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PREFACE

This book resulted from a series of lecture notes presented in CISM, Udine. It
has two major contributions: Damage Mechanics and Localization in Inelastic
Deformation. The course is intended to provide researchers and graduate
students with a clear and thorough presentation of the recent advances in
continuum damage mechanics for both metals and metal matrix composites as
well as the micromechanics of localization in inelastic solids.

Damage Mechanics and Applications: The major goal of this part of the
course is to present many of the different constitutive damage models that have
recently appeared in the literature. Another goal is to clearly present the
different approaches to this topic in a single complete course that is easily
accessible to researchers and graduate students in civil engineering, mechanical
engineering, engineering mechanics, aerospace engineering, and material
science. The course material was delivered in well-organized lectures that
started with the preliminaries and proceeded to advanced topics.

Micromechanics of Localilation in Inelastic Solids and Applications: The
main objective of this contribution is to discuss very efficient procedures of the
numerical investigation of localized fracture in inelastic solids generated by
impact-loaded adiabatic processes. Particular attention is focused on the proper
description of a ductile mode of fracture propagating along the shear band for
high impact velocities. This procedure of investigation is based on utilization the
finite element or finite difference methods for regularized thermo-elasto-
viscoplastic constitutive model of damage material using both rate dependency
and non-local approaches.

It is noteworthy to stress that all considered numerical examples are
motivated by recent experimental observations. Qualitative comparison of
numerical results with experimental observation data is presented. The
numerical results obtained have proven the usefulness of the thermo-elasto-
viscoplastic theory in the numerical investigation of dynamic shear band
propagation and localized fracture using rate dependency and nonlocal
formulations.

Invited Lecturers:

Tomasz Lodygowski (Poznan University of Technology, Poland), Piotr Perzyna
(Institute of Fundamental Technological Research, Poland), Antonio Rinaldi
(University of Rome [Tor Vergatal] Italy), and George [ Voyiadjis (Louisiana
State University, USA).

Coordinator: George [| Voyiadjis



The authors present in Part I the micro-mechanical damage model that
accounts for the nonlocal microscopic interactions in the simulation of
metal/composite impact and severe contact stress problems. This is achieved by
introducing the contributions of damage and its corresponding gradients in the
virtual power relations as measures of micro motion of damage within the bulk.
By using these internal state variables together with displacement and
temperature, the constitutive model is formulated with state laws based on the
free energies and the complimentary laws based on the dissipation potentials.

In this work also the mechanics of small damage is presented using a
consistent mathematical and mechanical framework based on the equations of
damage mechanics. In this regard, the new scalar damage variable is
investigated in detail. The investigation in this work has been carried out for
seeking a physical basis is sought for the damage tensor [ M lthat is used to link
the damage state of the material with effective undamaged configuration. The
approach presented here provides for a strong physical basis for this missing
link. In particular, the authors have made an important link between the damage
tensor and fabric tensors.

Computational aspects of the presented theory are also discussed. Numerical
integration algorithms, verification and validation process of the theory are
discussed. The finite element simulations are also performed by implementing
the presented model in the commercial finite element code ABAQUS [6.8.3las a
user defined subroutine (VUMAT).

The outline of the material presented in Part I is as follows: in section 2,
general mechanisms of the perforation and penetration mechanisms are
discussed. A coupled rate-dependent (viscoplasticity) continuum damage theory
is presented. In section 3, mechanics of small damage in fiber reinforced
composite material is presented. In section 4, a comparative study has been
made on the damage variables of the continuum. In section 5, computational
aspects of the theory are discussed. The elastic predictor and coupled
viscoplastic-viscodamage corrector algorithm that allows for total uncoupling of
geometrical and material nonlinearities are presented. The nonlinear algebraic
system of equations is solved by consistnt linearization and the Newton| Raphson
iteration. A derivation of a new definition for the consistent tangent stiffness
matrix that is essential to maintaining the asymptotic quadratic rate of
convergence is also presented in section 5. In section 6, numerical simulations of
material instability are introduced in order to validate and test the proposed
finite strain approach along with the proposed algorithm and its implementation
in the ABAQUS finite element code. In section 7, various numerical examples are
presented in order to validate the reliability and capability of the theory in
simulating various impact and contact stress problems. Experimental
comparisons of the adiabatic shear localizations between the proposed model
simulations and other independent results are presented. Effect of initial
temperatures and loading rates on the development of shear localizations is also



investigated in this section. Model capabilities are preliminarily illustrated for
the dynamic localization of inelastic flow in adiabatic shear bands and
compared with the experimental results of steel plates by deformable blunt
projectiles at various impact speeds.

A handful of methodologies can be pursued in alternative to (and in
combination with) continuum mechanics to develop advanced damage models
that are intrinsically suited to address complex issues, such as strain localization
phenomena and sample-size dependence of structural failure, which are
intimately related to microscale phenomena. Statistical Damage Mechanics
(SDM) is one of them.

