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Foreword

In the latter part of the twentieth century, the topic of generalizations of
convex functions has attracted a sizable number of researchers, both in math-
ematics and in professional disciplines such as economics/management and
engineering. In 1994 during the 15th International Symposium on Mathemat-
ical Programming in Ann Arbor, Michigan, I called together some colleagues
to start an affiliation of researchers working in generalized convexity. The
international Working Group of Generalized Convexity (WGGC) was born.
Its website at www.genconv.org has been maintained by Riccardo Cambini,
University of Pisa.

Riccardo’s father, Alberto Cambini, and Alberto’s long-term colleague
Laura Martein in the Faculty of Economics, University of Pisa, are the co-
authors of this volume. My own contact with generalized convexity in Italy
dates back to my first visit to their department in 1980, at a time when the first
international conference on generalized convexity was in preparation. Thirty
years later it is now referred to as GC1, an NATO Summer School in Van-
couver, Canada. Currently WGGC is preparing GC9 which is to take place in
Kaohsiung, Taiwan. As founding chair and also current chair of WGGC, I am
delighted to see the continued interest in generalized convexity of functions,
augmented by the topic of generalized monotonicity of maps.

Eight international conferences have taken place in this research area, in
North America (2), Europe (5) and Asia (1). We thought it was now time to
return to Asia since our membership has shifted towards Asia.

As an applied mathematician I have taught mostly in management schools.
However, I am currently in the process of joining an applied mathematics
department. One of the first texts I will try out with my mathematics students
is this volume of my long-term friends from Pisa. I recommend this volume to
anyone who is trying to teach generalized convexity/generalized monotonicity
in an applied mathematics department or in a professional school. The volume
is suitable as a text for both. It contains proofs and exercises. It also provides
sufficient references for those who want to dig deeper as graduate students
and as researchers. With dedication and much love the authors have written a
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book that is useful for anyone with a limited background in basic mathematics.
At the same time, it also leads to more advanced mathematics.

The classical concepts of generalized convexity are introduced in Chaps. 2
and 3 with separate sections on non-differentiable and differentiable functions.
This has not been done in earlier presentations. Chapter 4 deals with the
relationship of optimality conditions and generalized convexity. One of the
reasons for a study of generalized convexity is that convexity usually is just a
convenient sufficient condition. In fact most of the time it is not necessary. And
it is a rather rigid assumption, often not satisfied in real-world applications.
That is the reason why economists have replaced it by weaker assumptions in
more contemporary studies. In fact, some of the progress in this research area
is due to the work of economists. I am glad that the new book emphasizes
economic applications.

In Chap. 5 the transition from generalized convexity to generalized mono-
tonicity occurs. Historically, this happened only around 1990 when I was
working with the late Stepan Karamardian after joining the University of
California at Riverside. He was a former PhD student of George Dantzig
at the University of California at Berkeley. We collaborated on the last two
papers he published, both on generalized monotonicity. (a new research area)
We had opened up together.

In 2005 Nicolas Hadjisavvas, Sandor Komlosi and I completed the first
Handbook of Generalized Convexity and Generalized Monotonicity with con-
tributions from many leading experts in the field, including Alberto Cambini
and Laura Martein, a proven team of co-authors who in their unique colorful
way have left an imprint in the field. The new book is further evidence of their
style.

Chapters 6 and 7 are devoted to specialized results for quadratic functions
and fractional functions. With this the authors follow the outline of the first
monograph in this research area, Generalized Concavity by Mordecai Avriel,
Walter E. Diewert, Siegfried Schaible and Israel Zang in 1988. Chapter 8 con-
tains algorithmic material on solving generalized convex fractional programs.
It defeats the objection sometimes raised that the area of generalized convex-
ity lacks algorithmic contributions. It is true that there could be more results
in this important direction on a topic which by nature is theoretical. Perhaps
the presentation in Chap. 8 will motivate others to take up the challenge to
derive more results with a computational emphasis.

