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PREFACE

Thin structures are frequently used in several areas of civil, me-
chanical and aeronautical engineering. Slender beams, plates and
shells, just to mention some of the most common examples, are es-
pecially advantageous in structural design applications since they are
able to ensure a high ratio between “strength” and weight.

Approximate analytical models for thin structures are hundreds of
years old and go back to the pioneering works by Euler, D. Bernoulli,
Navier and Kirchhoff, to mention a few. These classical theories are
based on the introduction of some a-priori assumptions motivated by
the smallness of certain dimensions with respect to others, on the
stress field or on the deformation of the thin body. In the last few
decades a considerable amount of work has been done in order to rig-
orously justify these a-priori assumptions. In particular, approaches
based on rigorous asymptotic expansion (mainly due to the French
school) or inspired by the Gamma-convergence of energy function-
als (proposed by E. De Giorgi in 1979) have been successfully used
in deriving one or two-dimensional classical mechanical models for
thin structures, in linear and non-linear elasticity. Besides these
asymptotic methods, another approach, called the method of inter-
nal constraints, was developed. This method is based on viewing the
a-priori kinematical assumptions as internal constraints, which gen-
erate reactive stresses, and to obtain the lower dimensional theory by
integration over the “small” dimensions. Asymptotic methods and
the method of internal constraints could be seen as complementary:
on one hand, asymptotic methods provide a rigorous justification of
the starting point of the method of internal constraints, on the other
hand, this latter method provides an intuitive and consistent mechan-
ical deduction of lower dimensional theories without an extensive use
of deep mathematical tools.

The aim of the CISM course entitled “Classical and Advanced
Theories of Thin Structures: Mechanical and Mathematical Aspects”,
held in Udine on June 5-9 2006, was to present an up-to-date overview
of the general aspects and applications of the theories for thin struc-
tures, through the interaction of several topics, ranging from non-
linear thin-films, shells, beams of different materials and in different
contexts (elasticity, plasticity, etc.).



The course was addressed to PhD students and researchers in
the fields of continuum mechanics, structural engineering and applied
mathematics. The plan of the course and the lectures have taken into
account the different background of the audience.

The first two chapters by Morassi and Paroni introduce the main
notions of continuum mechanics: the concepts of stress, deforma-
tion and constitutive equations. Moreover, in discussing the existence
of the solution for the elasticity problem, several mathematical tools
such as Sobolev spaces, weak convergence, Laz-Milgram lemma and
Korn’s inequalities are recalled. As anticipated earlier, the notion
of Gamma-convergence plays a fundamental role in the deduction of
lower dimensional models. Percivale in the third chapter introduces
the notion and describes the main properties of Gamma-convergence.
Besides presenting some illustrative examples, he also discusses the
properties of the limit problem for an elastic-plastic beam. In the
fourth chapter Podio-Guidugli presents a unified approach to classic
rod and plate theories by means of a procedure which is an outgrowth
of the method of internal constraints. He also discusses how to ap-
proximate the stress field in a linearly elastic structure-like body. The
next chapter by Ciarlet is devoted to a detailed description of the
nonlinear and linear equations proposed by W.T. Koiter for mod-
elling thin elastic shells. The existence, uniqueness and reqularity of
solutions to the linear Koiter equations is then established, thanks to
a fundamental Korn inequality on surfaces. At the beginning of the
chapter the basic notions about differential geometry for surfaces are
introduced. The book ends with the lectures by Fonseca. In the first
two she applies Gamma-convergence techniques to deduce the energy
for brittle and non-brittle thin films. The last four lectures are ded-
icated to the study of various interesting aspects of nonlinear mem-
branes, including the deduction for two nonlinear membrane models:
one based on the so called Cosserat vector and the other written in
terms of Young measures. This latter model is appropriate for the
study of phase transitions.

Antonino Morassi and Roberto Paroni
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Strain, Stress and Linearized Elasticity

Antonino Morassi

Dipartimento di Georisorse e Territorio, Universita degli Studi di Udine

Abstract In these notes I introduce the concepts of strain and
stress, and I present the linearized elasticity problem.

