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PREFACE

The finite element method is the dominating tool in computational
mechanics. To quote the late Simo: ”Mechanics without finite ele-
ments is like rock’n roll without electricity”. In straightforward finite
element schemes, there is an elastic energy which is minimized over
some conforming discrete subspace Xp,. This leads to a linear system
of equations of the form

a(up,vp) = bvy) for all vy, €'Yy,

with unknown discrete solution up in Xy for a given right-hand side
b(vp) and the bilinear form a(up,vp). In the context of an elastic
energy sa(vn,vy) — b(vy), the bilinear form is symmetric and one
choice for trial and test functions reads Xy = Y.

In saddle-point problems, which are related to different engineer-
ing applications in mechanics, a mized finite element method may
consider the general situation where Xy # Y. This is the starting
point of the more involved mathematical justification of the mized fi-
nite element method. The choice of trial and test functions Xp and
Y}, is subject to an inf-sup condition named after Babuska, Brezzi,
Ladyzhenskaya in order to guarantee stability.

Therefore, the use of arbitrary discrete spaces - often employed
i engineering finite element analysis - fails in general. More often
even in everydays practise, there are methods applied which "work
on Mondays but not on Tuesdays” (saying after R. Stenberg). Hence
it is mandatory to consult some mathematics in order to construct
reliable and fast mized finite element simulation tools. This CISM
course brought together leading experts in the field of nonstandard
finite element methods to highlight the state of the art on mathemat-
ical and engineering aspects of current mized finite element technol-
ogy. The basic lectures on the necessary mathematical and mechanical
background for linear and nonlinear application areas of mixed finite
elements methods were given by the two editors and followed by par-
ticular applications and methods discussed by the other lecturers.

Carsten Carstensen and Peter Wriggers
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Lectures on Adaptive Mixed Finite Element
Methods*

C. Carstensen'
TDepartment of Mathematics, Humboldt-Universitit Berlin, Germany

Abstract These lectures concern the three most simple model prob-
lems of elliptic second order partial differential equations which al-
low for some mixed formulations. The introduction to the Poisson
problem, to the Stokes problem, and to linear elasticity is completely
standard and hence kept rather short.

The first aim is a general discussion of the mixed formulations
around various statements of the inf-sup condition often named af-
ter Ladyzhenskaya, Babuska, Brezzi. Some details on the imple-
mentation of Raviart-Thomas mixed finite elements in MATLAB
complement this introduction.

The second aim is a particular outline of the author’s own re-
search on a posteriori error analysis and adaptive algorithms of
mixed finite element methods displayed for the Poisson problem.
The presentation is motivated by the author’s research Braess et al.
(2004); Carstensen (1997, 1999, 2005); Carstensen and Dolzmann
(1998); Carstensen et al. (2000); Carstensen and Funken (2001a,b);
Carstensen and Verfiirth (1999) with essential help of many re-
searchers including S. Bartels, D. Braess, G. Dolzmann, S.A. Funken
and R. Hoppe.

These lecture notes are written with the help of Wolfgang Boiger,
Andreas Byfut, David Giinther, Athina Konstantinidou, Hella Ra-
bus, and Jan Reininghaus. The support of all these scientists, es-
pecially that of the younger ones is thankfully acknowledged.

1 Three Mixed Formulations

This lecture introduces mixed formulations for three model examples and
displays them in a unified abstract way, which the remaining lectures are
based on.

*Supported by the DFG Research Center MATHEON “Mathematics for key technolo-
gies” in Berlin.



2 C. Carstensen

1.1 Mixed Formulations

If the main interest is on an accurate stress or flux approximation and
some strict equilibration condition, it might be advantageous to consider an
operator split: Instead of one partial differential equation of order 2m one
considers two equations of order m.

To be more precise, given one equation in an abstract form Lu = G with
some differential operator £ = AB composed of A and B, define p := Bu
and solve the two equations

Ap=G and Bu=p. (1)

Throughout these lecture notes, a and b are two bilinear forms associated
with A and B on the Hilbert spaces L and H with dual spaces L* and H*,
typically, L is some Lebesgue space and H is some Sobolev space. Given
bounded bilinear forms a : H x H — R, b: H x L — R and right-hand sides
g € L* fe H* aweak form of (1) reads

a(p,q) +b(q,u) = f(q) forall qeH,

b(p,v) =g(v) forall wvelL. (2)

Note that p — Bu = f represents the strong form of (2), and Ap = G is the
strong form of (2), .