Today Generalized Concavity (1988) is available to us as the first volume on
the topic, together with the comprehensive Handbook of Generalized Convexity
and Generalized Monotonicity (2005), an edited volume of 672 pages, writ-
ten by 16 different researchers including Alberto Cambini and Laura Martein.
In addition, the published proceedings of GC1–GC8 are available from rep-
utable publishing houses. The proceedings of GC9 will appear partially in the
prestigious Taiwanese Journal of Mathematics.

As somebody who has participated in all the conferences, GC1–GC8,
and who is co-organizing GC9 together with Jen-Chih Yao, Kaohsiung and
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who has been involved in most publications mentioned before, I congratulate
the authors for having produced such a fine volume in this growing area of
research. Like me they stumbled into it when no monographs on the topic
were available. I can see the usefulness of the book for teaching and research
for generations to come. Its technical level makes it suitable for undergraduate
and graduate students. The level is pitched wisely. The book is more accessible
than the Handbook as it assumes less background knowledge about the topic.
This is not surprising as the purpose of the Handbook is different. The new
book can serve as an up-to-date link to the Handbook. It also saves the reader
from going through the earlier proceedings with more dated results.

As someone who, like the authors, has not departed from the area of
generalized convexity in his career, I can highly recommend this excellent new
volume in our community of researchers. WGGC has been the background for
most recent publications in our field of study. It is the excitement of working
in teams which has been promoted by WGGC. A sense of community very
common in Italy is the background of this new volume. It made me happy
when I reviewed the manuscript first. I hope that many readers will come to
the same conclusion. My thanks and congratulations go to the authors for a
job well done.

I want to thank the authors for having taken the time to write Generalized
Convexity and Optimization with Economic Applications and for their diligent
effort to produce an up-to-date text and wish the book much success among
our growing community of researchers.

Riverside, California, Siegfried Schaible
June 2008 Chair of WGGC
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1

Convex Functions

1.1 Introduction

Convex and concave functions have many important properties that are useful
in Economics and Optimization. In this Chapter the basic properties of con-
vex and concave functions are explained, including some fundamental results
involving these functions. In particular, the role of convexity and concavity
in Optimization is stressed. Since a function f is concave if and only if −f is
convex, any result related to a convex function can easily be translated for a
concave function. For this reason only the proofs related to convex functions
are presented. For the sake of completeness, the corresponding results for the
concave case are summarized in Appendix B.

1.2 Convex Sets

From a geometrical point of view, a set S ⊆ �n is convex if, for any two
points in S, the line segment connecting these two points lies entirely in S
(see Fig. 1.1).

x2

x1

Fig. 1.1. Convex and not convex set

Formally, we have the following definition.
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Definition 1.2.1. A set S ⊆ �n is convex if

x1, x2 ∈ S ⇒ λx1 + (1 − λ)x2 ∈ S, ∀λ ∈ [0, 1]. (1.1)

The point x = λx1 + (1 − λ)x2, λ ∈ [0, 1], is said to be a convex combination
of x1 and x2. By [x1, x2] = {x ∈ S : x = λx1 + (1 − λ)x2, λ ∈ [0, 1]} we shall
denote the closed line segment joining x1 and x2.
By convention, the empty set and the singleton set (a set consisting of a sin-
gle point) are considered convex sets. The following are simple examples of
convex sets:
• The whole set �n;
• The line through x0 and direction u: r = {x ∈ �n : x = x0 + tu, t ∈ �};
• The hyperplane H = {x ∈ �n : αT x = β}, α ∈ �n, α �= 0, β ∈ �;
• The closed half-spaces associated with H : H+ = {x ∈ �n : αT x ≥ β},
H− = {x ∈ �n : αT x ≤ β}.

Theorem 1.2.1. The intersection of an arbitrary family of convex sets is
convex.

Proof. See Exercise 1.2.