In Part II a brief discourse about advances in SDM introduces this
methodology and shows its potential. In general, SDM is a multidisciplinary field
that seeks to devise non-conventional approaches to fracture and damage by
means of discrete damage models accounting for the essential microscale
properties of a material or structural system. The ultimate goal is the
development of multiscale methodologies that can reliably predict the materials
macroscale response in consideration of the microstructural evolution caused by
the damage process. Starting from the lower length scale characteristic of the
microstructure, the SDM multiscale approach delivers a surprising amount of
new insight and makes for a precious companion to the micromechanics methods
discussed previously in the book. The bottom-up approach proves to be very
effective in understanding the physics of the damage localization process.
Although SDM is not yet a mature discipline, by now it has a clear footprint,
after nearly two decades of research. This part of the book describes the state of
the art and exposes recent trends in SDM for consideration and discussion by the
larger solid mechanics community. Some of the concepts discussed herein [yet
at their infancy [possess the potential to develop into full blown, innovative, and
successful engineering tools. Designing the materials from the microstructure is
already a current industry practice to achieve superior damage tolerance, partly
driven by widespread usage of composites. SDM may help to do it even better.
Another brand new application field for SDM is represented by nanotechnology,
especially as far as the design of small (micro- and nano-sized) mechanical
systems, such as MEMS and NEMS, where sample-size effects and discreteness
are pervasive aspects of the design. After the introductory section 1, Part II
unfolds a logical overview of concepts and solutions that begins with simpler
one-dimensional models (i.e. the parallel bar system or PBS) in section 2 and
ends with multidimensional systems (i.e. spring networks) in section 3. Great
emphasis is placed on the derivation of physically-based definitions of the
damage parameter for quasi-brittle systems that stem from a pervasive statistical
rationale. In section 2, though, a coupled damage-plasticity model is also
covered for ductile systems, limited to the one dimensional case. Finally, the last
portion of section 3 focuses on sample-size effects in quasi-brittle materials and



shows how to obtain and harness scaling laws into fractal-based constitutive
relations for engineering applications.

The main objective of Part IIl is to show the broad application of the
thermodynamic theory of elasto Viscoplasicity for the description of important
problems in modern manufacturing processes, and particularly for meso-, micro-
, and nano-mechanical issues. This description is particularly needed for the
investigation by using the numerical methods how to avoid unexpected plastic
strain localization and localized fracture phenomena in new manufacturing
technology.

In the first part the development of thermolelasto Viscoplastic constitutive
model of a material which takes into consideration the induced anisotropy effects
as well as observed contribution to strain rate effects generated by microshear
banding is presented. Analysis of recent experimental observations concerning
investigations of fracture phenomena under dynamic loading processes suggests
that there are two kind of induced anisotropy: (i) the first caused by the residual
type stresses produced by the heterogeneous nature of the finite plastic
deformation in polycrystalline solids and (ii) the second called the fracture
induced anisotropy generated by the evolution of the microdamage mechanisms.
It is noteworthy to stress that both these induced anisotropy effects are coupled
and this property has to be taken into account in the proposed constitutive
description. On the other hand we very well know from recent experimental
observations concerning investigation of dynamic loading processes that
formation of microshear bands influences the evolution of microstructure of a
material. The basic assumption is that microshear banding contributes to
viscoplastic strain rate effects.The model is developed within the thermodynamic
framework of a unique, covariance constitutive structure with a finite set of the
internal state variables. A set of internal state variables consists of one scalar
and two tensors, namely the equivalent inelastic deformation, the second order
microdamage tensor with the physical interpretation that defines the volume
fraction porosity and the residual stress tensor (the back stress). To describe
suitably the influence of both induced anisotropy effects and the stress triaxiality
observed experimentally the new kinetic equations for the microdamage tensor
and for the back stress tensor are proposed. To describe the contribution to
strain rate effects generated by microshear banding we propose to introduce
certain scalar function which affects the relaxation time in the viscoplastic flow
rule. The relaxation time is used as a regularization parameter. Fracture
criterion based on the evolution of the anisotropic intrinsic microdamage is
formulated. The fundamental features of the proposed constitutive theory have
been carefully discussed.

The objective of the second part is to discuss very efficient procedure of the
numerical investigation of localized fracture in inelastic solids generated by
impactloaded adiabatic processes. Particular attention is focused on the proper
description of a ductile mode of fracture propagating along the shear band for



high impact velocities. This procedure of investigation is based on utilization the
finite difference and finite element methods for regularized thermo-elasto-
viscoplastic model of damaged material. The viscoplastic regularization
procedure assures the stable integration algorithm by using the finite difference
or finite element methods. Particular attention is focused on the well-posedness
of the evolution problem (the initial[boundary value problem) as well as on its
numerical solutions.

In Part 11 the behavior of selected brittle materials and structures (concrete
and masonry) subjected to explosive loadings is discussed. For concrete the
accepted Cumulative Fracture

Criterion (CFC) is exposed. It describes the degradation of the material
under fast dynamic processes accompanied by the strong waves propagation
phenomenon and large strain rates of deformation. To overcome the
computational difficulty in the analyses of such complex problems, the sub-
modeling technique as well as splitting of the calculations into two separate
parts: analysis of acoustic wave in the air and the propagation of stresses in
structures, are used. Some instructive numerical examples of concrete and
masonry walls are in focus of the presentation. The numerical tools and
computer simulations allow for proper estimation of the structures safety and for
taking the design decisions on how to ensure their expected strength.

George [l Voyiadjis , Baton Rouge, 2010

The authors dedicate this volume to the Memory of Dusan Krajcinovic

a Friend, Mentor and Inspirator
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Abstract: In this work also the mechanics of small damage are also
presented using a consistent mathematical and mechanical framework
based on the equations of damage mechanics. In this regard, the new
scalar damage variable is investigated in detail. The investigation in this
work has been carried out for seeking a physical basis is sought for the
damage tensor [)/] that is used to link the damage state of the material
with effective undamaged configuration. The approach presented here
provides for a strong physical basis for this missing link. In particular, the
authors have made an important link between the damage tensor and
fabric tensors.Computational aspects of the presented theory are also
discussed. Numerical integration algorithms, verification and validation
process of the theory are discussed. The finite element simulations are
also performed by implementing the presented model in the commercial
finite element code ABAQUS [6.8.3] as a user defined subroutine
(VUMAT).

