particular solution of the heat conduction equation was documented.

Appendix E dealt with an investigation of eigenfunctions of the heat conduction
equation solution for complex cases of the external heat supply considered in
Chap. 5.

The second edition, which includes (without any changes) the material of the first
edition, was completed with two additional chapters and two appendix.

Chapter 8 is devoted to an investigation into effects of the thermophysical
parameters and the channel wall thickness on hydrodynamic instability of the type
called “density waves.” The boundary of stability of fluid flow in a channel at
supercritical pressures was found analytically. As an application, the problem was
considered dealing with maintenance of effective functioning of the thermostatting
system for superconducting magnets.

In Chap. 9, an analytical method is outlined for heat transfer calculation in
turbulent channel flow at supercritical pressures. This method allows considering
effects of varying thermophysical properties of fluid on heat transfer coefficient
averaged over the period of turbulent pulsations.

Appendix F is devoted to phase transitions in the area of nanoscopic scales.
A periodic quantum mechanical model is offered for the process of homogeneous
nucleation.

Appendix G deals with determining one of the important parameters of periodic
two-phase flows, which is the rise velocity of the Taylor bubbles in round pipes.

I am deeply grateful to Prof. Wilfried Roetzel (Uni Bundeswehr Hamburg),
the meeting with whom in 1995 served as a starting point in planning this
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book and formation of its ideology. I used each subsequent stay in Germany for
fruitful discussions with Prof. Roetzel, which have substantially helped me in
the preparation of the book. In 2005, my collaborative work with Prof. Bernhard
Weigand (Uni Stuttgart) has begun who has actively supported my idea to write a
book and repeatedly invited me to visit the Institute of Aerospace Thermodynamics
to perform joint research. During our numerous discussions, Prof. Weigand has
made a number of useful comments and suggestions, which have considerably
improved the content of the book.

I am very much grateful to Dr. Habil. Claus E. Ascheron (Senior Editor, Physics,
Springer – Materials Science; Condensed Matter and Solid State Physics; Biological
and Medical Physics; Biophysics) for his keen interest to the publication of this book
and his effort toward its successful advancement on the book market.

I am also warmly thankful to Dr. Igor V. Shevchuk (MBtech Group GmbH & Co.
KGaA) for his very useful comments, which contributed much toward considerable
improvement of the scientific translation of the book manuscript into English.

Reading of the books of B. Weigand, “Analytical Methods for Heat Transfer
and Fluid Flow Problems,” 2004, and I.V. Shevchuk, “Convective Heat and Mass
Transfer in Rotating Disk Systems,” 2009, recently published by the Springer Verlag
helped me significantly in the selection of the new material for the second edition
of my book.

The publication of both the first and the second editions of the book would
have been impossible without the long-term financial support of my activity in
German universities (TU München, Uni Paderborn, Uni Stuttgart, Uni Bundeswehr
Hamburg) from the German Academic Exchange Service (DAAD), which I very
gratefully acknowledge. Being happy fivefold (!) grantee of the DAAD, I would
like to express my sincere gratitude to the people who have made it possible: Dr. W.
Trenn, Dr. P. Hiller, Dr. T. Prahl, Dr. G. Berghorn, Dr. H. Finken, and also to all
other DAAD employees both in Bonn and in Moscow.

I express my special gratitude to my wife Tatiana who always served me as
an invaluable moral support in my life-long scientific activity. For my academic
degree of Prof. Dr.-Ing. Habil. and also for the appearance of the first and the second
editions of my book, I am greatly obliged to my beloved spouse.

I dare to hope that the second edition of my book will be so favorably accepted
by readers, as the first one.

Stuttgart Y.B. Zudin
August, 2011
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Chapter 1
Introduction

1.1 Heat Transfer Processes Containing Periodic Oscillations

1.1.1 Oscillation Internal Structure of Convective
Heat Transfer Processes

Real stationary processes of heat transfer, as a rule, can be considered stationary
only on the average. Actually (except for the purely laminar cases), flows are
always subjected to various periodic, quasi-periodic, and other casual oscillations of
velocities, pressure, temperatures, momentum and energy fluxes, vapor content and
interphase boundaries about their average values. Such oscillations can be smooth
and periodic (wave flow of a liquid film or vapor, a flow of a fluctuating coolant
over a body), sharp and periodic (hydrodynamics and heat transfer at slug flow of a
two-phase media in a vertical pipe; nucleate and film boiling process), on can have
complex stochastic character (turbulent flows). Oscillations of parameters have in
some cases spatial nature, and in others they are temporal, and generally one can
say that the oscillations have mixed spatiotemporal character.