1.2 Lebesgue and Sobolev Spaces

The reader is expected to be familiar with the basic features of Lebesgue
and Sobolev functions. For the understanding of these lecture notes, it
suffices to know that v € L?(Q) for some domain  C R™ means that v is
measurable and the (Lebesgue) integral of |v(x)|? over ( is finite,

2
o220 = /Q [o(@)|? d < oo

Then, this defines the norm of v in L?(£2). The same notation applies to
more components such as L?(Q; R™) and matrices L?(£2; R™*"), where each
component belongs to L?(2).

For a smooth function v, the Sobolev norm || - || g1 () is defined by

1ol = / fo(@)? d + / IV o) de

and H'() denotes the completion of smooth functions with respect to
this norm. To be more precise, let C2°(€2) denote the set of arbitrarily
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smooth functions with a compact support inside 2. Then, the Sobolev
space HJ (1) is defined as the closure of C2°() with respect to the Sobolev
norm ||| g1 (g, while H(€) is the closure of C2°(R™) restricted to  under

the same norm. One says that v € H*(£) satisfies v|pn = 0 in the sense of
traces, written y(v) = 0, if and only if v € H}(Q).

It can be proven that Sobolev functions (i.e., the elements in such a Sobolev
space) have a weak derivative in L?(Q;R") and satisfy the integration by
parts formula: For all u,v € H'(Q2) and j = 1,...,n there holds

/ungd:er/ axjvdx/agfy(u)fy(v)l/jds. (3)

Here v is the outer unit normal vector along the boundary 02 and the
trace operator v : H(Q) — L?(99) is well defined, linear, continuous, and
satisfies (yu)(z) = u(z) for all z € Q and all u € C(Q2). An alternative
notation reads y(u) = u|gn or one simply replaces y(u) by w on the right-
hand side of (3).

Moreover, H(div,€) C L?(2)" is the set of functions whose divergence is

integrable. The norm in H(div, Q) is given by

ey = [ 0@ o+ [ |divo) da.
Note that H'(Q)" C H(div,Q) c L?*(Q)", but HY(Q)" # H(div,Q) #
L?(Q)" for n > 1. Finally,
HE.(Q) = {V: Q — R measurable : YK CC Q, v|x € H*(Q)},
where K CC Q denotes an open bounded subset with K C €.

1.3 Poisson Problem

The stationary heat equation and many mathematical models in appli-
cations of solid and fluid mechanics lead to the Laplace operator A =
2 2
37% +...+ 887? Given g € L := L?(Q), let u € H'(Q) with p := Vu €
H := H(div, Q) denote the solution to the Poisson problem
Au+g=0inQ and u =0 on Q. 4)

The weak form of (4) is given by (2) with p,q € H, u,v € L, and (where -
denotes the scalar product in R™)

a(p,q) ::/Qp-qu, b(gq,v) ::/Qv div ¢ dx,
f(q) :==0, g(v) = —/ngdx.
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It is known that there exists a unique solution and, at least locally, u €
HZ (Q) and p € HL (Q).

loc

1.4 Stokes Problem

The stationary incompressible fluid flow can be modeled by the Stokes equa-
tions for given f € L?(Q2) and unknown velocity u and pressure p,

Au+Vp=—finQ, divu=0inQ, u=0on 9. (5)
The weak form of (5) is given by (2) with p,q € L := L3(Q) and u,v €
H := H} ()™ and, (where : denotes the scalar product in R"*")

a(u,v) /Vu Vudz, bv,q):= /qdivvdx,
Q

/ fodz, 9(q) = 0.

Here, in comparison to (2), the roles of v and p are interchanged, which typ-
ically leads to some confusion. Moreover, L§(Q) := {q € L*(Q) : [, qdz =
0} fixes a global additive constant in the pressure (because of lacking Neu-
mann boundary conditions). Then there exists a unique solution (u, p).