Definition 1.2.2. A convex combination of finitely many points xi ∈ �n,
i = 1, ..., k, is a point x of the form

x =
k∑

i=1

λixi,

k∑
i=1

λi = 1, λi ≥ 0, i = 1, ..., k.

The following theorem characterizes a convex set in terms of convex combi-
nations of its points.

Theorem 1.2.2. A set S ⊆ �n is convex if and only if every convex combi-
nation of finitely many points of S belongs to S.

Proof. Suppose that S is convex. The proof proceeds by induction on the
number k of points. For k = 2 the thesis is true by definition. Assuming that
every convex combination of k points of S belongs to S, we must prove that
every convex combination of k + 1 points x1, ..., xk, xk+1 ∈ S is a point of S.

Let z =
k+1∑
i=1

λixi,

k+1∑
i=1

λi = 1, λi ≥ 0, i = 1, ..., k+1. If λk+1 = 0 or λk+1 = 1,

then z ∈ S by assumption. In any other case we can re-write z in the form

z = µ

k∑
i=1

λi

µ
xi + λk+1xk+1, µ =

k∑
i=1

λi = 1 − λk+1 > 0.

The induction assumption implies that the convex combination of k points

x̄ =
k∑

i=1

λi

µ
xi belongs to S so that we have z = µx̄ + (1 − µ)xk+1, that is z is

a convex combination of two points of S and so z ∈ S.
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The sufficiency follows by noting that we can consider, in particular, every
convex combination of two points in S so that S is convex by definition.

1.2.1 Topological Properties of Convex Sets

A key theorem is the following.

Theorem 1.2.3. Let S ⊆ �n be a convex set with intS �= ∅. Let x1 ∈ clS and
x2 ∈ intS. Then, λx1 + (1 − λ)x2 ∈ intS for all λ ∈ [0, 1).

Proof. The assumption x2 ∈ intS implies the existence of a ball B(x2, ε) of
radius ε > 0 and center x2 such that B(x2, ε) = {x :‖ x − x2 ‖< ε} ⊂ S.
We prove that each point y = λx1 + (1 − λ)x2, λ ∈ (0, 1) is an interior
point showing that the ball B(y, (1 − λ)ε) ⊂ S, i.e., every point z such that
‖ z − y ‖< (1 − λ)ε belongs to S. Set R = (1−λ)ε−‖z−y‖

λ . Since x1 ∈ clS there
exists a point z1 ∈ S such that ‖ z1 − x1 ‖< R. Let z2 = z−λz1

1−λ . We have
‖ z2 − x2 ‖= 1

1−λ ‖ z − λz1 − (1 − λ)x2 ‖≤ 1
1−λ ‖ z − λz1 − (y − λx1) ‖≤

≤ 1
1−λ ‖ z − y ‖ +λ ‖ z1 − x1 ‖< 1

1−λ (‖ z − y ‖ +λ (1−λ)ε−‖z−y‖
λ ) = ε.

Consequently, z2 ∈ S. By definition of z2 we have z = λz1 + (1 − λ)z2, i.e.,
z is a convex combination of two points of S and thus z ∈ S. The proof is
complete.

Theorem 1.2.4. Let S ⊆ �n be a convex set with intS �= ∅. Then, the fol-
lowing conditions hold:
(i) clS is convex;
(ii) intS is convex;
(iii) cl(intS) = clS;
(iv) int(clS) = intS.