The theoretical base for studying instantly oscillations and at the same time
stationary on the average heat transfer processes are the unsteady differential
equations of momentum and energy transfer, which in the case of two-phase
systems can be notated for each of the phases separately and be supplemented
by transmission conditions (transmission conditions). An exhaustive solution of the
problem could be a comprehensive analysis with the purpose of a full description of
any particular fluid flow and heat transfer pattern with all its detailed characteristics,
including various fields of oscillations of its parameters.

However, at the time being such an approach cannot be realized in practice.
The problem of modeling turbulent flows [1] can serve as a vivid example. As
a rule at its theoretical analysis, Reynolds-averaged Navier–Stokes equations are
considered, which describe time-averaged quantities of fluctuating parameters, or
in other words turbulent fluxes of the momentum and energy. To provide a closed
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2 1 Introduction

description of the process, these correlations by means of various semiempirical
hypotheses are interrelated with time-averaged fields of velocities and enthalpies.
Such schematization results in the statement of a stationary problem with spatially
variable coefficients of viscosity and thermal conductivity. Therefore, as boundary
conditions here, it is possible to set only respective stationary conditions on the heat
transfer surface of such a type as, for example, “constant temperature,” “constant
heat flux.”

It is necessary to specially note that the replacement of the full “instant” model
description with the time-averaged one inevitably results in a loss of information on
the oscillations of fluid flow and heat transfer parameters (velocities, temperatures,
heat fluxes, pressure, friction) on a boundary surface. Thus, the theoretical basis
for an analysis of the interrelation between the temperature oscillations in the
flowing ambient medium and in the body is omitted from the consideration. And
generally, the problem of an account for possible influence of thermophysical
and geometrical parameters of a body on the heat transfer at such an approach
becomes physically senseless. For this reason, such a “laminarized” form of the
turbulent flow description is basically not capable of predicting and explaining the
wall effects on the heat transfer characteristics, even if these effects are observed
in practice. The problem becomes especially complicated at imposing external
oscillations on the periodic turbulent structure that takes place, in particular, flows
over aircraft and spacecraft. Unresolved problems of closing the Navier–Stokes
equations in combination with difficulties of numerical modeling make a problem
of detailed prediction of a temperature field in the flowing fluid very complicated.
In some cases, differences between the predicted and measured local “heat transfer
coefficient” (HTC) exceeds 100%.

In this connection, the direction in the simulation of turbulent flows based on
the use of the primary transient equations [2] represents significant interest. This
book represents results of numerical modeling of the turbulent flows in channels
subjected to external fields of oscillations (due to vortical generators, etc.). It is
shown that in this case an essentially anisotropic and three-dimensional flow pattern
emerges strongly different from that described by the early theories of turbulence
[1]. In the near-wall zone, secondary flows in the form of rotating “vortical streaks”
are induced that interact with the main flow. As a result, oscillations of the thermal
boundary layer thickness set on, leading to periodic enhancement or deterioration
of heat transfer. Strong anisotropy of the fluid flow pattern results in the necessity
of a radical revision of the existing theoretical methods of modeling the turbulent
flows. Hence, for example, the turbulent Prandtl number being in early theories of
turbulence [1] a constant of the order of unity (or, at the best, an indefinite scalar
quantity) becomes a tensor.

It is necessary to emphasize that all the mentioned difficulties are related to the
nonconjugated problem when the role of a wall is reduced only to maintenance of
a “boundary condition” (BC) on the surface between the flowing fluid and the solid
wall.
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1.1.2 Problem of Correct Averaging the Heat Transfer
Coefficients

The basic applied task of this book is the investigation into the effects of a body
(its thermophysical properties, linear dimensions, and geometrical configuration) on
the traditional HTC, measured in experiments and used in engineering calculations.
Processes of heat transfer are considered stationary on average and fluctuating
instantly. A new method for investigating the conjugate problem “fluid flow - body”
is presented. The method is based on a replacement of the complex mechanism of
oscillations of parameters in the flowing coolant by a simplified model employing a
varying “true heat transfer coefficient” specified on a heat transfer surface.

