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PREFACE

Rational asymptotic methods developed in the fifties and sixties of

the last century have played an important role in theoretical physics,

mechanics and in particular in fluid mechanics. Among the most

powerful methods used in fluid mechanics are the method of matched

asymptotic expansions and multiple scales methods. Matched asymp-

totic expansions are based on the idea of Prandtl’s boundary-layer

theory. In case of high Reynolds number flows the flow field can

be approximated by an inviscid flow with the exception of a thin

boundary-layer along the wall where the viscosity has to be taken

into account. Both approximations have to match in an interme-

diate region. In some cases the inviscid flow and the viscous flow in

a sub-layer have to be determined simultaneously. Thus one speaks of

interacting boundary-layers. An introduction to triple deck problems

and recent applications to internal flows, external sub- or supersonic

flows, thermal flows and free surface flows will be presented.

Another fruitful application is the theory of separated laminar in-

compressible flows. Various examples of fluid flows involving sep-

aration will be considered, including self-induced separation of the

boundary-layer in supersonic gas flows, and incompressible flow sep-

aration at the leading edge of an aerofoil. A characteristic feature of

a multiple scales problem is that the solution exhibits almost periodic

structures whose properties vary on a large scale. Recently, multiple

scales methods have been applied to problems in meteorology. Thus

well established ad hoc approximations have been verified by applying

the method of multiple scales to the basic equations of fluid flow in

the atmosphere. It will be demonstrated how a large collection of well-

established models of theoretical meteorology can be recovered system-

atically, how new insight into scale interaction processes is gained,

and how the asymptotic analyses provide hints for the construction

of accurate and efficient numerical methods. The known limitations

of the approach are also discussed.

Many problems in fluid mechanics involve asymptotic expansions

in the form of power series. Such expansions necessarily fail to pro-

vide terms which are exponentially smaller than all terms in the se-

ries. Although small, these missing terms are often of physical im-

portance. How to find such exponentially small terms, using as the



main tool matched asymptotic expansions in the complex plane and
Borel summation will be discussed. The techniques will be developed
in the context of model problems related to the theory of weakly non-
local solitary waves which arise in the study of gravity-capillary waves
and also for internal waves.

This volume comprises the lecture notes of a course with the title
“Asymptotic Methods in Fluid Mechanics - Survey and Recent Ad-
vances” held at the Centre for Mechanical Sciences in Udine, Septem-
ber 21-25, 2009. Also included are contributed papers presented at a
workshop embedded in the course.

The organizer of the course thanks all lectures and participants
of the workshop for their valuable contributions and their coopera-
tion. My personal thanks are to former rector of CISM Prof. Wil-
helm Schneider who suggested this course and for his advice during
the preparation. Thanks also to the staff of CISM for the perfect
organization and the support in producing these lecture notes.

Herbert Steinrück
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Introduction to Matched Asymptotic
Expansions

Herbert Steinrück*

* Vienna University of Technology, Institute of Fluid Mechanics and Heat

Transfer, Vienna, Austria

Abstract The method of matched asymptotic expansions will be

presented by applying it to three examples showing the wide appli-

cability of the method.

1 Introduction

The governing equations describing a flow field are in general a set of non-
linear partial differential equations. Only in few situation exact solutions
mostly in the form of similarity solutions exist. Thus asymptotic expan-
sions with respect to an appropriate dimensionless parameter (e.g. Reynolds
number, Mach number, thickness ratio, ...) which tends to a limiting value
(zero or infinity) are sought. Let φ(x, ε) with x ∈ D ⊂ R3 be a function of
a variable x depending on a small, positive parameter ε with 0 < ε � 1.
We call

[φ](n) = δ1(ε)φ1(x) + δ2(ε)φ2(x) + · · ·+ δn(ε)φn(x) (1)

a n-term asymptotic series of φ with respect to ε� 1 if the gauge functions
δk(ε) form an asymptotic series, i.e. δk+1(ε) = o(δk(ε)) for k = 1, · · · , n− 1
and φ(x, ε) − [φ(n)] = o(δn(ε)).

Note a function f(ε) is called a small ‘o’ of the function g(ε), f(ε) =
o(g(ε)) if limε→0 f(ε)/g(ε) = 0 holds, see Van Dyke (1975). The expansion
(1) is called uniformly valid if there exist constants c1,...,cn independent of
x with ∣∣∣∣φ(x, ε) − [φ](m)

δm+1(ε)

∣∣∣∣ < cm, m = 1, ..., n. (2)

However, the solutions of many perturbation problems in fluid mechan-
ics do not permit an approximation by an asymptotic series of type (1).
Such problems are called singularly perturbed. Most of these problems are
characterized by two different (length) scales. For example consider the at-
tached high Reynolds number flow. A regular (outer) expansion fails near a
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solid surface and a local variable has to be introduced to describe the local
behavior near the wall and a local (inner) expansion of the flow field can
be found. To get a uniformly valid approximation of the entire flow region
both expansions have to match. Thus one speaks of matched asymptotic
expansion.

Boundary layers have been first introduced by Prandtl (1904) by explain-
ing the role of viscosity in large Reynolds number flows. As a mathemati-
cal tool the method of matched asymptotic expansions has been developed
systematically in between the 50s and 70s of the last century, see Kaplun
(1967), Lagerström and Van Dyke (1975), Fraenkel (1969)

Matched asymptotic expansions are used if a regular asymptotic expan-
sion fails near located singularities. Then the problem has to be rescaled
appropriately by using local variables before expanding its solution asymp-
totically. Both expansion have to agree in some overlap region, i.e. a region
where both expansions hold. We will demonstrate the method by consider-
ing three typical examples showing the wide applicability of the method.

Inviscid potential flow around a thin profile. The flow potential is
expanded with respect to a small aspect ratio of the profile. At first glance
one might think that a regular expansion will be sufficient. However, it
turns out that the tentative regular expansion is not uniformly valid near
the leading and the trailing edge. Thus local expansions turn out to be
necessary to obtain a uniformly valid solution, cf. Van Dyke (1975).

Flow between two rotating discs: Ekman-layer. A common rea-
son for the necessity to introduce a local expansion is that the perturbation
parameter multiplies the highest derivative of the unknown function in a dif-
ferential equation. As a consequence the solution of the limiting differential
equation cannot satisfy all required boundary conditions. By introducing a
local variable the small coefficient of the highest derivative can be rescaled
and the local expansion can satisfy all boundary conditions.

As a representative of that class of problems the flow between two ro-
tating discs in the limit of a small Ekman number will be discussed, see
Ungarish (1993).

Model equation: turbulent pipe flow. Here the asymptotic behav-
ior off an ordinary differential equation is analyzed modeling turbulent pipe
flow in the limit of large Reynolds numbers. The limiting differential equa-
tion is of the same order as the perturbed one. However, the coefficient
of the highest derivative vanishes only at the boundary where a boundary
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condition has to be satisfied. Thus again a local expansion turns out to be
necessary. The matching of the two expansions will be discussed and an
short introduction to turbulence asymptotics will be given.

2 Flow around a thin elliptical airfoil ε� 1

y = ±εT (x)ε

-ε-1 1
x

y

U∞ = 1
radius of curva-
ture at apex ε2

Figure 1. Elliptical thin airfoil

As a first example we consider the two-dimensional inviscid irrotational
flow past a thin airfoil. For simplicity we consider a symmetric profile in
a uniform free stream parallel to its center line. We place the x-axis of
a coordinate system at the centerline of the airfoil such that leading and
trailing edge are at x = ∓1 in dimensionless coordinates, respectively. The
contour of the profile is given by y = ±εT (x), where ε is the thickness of
the airfoil assumed to be small, see figure 1.

The dimensionless flow field can be described by a flow potential φ =
φ(x, y) where the dimensionless velocity components in x and y direction
are given by u = φx and v = φy . Thus φ is the solution of the potential
equation

φxx + φyy = 0 (3)

subject to the kinematic boundary condition at the surface of the airfoil

φy(x,±εT (x)) = ±εT ′(x)φx(x,±εT (x)), −1 < x < 1 (4)

and the incident flow condition

φ→ x, for x2 + y2 →∞. (5)

2.1 Asymptotic expansion of the flow potential (regular expan-
sion)

In order to find an asymptotic expansion of the flow potential with re-
spect to a small thickness parameter ε� 1 a regular expansion in terms of
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powers of ε is employed. In the limiting case ε = 0 the undisturbed parallel
flow (φ = x) is obtained. Thus we try to determine a regular expansion in
powers of the perturbation parameter ε

φ = x+ εφ1 + ε2φ2 + . . . , (6)

where φi are the solutions of the potential equation. In order to satisfy
the kinematic boundary condition derivatives of the flow potential have to
be evaluated at y = ±εT (x). However, the evaluation at y = εT (x) is
approximated by a Taylor expansion of the corresponding quantity around
(x, 0+), i.e.