1. PROLOGUE

The recent advances in aerospace and war capabilities have made necessary the
modification of the design of structures that are proned to hypervelocity impact
in order to increase their resistancy againts the penetration and perforation by
projectiles with much higher impact energies. In this respect, high performance
materials need to be developed so that they can offer significant advantages over
the currently used materials. Metals and composites are among those materials
that are oftenly used in various part of the structural components of the
engineering structure in aerospace, automible and defense industries. In general,
these materials are subjeced to tremendeous microstructural changes due to
perforation and penetration phenomena and have complex material response due
to a strong rate and temperature dependence when deformed non-uniformly into
the inelastic range. Therefore, the high velocity impacting mechanism needs to



4 G. Z. Voyiadjis, B. Deliktas and P. I. Kattan

be understood properly in order to be able to design materials of high ballistic
resistant response. However, the exact mechanism by which the impacting target
materials undergo fracture and ablation is a relatively complex process (Zukas,
(1990). Generally, strong shock wave-material interactions are generated and
propagated along both the projectile and the target, which can lead to fracture at
low global inelastic strains.

The key role in the numerical simulation of the impact damage related
problems is the accurate modeling of the material behavior at high strain rates
and temperatures. Many researchers, therefore, have investigated the material
failure mechanism during high velocity impact conditions with the ultimate goal
of developing a micromechanical constitutive model that can effectively simulate
the impact damage problem (Armstrong and Zerilli, 1994, Bammann, et al.,
1990, Borvik, et al., 2004, Borvik, et al., 2006, Borvik, et al., 2002, Camacho
and Ortiz, 1997, Curran, et al., 1987, Eftis, et al., 2003, Johnson and Cook, 1985,
Steinberg and Lund, 1989). It is noted that none of these constitutive models
address the problem of describing high shock compression and subsequent
material degradation and failure in which the latter is expressed as an evolving
micro-flaw having a damage rate determined from micro-mechanical analysis.
Moreover, these models cannot consider the actual sizes, shapes, and orientations
of the individual micro-voids and micro-cracks, which may have a predominant
influence on the mechanical response of the material. The mechanical behavior
of these applications cannot be characterized by classical (rate-independent)
continuum theories because they incorporate no ‘material length scales.” It is
therefore necessary to develop a coupled rate-dependent (viscoplasticity)
continuum damage theory bridging the gap between the classical continuum
theories and the microstructure simulations.

The authors of this work have recently recognized the need for a micro-
mechanical damage model (Abu Al-Rub and Voyiadjis, 2006, Voyiadjis, et al.,
2003, Voyiadjis, et al., 2004) that accounts for the nonlocal microscopic
interactions between material points (i.e. to take into account the influence of an
internal state variable at a point on its neighborhood) in the simulation of metal
impact problems This nonlocal microdamage model is formulated based on the
enhanced gradient-dependent theory which is successful in explaining the size
effects encountered at the micron scale and in preserving the well-posed nature
of the initial boundary value problem that governs the solution of material
instability triggering strain localization. Moreover, the viscoplasticity theory
(rate-dependency) allows the spatial difference operator in the governing
equations to retain its ellipticity and consequently the initial boundary value
problem is hence well-posed (Batra, 2006, Batra and Chen, 1999, Batra and Kim,
1988, Batra and Kim, 1990, Loret and Prevost, 1990, Molinari, 1997,
Needleman, 1988, Sluys, 1992). However, the gradient dependent theories
enhance a stronger regularization of the localization problem than the rate-
dependent theory. Moreover, the rate-dependent theory cannot explain the size
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effect of the microdamage zone (i.e. the void/crack size and spacing) on the
material failure while the gradient theory can address that.

Therefore, the objective of this work is to present for high speed impact
damage problems a novel microdamage constitutive model that possesses several
material length scales. This model can be used to produce physically meaningful
and numerically converging results within strain localization computations by
finite element codes. Moreover, the algorithmic aspects and numerical
implementation of this model in finite element codes are presented in this
chapter.

The outline of the presented materials is as follows: in section 2, general
mechanisms of the perforation and penetration mechanisms are discussed. A
coupled rate-dependent (viscoplasticity) continuum damage theory is presented.
In section 3, mechanics of small damage in fiber reinforced composite material is
presented. In section 4, a comaparative study has been made on the damage
variables of the continuum. In section 5, computational aspects of the theory are
discussed. The elastic predictor and coupled viscoplastic-viscodamage corrector
algorithm that allows for total uncoupling of geometrical and material
nonlinearities are presented. The nonlinear algebraic system of equations is
solved by consistnt linearization and the Newton—Raphson iteration. A
derivation of a new definition for the consistent tangent stiffness matrix that is
essential to maintaining the asymptotic quadratic rate of convergence is also
presented in section 5. In section 6, numerical simulations of material instability
are introduced in order to validate and test the proposed finite strain approach
along with the proposed algorithm and its implementation in the ABAQUS finite
element code. In section 7, various numerical example are presented in order to
validate the reliability and capability of the the theory in simulating various
impact and contact stress problems. Experimental comparisons of the adiabatic
shear localizations between the proposed model simulations and other
independent results are presented. Effect of initial temperatures and loading rates
on the development of shear localizations is also investigated in this section.
Model capabilities are preliminarily illustrated for the dynamic localization of
inelastic flow in adiabatic shear bands and compared with the experimental
results of Borvik et al. (2002) for the perforation of 12mm thick Weldox 460E
steel plates by deformable blunt projectiles at various impact speeds.