The essence of the developed method can be explained rather simply. Let
us assume that we have perfect devices measuring the instant local values of
temperature and heat fluxes at any point of the fluid and heated solid body. Then the
hypothetical experiment will allow finding the fields of temperatures and heat fluxes
and their oscillations in space and in time, as well as their average values and all
other characteristics. In particular, it is possible to present the values of temperatures
(exactly saying, temperature heads or loads, i.e., the temperatures counted from a
preset reference level) and heat fluxes on a heat transfer surface in the following
form:

# D h#i C O#; (1.1)

q D hqi C Oq; (1.2)

i.e., to write them as the sum of the averaged values and their temporal oscillations.
For the general case of spatiotemporal oscillations of characteristics of the process,
the operation of averaging is understood here as a determination of an average
with respect to time 
 and along the heat transferring surface (with respect to the
coordinate Z). The “true heat transfer coefficient” (THTC) is determined on the
basis of (1.1–1.2) according to Newton’s law of heat transfer [3, 4]:

h D q

#
: (1.3)

This parameter can always be presented as a sum of an averaged part and a
fluctuating additive:

h D hhi C Oh: (1.4)

It follows from here that the correct averaging of the HTC is as follows:

hhi D
D q
#

E
: (1.5)

Therefore we shall call parameter hhi an “averaged true heat transfer coefficient”
(ATHTC). The problem consists in the fact that the parameter hhi cannot be directly
used for applied calculations, since it contains initially the unknown information
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of oscillations O#; Oq. This fact becomes evident if (1.5) is rewritten with the help of
(1.1–1.2):

hhi D
*

hqi C Oq
h#i C O#

+
: (1.6)

The purpose of the heat transfer experiment is the measurement of averaged values
on averaged temperature h#i and a heat flux hqi on the surfaces of a body and
determination of the traditional HTC

hm D hqi
h#i : (1.7)

The parameter hm is fundamental for carrying out engineering calculations, design-
ing heat transfer equipment, composing thermal balances, etc. However, it is
necessary to point out that transition from the initial Newton’s law of heat transfer
(1.3) to the restricted (1.7) results in the loss of the information of the oscillations
of the temperature O# and the heat fluxes Oq on the wall.

Thus, it is logical to assume that the influence of the material and the wall
thickness of the body taking part in the heat transfer process on HTC hm uncovered
in experiments is caused by noninvariance of the value of hm with respect to the
Newton’s law of heat transfer. For this reason, we shall refer further to the parameter
hm as to an “experimental heat transfer coefficient” (EHTC).

Thus, we have two alternative procedures of averaging the HTC: true (1.5) and
experimental (1.7). The physical reason of the distinction between hhi and the hm

can be clarified with the help of the following considerations:

• Local values h#i and hqi on a surface where heat transfer takes place are formed
as a result of the thermal contact of the flowing fluid and the body.

• Under conditions of oscillations of the characteristics of the coolant, temperature
oscillations will penetrate inside the body.

• Owing to the conjugate nature of the heat transfer in the considered system, both
fluctuating O#; Oq and averaged h#i; hqi parameters on the heat transfer surface
depend on the thermophysical and geometrical characteristics of the body.

• The ATHTC hhi directly follows from Newton’s law of heat transfer (1.3) (which
is valid also for the unsteady processes) and consequently it is determined by
hydrodynamic conditions in the fluid flowing over the body.

• The EHTC hm by definition does not contain the information on oscillations O#; Oq,
and consequently it is in the general case a function of parameters of the interface
between fluid and solid wall.

• Aprioristic denying of dependence of the EHTC on material properties and wall
thickness is wrong, though under certain conditions quantitative effects of this
influence might be insignificant.

From the formal point of view, the aforementioned differences between the true
(1.5) and experimental (1.7) laws of averaging of the actual HTC is reduced to