φx(x, εT (x)) ∼ 1 + εφ1,x(x, 0+)+

+ ε2 (φ1,xy(x, 0+)T (x) + φ2,x(x, 0+)) + ...
(7)

Thus the expansion of the kinematic boundary conditions yields condi-
tions for the perturbation potentials φk

φk,y(x,±0) =
⎧⎨
⎩

±T ′(x), k = 1,
±(T (x)φ1,x(x, 0±))x, k = 2,
±(T (φ2,x + 1

2TT
′′))x, k = 3,

− 1 < x < 1 (8)

The incident flow condition requires that flow field vanishes for large x2 +
y2 →∞.

φi(x, y)→ 0, x, y →∞. (9)

Note the flow potential of a source at the origin of strength q is φ(q) =
q
2π ln

√
x2 + y2. The perturbation potentials φk can be obtained by placing

distributed sources along the centerline of the airfoil on the interval (−1, 1)
and one can verify that the corresponding velocity fields can be represented
by:

uk(x, y) = φk,x(x, y) =
1

π

∫ 1

−1

x− ξ

(x− ξ)2 + y2
φk,y(ξ, 0) dξ, (10a)

vk(x, y) = φk,y(x, y) =
1

π

∫ 1

−1

y

(x− ξ)2 + y2
φk,y(ξ, 0) dξ, (10b)

cf. Van Dyke (1975). Using the perturbation potentials φi the surface
velocity us has the expansion

us(x) =
√

φ2x(x,±εT (x)) + φ2y(x,±εT (x)) ∼

+εφ1(x, 0) + ε2
[
φ2x(x, 0) + T (x)T ′′(x) +

1

2
T ′2(x)

]
+ · · · .

(11)



Introduction to Matched Asymptotic Expansions 5

7E
�������
����$(�

8�
�������
����$(������

���(���
���$(������

=E
������
����$(������

7�
������������$(������

�A

�A�7

�A�D

�A�F

�A�B

�=

�=�7

�=�D

E= EA�> EA�B EA�C EA�F EA�6

us

ε = 0.3

x

Figure 2. Asymptotic expansion of surface velocity

To be more specific we consider an elliptical airfoil with the shape func-
tion T (x) =

√
1− x2. Using the notation of complex variables z = x + iy

the perturbation potentials φ1, φ2 are

φ1 = φ2 = 

(
z −

√
z2 − 1

)
, (12)

where 
z denotes the real part of a complex number z. In order to make
the square root unique the complex plane is sliced along the interval (-1,1).
We have φ1,x(x,±0) = φ2,x(x,±0) = ±1. Thus the expansion of the surface
velocity

us(x) ∼ 1 + ε− ε2

2

x2

1− x2
+ · · · (13)

turns out to be not uniformly valid. If x is close to the leading or trailing
edge, say |x+ 1| � ε2 the second order correction term will become larger
than the first, (see figure 2).

It is interesting to note that the flow potential of a source or sink flow
at the leading or trailing edge can be added to the perturbation potential
φ1. In particular the flow potential

φ1 = 

(
z −

√
z2 − 1− C

2π
ln

z + 1

z − 1
)

(14)

satisfies all required conditions for an arbitrary constant C.

2.2 Local expansion at leading/trailing edge

Since the expansion presented previously fails near the leading edge we
introduce local coordinates to describe the flow field there. A natural length
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scale near the leading edge is the radius of curvature of the profile, which
in case of the elliptical airfoil is ε2. Thus we define the local coordinates

X =
1 + x

ε2
, Y =

y

ε2
, (15)

and the local flow potential by Φ(X,Y ) by

φ(x, y) = φ(−1, 0) + ε2Φ(X,Y ). (16)

The local potential satisfies again the Laplace equation. The contour of
the airfoil written in local coordinates is given by

Y = ±
√
2X + ε2X2 ∼

√
2X

(
1 +

ε2

4
X + ...

)
. (17)

Thus the kinematic boundary condition in local coordinates reads

ΦY

(
X,
√
2X − ε2X2

)
− 1− ε2X√

2X − ε2X2
ΦX

(
X,
√
2X − ε2X2

)
= 0. (18)

We expand the local solution with respect to ε asymptotically

Φ(X,Y ) = Φ0 + εΦ1 + ε2Φ2 + ... (19)

and obtain for the first two terms the kinematic boundary condition

Φi,Y

(
X,
√
2X

)
− 1√

2X
Φi,X

(
X,
√
2X

)
= 0, i = 0, 1. (20)

This can be interpreted as the kinematic boundary condition for the inviscid
flow around a parabola. Due to symmetry the stagnation point is in the
apex of the parabola. The flow potential can be determined by conformal
mapping, cf. Betz (1964). It is given by

Φi = Uloc,i

(
Z − 1 +√1− 2Z

)
, i = 0, 1, (21)

where the velocities of the free stream Uloc,i with i = 1, 2 are unknown. They
have to be determined by matching with the outer (global) expansion. The
expansion of the local surface velocity is given by

Us ∼ (Uloc,0 + εUloc,1)

√
2X

1 + 2X
. (22)
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Uloc

X =
1 + x

ε2

Y =
y

ε2

Y = ±√2X + ε2X2

Figure 3. Airfoil in local coordinates

2.3 Matching procedure

We have now determined asymptotic expansions on two different length
scales: the outer (global) length scale and a local expansion around the lead-
ing edge of the profile, where the radius of curvature is the reference length
scale. Both expansions are not uniformly valid in the entire flow domain.
The basic hypothesis is that there exists (asymptotically) an overlap where
both expansions are valid. Thus we take the outer (global) expansion and
rewrite it in the inner (local) variable. For the matching procedure we use
the velocity field instead of the flow potential.

We introduce an intermediate variable ξ(ε) such that

z(ε) = −1 + ε2ξ(ε)→ −1, Z(ε) = ξ(ε)→∞ as ε→ 0, (23)

and insert it into the global and local expansion, respectively.
The outer expansion of the velocity field in the overlap region is:

φ′ ∼ 1− ε
z√

z2 − 1 +
C

2π

(
1

1 + z
− 1

z − 1
)
· · · ∼ (24)

1 + ε

(
1− −1 + ε2ξ√

−2ε2ξ + ε4ξ4
+

C

ε2ξ

)
∼ 1 + ε+

1√−2ξ +
C

εξ
. (25)

The local expansion of the velocity field in the overlap region is given by

Φ′ ∼ (Uloc,0 + εUloc,1)

(
1 +

1√
1− 2Z

)

∼ Uloc,0

(
1 +

1√−2ξ
)
+ εUloc,1.

(26)
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Thus both expansions agree in the overlap region if

Uloc,0 = Uloc,1 = 0, and C = 0 (27)

holds.
Van Dyke (1975) has formalized the matching procedure in the match-

ing principle. Fraenkel (1969) discussed criteria on the inner and outer
expansion for the validity of the matching principle. For example when the
gauge functions in the outer and inner expansion are powers of the expan-
sion parameter, which is defined as the ratio of the scales of the inner and
outer variable, the matching principle holds. Problems may arise when the
gauge functions are a combination of powers and logarithmic terms of the
perturbation parameter.

Matching principle: n-terms of the outer expansion rewritten in the
inner variable and expanded into m terms must agree with m terms of the
inner expansion rewritten in the outer variable and expanded into n terms.

[[
φ
](n)
out

](m)

in

=

[[
φ
](m)

in

](n)
out

. (28)

We demonstrate the Matching Principle at the surface velocity of a thin
airfoil. We start with the 3 term outer expansion and rewrite it in the local
(inner) variables

[us]
(3)
out = 1 + ε− ε2

2

x2

1− x2
= 1 + ε− 1

X

(−1 + ε2X)2

2− ε2X
. (29)

Expanding the above expression into two terms yields

[[
us

](2)
out

](3)
in

= 1− 1

4X
+ ε. (30)

On the other hand two terms of the inner expansion rewritten in the outer
variables gives

[[
us

](2)
in

](2)
out

=

[
(1 + ε)

√
2X

1 + 2X

](2)
out

= 1 + ε− ε2

4(1 + x)
. (31)

Thus both expressions agree.
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2.4 Composite approximation

In order to get a uniformly valid approximation one has to combine the
inner and outer expansion. This can be done by adding both expansions.
Doing so the overlap region is represented twice. Thus the common part of
both expansion has to be subtracted.

us ∼ [us](2)in + [us]
(3)
out −

[[
φ
](3)
out

](3)
in

= (32)

= (1 + ε)

√
2X

1 + 2X
− ε2

2

x2

1− x2
+

1

4X
.