1 Introduction

In these notes I present some basic elements of Continuum Mechanics. The
first two chapters introduce the concepts of strain and stress, respectively.
The third chapter is devoted to the derivation of the linearized elasticity
and to the presentation of some related existence and uniqueness results.

The manuscript reproduces more or less the pattern followed in the notes
of the three lectures delivered at CISM. The presentation of the arguments
is deliberately simplified and there is no claim to general and exhaustive
treatment. Indeed, the aim of this first series of lectures, and of those by
Paroni (2008), was to introduce the audience of the course to the principles
of Continuum Mechanics and to the mathematical tools adequate for the
correct formalization of the problems.

The reader interested to further investigate the issues outlined in these
notes is invited to consult the classical treatises of Continuum Mechanics
and Theory of Elasticity, an essential list of which can be found in the
references.

2 Strain

2.1 Points, vectors and tensors

Let us denote by R? the cartesian space formed by the usual vectorial
space of all ordered triplets, or points, X = (X1, X2, X3), X; € R for i =
1,2, 3, endowed with an euclidean structure induced by the distance

3

dX,Y) = (D (X = Y;)*)"/? (1)

i=1

between any two points X and Y = (Y7, Ya, Y3) of R3. Here, X1, X5, X3 are
the orthogonal cartesian coordinates of X in R3.
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We shall denote by V the vector space associated with R?. The elements
of V' are called vectors. Every vector v may be interpreted as difference
between two points of R?, namely the head, Y, and the end, X, of the
pointed arrow used to denote the vector v, e.g. v =Y — X. The euclidean
distance of R? endows V with its natural metric structure: for every v € V,
the norm |v| of v is the length of the arrow which represents v. In particular,
|v| = (v - v)'/2, where - is the usual inner product of V.

We think V equipped with a fixed cartesian frame {O;eq, €3, €3}, where
O is a chosen point of R3, called origin, and {e;}?_, is an orthonormal basis
of V, eg. e -e; = d;;, where d;; is the Kronecker symbol. Therefore, the
(cartesian) components of a vector v are given by

Vi =V - €, (2)
i=1,2,3, so that

3
V-u:Zviui. (3)
i=1

Similarly, if {e;}?_, are the versors of the axes of the cartesian space R?,
recalling that X = X — O, the ith coordinate of the point X is X; = X - e;,
1=1,2,3.

The set of all the linear transformations of V into itself is denoted by
Lin. Each element of Lin is called second-order tensor. Equipped with the
usual operations of addition and scalar multiplication, Lin is a vector space.
Given an orthonormal basis {e;}?_; of V, the components A4;; of A € Lin
with respect to this basis are defined by

Aij =€e; - Aej, Z,] = 1,2,3. (4)

2.2 Bodies and deformations

For us, a body B is a set of particles. These particles can be considered
as primitive elements of Mechanics. The body B is assumed to be smooth,
that is the particles X € B can be set into one-to-one correspondence with a
bounded domain' in R? with regular boundary, and the mapping is assumed
to be differentiable as many times as desired (usually two or three times).

Bodies are available to us only in their configurations, that is the re-
gions they happen to occupy in R3. It is often convenient to select one
particular configuration and refer everything concerning the body to that

'Let © be an open and connected set of R3. The closure of 2, Q = QU 99, is called
here domain.
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configuration. Let k be such configuration

k: B — R?
X — k(X)=X, (5)

where X is the place occupied by the particle X in the configuration k. kK
is assumed to be smooth, in particular X = k~(X) is well-defined. x(B)
denotes the set of all the reference placements of the body; it will be called
reference configuration and denoted by €.

The deformation of the body will be described as a mapping acting on
the reference configuration x onto the actual configuration x. Therefore, a
deformation of the body

X -
= x(X) =x ©
gives the actual placement x occupied by the particle X in the reference
configuration. We indicate with x(£2) the image of  under the map x or,
briefly, the deformation of Q under .