2. Nonlocal Formulation of High Velocity Impact
Induced Damage

2.1. Penetration and perforation mechanisms

The penetration and perforation mechanisms are interdisciplinary subjects and
are based on the laws of conservation and compatibility. Penetration implies
movement of a projectile into a target. Phenomenologically, as illustrated in
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Figure 1, the penetration can be viewed as a process to generate a coneshaped
macro crack in the material, in which, the kinetic energy of the penetrator is
dissipated.

Perforation implies penetration all the way through a target. Projectile exit
through a finite target is often accompanied by delamination and plugging.
Delamination refers to a tensile failure parallel to the target rear surface and is
often initiated by spall. However, it can also occur in quite thick targets, where it
seems to be caused by shear bands around the projectile head that can propagate
as cracks near the exit surface (Chelluru, 2007). In general, a penetration
equation is a set of equations that are used to predict the outcome of an important
event, such as the residual velocity or mass of the projectile after impact.
Empirical penetration equations are essentially curve fits and take the general
form f(xq, x5, ... x,) Where x4, X, ... X,, are parameters such as projectile size and
target thickness.

Projectile
e
; Target
vit £
Shock Wave, Compression l © . r'e
Wave Is Reflected as Shock Wave
Tensile Wave at Free >
Boundary Zones of High Irrecoverable Deformations as
‘/‘ Shock Buffer, Interface
_ Shear/Tension Zone
Grain Translation and Rotation
Existing Cracks and Voids as Damage
Enhancement 5 O

Figure 1. Schematics Illustration of the Penetration Process

It is important to note that results of these equations are only accurate if the case
for which it is being used is close to that of the experimental data to which the
equations are fit (Christiansen and Friesen, 1997). Prediction of the Ballistic
limit is a very difficult task for which complete success may not be possible.
Therefore, extensive experimental work is being done to date to understand
which parameters affect the impact in composite structures. The analysis is still
complex because the events that occur at the projectile/target interface are
somewhat unknown. Although many studies have been performed, only highly
controlled velocities, shape, sizes and trajectories have been examined. As a
result, numerous approximations and assumptions must be made in order to
apply to these analyses. Impact is a much localized phenomenon. Stress and
strain effects are usually limited to within 3-6 projectile diameters of the
impacted zone (Chelluru, 2007). Impacted target materials may fail by a
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combination of several modes including spalling, plugging, petaling, ductile or
brittle fracture, and adiabatic shearing.

Spalling is the tensile failure of the target material due to reflection of the
initial compressive waves from the far side of the target. Failure by spalling can
occur on either the front or back of a target and is characterized by the formation
of petals or ejects. In the event of impact there is an exchange of energy that
takes place:

internal kinetic internal kinetics
plate + Eplate + Eeroded + Eeroded (1)

Etans

Law of conservation is observed in any physical phenomena. Kinetic energy of
the projectile is spent in raising the internal energy and kinetic energy of the
plate and some part of the energy is lost in the form of eroded material. The
amount of energy dissipated also differs with geometry. Blunt projectiles like
cylinders are found to cause plugging because of pure shear failure, while the
conical projectiles are found to cause petaling effects.

High velocity impact will localize compression of the composite and
subsequently shearing the fiber and spalling of the resin during impact. Once the
projectile has slowed, the composite deforms causing fiber stretching, pullout
and delamination of the composite layers and thus lower the load carrying
capacity.

2.2 A coupled rate-dependent (viscoplasticity) continuum damage theory

The theoretical model presented in this section is considered within a
thermodynamic framework, where it is assured that the principles of
thermodynamics are satisfied. Therfore, the virtual power relations are first
defined and the principle of virtual power along with varitational formulations
are used to develop the governing differential equations and their corresponding
boundary conditions of the proposed theory. The principle of virtual power used
by Voyiadjis and Deliktas (2009, 2009) is different than those used by Voyiadjis
and Co-workers (Abu Al-Rub and Voyiadjis, 2004, Abu Al-Rub and Voyiadjis,
2006, Abu Al-Rub, et al., 2007, Dorgan and Voyiadjis, 2003, Dorgan and
Voyiadjis, 2006, Voyiadjis and Abu Al-Rub, 2005, Voyiadjis and Abu Al-Rub,
2007, Voyiadjis, et al., 2003, Voyiadjis and Almasri, 2008, Voyiadjis and
Deliktas, 2000, Voyiadjis and Deliktas, 2000), Gudmundson and co-workers
(Fredriksson and Gudmundson, 2005, Fredriksson and Gudmundson, 2007,
Gudmundson, 2004, Nygards and Gudmundson, 2004, Tjernlund, et al., 2006),
Willis and coworkers (Aifantis and Willis, 2005, Aifantis and Willis, 2006, Fleck
and Willis, 2009, Fleck and Willis, 2009) and, Gurtin and coworkers (Anand, et
al., 2005, Bittencourt, et al., 2003, Cermelli, et al., 2004, Gudmundson, 2004,
Gurtin, 2000, Gurtin, 2004, Gurtin and Anand, 2009, Gurtin and Needleman,
2005) where the principle of virtual power is modified by adding the
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contributions from damage and its corresponding gradients as a measure of
micro motion of damage within the bulk. In addition two internal state variables
are introduced on the contact interface, one measuring the tangential slip and
another measuring the wear. By using these internal state variables together with
displacements and temperature, the constitutive model is formulated with state
laws based on the free energies and the complimentary laws based on the
dissipation potentials. This model provides a potential feature for enabling one to
relate the non-local continuum plasticity and damage of the bulk material to
friction and wear at the contact interfaces.