In figure 2 the outer, the inner expansion and the composite approxima-
tion of the surface velocity are shown for ε = 0.3 .

3 Flow between rotating discs - Ekman layers

In many applications local expansions have to be introduced since the so-
lution of the limiting problem cannot satisfy all boundary conditions. Of-
ten this is due the fact that the small perturbation parameters multiplies
the highest derivative of the unknown function in the governing differential
equation. As a representative example we study here the incompressible flow
between two infinite parallel discs, which rotate coaxially but at different
speeds in the limit of a small Ekman number.

2L̃

Ω̃− ω̃

Ω̃ + ω̃

ũ

r̃

z̃

Ekman-layers

Figure 4. Flow between two coaxially rotating discs

The distance between the two discs is 2L̃. Here and in the following
we denote dimensional quantities with a tilde. The upper disc rotates with
speed Ω̃− ω̃ and the lower with Ω̃ + ω̃. We choose a cylindrical coordinate
system with the axis of rotation as the z-axis and its origin in the mid-
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dle between the two plates. The fluid between the discs is assumed to be
incompressible and its kinematic viscosity ν̃ to be constant.

Thus two independent dimensionless group can be formed: The Ekman
number Ek = ν̃/Ω̃L̃2 and the Rossby number Ro = ω̃/Ω̃. If the Rossby
number is zero both discs rotate at the same angular speed. In that case the
fluid between the two discs would do the same. Thus the Rossby number is
a measure of the deviation of the solid body rotation of the fluid. Here we
will assume that the Rossby number is small.

The Ekman number can be interpreted as the reciprocal value of a
Reynolds number based on the reference velocity Ω̃L̃. Here we are interested
in the limit of small Ekman numbers.

The governing Navier-Stokes equation written in cylindrical coordinates
can be found in Schlichting (2000). We use the dimensionless vertical coor-
dinate Z = z̃

L̃
and introduce the similarity ansatz

ũ = r̃ω̃U(Z), ṽ = r̃Ω̃ + r̃ω̃V (Z), w̃ = L̃ω̃W (Z), (33a)

p̃ =
1

2
ρ̃Ω̃2r̃2 +

1

2
ρ̃Ω̃ω̃r̃2A+ ρ̃Ω̃ω̃L̃2B(Z). (33b)

Thus the Navier-Stokes equation reduce to a set of nonlinear ordinary dif-
ferential equations for the secondary flow induced by the difference of the
angular velocities.

Ro (U2 − V 2 +WUZ) = 2V −A+ Ek UZZ , (34a)

Ro (2UV +WVZ) =− 2U + Ek VZZ , (34b)

RoWWZ = −BZ + Ek WZZ , (34c)

2U +WZ = 0. (34d)

At the two discs the no slip boundary conditions have to be satisfied.

U(±1) = 0, V (±1) = ∓1, W (±1) = 0. (35)

These are a set of ordinary differential equations for the velocity profiles
U , V , W , the pressure profile B and the constant A. At first glance one
might think that the six no-slip boundary conditions are not enough. But
we have to consider equation (34a), (34b) as second order equations for U
and V , respectively. The continuity equation (34d) can be considered as
first order equation for the vertical velocity profile W and equation (34c)
can be considered as an algebraic equation for the vertical pressure gradient
BZ . Thus in total six boundary conditions are needed to determine U , V ,
W , BZ and A .
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Assuming a small difference in the speeds of rotation of the two discs
(small Rossby number Ro) we can neglect the nonlinear terms and obtain
a linear set of ordinary differential equations with constant coefficients.

EkUZZ = A− 2V, Ek VZZ = 2U, WZ − 2U, BZ = EkWZZ . (36)

We remark that for positive Ro-numbers the solution can be expanded into
a regular power series with respect to powers of Ro.

3.1 Small Ekman numbers

Of course the set of ordinary differential equations (36) can be solved an-
alytically. Here we want to demonstrate how to find an asymptotic solution
in the limit Ek → 0.

3.2 Core region

We expand the constant A = A0+EkαA1+... and the solution (U, V,W )
in the core region into powers of the Ekman number Ek⎛

⎝ U(Z;Ek)
V (Z;Ek)
W (Z;Ek)

⎞
⎠ =

⎛
⎝ Ū0(Z)

V̄0(Z)
W̄0(Z)

⎞
⎠+ Ekα

⎛
⎝ Ū1(Z)

V̄1(Z)
W̄1(Z)

⎞
⎠+ .... (37)

and insert it into (36). Comparing like powers we obtain

Ūi = 0, V̄i =
Ai

2
, W̄i =Wi, i = 0, 1. (38)

However, the constants A0, A1, W0 and W1 remain undetermined yet. Un-
fortunately (38) cannot satisfy all boundary conditions for V and W .

3.3 Boundary layers

Thus we expect that the solution will vary rapidly near the boundary
in order to satisfy the boundary conditions. In order to capture this rapid
variation we introduce local variables near the boundaries at Z = ±1.

η =
1− Z

Ekβ
, ζ =

1 + Z

Ekβ
(39)

The independent variable will be stretched with the factor Ekβ . The expo-
nent β will be determined appropriately later.

Setting U(Z) = Û(η) and similarly V and W and inserting into (36) we
obtain the differential equations describing the local behavior of the flow
near the lower disc.

Ek1−2βÛ ′′ = A0 − 2V̂ , Ek1−2β V̂ ′′ = 2Û , Ek−βŴ ′ = ∓2Û . (40)
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We remark that for the local behavior near the upper disc we obtain a sim-
ilar differential equation. Only the sign in front of Ŵ ′ has to be changed.
Inspecting the local differential equation and setting Ek = 0 we see imme-
diately that a nontrivial differential equation is obtained if β = 1/2. Thus
we expand⎛

⎝ U
V
W

⎞
⎠ ∼

⎛
⎝ Û0(ζ)

V̂0(ζ)

Ŵ0(ζ)

⎞
⎠+

√
Ek

⎛
⎝ Û1(ζ)

V̂1(ζ)

Ŵ1(ζ)

⎞
⎠+ · · · . (41)

From the boundary condition at the lower disc (Z = −1) we obtain the
boundary condition for the local expansion

Û0(0) = Û1(0), V̂0(0) = 1, V̂1(0) = 0, Ŵ0(0) = Ŵ1(0). (42)

Inserting the expansion (41) into (40) and after some elementary manipu-
lations we obtain a fourth-order differential equation for V̇0

V̂
(iv)
0 + 4V̂0 = 2A0, V̂0(0) = 1, V̂ ′′0 (0) = 0, (43)

with the solution

V̂0(ξ) =
A0

2
+

(
1− A0

2

)
e−ξ cos ξ + c1 sinh ξ cos ξ + c2 cosh ξ sin ξ. (44)

For the radial velocity component we obtain from Û0 = − 1
2 V̂
′′

0

Û0(ξ) =

(
1− A0

2

)
e−ξ sin ξ − 2c1 cosh ξ sin ξ + 2c2 sinh ξ cos ξ (45)

and for the vertical component Ŵ0 = 0 and

Ŵ1(ξ) =

(
1− A0

2

)
[1− e−ξ(sin ξ + cos ξ)]− (46)

c1 − c2
2

sinh ξ sin ξ − c1 + c2
2

(cosh ξ cos ξ − 1)
follows.

3.4 Matching

Applying the matching principle yields that all quantities in the overlap
region between the core layer and the boundary layer have to be constant.
Thus we conclude that c1 = c2 = 0. Furthermore we obtain

Ū0 = 0, W̄0 = −1 + A0

2
. (47)
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Figure 5. Velocity profiles between two rotating discs (solution of differen-
tial eq. (33)) for Ek = 0.1, 0.01, 0.001 and Ro = 0, 1.
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The analysis of the boundary layer at Z = 1 follows the same lines as
indicated above. Only the sign in front of the first derivatives and in the
boundary condition for the azimuthal velocity V has to be changed.