We accept the following a priori assumptions on x:

i) There is a bijection between Q and x ().
ii) x € C1(Q).

iii) The orientation preserving condition
det Vx(X) >0 (7)

holds in Q. Here, V is the gradient operator? and det is the determi-
nant operator.’
By above assumptions, the map x is globally invertible in €, e.g. there
exists the inverse of x, say x !, such that

xX'(x) =X inx(9),

2Let X : 2 — R3 be a function of class C1 in Q. The gradient of x at X € § is the
unique element Vi such that
L Ix(Xh) — X(X) ~ Vx(X)h| _
|h|—0 |h|

0.

If x is of C'-class up to the (smooth) boundary 9 of Q, then the gradient of x at
X € 09 is well-defined and it can be evaluated as limit of Vx(Y), Y € Q, as Y — X.
3Let A € Lin; det A € R is defined as

(det A)ax b-c=(Aax Ab)-Ac for every a, b, ¢ € V such that ax b-¢c # 0.

Here x is the vectorial product in V' x V.
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and it still satisfies conditions i)-iii).
The displacement field u(X) associated with the deformation x is defined
as follows: .
u: Q9 — R3 8
X - u(X)=x(X)-X (8)
The vector u(X) is the displacement from the reference configuration to the
deformed shape at the point X. The displacement gradient is given by

Vu=Vx-1, 9)

where 1 € Lin is the identity tensor.
Following a standard notation, we shall denote by F and H the defor-
mation gradient and the displacement gradient, respectively, i.e.

Vx(Xo) = F(Xo) ,

VU(X()) = H(X0)7 Xp € Q. (10)

The values F(Xy), H(Xp), Xo € Q, are elements of Lin. In particular, the
values F(Xj) are elements of the set of positive linear transformations Lin™:

Lint = {A € Lin | det A > 0} (11)

2.3 Deformation: examples

i) Rigid deformation
We say that a deformation is rigid if it leaves the distance between any
pair of points of {2 unchanged, i.e.

Ix(X) —x(Y)| =|X -Y| forevery X, YeQ.
One can show that

xX(X) = x(Xo) + Q(X — Xyp) , (12)

where X, is any point of Q and Q is a constant orthogonal tensor* with
det Q = 1. Then, we have

4A second-order tensor Q € Lin is called orthogonal if QQT = 1. We shall denote
by Orth the collection of all second-order orthogonal tensors. We call rotation an
orthogonal tensor Q with det Q = 1 and we shall indicate

Orth™ = {Q € Orth | detQ = 1}.
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and the rigid displacement field is given by

uX) =uXp)+(Q-1)(X-Xo) inQ.
A rigid deformation is a translation if Q = 1, a rotation (about Xg) if

u(Xp) =0, cf. Ex. 3.

ii) Simple extension

Figure 1. Simple extension in the direction e.

Let X be a point on  which remains fixed during deformation. Let 7°
the plane passing through Xy with normal e, |e| = 1. The simple extension,
of amount « in the direction e, is such that the displacement u(X) of point
X is parallel to e-direction and its modulus is proportional to the distance
of X from 7. That is

XX)=X+a[(X-Xp)-ele=X+ale®e)(X —X), (13)

where, for any two vectors a,b € V, a ® b denotes the element of Lin such
that (a® b)v = (b - v)a for every v € V. We have

u(X) = a((X - Xo) - e)e,
F(X)=1+ale®e), HX)=ale®e),
detF >0 <= a>—1.
iii) Simple shear
Let €1 - e3 = 0, |e;| = |ez] = 1. With the notation of Figure 2, the

deformation of simple shear, of amount v in the plane (e, e2), is such that

X(X) =X+ ’7((X — Xo) : 82)91 =X+ ’)/(el ® 92)(X — Xo) (14)
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XW”X (X)

Figure 2. Simple shear in the plane (e, e3).

and then
u(X) = y(e1 ® e2)(X — Xo),

F(X)=1+7(e1®ez), H(X)=r(e1®ez),
detF = 1.