1.5 Elasticity Problem

We adopt the notation of the previous two subsections and continue with a
linear stress-strain relation with the linear Green strain e(u) := sym(Vu) :=
(Vu+ (Vu)'') /2 of the form

g+divCe(u) =0 inQ and u =0 on 9. (6)

The weak form of (6) is given by (2) with o,7 € H := H(div,Q)" N
L2(;R2X™) w,v € L= L*(Q)", and

sym

a(o,7) = /Q(Cfla) :7dx, b(T,v) ::/Qdiw.vdm,
f(r) =0, g(v) = —/ngdx.

Here, C denotes the linear fourth-order tensor, namely
CA:=Atr(A)1+2uA for AeR™™
with inverse relation

C'A=1/2u) A—X\/2p(nX +2u)) tr(4)1 for A € R™*".
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The material parameters A and p are positive and hence (6) is an elliptic
PDE with a unique solution u € HJ(2) N HZ ().
2 First Analysis for Mixed Formulations

Let X, Y be real Hilbert spaces with duals X*,Y* andleta: X xY — R
be a bounded bilinear form, i.e., for all u,w € X, v,z € Y there holds

a(Au, pv) = Apa(u,v) for all A, p € R, (homogenity)

alu+w,v+ z) = a(u,v) + a(u, 2) + a(w,v) + a(w, z),  (additivity)

lla]| := sup sup a(z,y) < co. (boundedness)
Y

reX ye

lzl=1 ffyl=1
Given such a bounded bilinear form a : X x Y — R, one defines the two
associated linear operators

Ay € L(X;Y*) and Ay e L(Y;X*) by

8
A1z :=a(z,) and Ayy:=a(,y) forze X andyeY. ®)

The operator norms of A; and As read

a(z,y)
[Axll := [|Asllx,ysy = sup  sup == = [|As| v, x+) = [la]-
z€X\{0} yeY\{0} Izl x[lylly
Remark 2.1. Conversely, any A; € L(X;Y™*) defines some bilinear form
a: X xY — R which is bounded with ||a|]| = ||41]. Analogous remarks
apply to As.

An operator A; (resp. As) from (8) is called an isomorphism if it has a
bounded inverse so that the linear equation Ajx = f (resp. Asy = g) has a
unique solution, which is bounded with respect to the data f (resp. g), in
other words, the problem is well posed. Sufficient and necessary conditions
for an isomorphism A; are well known Babuska and Azis, Brezzi and Fortin
(1991). The proof is sketched for convenient reading to narrow the gap
between lectures in functional analysis and on mixed FE formulations.

Theorem 2.2 (Invertibility of A; < Inf-Sup Condition). Let X, Y be
Hilbert spaces and let a : X xY — R be a bounded bilinear form with
Ay and Az as in (8).
a. The following conditions (i), (ii), (iii),(iv) are pairwise equivalent

PYyvfevY*IeeX, alz,’)=f;

i) Vge X*3AyeY, al,y) =gyg;

i) ;= inf sup a(x,y) >0 and

II:\,\EXX:1 ||;/H€YY:1

VyeY\{0} 3z e X, a(z,y)#0;
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i) ag:= inf sup a(x,y)>0 and
yey zeEX
lolly =1 jz) =1
Vee X\{0}3yeY, a(zy) #0.
b. There holds A} = Aa, A5 = Ay and each of the above conditions
(i), (i1), (iii), (iv) implies that A; and As are continuously invertible

and
1 1
—1 _ _ _ —1
HAl ||L(Y*;X) - 071 - 072 - ||A2 ||L(X*;Y) )
Proof of Theorem 2.2.
Claim 1: If @3 > 0, then Range(A;) is a closed subspace of Y*.

Proof. Suppose (f;) is a Cauchy sequence in Range(A;). There exists a
sequence (z;) in X with f; = A; z; for all j € N. By definition of oy > 0
there holds, for all 7,k € N,

arl|lzy — wil|lx < |[Ar 2 — Avaklly- = |[fj — fil

Yo*.

Hence (z;) is also a Cauchy sequence in the complete space X, and so is
convergent towards some x. Since A; is bounded,

(fi)=A1z;) — f=A1z inY".

Hence (f;) — f has a limit in Range(A;). Therefore, Range(A;) is com-
plete, whence closed.

Claim 2: If Range(A;) closed and ker(As) = {0}, then Range(A;) = Y*.