After matching with the upper layer with the core region we obtain

Ū0 = 0, W̄0 = −1− A0

2
. (48)

Thus we conclude that A0 = 0 and we have determined all leading order
terms of the asymptotic expansion of the velocity profile.

Combining the expansion of the core region with that of the Ekman-
layers we obtain the uniformly valid approximation.

U ∼ e−ξ sin ξ − e−η sin η, V ∼ e−ξ cos ξ − e−η cos η, (49a)

W ∼
√
Ek

[−1 + e−ξ(sin ξ + cos ξ) + e−η(sin η + cos η)
]
. (49b)

In figure 5 numerical solutions of the similarity equations (33) are shown for
different Ekman- and Rossby numbers. As expected, the velocity profiles
exhibit Ekman-layers near the rotating walls.

4 Model equation for fully developed turbulent

channel flow

As the third example of matched asymptotic expansions we will study the
fully developed turbulent channel flow in the limit of large Reynolds num-
bers. We expect that the reader is familiar with the basic terminology in
turbulent flows, namely the Reynolds decomposition of the flow and pressure
field into mean flow, mean pressure and fluctuating velocities and pressure,
respectively.

Assuming a fully developed flow, i.e. all averaged flow quantities do not
depend on the coordinate x̃ in flow direction the mean velocity ũ and the
shear stress τ̃ are function of the lateral coordinate ỹ only.

The momentum balance yields an equilibrium between the pressure gra-
dient dp̃/dx̃ and the ỹ-derivative of the shear stress τ̃

0 = − dp̃
dx̃

+
dτ̃

dỹ
. (50)

The averaged shear stress τ̃ is the sum of the Reynolds shear stress τ̃t =
−ρ̃(ũ′ṽ′) and the viscous stress

τ̃ = τ̃t + μ̃
dũ

dỹ
. (51)
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At the channel wall ỹ = 0 the no slip boundary condition ũ = 0 holds and at
the centerline ỹ = d̃ due to symmetry the shear stress τ̃ vanishes. Here we
consider the center line velocity ũc as a given quantity and want to determine
the velocity profile ũ = ũ(ỹ) and the pressure gradient, respectively. A more
physical boundary condition is that the mean velocity (or volume flux) is
prescribed, but for the sake of simplicity of the analysis we prescribe here
the center line velocity.

In order to close the problem, a relation between the mean flow ũ or
its derivatives and the turbulent shear stress is missing. There is a vast
literature and several approaches how such a closure can be accomplished.
We assume here a simple turbulence model for wall bounded shear flows,
namely the mixing length model

τ̃t = ρ̃l̃2
∣∣∣∣ dũdỹ

∣∣∣∣ dũdỹ . (52)

In case of a channel flow an expression for the mixing length l̃ = l̃(ỹ) = d̃l(y)
as a function of the dimensionless distance y = ỹ/l̃ from the wall can be
found in Schlichting (2000)

l(y) = c0 −
(
2c0 − κ

2

)
(1− y)2 −

(κ
2
− c0

)
(1− y)4 . (53)

Note that the mixing length l̃ vanishes at the wall ỹ = 0 and that
l(y) ∼ κy + l2y

2/2 +O(y3) for y � 1 holds.
We introduce dimensionless variables by referring the velocity to the

center line velocity ũc, the shear stress to the double stagnation pressure
ρ̃ũ2c , the unknown pressure gradient to ρ̃ũ2c/d̃.

We define

γ2 = − d̃

ρ̃ũ2c

dp̃

dx̃
=

τ̃w
ρ̃ũ2c

=
ũ2τ
ũ2c

, ε =
1

Re
=

μ̃

ρ̃ũcd̃
, (54)

where we have made use of the force balance −dp̃/dx̃ = τ̃w/d̃ for a fully
developed flow and the definition of the wall shear stress velocity ũτ =√

τ̃w/ρ̃ with τ̃w denoting the wall shear stress. The dimensionless equations
reduce to the stress balance

0 = γ2 +
dτ

dy
, (55)

and stress relation

τ = ε
du

dy
+ l(y)2

(
du

dy

)2

, (56)
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subject to the boundary conditions

u(0) = 0, u(1) = 1, τ(1) = 0. (57)

Integration of the momentum balance yields

τ(y) = γ2(1 − y). (58)

and it remains to solve the first order ordinary differential equation (56) for
the velocity profile u and the dimensionless wall shear stress (or negative
pressure gradient) γ2.

4.1 Defect Layer

We expand the solution with respect to small values of ε (large Reynolds
numbers). However, we also have to determine γ whose order of magnitude
as a function of ε is not obvious. We anticipate that γ = o(1) as ε → 0.
From the stress relation we deduce that du/dy = O(γ). Thus we expand u

u(y, ε) ∼ u
(D)
0 (y) + γ(ε)u

(D)
1 (y) + εu

(D)
2 (y). (59)

Inserting into the stress relation we obtain that u
(D)
0 is a constant. However,

we have two contradicting boundary conditions to determine u
(D)
0 . For the

next order term u
(D)
1 we obtain from the stress relation

1− y = l(y)2

(
du

(D)
1

dy

)2

. (60)

Integration yields

u
(D)
1 (y) =

1

κ
ln y + F (D)(y) + u

(D)
1 (1), (61)

where

F (D)(y) =

∫ y

1

(√
1− y′

l(y′)
− 1

κy′

)
dy′ (62)

is a smooth bounded function of y on the interval (0, 1).

Now it is obvious to see that u
(D)
1 is smooth at the centerline y = 1 and

thus u
(D)
0 = 1 and u

(D)
1 (1) = 0. The velocity profile deviates only by a

small velocity defect of order γ from its maximum value at the center line.
Therefore this layer is called defect layer. Near the wall y = 0 the velocity

component u
(D)
1 (y) is singular. Its asymptotic behavior is given by

u
(D)
1 (y) ∼ 1

κ
ln y+CD− κ+ l2

2κ2
y, with CD = F (D)(0) as y → 0. (63)
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For the term of order ε we obtain the equation

0 =
du

(D)
1

dy
+ 2l2(y)

du
(D)
1

dy

du
(D)
2

dy
. (64)

Integration yields

u
(D)
2 = −

∫ y

1

dy

2l2(y)
∼ 1

2κ2y
+

l2
2κ3

ln y + CD,2 + · · · (65)

with l2 = l′′(0).

4.2 Viscous wall layer

At the wall y = 0 the no slip boundary condition cannot be satisfied by
the defect expansion (59). Thus we introduce a local variable η

u = γu
(v)
1 (η) + γσu

(v)
2 (η) + · · · , η =

y

σ(ε)
(66)

with a stretching σ(ε) which will be determined appropriately. Inserting
yields

1 =
du

(v)
1

dη
+ κ2η2

(
du

(v)
1

dη

)2

, u
(v)
1 (0) = 0, (67)

−η − 2l2κη3
(
du

(v)
1

dη

)2

=
du

(v)
2

dη
+ 2κ2η2

du
(v)
1

dη

du
(v)
2

dη
, u

(v)
2 (0) = 0, (68)

with σ(ε)γ(ε) = ε. Integration of (67) yields

u
(v)
1 (η) =

1

κ
ln η +

1

κ
ln
(
2κ+

√
4κ2 + 1/η2

)
. (69)

In order to match the viscous layer to the defect layer we consider the

asymptotic behavior of u
(v)
1 (η) and u

(v)
2 (η) for η →∞.

du
(v)
1

dη
∼ 1

κη
− 1

2κ2η2
+

1

8κ3η3
+ · · · , (70a)

u
(v)
1 (η) =

1

κ
ln η + CV +

1

2κ2η
− 1

16κ2η2
+ · · · ,

with CV =
1

κ
(ln 4κ− 1)

(70b)
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du
(v)
2

dη
= −

−η − κl′′η3(
du(v)1
dη

)2

1 + 2κ2η2
du(v)1
dη

∼ − 1

2κ
− l2
2κ2

+
l2
2κ3η

− 3l2
8κ4η2

(70c)

u
(v)
2 (η) ∼ −

(
1

2κ
+

l2
2κ2

)
η + CV,2 +

l2
2κ3

ln η +
3l2
16κ4η

, (70d)

where CV,2 is an appropriate constant.

4.3 Matching

Finally it remains to match the velocity profile of the viscous layer
with that of the defect layer. Applying the matching principle we have
to care when counting the number of terms in the asymptotic expansions.
In Fraenkel (1969) it had been shown that the Van Dykes matching princi-
ple is still valid when the asymptotic expansion contain besides powers of
the perturbation parameter products of powers of ε and and powers of ln ε.
Than all logarithmic term multiplied by the same power of ε have to be
considered as one term.