These three cases are examples of homogeneous deformations, that is
deformations with constant gradient in €:
x(X)=x(Xo)+F(X—-Xp), Xo€, inQ, (15)

with F = const in Q.

2.4 Changes in length, area, volume, angle. Strain measures

The knowledge of the gradient F at Xy € €2 allows to characterize locally
the deformation. In fact, by the regularity of x we have

X(Xo + dX) = x(Xo) + F(Xo)dX + o(dX; Xo) , (16)
dX; X
with \d%i(?io W = 0. When [dX] is sufficiently small, then the
deformation can be locally approximated by
X(Xo + dX) = x(Xo) + F(X)dX . (17)
Denoting by
dx = x(Xo + dX) — x(Xo), (18)

we have
dx = F(Xj)dX. (19)
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This equation can be regarded as a local description of the deformation in
a neighborhood of Xj. In this description the vector dX is mapped linearly
into F(Xg)dX.

If dX in Eq. (19) is identified with an infinitesimal oriented line element
(or material fiber) through Xg, then Eq. (19) can be used for evaluating
the local changes in length, area, etc.

Change in length

X
$4&&9 X, + dX - dx = F (Xo) dX
g x (Xo) X (Xo + dX)
Xo
Q x (€)

Figure 3. Local change in length.

Q x ()

Figure 4. Change in length of finite curves.

With reference to Figure 3, let dX = dSf with |f] = 1. The length of the
material fiber dX after the deformation is (here F = F(Xy))

ds = |dx| = VFTFf- fdS

and, therefore, the local change in length is controlled by the Cauchy-Green
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right tensor C = FTF?;

(ds)? — (dS)?

o (C—1)f £ (20)

C is a symmetric positive tensor.’

We can use the above result for estimating the change in length of finite
(simple and regular) curves £ C €2, see Figure 4. Let S and s be the arch
length on £ and the corresponding on x (L), respectively. The length of

the deformed curve is given by [ = fol(x( £)) ds. By making the change of

variables s = s(S5) we have | = fOL(L)(g—;)dS and j—g = /C(S)7 - T, where
7 = 7 (59) is the unit tangent vector to £ at the point of abscissa S.

Change in area

Consider two material fibers through X, say dX; = dS:f; and dX, =
dSQfQ, with ‘f1| = |f2‘ =1 and f1 X f2 7é 0. Denote by dA = dX1 X dX.2
the infinitesimal oriented surface in the referential configuration . Under
the deformation x the images of dX;, dX, are respectively dx; = FdXy,
dxs = FdXs, where F = F(Xg). Therefore, the image of dA is da =
FdX; x FdXs, which corresponds to the oriented infinitesimal surface area

in the actual configuration x(£2), see Figure 5.

X (Xo)

Figure 5. Local change in area.

We have

dA = |dA| = |dX; x dX|,

For cach A € Lin, the transpose AT of A is the unique tensor ATa-b = a- Ab for
every a,b € V.

SA tensor A € Lin is symmetric if A = AT. The set of second-order symmetric tensors
is denoted by Sym. A € Sym is positive definite, and we write A € Sym™, if Aa-a > 0
for every a € V and Aa-a =0 implies a = 0.
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da = |da| = |dx; X dxs|

and, therefore, using the vectorial identities a- (b x ¢) = b+ (¢ x a) and
ax(bxc)=(c-a)b—(a-b)c, we obtain

da { (Cfy - f1)(Cf, - f5) — (Cf; - f;)? }1/2 | o

dA ~ (f1 - f1)(f2 - £2) — (f1 - f2)?