Proof. (i) Let x1, x2 ∈ clS and let z ∈ intS. By Theorem 1.2.3, λx1+(1−λ)z ∈
intS for all λ ∈ [0, 1) so that µx2 + (1 − µ)(λx1 + (1 − λ)z) ∈ intS for all
µ ∈ [0, 1). Taking the limit as λ approaches 1, we have µx2 + (1−µ)x1 ∈ clS.
(ii) This follows directly from Theorem 1.2.3 by noting that the interior point
x1 is obtained for λ = 1.
(iii) Since intS ⊆ S, we have cl(intS) ⊆ clS. Consider now z ∈ clS and let
x ∈ intS. By Theorem 1.2.3, z + λ(x − z) ∈ intS, ∀λ ∈ (0, 1]; consequently,
z + 1

n (x − z) ∈ intS for all n so that taking the limit as n approaches +∞,
we have z ∈ cl(intS) and thus clS ⊆ cl(intS).
(iv) Since S ⊆ clS, we have intS ⊆ int(clS). Let z ∈ int(clS); then, there
exists ε > 0 such that the closed ball B̄(z, ε) = {x :‖ x−x2 ‖≤ ε} is contained
in clS. Let x ∈ intS and put y = z + ε z−x

‖z−x‖ ∈ B. By simple calculations,
setting λ = ε

ε+‖z−x‖ , we have z = λx + (1 − λ)y, so that z ∈ intS by Theo-
rem 1.2.3. Consequently int(clS) ⊆ intS and thus int(clS) = intS.
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Remark 1.2.1. Property (iii) of Theorem 1.2.4 implies that every boundary
point of S is a limit point of a sequence of interior points of S.

The following theorem points out that every interior point of a convex set S
may be expressed as a convex combination of two points of S, one of which is
arbitrary.

Theorem 1.2.5. Let S ⊆ �n be a convex set with intS �= ∅. Then, z ∈ intS
if and only if for every x ∈ S there exists µ > 1 such that x + µ(z − x) ∈ S.

Proof. See Exercise 1.5.

1.2.2 Relative Interior of Convex Sets

The properties stated in the previous theorems are established assuming that
the set of interior points of a convex set is nonempty; sometimes such an
assumption may appear to be a restrictive condition. For instance, a line on
the plane or a triangle in the ordinary space or, in general, a convex set which
lies entirely in a linear manifold, does not have interior points. In order to
extend the previous results to every convex set it is necessary to introduce
the concept of the relative interior of a convex set.
Let S be a convex set and let W be the smallest linear manifold containing S.
Then, the relative interior of S, denoted by riS, is the set of all interior points
of S with respect to the topology induced by �n on W ; in others words, a
point x0 ∈ riS if and only if there exists a ball B of radius ε and center x0

such that B ∩ S ⊂ W .
Obviously, riS = intS if and only if W = �n. In contrast to intS the relative
interior has the fundamental property that riS �= ∅ for every nonempty convex
set (see Exercise 1.9).
Properties stated in Theorems 1.2.3, 1.2.4 and 1.2.5 may be restated in terms
of the relative interior of a convex set.

Theorem 1.2.6. Let S ⊆ �n and let x1 ∈ clS and x2 ∈ riS. Then, λx1 +
(1 − λ)x2 ∈ riS for all λ ∈ [0, 1).

Theorem 1.2.7. Let S ⊆ �n be a nonempty convex set. Then, the following
conditions hold:
(i) riS �= ∅;
(ii) riS is convex;
(iii) cl(riS) = clS;
(iv) ri(clS) = riS;
(v) z ∈ riS if and only if for every x ∈ S there exists µ > 1 such that
x + µ(z − x) ∈ S.

1.2.3 Extreme Points and Extreme Directions

A point x belonging to a convex set S ⊆ �n is said to be an extreme point
of S if it is not possible to express x as a convex combination of two distinct
points of S.
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The following example points out that the set of extreme points may be empty,
finite, or infinite.

Example 1.2.1.
• A line does not have extreme points while a closed half-line has only one
extreme point;
• A rectangle has four extreme points in its vertices;
• Every boundary point of a ball is an extreme point of the ball.

Regarding the existence of an extreme point, we have the following theorem
(see [234]).

Theorem 1.2.8. The set of all extreme points of a compact convex set S
is nonempty. Furthermore, every x ∈ S may be expressed as a convex
combination of finitely many extreme points of S.