In the present example it will turn out that γ(ε) ∼ O(1/ ln(1/ε)). Thus

the two term expansion of the defect layer is 1+ γU
(D)
1 + εu

(D)
2 . Expanding

it in the viscous layer variable into two terms and using γσ = ε we obtain

[
[u]

(2)
D

](2)
V
=
[
1 + γu

(D)
1 + εu

(D)
2

](2)
V
=

= 1 + γ

(
1

κ
lnσ +

1

κ
ln η + CD +

1

2κ2
1

η

)
+

+ε

(
CD,2 − κ+ l2

2κ2
η +

l2
2κ3

ln η +
l2
2κ3

lnσ

)
.

(71)

Taking two terms of the inner (viscous)-layer expansion γu
(v)
1 + γσu

(v)
2 ,

rewriting it in the outer variables and expanding it into two term yields[
[u]

(2)
V

](2)
D
=
[
γu

(v)
1 + γσu

(v)
2

](2)
D
=

= γ

(
1

κ
ln y + CV − 1

κ
lnσ − κ+ l2

2κ2
y

)
+

+γσ

(
CV,2 +

l2
2κ3

ln y − σ

2κ3
lnσ +

1

2κ2y

)
.

(72)
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Both expressions agree if the matching condition

1

γ
= − 1

κ
lnσ + CV − CD − σ

(
l2
2κ3

lnσ + CD,2 − CV,2

)
(73)

is satisfied. Taking only the first order terms of both expansions the well
known friction law

1

γ
=
1

κ
ln

γ

ε
+ CV − CD (74)

is obtained. It can be interpreted as a relation between the dimensionless
wall shear stress γ2 and the Reynolds number ε−1.
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Figure 6. solution of model problem and viscous and defect layer approx-
imation for ε = 10−4

In figure 6 velocity profile as the solution of the force balance with the
mixing length model (53) for ε = 10−4, the approximation in the viscous
sub-layer and the defect layer is shown in a logarithmic plot. It can be clearly
seen that in the overlap region (here from 0.02 to 0.2) viscous and defect
expansion agree. In the overlap region both expansions can be represented
by a logarithmic velocity profile.

4.4 Turbulence asymptotics

Here we have considered a very simple turbulent shear flow and have
made used of a simple turbulence model to reveal the asymptotic structure
of flows near the wall. However, the weak point of this approach is the
assumption of a turbulence model.

The traditional approach for the limit of large Reynolds numbers is that
one considers the shear rate in the overlap region of the viscous and the
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defect layer. From dimensional analysis one obtains

ỹ

ũτ

dũ

dỹ
= Φ(y, y+), with y+ =

ỹũτ
ν̃

, y =
ỹ

d̃
. (75)

Note that y+/y = ũτ d̃/ν̃ = Reτ . To get the behavior of Φ in the overlap
region we have to consider the double limit y+ → ∞, y → 0. Following
von Karman (1930) we assume that this limit exists and its value is the
reciprocal value of the von Karman constant,

lim
y+→∞,y→0

Φ(y, y+) = Φ(∞, 0) =
1

κ
. (76)

Integration of (76) yields the logarithmic velocity profile in the overlap re-
gion. We emphasize that the existence of the limit (76) from a theoretical
point of view is a nontrivial assumption (similarity of the first kind, see
Barenblatt (1996). However, the logarithmic law, if interpreted correctly,
is in excellent agreement with measured velocity profiles. Thus it can be
considered as an empirical fact. On the other hand there are authors , e. g.
Barenblatt (1996), who question the logarithmic law. Barenblatt (1996)
considers that the limit (76) does not exist, but that the function Φ is a
sophisticated power function of the Reynolds number (similarity of the sec-
ond kind). Instead of the logarithmic velocity profile these authors obtain
a power-law with an Reynolds-number dependent exponent. Although ac-
cording to Barenblatt (1996) the power law seems to reproduce some data
even better than the log-law it is a dead end from the asymptotic point of
view since it does not comply with the requirements of a rational asymptotic
expansion.

In modern papers concerning turbulence asymptotics the order of argu-
ments is reversed, see Walker (1998), Kluwick and Scheichl (2009). Usually
the dimensionless wall shear stress velocity γ = uτ/Uref is considered as
a small perturbation parameter and the existence of a viscous sub-layer
together with the log-law in the overlap region is postulated.

5 Conclusions

We have given an introduction to the method of matched asymptotic expan-
sion by analyzing three different problems of fluid mechanics. Characteristic
to all examples is the appearance of different length scales and that a uni-
formly valid asymptotic approximation can be constructed employing the
matching principle.
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Th. von Karman. Mechanische Ähnlichkeit und Turbulenz. Ges. Wiss.

Göttingen, Math.-Phys. Kl., pages 58–76, 1930.
J. D. A. Walker. Turbulent boundary layers ii: Further developments. In
A. Kluwick, editor, Recent Advances in Boundary Layer Therory, volume
390 of CISM Courses and Lectures, pages 145–230. Springer, 1998.



Asymptotic Methods For PDE Problems In
Fluid Mechanics and Related Systems With

Strong Localized Perturbations In
Two-Dimensional Domains

Michael J. Ward*‡ and Mary-Catherine Kropinski†‡

* Department of Mathematics University of British Columbia, Vancouver, B.C.,

Canada
† Department of Mathematics, Simon Fraser University, Burnaby, B.C., Canada

1 Introduction

The method of matched asymptotic expansions is a powerful systematic an-
alytical method for asymptotically calculating solutions to singularly per-
turbed PDE problems. It has been successfully used in a wide variety
of applications (cf. Kevorkian and Cole (1993), Lagerstrom (1988), Dyke
(1975)). However, there are certain special classes of problems where this
method has some apparent limitations.

In particular, for singular perturbation PDE problems leading to infinite
logarithmic series in powers of ν = −1/ log ε, where ε is a small positive pa-
rameter, it is well-known that this method may be of only limited practical
use in approximating the exact solution accurately. This difficulty stems
from the fact that ν → 0 very slowly as ε decreases. Therefore, unless
many coefficients in the infinite logarithmic series can be obtained analyti-
cally, the resulting low order truncation of this series will typically not be
very accurate unless ε is very small. Singular perturbation problems in-
volving infinite logarithmic expansions arise in many areas of application
in two-dimensional spatial domains including, low Reynolds number fluid
flow past bodies of cylindrical cross-section, low Peclet number convection-
diffusion problems with localized obstacles, and the calculation of the mean
first passage time for Brownian motion in the presence of small traps, etc.

In this article we survey consider various singularly perturbed PDE prob-
lems in two-dimensional spatial domains where hybrid asymptotic-numerical
methods have been formulated and implemented to effectively ‘sum’ infinite
logarithmic expansions. Some of the problems considered herein directly re-
late to fluid mechanics, whereas other problems arise in different scientific
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contexts. One primary goal of this chapter is to highlight how a common
analytical framework can be used to treat a diverse class of problems having
strong localized perturbations in two-dimensional domains.

2 Infinite Logarithmic Expansions: Simple Pipe Flow

We first consider the simple model problem of Titcombe and Ward (1999)
to illustrate some main ideas for treating PDE problems with infinite log-
arithmic expansions. We consider steady, incompressible, laminar flow in
a straight pipe containing a thin core. Both the pipe and the core have
a constant cross-section of arbitrary shape, and thus the problem is two-
dimensional. With these assumptions, the pipe flow is unidirectional and
the velocity component w in the axial direction satisfies (cf. Ward-Smith
(1980))

�w = −β , x ∈ Ω\Ωε , (1a)

w = 0 , x ∈ ∂Ω , (1b)

w = 0 , x ∈ ∂Ωε . (1c)

Here Ω ∈ R
2 is the dimensionless pipe cross-section and Ωε is the cross-

section of the thin core. We assume that Ωε has radius O(ε) and that Ωε →
x0 uniformly as ε → 0, where x0 ∈ Ω. We denote the scaled subdomain
that results from an O(ε−1) magnification of the length scale of Ωε by
Ω1 ≡ ε−1Ωε. In (1a), β is defined in terms of the dynamic viscosity μ of
the fluid and the constant pressure gradient dp/dz along the channel by
β ≡ −μ−1dp/dz. In terms of w, the mean flow velocity w̄ is defined by

w̄ ≡ 1

AΩ

∫
Ω\Ωε

w dx . (2)

Here AΩ is the cross-sectional area of the pipe-core geometry. For laminar
flow in pipes of non-circular cross-section, with or without cores, the friction
coefficient f is expressed in terms of w̄ by f ≡ −L(dp/dz)/(2ρw̄2) (cf. Ward-
Smith (1980)). As a remark, the Reynolds number is defined by Re ≡
w̄Lρ/μ, where ρ is the density of the fluid. Laminar flow occurs for Reynolds
numbers in the approximate range 0 < Re < 2000. In the definition of Re,
L is a characteristic diameter defined by L = 4AΩ/PΩ, where PΩ is the
wetted perimeter of the pipe and the core.