The change in area of a finite regular surface S can be evaluated as
follows. Let X = X (11, 12) be a representation of the surface S, where the
two parameters ¥4, o = 1,2, belong to some bounded domain D of R?, see
Figure 6. The tangent space 7 (S,Xg) of S at the point X, is spanned by
the vectors A, = &%(Xo). Similarly, the vectors a, = ;T’i = F(Xp)A,,
a = 1,2, constitute a basis of the tangent space 7 (x(S),x(Xo))-

The initial area of S is A = f s @A, whereas the area after the deformation

da
a= da = /(—)dA ,
/x<5> s dA

and (‘j—j can be evaluated as in Eq. (21) with f, replaced by a,, o = 1,2.

is

Figure 6. Change in area of a finite surface S.

Change in volume

Let dX;, 7 = 1,2, 3, be three non coplanar fibers along edges through X,
of a parallelepiped volume element in the reference configuration Q. The
local change in volume is equal to

dv—dV  FdX; x FdX, - FdX; — dX; x dX - dX;
awv dX, x dXs - dX5 ’

(22)
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Figure 7. Local change in volume.

where F is the gradient at X. Recalling the definition of determinant of a
tensor, see footnote 3, we have

dv

— =detF,

av
which is a positive number in view of condition (7). Therefore, the volume
after the deformation can be calculated as

dv
v = dvz/—de/dethV.
/X(Q) Q(dv) Q

Change in angle
To fix the ideas, let dX; and dX3 be two orthogonal fibers through X,
in the reference configuration €. Let dX, = dS,f,, o = 1,2. By definition
of scalar product we have
dxq - dxs Cf, - f»

‘ _ _ 23
COS (£, £5) |dx1 [[dxa| (Cf; - f1)1/2(Cf2 . f2)1/2 (23)

and, since cosine function is uniquely invertible on [0, ], the change in angle
between the directions of f; and f5 is equal to

Cf, - fy >

™
T, £) T g T ATCEOS ((Cﬁ £1)1/2(Cf, - £)1/2 2

The above analysis (local and global) shows that the changes in length,
area, volume and angle, or the so-called essential changes in geometry, are
controlled by the tensor C = FTF. This suggests how to measure strain.
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A reasonable requirement in the definition of a strain measure is that
its value should be constant over the set of all rigid deformations. In fact,
it is easy to verify that C = 1 for any rigid deformation. Therefore, C can
be chosen as a local strain measure. There are other strain measures, for
example that provided by the tensor

E=_-(C-1), (25)

N =

which is identically equal to Oy, at any rigid deformation.

2.5 Polar decomposition theorem

This theorem states that there exists a unique symmetric, positive defi-
nite tensor U and a unique rotation R such that the gradient deformation
F can be expressed as

F=RU. (26)

The tensor U is called the (right) stretch tensor and R is the rotation tensor
in the polar decomposition (26). This factorization is a well-known linear
algebra result which holds for every non singular tensor (e.g., with non zero
determinant) and tell us that the deformation correponding locally to F
may be obtained by applying first the stretch U, followed by the rotation
R.

To make this statement more expressive, let C = Zle u?mn; ®n;, where
u? > 0 are the eigenvalues of C and {m;}3_, |m;| = 1 and n; - m; = d;j,
are the corresponding eigenvectors. Therefore, since U? = C, U can be
represented as U = E?Zl w;n; @ 1, u; > 0, ¢ = 1,2,3. The quantities
u; are the principal stretches and m; are the principal directions of strain
in the reference configuration. Therefore, F may be obtained by affecting
pure stretches of amounts, say, u;, along the principal directions of strain
1;, 1@ = 1,2, 3, followed by a rotation of those directions of amount R.

2.6 Exercises

1. Prove that the following conditions are equivalent:

i) x is a rigid deformation.

ii) There exists Q € Orth*, Q constant, and there exists a € V, a
constant, such that x(X) = QX + a.

iii) C(X) =1 in Q.

2. Let A € Lin. We define cofA € Lin as follows:

cofA(ax b):= Aax Ab, foreverya, beV.
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72 72 Rz

VdX )

n mn

3 3
R

Figure 8. Polar decomposition of F.