Proof. Let Ry : Y* — Y be the Riesz representation in the Hilbert space
Y, ie., foreach f € Y* z:= Ry f € Y satisfies

(zy)y = f(y) forallyeV.

Suppose Range(A;) € Y*. Then (R2 Range(A41)) € Ry Y* =Y and there
exists some y € Y \ {0} such that y L (Rs Range(4;)). Hence, for all
z e X,

0= (R2 A1z, y)y = (A1 2)(y) = alz,y) = (A2y)(x).
This reads y € ker(Az) = {0} and contradicts y # 0.
Proof of (iii) = (4): This follows from Claim 1 and 2.
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Proof of (i) = (4ii): The inverse mapping theorem applies to A; : X — Y*
and shows

feYy*
1flly==1

-1
0<||A1_1||Z(1Y*;X)_< sup |A;1f|x> = b AT

[flly*=1

_ Uy . [ A1 ||y
= 11 Ta—1en m — ) — (1.
feva\{o} [|AT fllx  zex\{o} |lz||x

This proves the first assertion in (iii) and 1/ay = [|A7 || z(y+:x) in (b).
The second assertion in (iii) is verified as follows: Given any y € Y \ {0},
a corollary to the Hahn-Banach theorem guarantees the existence of some
feY* with f(y) # 0. From (4), there exists x € X \ {0} with f = A; .
Hence, a(z,y) = (A1 2)(y) = f(y) # 0. This completes the proof of (iii).

Since A} € L(Y; X*) satisfies, for all z € X and y € Y, that
(A1 y)(z) = Ai(2)(y) = a(z,y) = (A29)(2),

there holds A} = Ay. If A; is invertible, so is its dual Ay and vice versa.
This proves (i) < (ii). Moreover, the norms of A;* and A7’ coincide.
Hence a; = ao. This indicates the proof of (b). The remaining details and
implications in the proof of (a) are omitted. O

Definition 2.3. Some bilinear form a : X x X — R is called X —elliptic if
there exists a > 0 such that, for all x € X, there holds

2
allzlx < alz,z).

Example 2.4. Suppose a : X x X — R is bounded and X-elliptic. Clearly,
a < aj in (4i7) and, by Theorem 2.2, A; is an isomorphism. This statement
is known as the generalised Lax-Milgram lemma and plays a dominant role
in the existence theory of elliptic PDEs.

Theorem 2.5 (Main Theorem for Mixed Formulations). Let X,Y be Hilbert
spaces and let a : X X X - R and b: X XY — R be bounded bilinear
forms. Set

Vi=ker(B))={x€ X : b(z,) =0 in Y}

and suppose that
0<a:= igf sup a(z,u) < |a| < oo,
Izl =1 a5 =1

0<pG:= inf sup b(z,y) <|b|| < 0.

YyEY zeX
oy =1z x =1
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Then the linear continuous map

X XY = (X xY)*,
L { (x,y) = a(m,~) +b('vy) —i—b(l‘,-)

is an isomorphism if and only if
a,>0andVyeV\{0} Iz eV, a(z,y) #0.

Remark 2.6. The summands in a(z,-) 4+ b(-,y) + b(z,) act on different
spaces according to their domain, such that, in more details,

L(z,y)(u,w) := a(z,u) + b(u,y) + bz, w).

Remark 2.7. Since X, Y are Hilbert spaces, infima und suprema are at-
tained in the definition of «, 8, etc. For example, dist(z,V) = |x — ||
for some v € V. In fact, for a minimal sequence (z;) in V' we have that
llz;]| < |lz — ;]| + ||| is bounded and there is a subsequence (zy) — v

in V. Because ||z — || is convex and continuous, it is weakly lower semi
continuous and so ||z — v|| < klim |z — x;|| = dist(z, V).
—00

Remark 2.8. The condition 8 > 0 for some bilinear form b(-,-) is called
LBB-condition (written ’b satisfies (LBB)’) after Ladyzhenskaya, Babuska,
and Brezzi. However, the notion of an LBB condition is more often applied
to the discrete situation, cf. Definition 3.1.

Proof of Theorem 2.5.