The asymptotic solution to (1) is constructed in two different regions:
an outer region defined at an O(1) distance from the perturbing core, and
an inner region defined in an O(ε) neighborhood of the thin core Ωε. The
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analysis below will show how to calculate the sum of all the logarithmic
terms for w in in the limit ε→ 0 of small core radius.

In the outer region we expand the solution to (1) as

w(x; ε) =W0(x; ν) + σ(ε)W1(x; ν) + · · · . (3)

Here ν = O(1/ log ε) is a gauge function to be chosen, and we assume that
σ � νk for any k > 0 as ε → 0. Thus, W0 contains all of the logarithmic
terms in the expansion. Substituting (3) into (1a) and (1b), and letting
Ωε → x0 as ε→ 0, we get that W0 satisfies

�W0 = −β , x ∈ Ω\{x0} , (4a)

W0 = 0 , x ∈ ∂Ω , (4b)

W0 is singular as x→ x0 . (4c)

The matching of the outer and inner expansions will determine a singularity
behavior for W0 as x→ x0.

In the inner region near Ωε we introduce the inner variables

y = ε−1(x− x0) , v(y; ε) =W (x0 + εy; ε) . (5)

If we naively assume that v = O(1) in the inner region, we obtain the
leading-order problem for v that �yv = 0 outside Ω1, with v = 0 on ∂Ω1

and v → W0(x0) as |y| → ∞, where �y denotes the Laplacian in the y
variable. This far-field condition as |y| → ∞ is obtained by matching v to
the outer solution. However, in two-dimensions there is no solution to this
problem since the Green’s function for the Laplacian grows logarithmically
at infinity. To overcome this difficulty, we require that v = O(ν) in the
inner region and we allow v to be logarithmically unbounded as |y| → ∞.
Therefore, we expand v as

v(y; ε) = V0(y; ν) + μ0(ε)V1(y) + · · · , (6a)

where we write V0 in the form

V0(y; ν) = νγvc(y) . (6b)

Here γ = γ(ν) is a constant to be determined with γ = O(1) as ν → 0, and
we assume that μ0 � νk for any k > 0 as ε → 0. Substituting (5) and (6)
into (1a) and (1c), and allowing vc(y) to grow logarithmically at infinity,
we obtain that vc(y) satisfies

�yvc = 0 , y /∈ Ω1 ; vc = 0 , y ∈ ∂Ω1 , (7a)

vc ∼ log |y| , as |y|→∞ . (7b)
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The unique solution to (7) has the following far-field asymptotic behavior:

vc(y) ∼ log |y| − log d+ p · y
|y|2 + · · · , as |y|→∞ . (7c)

The constant d > 0, called the logarithmic capacitance of Ω1, depends on
the shape of Ω1 but not on its orientation. The vector p is called the
dipole vector. Numerical values for d for different shapes of Ω1 are given in
Ransford (1995), and some of these are reproduced in Table 1. A boundary
integral method to compute d for arbitrarily-shaped domains Ω1 is described
and implemented in Dijkstra and Hochstenbach (2008).

Table 1. The logarithmic capacitance, or shape-dependent parameter, d,
for some cross-sectional shapes of Ω1 = ε−1Ωε.

Shape of Ω1 ≡ ε−1Ωε Logarithmic Capacitance d

circle, radius a d = a

ellipse, semi-axes a, b d = a+b
2

equilateral triangle, side h d =
√

3Γ( 1
3 )
3
h

8π2 ≈ 0.422h
isosceles right triangle, short side h d =

33/4Γ( 1
4 )
2
h

27/2π3/2 ≈ 0.476h
square, side h d =

Γ( 1
4 )
2
h

4π3/2 ≈ 0.5902h

The leading-order matching condition between the inner and outer so-
lutions will determine the constant γ in (6b). Upon writing (7c) in outer
variables and substituting into (6b), we get the far-field behavior

v(y; ε) ∼ γν [log |x− x0| − log(εd)] + · · · , as |y|→∞ . (8)

Choosing
ν(ε) = −1/ log(εd) , (9)

and matching (8) to the outer expansion (3) forW , we obtain the singularity
condition for W0,

W0 = γ + γν log |x− x0|+ o(1) , as x→ x0 . (10)

The singularity behavior in (10) specifies both the regular and singular
part of a Coulomb singularity. As such, it provides one constraint for the
determination of γ. More specifically, the solution to (4) together with
(10) must determine γ, since for a singularity condition of the form W0 ∼
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S log |x − x0| + R for an elliptic equation, the constant R is not arbitrary
but is determined as a function of S, x0, and Ω.

The solution for W0 is decomposed as

W0(x; ν) =W0H(x)− 2πγνGd(x;x0) . (11)

Here W0H(x) is the smooth function satisfying the unperturbed problem

�W0H = −β , x ∈ Ω ; W0H = 0 , x ∈ ∂Ω . (12)

In (11), Gd(x;x0) is the Dirichlet Green’s function satisfying

�Gd = −δ(x− x0) , x ∈ Ω ; Gd = 0 , x ∈ ∂Ω , (13a)

Gd(x;x0) = − 1

2π
log |x− x0|+Rd(x0;x0) + o(1) , as x→ x0 . (13b)

Here Rd00 ≡ Rd(x0;x0) is the regular part of the Dirichlet Green’s function
Gd(x;x0) at x = x0. This regular part is also known as either the self-
interaction term or the Robin constant (cf. Bandle and Flucher (1996)).

Upon substituting (13b) into (11) and letting x → x0, we compare the
resulting expression with (10) to obtain that γ is given by

γ =
W0H(x0)

1 + 2πνRd00
. (14)

Therefore, for this problem, γ is determined as the sum of a geometric
series in ν. The range of validity of (14) is limited to values of ε for which
2πν|Rd00| < 1. This yields,

0 < ε < εc , εc ≡ 1

d
exp [2πRd00] . (15)

We summarize our result as follows:
Principal Result 1: For ε� 1, the outer expansion for (1) is

w ∼W0(x; ν) =W0H(x)− 2πνW0H(x0)

1 + 2πνRd00
Gd(x;x0) , for |x−x0| = O(1) ,

(16a)
and the inner expansion with y = ε−1(x− x0) is

w ∼ V0(y; ν) =
νW0H(x0)

1 + 2πνRd00
vc(y) , for |x− x0| = O(ε) . (16b)

Here ν = −1/ log(εd), d is defined in (7c), vc(y) satisfies (7), and W0H sat-

isfies the unperturbed problem (12). Also Gd(x;x0) and Rd00 ≡ Rd(x0;x0)
are the Dirichlet Green’s function and its regular part satisfying (13).
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This formulation is referred to as a hybrid asymptotic-numerical method
since it uses the asymptotic analysis as a means of reducing the original
problem (1) with a hole to the simpler asymptotically related problem (4)
with singularity behavior (10). This related problem does not have a bound-
ary layer structure and so is easy to solve numerically. The numerics re-
quired for the hybrid problem involve the computation of the unperturbed
solution W0H and the Dirichlet Green’s function Gd(x;x0). In terms of Gd

we then identify its regular part Rd(x0;x0) at the singular point. From the
solution to the canonical inner problem (7) we then compute the logarithmic
capacitance, d. The result (16a) then shows that the asymptotic solution
only depends on the product of εd and not on ε itself. This feature allows for
an asymptotic equivalence between holes of different cross-sectional shape,
based on an effective ‘radius’ of the cylinder. This equivalence is known as
Kaplun’s equivalence principle (cf. Kaplun (1957), Kropinski et al. (1995)).

An advantage of the hybrid method over the traditional method of
matched asymptotic expansions is that the hybrid formulation is able to
sum the infinite logarithmic series and thereby provide an accurate approx-
imate solution. From another viewpoint, the hybrid problem is much easier
to solve numerically than the full singularly perturbed problem (1). For the
hybrid method a change of the shape of Ω1 requires us to only re-calculate
the constant d. This simplification does not occur in a full numerical ap-
proach.