The last statement of Theorem 1.2.8 cannot be extended to an unbounded
convex set. For instance, a point of a closed half-line starting from x0 cannot
be expressed as a convex combination of its only extreme point x0. This
motivates the introduction of the concepts of recession direction and extreme
direction. Consider, firstly, the following theorem.

Theorem 1.2.9. Let S ⊆ �n be a closed convex set. Then, S is unbounded
if and only if there exists a half-line contained in S. Furthermore, if the half-
line x = x0 + td, t ≥ 0 is contained in S then, for every y ∈ S, the half-line
x = y + kd, k ≥ 0 is contained in S.

Proof. Obviously, the existence of a half-line contained in S implies the
unboundedness of S. Viceversa, the unboundedness of S implies the exis-
tence of a sequence {xn} ⊂ S such that lim

n→+∞ ‖ xn ‖= +∞. Let x0 ∈ S;

without loss of generality we can suppose that the sequence
{

xn−x0
‖xn−x0‖

}
con-

verges to a point d ∈ �n\{0}. In order to reach the thesis it is sufficient to
prove that the half-line x0 + td, t ≥ 0, is contained in S. The convexity of
S implies x0 + λ(xn − x0) ∈ S for all λ ∈ [0, 1]. For any fixed t > 0 choose
λn = t

‖xn−x0‖ ; the sequence
{
x0 + t

‖xn−x0‖ (xn − x0)
}

is contained in S so
that its limit, given by x0 + td, belongs to the closure of S for all t ≥ 0. The
thesis is achieved since clS = S.
The last statement of the theorem still needs to be proven. Since the half-
line x = x0 + td, t ≥ 0, is contained in S, we have xn = x0 + nd ∈ S for
all n. The convexity of S implies that, for every y ∈ S, y + λ(xn − y) =
y + λ(xn − x0) + λ(x0 − y) = y + λnd + λ(x0 − y) ∈ S for all λ ∈ [0, 1]. For
any fixed t ≥ 0 choose λn = t

n ; the sequence y + t
nnd + t

n (x0 − y) converges
to y + td so that y + td ∈ clS = S for all t ≥ 0. The proof is complete.

A direction d ∈ �n such that for every y ∈ S, the half-line x = y + kd, k ≥ 0
is contained in S, is called a recession direction.
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Theorem 1.2.9 establishes that the set of recession directions of a closed con-
vex set S is nonempty if and only if S is unbounded.
A recession direction d is said to be an extreme direction if it is not possible
to express d as a convex combination of two distinct recession directions.
Regarding the existence of an extreme point and extreme direction for an
unbounded closed convex set, we have the following theorem (see [234]).

Theorem 1.2.10. An unbounded closed convex set containing no lines has at
least one extreme point and one extreme direction.

The following fundamental representation theorem holds (see [234]).

Theorem 1.2.11. Let S ⊆ �n be a closed convex set containing no lines.
Then, x ∈ S if and only if x can be expressed as the sum x = y + d, where
y is a convex combination of extreme points of S and d is a positive linear
combination of extreme directions.

A polyhedron, defined as the intersection of finitely many closed half-spaces,
is a special convex set having a finite number of extreme points and extreme
directions. The extreme points of a polyhedron are also called vertices of the
polyhedron. A bounded polyhedron is called a polytope.

1.2.4 Supporting Hyperplanes and Separation Theorems

Theorems of separation play a fundamental role in Optimization. We will limit
ourselves to presenting some basic results which will be utilized later.
Let S be a convex subset of �n and let x0 be a boundary point of S.
A supporting half-space to S at x0 is a closed half-space containing S.
A supporting hyperplane to S at x0 is the boundary of a supporting half-space
to S at x0.
In other words, the hyperplane Hx0 = {x ∈ �n : αT x = αT x0} is a supporting
hyperplane to S at x0 if either S ⊆ H+

x0
= {x ∈ �n : αT x ≥ αT x0} or else

S ⊆ H−
x0

= {x ∈ �n : αT x ≤ αT x0}.
Without loss of generality we can assume that S ⊆ H+

x0
by replacing α with

−α if necessary.