“=7” Consider L: X xY — (X xY)* with (z,y) — a(z,)+b(-,y)+b(z,-)
which satisfies the inf-sup condition with a constant v > 0. Then,
for all y € Y there exists (u,w) € X x Y such that

Y ||y||Y ||u||X S Y ||(O’y)HX><Y ||(u7w)||X><Y S b(u’ y)'

This implies 3 > v > 0. Hence, the restriction of By to V1 := {x €
X : z LV}, namely

B:Vt=Y* z—b(z,),

is an isomorphism by Theorem 2.2, since (iv) and hence (a)-(b) hold
with
inf  sup b(x,y)=0>0.

zev-L yeY
lzllx=1 |lylly =1
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It remains to show that
A: V-V vealv)|y

is an isomorphism, as well. Once this is established, the remaining
part of the claim follows from Theorem 2.2 applied to aly xv .

Let f € V*. By the Hahn-Banach theorem, there exists a continua-
tion F € X* of f. Since L is isomorphic, there exists (z,y) € X xY
such that

Lz, y)(u, w) = a(z,u) + b(u, y) + bz, w) = F(u)

for all (u,w) € X x Y. This expression does not depend on w and
so b(x,-) = 0, whence z € V. For u € V, this leads to

a(z,u) = F(u) = f(u),
and so to Ax = a(x,-)|y = f. Consequently, A is surjective.

Let z € ker(A) C V, ie., a(z,v) = 0 for all v € V. Since B is an
isomorphism the adjoint operator

B : Y = (VH)' gy b(y)lve
is an isomorphism, as well. Hence there exists a unique y € Y with

b y)lve = —a(z, )|vs € (V)"
Since b(-,y)|v = 0 = —a(z,-)|v, there holds

b(-,y) = —a(z,:) € X*.
This and = € V, i.e., b(x,-) = 0, implies
L(z,y) = a(z, ) + b(-,y) + b(x,-) = 0.

By assumption, L is isomorphic and so (x,y) = (0,0). Hence, x €

ker(A) implies z = 0 and therefore A is injective.

Suppose 3 > 0. Then the restriction of By to Vi :={z € X : = L
V'}, namely
B: VYY" e b(z,-),

is an isomorphism by Theorem 2.2, since (iv) and hence (a)-(b) hold
with
inf sup b(z,y)=£>0.
zev-L ye
Izl x =1 HU”Y 1
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For given (z,y) € X x Y with |lz||% +[|y||3 = 1, there exist 1 € V,
zo € V1 with © = 21 4+ 22. Define t := |23y, 8 = |21y, 7 ==
||y, and so 72 = s? +¢*> < 1 and Hy||§, =1 —r% By definition of
a, 3 and the above inf-sup condition, there exist u; € V, us € V*
and w € Y with

a(zr,ur) > ezl [lullx
b(xg, w) = Bz x lwlly
b(ug,y) = B [luzllx [lylly -

The lengths of wuy,us,w are arbitrary, and with (-); := max{0,-}
one possible choice reads

[wlly = Bt =0,

urll = (s — ¢lall),.

luz ]l = (B = 7)"% = (t + s) [lal]) -
With u = u; + uo this implies

L(z,y)(u, w) = a(z1 + 22, u1 + u2) + b(u1 + uz, y)
+ b(z1 + 22, w)
Z allzalx luall x = llall lz2llx lur + vl x
= llall flzallx luallx + B lluzllx lylly
+ Bl x [lwlly
2 [Jurlly Cas —llallt) + llwlly B¢
+ il (B0 =722 [l £~ ] )
= el + wli
2
= (as— ||a||t)Jr
+ (B =)V — (t+5) [la])) + 52
=: f(r,s,1).
Since f(r,s,t) =0 implies s =0 =t and r = 1, there holds
0 < (% :=min{f(r,s,t) : 0<rst<1withr<s+t}

The minimum (3% depends only on «, 3, and ||al|. Since ||(u, w)||§(xy
= ||u\|§( + Hw||§,7 there holds

L(z,y)(u,w) > f(r,s,t) > B|/(u, )] xy -
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Therefore, L satisfies the inf-sup condition.

It remains to show that
V(u,w) € (X x Y)\ {0} 3(z,y) € X x Y, L(z,y)(u, w) £0.

In fact, if L(z,y)(u,w) = 0 holds for all (z,y), then b(u,-) = 0 and
a(,u) +b(-,w) =0, hence u € V C X.
Since a is non-degenerated and v € V, the assumption u # 0 leads
to some z € V with a(z,u) # 0 and b(z,w) = 0. This contradicts
a(z,u) + b(z,w) = 0 and proves u = 0.