We now outline how Principal Result 1 can be obtained by a direct
summation of a conventional infinite-order logarithmic expansion for the
outer solution given in the form

W ∼W0H(x) +

∞∑
j=1

νjW0j(x) + μ0(ε)W1 + · · · , (17)

with μ0(ε)� νk for any k > 0. By formulating a similar series for the inner
solution, we will derive a recursive set of problems for the W0j for j ≥ 0
from the asymptotic matching of the inner and outer solutions. We will
then sum this series to re-derive the result in Principal Result 1.

In the outer region we expand the solution to (1) as in (17). In (17),
ν = O(1/ log ε) is a gauge function to be chosen, while the smooth function
W0H satisfies the unperturbed problem (12) in the unperturbed domain.
By substituting (17) into (1a) and (1b), and letting Ωε → x0 as ε→ 0, we
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get that W0j for j ≥ 1 satisfies
�W0j = 0 , x ∈ Ω\{x0} , (18a)

W0j = 0 , x ∈ ∂Ω , (18b)

W0j is singular as x→ x0 . (18c)

The matching of the outer and inner expansions will determine a singularity
behavior for W0j as x→ x0 for each j ≥ 1.

In the inner region near Ωε we introduce the inner variables

y = ε−1(x− x0) , v(y; ε) =W (x0 + εy; ε) . (19)

We then pose the explicit infinite-order logarithmic inner expansion

v(y; ε) =

∞∑
j=0

γjν
j+1vc(y) . (20)

Here γj are ε-independent coefficients to be determined. Substituting (20)
and (1a) and (1c), and allowing vc(y) to grow logarithmically at infinity, we
obtain that vc(y) satisfies (7) with far-field behavior (7c).

Upon using the far-field behavior (7c) in (20), and writing the resulting
expression in terms of the outer variable x− x0 = εy, we obtain that

v ∼ γ0 +

∞∑
j=1

νj [γj−1 log |x− x0|+ γj ] . (21)

The matching condition between the infinite-order outer expansion (17) as
x→ x0 and the far-field behavior (21) of the inner expansion is that

W0H(x0) +

∞∑
j=1

νjW0j(x) ∼ γ0 +

∞∑
j=1

νj [γj−1 log |x− x0|+ γj ] . (22)

The leading-order match yields that

γ0 =W0H(x0) . (23)

The higher-order matching condition, from (22), shows that the solution
W0j to (18) must have the singularity behavior

W0j ∼ γj−1 log |x− x0|+ γj , as x→ x0 . (24)

The unknown coefficients γj for j ≥ 1, starting with γ0 =W0H(x0), are
determined recursively from the infinite sequence of problems (18) and (24)
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for j ≥ 1. The explicit solution to (18) with W0j ∼ γj−1 log |x − x0| as
x→ x0 is given explicitly in terms of Gd(x;x0) of (13) as

W0j(x) = −2πγj−1Gd(x;x0) . (25)

Next, we expand (25) as x → x0 and compare it with the required
singularity structure (24). This yields

−2πγj−1
[
− 1

2π
log |x− x0|+Rd00

]
∼ γj−1 log |x− x0|+ γj , (26)

where Rd00 ≡ Rd(x0;x0). By comparing the non-singular parts of (26), we
obtain a recursion relation for the γj , valid for j ≥ 1, given by

γj = (−2πRd00) γj−1 , γ0 =W0H(x0) , (27)

which has the explicit solution

γj = [−2πRd00]
j W0H(x0) , j ≥ 0 . (28)

Finally, to obtain the outer solution we substitute (25) and (28) into
(17) to obtain

w −W0H(x) ∼
∞∑
j=1

νj (−2πγj−1)Gd(x;x0) = −2πνGd(x;x0)

∞∑
j=0

νjγj

∼ −2πνW0H(x0)Gd(x;x0)
∞∑
j=0

[−2πνRd00]
j

∼ −2πνW0H(x0)

1 + 2πνRd00
Gd(x0;x0) . (29a)

Equation (29a) agrees with equation (16a) of Principal Result 1. Similarly,
upon substituting (28) into the infinite-order inner expansion (20), we obtain

v(y; ε) = νW0H(x0)vc(y)

∞∑
j=0

[−2πRd00ν]
j
=

νW0H(x0)

1 + 2πνRd00
vc(y) , (30)

which recovers equation (16b) of Principal Result 1.
Next, we compare the results of the hybrid method with results obtained

either analytically or numerically from the full perturbed problem (1).
We consider flow in a circular pipe Ω of cross-sectional radius r0 that

contains a concentric core Ωε of various cross-sectional shapes centered at
the origin. We use Table 1 for the logarithmic capacitance d for a square
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core, an elliptical core, and an equilateral triangular core. Using the no-
tation in the table, we set the major and minor semi-axes of the ellipse as
a = 2 and b = 1, and both the side of the square and the equilateral triangle
as h = 1. To compute the hybrid method solution, we readily calculate that
the Green’s function is Gd = −(2π)−1 log(r/r0) and that the unperturbed
solution is W0H = β(r20 − r2)/4. The outer hybrid method solution, as
obtained from (16a) of Principal Result 1, is simply

w(x; ε) =
β

4

[
r20 − r2 − r20

log(r0/r)

log(r0/[εd])

]
, r = |x| . (31)

From (31), we can compute the asymptotic mean flow rate using (2).
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Figure 1. The mean flow velocity w̄ versus the cross-sectional ‘radius’ of
an inner core pipe located inside a circular pipe of cross-sectional radius
r0 = 2. Left figure: (Concentric annulus geometry). Plots of w̄ vs. ε for
three different cross-sectional shapes of the inner core pipe. The discrete
points are the full numerical results. Right figure (Eccentric Geometry).
Plots of w̄ versus the circular pipe core cross-sectional radius ε when the
inner pipe is centered at x0 = (−1, 0). The hybrid and exact results are the
dotted and solid curves, respectively.

To validate the asymptotic results for w̄, we compare them with corre-
sponding direct numerical results computed from the full problem (1) using
the PDE Toolbox of MATLAB (1996). For a circular pipe of radius r0 = 2
containing a concentric core and with β = 1, Fig. 1(a) contains curves of
mean flow velocity, w̄, versus ε, a measure of the size of the core, for three
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different cross-sectional shapes of the core. In the hybrid method solution,
the change in shape and size of the core requires only that we vary the
product εd, which allows us to compute the entire ε curve very easily. In
contrast, for each change of shape and size of the core in the direct nu-
merical solution, we had to re-create the solution geometry and re-mesh
the solution grid when using the PDE Toolbox of MATLAB (1996). For a
core of elliptic cross-section, the figure shows that the hybrid method re-
sults agree very well with those of the direct numerical solution. The slight
discrepancy in comparing the results for the other two core cross-sectional
shapes, the square and equilateral triangle, could be due to the inability of
the numerical method to resolve the non-smooth boundary of the core.

Next, we consider flow in a circular pipe Ω of radius r0 > 1 that contains
a circular core Ωε of radius ε centered at x0 = (−1, 0). For this case,
the exact mean flow velocity w̄E for this eccentric annulus geometry can
be written as a complicated infinite series as in Ward-Smith (1980). In
contrast, we need only calculate three specific quantities for our hybrid
formulation in (16). Firstly, the unperturbed solution is again given by
W0H(r) = β(r20 − r2)/4. Next, since the inner core cross-section is a circle
of radius ε, then the logarithmic capacitance is d = 1, so that ν = −1/ log ε.
Finally, using the method of images, we solve (13) analytically to obtain
the Green’s function

Gd(x;x0) = − 1

2π
log

( |x− x0|r0
|x− x′0||x0|

)
. (32)

Here the image point x′0 of x0 in the circle of radius r0 lies along the ray
containing x0 and satisfies |x′0||x0| = r20. Comparing (32) with (13b), we
can then calculate the self-interaction term as

Rd00 ≡ Rd(x0;x0) = − 1

2π
log

[
r0

|x0 − x′0||x0|
]
. (33)

Substituting (32), (33), ν = −1/ log ε, andW0H(r), into (16a) we obtain
the outer solution for the hybrid method. This solution is then used in (2)
with AΩ ∼ πr20 to compute the mean flow velocity for the hybrid method.
The integral in (2) is obtained from a numerical quadrature. For an eccentric
annulus with pipe radius r0 = 2, and with β = 1, in Fig. 1(b) we plot the
mean flow velocity w̄ versus the circular core radius ε as obtained from
the exact solution and from the hybrid solution. This plot shows that the
hybrid method results compare rather well with the exact results.