Definition 1.2.3. Let S, T be two subsets of �n.
A hyperplane H = {x ∈ �n : αT x = β} is said to separate S and T if
αT x ≥ β, ∀x ∈ S, and αT x ≤ β, ∀x ∈ T .

In Fig. 1.2, a supporting hyperplane and a separating hyperplane are depicted.
Some fundamental results related to the existence of a supporting hyperplane
and to the existence of a separation hyperplane are found in the following
theorems whose proofs can be found in any text-book (see references at the
end of this Chapter).

Theorem 1.2.12. (Separation of a convex set and a point)
Let S be a closed convex subset of �n and let y0 /∈ S. Then, there exist
α ∈ �n\{0}, x0 ∈ S such that αT x ≥ αT x0 for all x ∈ S and αT y0 < αT x0.
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Theorem 1.2.13. (Existence of a supporting hyperplane at a boundary point)
Let S be a closed convex subset of �n and let x0 be a boundary point of S.
Then, there exists α ∈ �n\{0} such that αT x ≥ αT x0 for all x ∈ S.

x0

Supporting hyperplane Separating hyperplane

Fig. 1.2. Separating hyperplanes

Theorem 1.2.14. (Separation of two sets)
Let S1 and S2 be nonempty convex sets in �n. Then, there exists a hyperplane
which separates S1 and S2 if and only if riS1 ∩ riS2 = ∅.
The following corollary shows that every closed convex set can be represented
as the intersection of closed half-spaces.

Corollary 1.2.1. Let S be a closed convex subset of �n. Then, S is the
intersection of all its supporting half-spaces, i.e., S =

⋂
x0∈S

H+
x0

.

Proof. Obviously, S is contained in the intersection of all half-spaces H+
x0

. Let
y ∈ ⋂

x0∈S

H+
x0

and suppose that y /∈ S. Then, from Theorem 1.2.12, there exists

a supporting hyperplane at a point x0 belonging to the boundary ∂S of S such
that y /∈ H+

x0
and this is a contradiction.

1.2.5 Convex Cones and Polarity

A cone (with vertex at zero) in �n is a nonempty set C satisfying the following
property:

x ∈ C, k ≥ 0 ⇒ kx ∈ C.

A convex cone is a cone which is convex as a set.

Half-lines, lines, subspaces, and half-spaces through the origin are examples of
convex cones. The union of disjoint closed convex cones generates non-convex
cones.
A cone is convex if and only if it is closed under the operations of addition and
multiplication by a non-negative scalar as is shown in the following theorem.
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Theorem 1.2.15. A set C ⊆ �n is a convex cone if and only if the following
properties hold:
(i) x ∈ C, k ≥ 0 ⇒ kx ∈ C;
(ii) x, y ∈ C ⇒ x + y ∈ C.

Proof. If C is a convex cone, (i) follows by definition of a cone. Further-
more, if x, y ∈ C, the convexity of C implies 1

2x + 1
2y ∈ C and thus

2 · (1
2x + 1

2y) = x + y ∈ C, so that (ii) holds.
Assume now the validity of (i) and (ii) and let x, y ∈ C. Then, from (i) C
is a cone so that λx ∈ C, λ ≥ 0, (1 − λ)y ∈ C, λ ≤ 1, and from
(ii) λx + (1 − λ)y ∈ C, 0 ≤ λ ≤ 1, i.e., C is convex.

Corollary 1.2.1 may be specified in the case where S is a closed convex cone
obtaining the following corollary.

Corollary 1.2.2. Let C be a closed convex cone in �n. Then, C is the
intersection of all its supporting half-spaces at the origin.