One now defines a region V' c R? (d=2, 3) with a piecewise smooth
boundary € that occupies a continuously deformable body (Figure 2). The

boundary Q is divided into three disjoint parts; Qt is the part of the boundary
where tractions are prescribed whereas the displacements are prescribed at the

boundary €2 , and the unilateral contact interface is defined by the boundary

u’
Qc . The contact interfaces surface energy is considered as material boundary

following the concept of Voyiadjis and Deliktas (2009) and enhanced by the
following pioneering work of Fremond (1996) and its corresponding

modification by Iremena et al.(2003).

\

\

Figure 2. A Deformable Body with Unilateral Contact

The modified form of the internal virtual power is expressed here as follows:
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“‘:I(GS + Xy ] + St Y;jéfrrg-k?}y,k)dl/—j Py, dQ+ ()

ijk

j MEdQ, + j NegedQ, + j O°p°dQ,, + j gVdQ,

The superscripts are used to describe ¢ for contact, # for normal and 7 for

traction. The tensor X' i is the driving stress work conjugate to the plastic strain,

8,/ ,and S, ik is the micro-stress work conjugate to the plastic strain gradient,

g’ . The tensors Yl and T, & are the damage related internal forces work

ik *

conjugate to @,

. and ¢ij,k , respectively. The external power is expressed as

P, j tv,dQ, +I m, gf’dQ +J;20 n;éjdgt (3)

Furthermore, forces associated with friction and wear are also introduced. The
non local differential equation of the flow rule and its relevant nonstandard
boundary conditions are derived by using the principle of virtual power

P —-P

> . —P_ =0 and imposing integration by parts, and the divergence theorem

Jo, (=0, a9+ [, (=p,=oyn Jude2 + (4)
Iv( s VdV+.[ 7~ 4, +Sukk)€ dV+.[ ik k Y')é’jdV-Q—
J‘SZ( (_Mi" _Sank )g‘f dQ" + J‘Q( T yknk )¢ dQ +

jﬂ( 0 pdQ, + jﬂ( gvdQ, + jﬂ/ (my = Syem, o+ [ (m, =T yem, J,dQ, =0
From Eq. (3) one can obtain the balance laws as follows

=0 &)

’JJ

=X +Sjiu inV
Ty, —Y, =0

y

Standard and non standard boundary conditions on the boundaries, QI and (2 .

are obtained respectively
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t,=0o;n, (6)
my; =S8, n, =0 on Q,
My =Ty =0
My +S,m =0 ) ™
Nij + Fijknk =0

—DPi = O-ijnj >— on QC

Consequently forces QC and ¢, are simply equal to zero. In addition to balance

laws one needs constitutive assumptions that couple internal forces to the state
variables. A general framework for the thermodynamical forces and state
variables are obtained by using free energies and the dissipation potential in the
style of the standard material. Such an approach is consistent with satisfying the
second law of thermodynamics which states that the rate change of the total free

energy must be less than the external power i.e. Y < P, where the total free

energy can be defined as

Y= JpwvdV+ I v, dQ, ®)
Vv Q

c

where pis the mass density, ¥ =y, (Se,gp,¢,vgp,v¢) is the free
energy in the volume, V and v/, =y, (u, @,p,&", ¢) is the free energy on the

contact surface €2 . - Thermodynamical Clausius-Duhem inequalities for both

the bulk and the contact interface are given as follows

(DV=0':g'e+X:5"’+Y:¢'+S:V¢9’P+F:V¢§—pg&v20 ®
O =pi+fe’ +chprqi+yp—y, >0
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These contact surfaces interpret the grain interactions with reference to
separation and sliding as an additional source of form of the inelastic
deformation. The vector p is the interface traction force vector. In addition y
and ¢ are two new thermodynamic forces work conjugate to the measure of
grain boundary separation defined by the flux, ¢, and the measure of the grain
boundary sliding defined by the flux, @ , respectively. The term 8 represents
the interfacial strength parameter associated with the plastic strain jump at the
sub interface surface.

The number of unknown internal state variables of the model can be
determined by solving the constraint minimization problem of the energy
dissipation by using the Lagrange multiplier method and assuming the existence
of the constraint surfaces for plasticity and damage respectively such that

L (X,8)=0,-2"f(X,S)
L,(Y,T)=0,-27g(Y,I) (10)

Lc(p’ﬂ’gaqr’l):q)c _ﬂ'cf(paﬂag’q”;()

The mathematical aspects of the thermodynamical consideration of the theory
for such form of the free and dissipation potential, dissipation inequalities,
minimization problem and existence of the uniqueness of the solutions are
discussed in detail in recent studies by Voyiadjis and Deliktas (2009). Here, the
governing equations for the coupled viscoplastic damage behavior are defined by
the following constitutive relations :