The assumption w # 0 and the Hahn-Banach theorem leads to some
f € Y* with f(w) = 1. Since the above operator B is an isomor-
phism, x := B71(f) € V. This implies b(z,w) = f(w) = 1. But
this contradicts b(z,w) = 0 and proves w = 0.

In conclusion, (u,w) =0 and so L is non-degenerated. O

3 Discrete Mixed Formulations

The understanding of MFEM and its stability requires some mathematics,
which will be introduced in this lecture. The instable methods sometimes
even seem to work somehow in practice: There are methods which work on
Mondays but not on Tuesdays is a saying due to Rolf Stenberg. However,
a reliable computation is based on stable discretisations and therefore, has
to satisfy the LBB conditions.

3.1 Abstract Framework

Throughout this lecture, let a : X x Y — R be a bounded bilinear form,
and let X, C X and ¥, CY be closed (e.g., finite-dimensional) subspaces
of the Hilbert spaces X and Y.

Definition 3.1 (LBB). The discrete bilinear form «a is said to satisfy the
(LBB) condition if

ap = inf sup a(xp,yn) >0 (9)

T T
lnllx =2 flyplly =1

satisfies o, > 0 uniformly with respect to a family (Xp,Y%)n of discrete
spaces. LBB abbreviates Ladyzhenskaya, Babuska, Brezzi and is also called
(discrete) inf-sup condition.
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Remark 3.2. Any choice of some orthonormal basis (£1,...,&,) in X,
and some orthonormal basis (71, ...,n,) in Y}, leads to a coefficient matrix
A € R™*™ via

Ajg:=a(§,m) fori=1,...,mandk=1,...,n

Then, «y, is the smallest singular value of A. This is seen from a singular
value decomposition
A=QXR

Rm Xn R’ﬂl Xm

of A with a diagonal matrix ¥ € and orthogonal matrices @ €

and R € R™*", In fact,

oh =Y N& A0 and yu =Y e #0

=1 k=1

for real coefficients A1, ..., Am, f1,. .., tn, and (recall orthonormality of the
basis)
lznll% = ZAQ and  [lynlls = Zuk
Jj=1

Since the Euclidian norm |-| is invariant under orthonormal transformations,
the vectors A = (A1,..., A\)T and g = (p1, ..., )7 satisfy

a(zn, yn) _ AQXR i _ (QT\)  (Ru)
lznllx lynlly IA[ gl |QTA|[Rpl

and recall that 3 is diagonal with singular values 01 > 09 > ... > 0, >0
for r = min{m, n} in the diagonal, thus

3

n
ap = inf sup Z § ]k 123
XA ER™ R™ 1 o1

A=1

<

= inf sup Ao Xge e
A ER™ n
A=t D, =l
T
= inf sup (ee) pue
AER™ , cn
=1 fu=1 =1
Since the scalar product of (o¢Ae)e=1,..» and (p1,. .., fr) is maximal if the
two vectors are parallel,
s s /
sup Z(O’()\g) e = (Z ag)\?)
pEeRT 4 =1
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Hence, there holds
" r 5 o) 1/2
ap = .
o=t (o)
A=1 £=1
This is zero if n > r, and equals the singular value o,. if n < r.

It is emphasised here, that m = n if A is regular and then «y, is the smallest
(positive) singular value of A.

Definition 3.3 (Exact Problem). Given f € Y*, find z € X with
a(z,y) = f(y) foralyeV. (P)
Definition 3.4 (Discrete Problem). Given f € Y*, find z}, € X}, with

a(xn,yn) = f(yn) for all y, €Y}, (Pr)

Theorem 3.5 (Existence and Uniqueness).
(a) The discrete problem (Pp) has a unique solution xp € Xy, for all f €
Y* if ap, > 0 and a is non-degenerated in the sense of

Vyh €Y,z € Xy, a(xh,yh) 75 0. (ND)

(Analogous results hold for the exact problem.)