Prove that (det A)1 = A”cofA. Use the above identity to prove that

the normal n,, = Eig; of the oriented surface dA = e; X e3dS1dSs has
cofFn

(unitary) image under the deformation x equal to n = cofFn]*
3. Prove that a rotation around an axis defined by the unit vector w € V'
of an angle # can be represented as

Q(w, 0) =1 +sinOW + (1 — cos§) W? |

where Wa = w x a for every a € V.
4. Prove the polar decomposition theorem.

5. Let x : © — R3 be a deformation. Denote by {O;e;, ez, e3} a
Cartesian frame. Prove that

3
Ix
Vx = E X, ® ey,
=1

where X;, ¢ = 1,2, 3, are the cartesian coordinates of a point X. Compute
the components of Vix in cylindrical and spherical coordinates.

6. Let Q be a regular domain in R? and let v = v(X) be a regular vector
field on 2. Prove the following identities:

/VVZ/ v&n,
Q Ble)
/Divv:/ v-n,
Q o0
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where n is the unit outer normal to 9 and Divv = tr(Vv).”
Let A = A(X) a regular second order tensor field over 2. Prove that

/ DivA = [ An,
Q o

where the divergence of a tensor field is defined as Div (ATa) = DivA -a

for every a € V' constant.

3 Stress

3.1 Forces and Moments

Forces are primitive elements of Mechanics and they express one of the
most simple models describing the interactions between a body and the
surrounding environment or between different parts of the same body.

We will introduce this notion with reference to a body B undergoing
a deformation x. Let p be a part of the body B and let x(p) be the
deformation of p under x. We shall postulate the presence of two kinds of
forces acting on p in x/(p):

- a body force f,(p), or a volume force, caused, for example, by the
gravity field or by electrostatic effects;

- a contact force f.(p), due, for example, to the interaction of the body
and the environment by means of the external boundary of the body or,
more interestingly, caused by the interaction between different parts of the
same body exerted through their common boundary.

We shall assume that f;(p) is an absolutely continuous function of the
volume of x(p), that is

£,(p) = / b (27)

where the function b : x(Q) — V is the body-force density (per unit vol-
ume). Moreover, also f.(p) is assumed to be absolutely continuous function
of the surface area of the boundary 9(x(p)) of x(p), that is

£.(p) = /6 R (28)

"The trace is the linear operator that assigns to each tensor A a scalar tr(A) and satisfies
tra®@b) =a-b,

for all vectors a and b.
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where the function t defined in x(12) is the contact-force density (per unit
area). t will be called traction in the sequel.
The resultant force r(p) acting on p in x is given by

r(p) = £ (p) + fe(p) =/( )bdv+/a ( )tda. (29)

The resultant moment m(p; Xg) acting on p with respect to xg, xo € R?,
is defined as

m(p;Xo) :/ (x —x0) xbdv—i—/ (x — x¢) X tda, (30)
x(p) ox(p)

where we recall that x = x(X) denotes the actual placement of the particle
X € k(B). We have, for any xg, x{, € R,

m(p; xg) = m(p; Xo) + (X0 — Xp) X r(p) (31)
and m(p; xp) does not depend on x if and only if r(p) = 0.

Remark 3.1. The expression given for m(p;xp) in Eq. (30) implicitly
assumes that the contact-couple density is identically equal to zero in x ().
This assumption can be weakened, with deep consequences on the remaining
of the theory.

3.2 Euler’s Laws

We can now formulate the Fuler’s laws of equilibrium. We shall say that
the body B undergoing a deformation x is in equilibrium, under a system
of contact and body forces, if the resultant force and the resultant moment
on each part of B vanish:

r(p) =0 for every x(p) C x(2)  (force balance), (32)

m(p;xo) =0 for every x(p) C x(€2) (couple balance), (33)

where xg is a given point of R3. Under the > above conditions, we say that x
is an equilibrium deformation and that x (Q) is an equilibrium shape for €.