O, = Eijkl (¢)‘91fz (1

J

T, = Xij +Sijk,k
/= (Xzin'j + 078 )1/2 —9y (Ep ) =0

A7 20 A7f20 A7 F=0

g=(1y,+r,r,) o (£)<0
T, —% =0

A7>0 A'g>0 A% =0
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and for the contact interface
M, +Syn, =0 (12)
. 1/2 .
fo=(MM,) " -0, (é7)<0
AP >0 APf20 A7 =0
Nij + Fi].knk =0
. 12 .
g =(NN,) -o (¢)<0
A7>0 A%g°>0 Ag° =0
where E ’ is the effective nonlocal flow rate such that

n) 2N By Y 240 op . .
E _\/gii & +/ ki - The nonlocal effective damage flow rate is

defined by k=\/¢ii¢ij+€3 .ij,ké/.,k . In this constitutive modeling two
characteristic material length scales are introduced. They are the plastic length
scale, £ » and the damage length scale, 7, respectively. The term a is the

thermal expansion coefficient; T is the rate of absolute temperature; I is the
second order identity tensor; and A is the fourth order tensor defined as

aM_l-M- +E-M-6M_1-E‘1-[ + a(T — THI] )
30 1o Mg o+ a T

A=

The fourth order damage tensor M is the function of the second order damage
tensor, ©. Its explicit form can be found in the works of Voyiadjis and co-
workers (Abu Al-Rub and Voyiadjis, 2003, Abu Al-Rub and Voyiadjis, 2005,
Abu Al-Rub and Voyiadjis, 2006, Abu Al-Rub, et al., 2007, Dorgan and
Voyiadjis, 2003, Dorgan and Voyiadjis, 2006, Dorgan and Voyiadjis, 2007,
Dorgan and Voyiadjis, 2007, Kattan and Voyiadjis, 1993, Kattan and Voyiadjis,
1993, Kattan and Voyiadjis, 1996, Park and Voyiadjis, 1997, Park and Voyiadjis,
1998, Voyiadjis and Kattan, 1992, Voyiadjis and Park, 1997). The functional
form of the flow rule of plasticity is given as follows :

o(E?) = oy + R(E?) [1 + (e (T = T,)EP) "] (14)
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where g, is the initial yield strength; and c,, is the specific heat. The evolution
equation for isotropic and hardening laws are given as follows

R = uEPqe +e? (15)
and
X= gcsp — YXEP + Bo (16)
Voyiadjis and Abu Al-Rub (2003) defined, g as
q = G + (qm + qo)e ™2 an

and m, q,,,q,, , C,y and f are the material constant to be calibrated from
available experimental data. Similary one can define the flow rules of damage as
follows

a(k) = Y, + K((¥)) [1 + (cp (T — TT)K)l/m] (18)

where Y, is the initial damage threshold; <1€ = /(7)&)), and the nonlocal

damage tensor is defned as ¢ = ¢ + 1/ 2 £*V2¢ . The evolution of the damage

anisotropic hardening equation is given by Voyiadjis and Deliktas (2000) as
follows

K\ - (19)

where A is the Lame constant and is defined by Voyiadjis and Park (1997, 1995,
Voyiadjis and Park, 1995, Voyiadjis and Park, 1997). The exponent, { represents
the damage hardening parameter, and ¢ denotes the damage growth rate. The
influences of these parameters on the response of the material was studied by
Voyiadjis and Deliktas (Voyiadjis and Deliktas, 1997)

3. Mechanics of Small Damage in Fiber-Reinforced
Composite Materials

In this section the new concept of small damage is examined within the
framework of continuum damage mechanics. In particular, special emphasis is
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given to a new damage variable that is defined in terms of the elastic stiffness of
the material. Only the scalar case is studied here. The investigation of the new
scalar damage variable and the new concept of small damage is carried out on
fiber-reinforced composite materials. Furthermore, the two approaches to
damage analysis in composite materials are re-examined in this work using the
new damage variable. These are the well known overall and local approaches
established in the literature of damage mechanics. It is noted that the
examination of these two approaches that is presented here applies to both small
and large damage mechanics. Finally, the two approaches are compared
mathematically and are shown to be equivalent.

The damage variable (or tensor), based on the effective stress concept,
represents average material degradation which reflects the various types of
damage at the micro-scale level like nucleation and growth of voids, cracks,
cavities, micro-cracks, and other microscopic defects (Budiansky and O’Connell,
1976, Krajcinovic, 1996, Lubarda and Krajcinovic, 1993). For the case of
isotropic damage mechanics, the damage variable is scalar and the evolution
equations are easy to handle. However, it has been shown by Ju (1990) and
Cauvin and Testa (1999) that two independent damage variables must be used in
order to describe accurately and consistently the special case of isotropic
damage. It has been argued (Lemaitre, 1984) that the assumption of isotropic
damage is sufficient to give good predictions of the load carrying capacity, the
number of cycles or the time to local failure in structural components. However,
the development of anisotropic damage has been confirmed experimentally
(Chow and Wang, 1987, Lee, et al., 1985) even if the virgin material is isotropic.
This has prompted several researchers to investigate the general case of
anisotropic damage (Kattan and Voyiadjis, 1996, Kattan and Voyiadjis, 2001,
Murakami, 1983, Voyiadjis and Kattan, 2006) In continuum damage mechanics,
usually a phenomenological approach is adopted. In this approach, the most
important concept is that of the Representative Volume Element (RVE). The
discontinuous and discrete elements of damage are not considered within the
RVE; rather their combined effects are lumped together through the use of a
macroscopic internal variable. In this way, the formulation may be derived
consistently using sound mechanical and thermodynamic principles (Doghri,
2000, Hansen and Schreyer, 1994, Luccioni and Oller, 2003).

Kachanov(1958) and Rabotnov (1969) introduced the concept of effective
stress for the case of uniaxial tension. This concept was later generalized to
three-dimensional states of stress by Lemaitre (1970) and Chaboche (1981). Let
O be the second-rank Cauchy stress tensor and @ be the corresponding
effective stress tensor. The effective stress & is the stress applied to a fictitious
state of the material which is totally undamaged, i.e. all damage in this state has
been removed. This fictitious state is assumed to be mechanically equivalent to
the actual damaged state of the material. In this regard, one of two hypotheses
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(elastic strain equivalence or elastic energy equivalence) is usually used
(Lemaitre, 1984, Sidoroff, 1981).