Proof. Taking into account Corollary 1.2.1, it is sufficient to prove that a
supporting hyperplane Hx0 to C at x0 ∈ ∂C passes through the origin.
We have αT x ≥ αT x0, ∀x ∈ C. Since kx0 ∈ C for all k > 0 we have
kαT x0 ≥ αT x0, ∀k > 0, that is (k − 1)αT x0 ≥ 0, ∀k > 0 and this last inequal-
ity holds if and only if αT x0 = 0.

In some problems we are interested in the existence of a strict supporting
hyperplane to C at the origin, i.e., in the existence of a supporting hyper-
plane H such that H ∩ C = {0}. In order to fully illustrated this important
aspect, we shall first introduce, the notion of polarity.

Definition 1.2.4. Let C be a cone in �n. Then, the positive polar of C,
denoted by C+, is given by C+ = {α ∈ �n : αT c ≥ 0, ∀ c ∈ C}.
The opposite of C+ is referred to as the negative polar of C and is denoted
by C−. Equivalently, C− = {α ∈ �n : αT c ≤ 0, ∀ c ∈ C}.
Remark 1.2.2. It follows immediately from the definition that polarity is order-
inverting, i.e., if C1 ⊂ C2 then C+

1 ⊃ C+
2 .

The following theorem states the structure of C+ and, in addition, it charac-
terizes the elements of a closed convex cone in terms of its positive polar and
viceversa.

Theorem 1.2.16. Let C be a closed convex cone in �n. Then:
(i) C+ is a closed convex cone;
(ii) c ∈ C if and only if αT c ≥ 0 for all α ∈ C+;
(iii) c ∈ intC if and only if αT c > 0 for all α ∈ C+\{0};
(iv) C = C++, where C++ is the positive polar of C+;
(v) α ∈ intC+ if and only if αT c > 0 for all c ∈ C\{0}.
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Proof. (i) Let α1, α2 ∈ C+. Then, we have αT
1 c ≥ 0, αT

2 c ≥ 0 for all c ∈ C,
so that (α1 + α2)T c ≥ 0 and kαT

1 c ≥ 0, for all k ≥ 0. It follows, from Theo-
rem 1.2.15, that C+ is a convex cone. Consider now a sequence {αn} ⊂ C+

converging to an element α. By means of the continuity of the scalar product,
and by taking the limit in αT

n c ≥ 0, we obtain αT c ≥ 0 for all c ∈ C. Conse-
quently, C+ is a closed cone.
(ii) Taking into account the definition of C+, we must prove that the con-
dition αT c ≥ 0, ∀α ∈ C+ implies c ∈ C. If not, by Theorem 1.2.12 and by
Corollary 1.2.2, there exist γ ∈ �n\{0}, c0 ∈ ∂C, such that γT x ≥ γT c0 =
0, ∀x ∈ C and γT c < 0. The former inequality implies γ ∈ C+ contradicting
the latter which implies γ �∈ C+.
(iii) Let c ∈ intC. From (ii) we have αT c ≥ 0 for all α ∈ C+. Assume, by
contradiction, the existence of α ∈ C+, α �= 0, such that αT c = 0. Since c is
an interior point, there exists ε > 0 such that c + ε d ∈ C for every direc-
tion d of unitary norm. It follows that αT (c + ε d) = εαT d ≥ 0 for all d and
this is absurd since, by choosing d∗ = − α

‖α‖ , we have εαT d∗ < 0. Assume
now αT c > 0 for all α ∈ C+\{0}. We must prove that c ∈ intC. If not,
taking into account (ii), we have c ∈ ∂C so that, by Theorem 1.2.13, there
exists γ ∈ �n\{0} such that γT x ≥ γT c = 0, ∀x ∈ C, which contradicts the
assumption.
(iv) By applying (ii) to the polar cone C+, we have α ∈ C+ if and only if
zT α ≥ 0 for all z ∈ C++. By comparing this last inequality with (ii), the
thesis is achieved.
v) This follows by applying (iii) to the polar cone C+, taking into account
that C++ = C.