3.3 The Euler-Cauchy Stress Principle

The body-force density b and the contact-force density t may have very
general expression and they may depend on x, p, B, etc. In the sequel we
shall restrict our attention to the so-called external body forces

b = b(x). (34)
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Concerning the contact-force density, we shall make the following assump-
tions. Let x be a point of x(£2) and consider an oriented, regular surface
> through x, see Figure 9. Let n be the unit normal to ¥ in x. We indi-

Tx

Z'l

x ()

Figure 9. Traction on an oriented surface ¥ through x € x(9).

cate with t the contact-force density exerted on x € ¥ through ¥ by the
surrounding particles of the body which are on the portion of the body,
adjacent to X, toward which the normal vector n points.

We shall assume that the traction t at x has a common value for all
those surfaces having a common tangent plane 7y at x, that is

t = t(x,n), t:x(Q) x S — R?, (35)

S1 ={v eV ||v] =1}, see Figure 9. Such tractions are called simple. The
notion of simple traction can be extended also to points x belonging to the
external boundary of x(2). The assumption embodied in the expression of
the contact-force f.(p) and in Eq. (35) is the so-called Euler-Cauchy Stress
Principle.

3.4 Consequences of the Euler-Cauchy Stress Principle
Cauchy’s fundamental lemma

Assume that b € C°(x(Q)) and t(-,n) € C°(x(Q)) (continuity with respect
to the spatial variable). Then, the force balance equation (32) implies that
there exists a continuous second-order tensor field T(x) € Lin, called stress
tensor or Cauchy tensor, such that

t(x,n) = T(x)n in Q. (36)
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Equation (36) says that the traction t is in fact a linear homogeneous func-
tion of the unit normal n of the surface on which t is acting. More precisely,
it can be shown that T(x) has the following representation

3

T(x) =) t(x,e)®@e;, (37)

i=1

where {e1, ez, e3} is the usual orthonormal basis of R and t(x,e;) is the
traction acting on a plane surface through x, with normal e;, i = 1,2, 3.

Local form of equilibrium equations

Let the assumptions of the Cauchy’s fundamental lemma be satisfied and
let T € Ct(x(Q)) N C°Ox(£2)). Then, the force balance equation (32) and
the couple balance equation (33) imply that

divT +b=0 in x(Q)8 (38)

and

T=T" inxQ). (39)

In fact, by the force balance equation and the Cauchy’s representation
of simple tractions, we have

/ b dv +/ Tnda =0 for every x(p) C x(9).
x(p) ox(p)
By the Divergence Theorem (see Ex. 6 of Section 2.6) we can write

/ (b +divT)dv =0 for every x(p) C x(Q).
x(p)

By the continuity of the integrand function and by the arbitrariness of x(p),
we obtain equation (38).

By the moment balance equation (33) and the Cauchy’s Lemma, we have
(let xog = 0)

Whdov + WTnda =0 for every x(p) C x(9),
x(p) x(p)

where W € Skw = {A € Lin | AT = —A} is the skew-symmetric tensor
associated with the position vector x, i.e. Wv = x x v for every v € V.

8Note that divT is calculated on x(£2).
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By the Divergence Theorem and by continuity of the integrand function we
find
Wb + div(WT) =0 in x(Q). (40)

We now compute div(WT). Let a any constant vector. By the definition
of divergence of a tensor field, we have

div(WT) -a = div(TTW'a)? = WdivT -a+ T - V(WTa).

Since W € Skw, WTa = a x x = Ax, where A is the constant skew-
symmetric tensor associated to a. Therefore:

V(WTa) = V(Ax) = A. (41)

Finally, by multiplying the differential equation (40) by a and recalling (41),
we have

W(b+divT)-a+T-A =0 in x(Q),

for every constant vector a. By the force balance equation and by the
arbitrariness of A, A € Skw, the thesis follows.

3.5 Boundary conditions of traction and equilibrium problem

An appropriate boundary condition of traction is difficult to formulate.
We recall that our main goal is to find the deformation caused by applying
given forces to a given body in a reference configuration k. We wish to
specify the tractions acting on 9x(€2) but this configuration in unknown.
Even if we try to assign the tractions on 9k (2), the deformation produced
will move the point of application and deform the surface, and still we find
difficulties to impose given forces.