(b) Assume (P) to be uniquely solvable and let x € X be its unique solu-
tion. Furthermore, suppose oy, > 0 in (9), (ND), and that ), solves
(Py). Then

|z —2nllx < (A +lall/an) inf |l —oaly. (10)
v €Xh

Remark 3.6. The estimate (10) is called quasi-optimal, if ap > « > 0 is
independent of dim X}, for a family of discrete spaces (X3)pn. It links the
Galerkin error ||z — ||y with the best-approximation error dist(x, X}) by

|z — x| ~ dist(x, Xp).

Proof of Theorem 3.5.
(a) This follows from Theorem 2.2 by replacing X x Y with X} x Y},.
(b) For the exact solution x and a discrete solution xj; there holds the
Galerkin orthogonality

a(x — zp,yn) = 0 for all yy, €Y,.
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Given v, € X and € > 0, (9) and «p, > 0 imply that there exists
yn € Yy with |ynlly = 1 and

(an =€) [|lon —vnllx < alzn — v, yn)
= a(x — v, yn)
<llall |z — vnllx -

Here, the second step is via the aforementioned Galerkin orthogonality
and the last step is the boundedness of a. Since € > 0 is arbitrarily
small, this implies

llall
lzn — Uh||x < cTh |z — Uth-

This and a triangle inequality show the assertion:

lz —2nllx < llz—vnllx + llvn — znll

a
<<1+””> |z —vnll - O
ap,

3.2 Stable and Instable MFEM

This subsection considers one instable and one stable MFEM, i.e., violating
and satisfying the (uniform) LBB condition, respectively.

Consider the following discrete problem (MFEM) for  C R™ and finite
dimensional subspaces X; C H(div,Q) and Y, C L?(Q) from Subsection
1.3. Compute (pp,up) € Xp, x Y}, that satisfy

(Prsan) L2() + (un,divan) 2 = 0 for all g, € Xp,
(divph,Uh)L2(Q) = 7(f, Uh)L2(Q) for all vy, € Yy,

(11)
Definition 3.7 (Triangulation). A regular triangulation 7 into triangles
(for n = 2) is a set of closed triangles T' of positive area |T'| such that any
two distinct triangles T and T are either disjoint, T3 N Ty = @, or share
exactly one vertex z, T3 N To = {z}, or have one edge F = T3 N T3 in
common. The set of all edges is denoted by &, the set of nodes is denoted
by N. Each edge is associated to a length hp := diam(E) and a unit normal
and unit tangential vector vp and 7. The words mesh and triangulation
are used as synonyms of each other.
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Definition 3.8 (FE Spaces). For a triangulation 7 of Q and £ =0,1,2,...
define

:= {polynomials on T with degree < k},
—{[€I¥Q) VT ET flr € R(T)},
:={f € Px(T) : f globally continuous in Q },
{feSHT): f=00n 00}

Moreover, the nodal basis function ¢, € S*(7) is defined by ¢.(z) = 1 and
¢.(y) = 0 for z € N and all other nodes y € N\ {z}. One can prove that
(p. : z € N) is indeed a basis of S(7T) and (¢, : 2 € N NQ) is a basis of
SHT).

Example 3.9 (Unstable P;-Py MFEM). The 2D P; — Py MFEM is defined
by the discrete spaces

Xp = (SYT))? and Y} := Py(T).

As an example for instability of the linear system of equations underlying
(Pp,), consider the Poisson problem (4) on an L-shaped domain for g = 1.
A simple implementation that results after some uniform refinement in a
singular matrix A of the linear system associated with (P) is depicted in
Figure 1. The outcome is that the program stops with the error message
”Warning: Matrix is singular to working precision.” To illustrate this sin-
gularity, Figure 3.2 shows the smallest singular value A of the energy matrix
A with respect to the degrees of freedom. For maxgcg hp — 0 the singular
value \ goes to 0. This yields instability as it can be observed in Figure 3.

Remark 3.10. Based on the Gaufl divergence theorem, one can prove
that any piecewise polynomial function g, € Py(7)™ C L?(Q)" belongs to
H(div, Q) if and only if the jump of the normal component of g, across E
vanishes, i.e.,

[gn]E - vE =0 on each interior edge E.

This condition clearly indicates that the P, — Py MFEM is too restrictive
by the request of global continuity.

Definition 3.11 (Raviart-Thomas FEM). For a regular triangulation 7 of
Q) C R? into triangles set

w1y = {e) = (P00) + ) (3) ¢ pac € PO