We remark that for an inner pipe core of an arbitrary shape centered at
x0 = (−1, 0), the hybrid method solution as obtained above for the eccentric
annulus still applies, provided that we replace ν = −1/ log ε in (16a) with
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ν = −1/ log(εd), where d is to be computed from (7). In particular, if there
is an ellipse with semi-axes ε and 2ε centered at x0 = (−1, 0) instead of the
circle of radius ε, then from Table 1 we get d = 3/2. Hence, the plot in
Fig. 1(b) for the hybrid solution still applies provided that we replace the
horizontal axis in this figure by 3ε/2.

3 Some Related Steady-State Problems in Bounded

Singularly Perturbed Domains

In this section we extend the analysis of §2 to treat some related steady-
state problems. The problem in 3.1, which concerns the distribution of
oxygen partial pressure in muscle tissue, involves multiple inclusions in a
two-dimensional domain. In §3.2 we show how to extend the method of §2
to a nonlinear problem.

3.1 Oxygen Transport From Capillaries to Skeletal Muscle

The analytical study of tissue oxygenation from capillaries dates from
the original work of Krogh (1919). In the oxygen distribution process of the
micro-circulation, oxygen binds to its carrier, haemoglobin, in red blood
cells, which transports it through the arterioles, branching to the capillary
networks, to the collecting venules. In the capillaries, the oxygen is released
from its carrier and diffuses into the surrounding tissue. The reviews of
Popel (1989), Fletcher (1978), and the references in Titcombe and Ward
(2000), provide substantial information on theoretical research in this area.

2-D cut

Capillary
Cross-section

x2

x3

x1

Figure 2. Mathematical idealization of capillary blood supply in skeletal
muscle tissue
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In this section, we show how to determine the steady-state oxygen partial
pressure distribution in a two-dimensional domain representing a transverse
section of skeletal muscle tissue that receives oxygen from an array of cap-
illaries of small but arbitrary cross-sectional shape (see Fig. 2). Following
the approach of many authors (e.g. Popel (1989)), we model the transport
of oxygen from capillaries to tissue by a passive diffusive process. Assuming
Fick’s law, J = −D∇c, relating the oxygen flux J to the gradient of oxygen
concentration c, and Henry’s law, c = αp the dimensionless steady-state
oxygen partial pressure p satisfies

�p =M , x ∈ Ω\Ωp Ωp ≡
N∪
j=1
Ωεj

, (34a)

∂np = 0, x ∈ ∂Ω . (34b)

ε∂np+ κj(p− pcj) = 0 , x ∈ ∂Ωεj
, j = 1, . . . ,N . (34c)

The condition (34c) models the capillary wall as a finitely permeable mem-

brane, where κi > 0 is the permeability coefficient of the ith capillary and

pci is the oxygen partial pressure within the ith capillary (assumed con-
stant). In (34c) and (34b), ∂n is the outward normal derivative to the
tissue domain. In deriving (34) we have assumed that the oxygen diffusiv-
ity is spatially constant, and so the oxygen consumption rateM has been
normalized by this constant value. To incorporate skeletal muscle tissue het-
erogeneities, such as localized oxygen-consuming mitochondria, we assume
thatM is spatially-dependent and has the form

M(x) =M0 +

m∑
i=1

Mi exp

(
−|x− xi|2

σ2i

)
, (35)

for some positive constantsM0 andMi for i = 1, . . . ,m.
The model (34) is an extension of the well-known Krogh cylinder model

Krogh (1919), which consists of one capillary of circular cross-section con-
centric with a circular cross-section of muscle tissue. For this concentric
annulus geometry ε < |x| < 1, the exact radially symmetric solution pe is

pe(r) = pc1 +
M
2

[
r2 − ε2

2
+

ε2 − 1
κ1

+ log
(ε

r

)]
. (36)

This shows that pe = O(log ε) as ε → 0, as induced by the Neumann
boundary condition in (34b) on the boundary of the cross-section. In the
extended model (34), formulated originally in Titcombe and Ward (2000),
one allows for multiple capillaries of arbitrary location, of arbitrary cross-
sectional shape, and for the tissue domain to be arbitrary.
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Most previous attempts to study the oxygenation of muscle tissue an-
alytically have assumed that the capillaries can be represented as point
sources for (34). However, by using the method of matched asymptotic
expansions, we show that this type of rough simplification represents only
the leading-order term in an infinite asymptotic expansion of the oxygen
partial pressure in powers of −1/ log ε, where ε is a measure of the capillary
cross-section. From a physiological viewpoint, this type of point-source ap-
proximation ignores the effect of the shape of the capillary cross-section and
the effect of the interaction between the capillaries. When many capillaries
are present, the effect of the capillary interaction should be significant.

Our goal here is to extend the hybrid method of §2 to calculate the
asymptotic solution to (34) with an error that is smaller than any power of
−1/ log ε. Such an approach, which effectively sums the infinite logarithmic
series, takes into account the effect of the capillary interaction.

In the outer region we expand the solution to (34) as

p(x; ε) = P0(x; ν1, . . . , νN) + σ(ε)P1(x; ν1, . . . , νN ) + · · · . (37)

Here νj = O(1/ log ε) for j = 1, . . . ,N are gauge functions to be chosen,
and we assume that σ � νkj for any k > 0 as ε→ 0. Thus, P0 contains all
of the logarithmic terms in the expansion. Substituting (37) into (34a) and
(34b), and letting Ωεj

→ xj as ε→ 0, we get that P0 satisfies

�P0 =M , x ∈ Ω\{x1, . . . ,xN} , (38a)

∂nP0 = 0 , x ∈ ∂Ω , (38b)

P0 is singular as x→ xj . (38c)

The matching of the outer and inner expansions will determine singularity
behaviors for P0 as x→ xj for j = 1, . . . ,N .

In the inner region near the jth capillary Ωεj
we introduce the inner

variables
y = ε−1(x− xj) , p(y; ε) = qj(xj + εy; ε) , (39)

together with the local expansion

qj = pcj + q0j(y; ν1, . . . , νN ) + μq1j(y; ν1, . . . , νN ) + · · · . (40)

Here we assume that μ� νkj for any k > 0. We then write q0j in the form

q0j = Ajqcj(y) , (41)

where Aj = Aj(ν1, . . . , νN ) is an unknown constant to be determined, and
qcj(y) ∼ log |y| as y→∞. By substituting (39), (40), and (41), into (34a)
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and (34c), we readily derive that qcj is the solution to

�yqcj = 0 , y /∈ Ωj ; ∂nqcj + κjqc = 0 , y ∈ ∂Ωj , (42a)

qcj ∼ log |y| , as |y|→∞ , (42b)

where Ωj ≡ ε−1Ωεj
. The unique solution to (42) has the following far-field

asymptotic behavior:

qcj(y) ∼ log |y| − log dj +O
(
1

|y|
)

, |y|� 1 . (42c)

In comparing (42) with (7) for the pipe problem of §2, we observe that here
dj = dj(κj). For a particular cross-sectional shape of the capillary and
for a given value of κj , one must compute dj = dj(κj) numerically from a
boundary integral method applied to (42). For a circular capillary of radius
ε, for which qcj can be found analytically, we readily calculate that

dj = exp (−1/κj) . (43)

Moreover, by comparing (6b) with (41) we observe that here we have intro-
duced a slight change in the definition of the inner solution. In the analysis
below, we will show that Aj = O(1) as ε → 0 in (41), which is a direct
consequence of the Neumann boundary condition in (34b).

By using (40) and (42c), we re-write the far-field form for |y|� 1 of the
inner solution in terms of the outer variables as

qj ∼ pcj +Aj log |x− xj |+ Aj

νj
. (44a)

Here we have introduced the logarithmic gauge function νj by

νj ≡ − 1

log(εdj)
. (44b)

The matching condition is that the far-field form (44a) of the inner solution
must agree with the near-field behavior of the outer solution for p. Thus,
P0 satisfies (38) subject to the following singularity behavior

P0 ∼ pcj +Aj log |x− xj |+ Aj

νj
, as x→ xj , j = 1, . . . ,N . (45)

As remarked in §2, we emphasize that the singularity behavior in (45)
specifies both the regular and singular part of a Coulomb singularity at
each xj . As such, the singularity behaviors (45) for j = 1, . . . ,N will