Therefore, it is customarily assumed that the boundary condition of
traction in the actual state takes the form

t(x,n) = given function of x on dx(Q2),

that is
T(x)n(x) = (x) on dx(Q), (42)

where ¢ : Ox(Q2) — V is a (regular) given surface traction field.

9The space Lin has a natural inner product A - B = tr(ATB), which in cartesian
3
ij=1
field and a regular tensor field defined on x(), respectively. We have: div(ATv) =
divA - v+ A - Vv.

components reads as A - B = A;ijB;j. Let v(x) and A(x) a regular vector
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Summarizing, the equilibrium of the body B in configuration x is de-
scribed by the following boundary value problem on the stress tensor T &
C(x()) N C(Ax():

divT +b =0 in x(9),

T=T" in x(Q), (43)
Tn=¢ on 0x(9),

where b € C%x(Q2)) and ¢ € C°(Ix(Q)) are the given body-force and
surface-traction densities and n is the unit outer normal to x(€2). Note that
¢ and b must satisfy the necessary global equilibrium conditions r(£2) = 0
and m(Q;xg) = 0 for some x( € R3.

Problem (43) is largely undetermined and, accordingly, can have many
solutions.

3.6 Virtual work theorem

There are situations in which it is useful to rewrite the equilibrium prob-
lem (43) in an integral form. Let v € C*(x(2)) be a vector field on x(9).
Scalar multiplication of the differential equilibrium equation by v and inte-

gration over x/(2) yield
/ (divT - v+b-v)dv =0.
x(€)

Recalling that div(T7v) = divT - v + T - Vv, by Divergence Theorem, by
the boundary condition on dx(Q) and by T = T”, we have

/ T - Vvdv = / b - vdv +/ @ -vda for every v € C'(x()),
x(9) x(Q) Ix(Q)

(44)
which is the usual form of the so-called Virtual Work Theorem on the equi-
librium shape x(€2) ((VWT),). The field v is usually called virtual dis-
placement field.

By using the arbitrariness of v and assuming enough regularity of the

fields involved in (44), one can prove that (44) implies the equilibrium equa-
tions (43).

3.7 Reference description

A disadvantage of the equilibrium equations (43) over the deformed con-
figuration (or, equivalently, of the (VWT), in equation (44)) is that the
equilibrium problem is formulated in terms of the unknown actual place-
ment x(£2) of the body. To circumvent this difficulty, one can rewrite these
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equations in lagrangian form, that is in terms of the reference configura-
tion Q of the body. This transformation involves the introduction of the
so-called Piola-Kirchhoff stress tensor.

Let us assume that the body B, represented by the domain € in its
reference configuration k, is in equilibrium under the body forces b and
the surface forces ¢ in the deformed configuration x(£2). We introduce the
(regular) change of variables x = x(X) within the (VWT), and we define

w(X) = (vox)(X).

Then, the (VWT),, expression becomes

ox ,_ 8x

da
b(x(X))d t = dV dA
/ w- e + / W p(x(X))(57)A
or, using the standard notation g—)’g =F,
/vW.T (FHTdet FdV =
Q

:/Qw-b(x(x))dethVJr W p(x(X)) (2214 .

o0 dA
(45)
Define

S(X) = T(x(X)(F 1T det F, (46)
b (X) =b(x(X))det F, (47)
or(X) = p(x(X)) 12 (48)

Then, Eq. (45) can be written as
/Vw-Sde/w-bde—l— w - i dA, (49)

Q Q aQ

which expresses the Virtual Work Theorem written on the reference config-
uration k from which the deformation x is applied ((VWT),).

The body-force density by, b, : © — R3, measures the applied body
force per unit volume in the reference configuration, and it depends on the
deformation x. The vector field ¢, is the density of the applied surface
force per unit area on the deformation x. The tensor S appearing in Eq.
(46) is called the Piola-Kirchhoff stress tensor.