Ju (1990) pointed out that even for isotropic damage one should employ a
damage tensor (not a scalar damage variable) to characterize the state of damage
in materials. However, the damage generally is anisotropic due to the external
agency condition or the material nature itself. Although the fourth-rank damage
tensor (Murakami, 1983) can be used directly as a linear transformation tensor to
define the effective stress tensor, it is not easy to characterize physically the
fourth-rank damage tensor compared to the second-rank damage tensor.

In this work the new concept of small damage is examined within the
framework of continuum damage mechanics. In particular, special emphasis is
given to a new damage variable that is defined in terms of the elastic stiffness of
the material. Only the scalar case is studied in this work. The scalar definition of
the new damage variable was used recently by many researchers. The
investigation of the new scalar damage variable and the new concept of small
damage is carried out on fiber-reinforced composite materials.

Furthermore, the two approaches to damage analysis in composite materials
are re-examined in this work using the new damage variable. These are the well
known overall and local approaches established in the literature of damage
mechanics. It is noted that the examination of these two approaches that is
presented here applies to both small and large damage mechanics. Finally, the
two approaches are compared mathematically and are shown to be equivalent.

3.1. New Scalar Damage Variable
This section addresses a new scalar damage variable that was used by researchers
recently. For other damage variables, see the work of Lemaitre (1971, 1984) and

Lemaitre and Chaboche (1990). This scalar damage variable / may be defined
in terms of the reduction in the elastic modulus as follows:

_E-E
E

where FE is the elastic modulus in the damaged state while E is the effective

elastic modulus (in the fictitious state) with £ > E (see Figure 3). This
damage variable was used recently by Celentano et. al (2004) and Nichols and
Abell (2003) and Nichols and Totoev (1999). It was also used by Voyiadjis and
Kattan (2009) in a comparative study of damage variables within the context of
continuum damage mechanics. It should also be mentioned that Voyiadjis (1988)
used a similar relation but in the context of elasto-plastic deformation.

14 (20)
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kol

v

Figure 3. Damaged and Effective Moduli of Elasticity

The definition of the new damage variable of equation (20) may be re-written
in the following more appropriate form:

E=E(1+/) @D

It is clear from the definition in equation (21) that £ = O when the body is

undamaged, i.e. when E = E . For a composite material consisting of a matrix
and fibers, two local scalar damage variables may be similarly defined as
follows:

s E"—E" (22)
Em
. g/ (23)
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where E™ and E’ are the elastic moduli for the matrix and fibers,
respectively, while £” and E /" are their effective counterparts. The two scalar

local damage variables are denoted above by /™ and ¢ /" for the matrix and
fibers, respectively.

Using the hypothesis of elastic energy equivalence (see Voyiadjis and Kattan,
2009), one now can write the following transformation relation between the
stress 0 and the effective stress o :

G=o\l+/! 24)

In the same way, another transformation relation can be obtained between the
strain & and the effective strain & as follows:

& (25)

N1+

For a composite material consisting of a matrix and fibers, equivalent local
relations to equations (24) and (25) may be written as follows:

el

5" =" 1+ 0" (26
&' =o'/ 1+1 @7)
e @)
e
L (29)

N1+ 07

For small values of the scalar damage variable £, the square root appearing in
equations (24) — (29) can be approximated as follows using the Taylor series
expansion:
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Vl+£zl+%£ (30)

Next, one uses the rule of mixtures for the total effective stress as follows:

cg=c"g"+c’'c’ (€2))

where ¢” and ¢ are the effective volume fractions for the matrix and fibers,
respectively. Substituting equations (24) and (27) into equation (31) and
simplifying, one obtains the relation between the total stress and the local
stresses as follows:

R e 32)
O=C O —+cCc’' O S
1+7 1+7

For the case of small damage and using the approximation in equation (30), the
relation in equation (32) becomes:

! (33)

1 _ _
0'+§a€:c'”0'”’+0“0' v

1_, 1_
+—¢"oc"™"+—¢' o
2 2

It is clear that the above special relation for the case of small damage is a linear
relation in the respective variables. It should be noted that the above relation
cannot be simplified further without making certain limiting assumptions. For
example, for the special case where the values of the three damage variables
appearing in the equation are equal, i.e. when /™ = ¢/ = ¢, one may obtain the
following simplified relations only for this very special case:

o=c"o" +Cf0'f (34)

ol=¢c"c"I"+c ' 1’ (3%

Going back now to the general case of damage, one uses the following two

relations between the local stresses 0,0 /" and the total stress O :
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c" =B"o (36)

o =B o (37)

where B” and B’ are the matrix and fiber stress concentration factors,
respectively. Substituting equations (36) and (37) into equation (32), one obtains
the following relation :

e B "1+ 0" +&/ B/ 1407 =157 %)

The above relation is an exact relation between the local damage variables and
the overall damage variable. For the special case of small damage and equal
values of the three damage variables given in equations (34) and (35), the
relation in equation (38) becomes:

¢"B" +c/B’ =1 (39)
c"B"(" +¢ B/ = (40)

It should be noted that the above simplified relations apply only to this special
case.

3.2. Damage Evolution

In this section one derives the general relation for the evolution of the new
damage variable. The evolution equation will be written in terms of the
increments of stress or strain based on sound thermodynamic principles for a
uniaxial state of stress. In general, the elastic strain energy for the effective
configuration is given as follows:

(41

U=—-0c¢

N | =

where & and & are the effective stress and effective strain, respectively. In
addition, one can also write the elastic constitutive relation in the effective
configuration as follows;

c=EzZ (42)
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where E s the effective elastic modulus. Substituting equation (42) into
equation (41), one obtains:

| — (43)
U=—E¢&’
2
Next, one substitutes equation (25) into equation (43) to obtain:
E ¢’ (44)

" 2(1+¢)

The above relation provides an expression for the elastic strain energy in terms

of the new damage variable. Next, one takes the derivative of U in the above
relation to obtain:

Egde_ E&*dl (45)
I+ 2(1+0)

Next, one defines the variable ) to be the general thermodynamic force

dUu =

associated with the scalar damage variable / as follows:

. oU (46)
ol
Substituting equation (44) into equation (46), one obtains:

y

Eé&’ 47
201+

Next, one introduces g(y,B) as the damage function or criterion given as
follows:

(48)
g@iﬂf%y2—30ﬂ=0

where B (ﬂ ) is the overall threshold of damage and /3 is an overall damage

parameter. The power of dissipation I can now be written as follows:
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[M=-ydl - Bdp (49)
Next, one constructs an objective function ¥ as follows:

Y=II-di-g (50)

where dA is a Lagrange multiplier. In order to extremize the function V', the
following two conditions must be satisfied:

51
o 6D
oy

52
OB

Substituting equation (50) into equation (51) and using equation (49), one
obtains;

53
dr=—ar 28 43
oy

Substituting equation (50) into equation (52) and using equation (49), one
obtains:

dp = dt (54)
Next, one substitutes equation (54) into equation (53) to obtain:

55
dg=_dﬁa_g (53)
Oy

Finally, one invokes the consistency condition dg =0 and applies it to
equation (48) to obtain:
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0 (56)
ydy °8
0y

Substituting the equation for the function g from equation (48) into equation

dl = -

(56) and simplifying, one obtains the evolution equation for the new damage
variable;

2 (57)
dr =LY

%)

It is clear from the above equation that the evolution of the damage variable is an

ordinary differential equation between the variables / and y . It should be noted

that the term 9B appearing in the denominator can be taken to be a constant
op

(Voyiadjis and Kattan, 2006). In order to solve the above governing differential

equation, one substitutes equation (47) into equation (57) to obtain:

0B . E’s’ds B E’sbdr (58)
¥ 41+0)  At+e)

The above relation is an explicit differential equation between the new damage
variable and the strain. In order to solve the above differential equation, one uses

6

&

the substitution x = (nj and one obtains the final solution as follows:
_l’_

6 (59)
0B 1 = &
Zly=—F =
0B) 24 U+t
Note that the above equation is the sought explicit relation between the new
damage variable ¢ and the strain & . It is clear that this relation is nonlinear.
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Using the elastic constitutive relation of equation (42) but written in the
damaged configuration as o = E &, and substituting it into equation (59), one
obtains the following relation between the stress and the new damage variable:

1/6 (60)
o=|24 98 E3/
op

The above relation is an explicit relation between the stress and the new damage
variable. It is clearly a nonlinear relation.

Next, one plots the two relations given in equations (59) and (60). Figure 4
shows the relation between the stress and the damage variable based on equation
(60) while Figure 5 shows the relation between the strain and the damage
variable based on equation (59). In plotting these graphs, one uses a SiC-Ti-Al

composite lamina with the following material properties: E =199 GPa and

o8 =1000 (kPa)’.
op
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Figure 4. Stress-Damage Relation Figure 5. Strain-Damage Relation

It should be noted from Figures 4 and 5 that the stress-damage and strain-damage
relations are linear for very small values of the damage variable, i.e for
/<00 .For this small range of damage values, a linear and simplistic theory
of damage mechanics may be formulated.
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3.3. Mechanics of Small Damage

In this section, one provides certain equations for the mechanics of small
damage, i.e. when the value of the damage variable is small. One will start by re-
writing equation (60) as follows:

J=(a€)1/6 (61)

where the coefficient & is given by:
62)
0B )= (
a=24—|E’
op

Similarly, one can write the following two relations for the matrix and fiber
stresses:

1/6 (63)

where the coefficients ™ and o’ are given by (see equation (62)):

m\_ (64)
P L
0"

A
af =24 9B |Er
op

Next, one uses the law of mixtures for the damaged configuration as follows:

oc=c"c" +c’o’ (65)

where ¢"and ¢’ are the matrix and fiber volume fractions in the damaged
configuration, respectively. Substituting equations (61) and (63) into equation
(65) and simplifying, one obtains;



Consistent Non Local Coupled Damage Model and Its Application... 25

N6 o\ (66)
P16 :Cm[a l } +C_,«(Ot V4 J
(04 a

For small values of the damage variables?, /", and Iz , and combining
equations (66), (33), and (38), one obtains the following relation after some
tedious mathematical operations involving some approximations for small
damage:

( )]/6 o\ 6 (67)
7”1Bm _ m
0’ ‘ ‘ [ a j

c"B"0"
The above relation is valid for small values of the parameter ————.

Ef B./ g.f
Similarly, another relation can be obtained as follows:

176710 68
{@fgfw_cf(wj ] o
o a

v N 6T
o) _(chf)5/6cmg{(cf3f)”6_cf[“ ) }

a
EfB/[f
EmBmgm :

The above relation is valid for small values of the parameter

In deriving equations (67) and (68), the following approximations have been
used based on the Taylor series expansion of each term. For any variables X and

y, and constants 4, B,C, D, the following equation

Ax\/6 -Bx_5/6y — xS +Dyl/s (69)
can be approximated by the following simpler relation:

(4-C)"*x~|D-6B(4-C) |y (70)