Remark 1.2.3. The proof of (i) of Theorem 1.2.16 points out that C+ is a
closed convex cone even if C is not closed and/or convex.

From (v) of Theorem 1.2.16, the existence of a strict supporting hyperplane to
C at the origin is equivalent to the condition intC+ �= ∅. As we will see, this
last condition is strictly related to the non-existence of lines contained in C. A
closed cone which does not contain lines, i.e., c ∈ C implies −c �∈ C, is called a
pointed cone. Equivalently, C is a pointed cone if and only if C∩ (−C) = {0}.
The set C ∩ (−C) is called the lineality space of C and it is denoted by �(C).
The following theorem holds, where dim C+ denotes the dimension of C+,
i.e., the maximum number of linearly independent vectors contained in C+

or, equivalently, the dimension of the smallest subspace containing C+.

Theorem 1.2.17. Let C be a closed convex cone in �n. Then:
(i) �(C) is the largest subspace contained in C;
(ii) dim �(C) + dim C+ = n;
(iii) intC+ �= ∅ if and only if �(C) = {0}.
Proof. (i) Let c ∈ C ∩ (−C); c ∈ C implies kc ∈ C for all k ≥ 0, while
c ∈ −C implies −kc ∈ C for all k ≥ 0, so that kc ∈ C ∩ (−C) for all k ∈ �.
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Furthermore, Theorem 1.2.15 implies that C ∩ (−C) is closed with respect
to the addition. It follows that �(C) is a subspace. Let W ⊂ C be a sub-
space; since w ∈ W implies −w ∈ W , we have w,−w ∈ C or equivalently,
w ∈ C ∩ (−C). Consequently W ⊆ �(C) so that �(C) is the largest subspace
contained in C.
(ii) Let c ∈ �(C) and α ∈ C+. Since c,−c ∈ C, we have αT c ≥ 0, αT (−c) ≥ 0,
so that αT c = 0 for all c ∈ �(C). It follows that α ∈ [�(C)]⊥, i.e., C+ ⊆ [�(C)]⊥.
Let V be the smallest subspace containing C+. If V ⊂ [�(C)]⊥, from
C+ ⊆ V ⊂ [�(C)]⊥ we have C++ = C ⊇ V + = V ⊥ ⊃ �(C) and this contra-
dicts (i). Consequently, V = [�(C)]⊥ so that dim C+ = dim V = dim [�(C)]⊥

Since dim �(C) + dim [�(C)]⊥ = n, (ii) follows.
(iii) It follows from (ii) by noting that intC+ �= ∅ if and only if dim V = dim
C+ = n or, equivalently, if and only if dim �(C) = 0, i.e., �(C) = {0}.

The following corollary, which is a direct consequence of (v) of Theorem 1.2.16
and of (iii) of Theorem 1.2.17, states a necessary and sufficient condition for
the existence of a strict supporting hyperplane to a cone at the origin.
Corollary 1.2.3. Let C be a closed convex cone in �n. Then, there exists
α ∈ �n such that αT c > 0 for all c ∈ C, c �= 0, if and only if C is pointed.
By noting that Theorem 1.2.17 implies riC+ = intC+ with respect to the
topology induced by �n on the subspace [�(C)]⊥, we have the following
theorem which generalizes (v) of Theorem 1.2.16.
Theorem 1.2.18. Let C be a closed convex cone in �n. Then α ∈ riC+ if
and only if
(i) αT c = 0 for all c ∈ �(C);
(ii) αT c > 0 for all c ∈ C\�(C).

1.3 Convex Functions

From a geometrical point of view, a function f is convex provided that the
line segment connecting any two points of its graph lies on or above the graph.
The function f is strictly convex provided that the line segment connecting
any two points of its graph lies above the graph (see Fig. 1.3).

x1 x2 x1 x2

Convex function Strictly convex function

Fig. 1.3. Examples of convex functions

From an analytical point of view, we have the following definitions.
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Definition 1.3.1. Let f be a function defined on a convex set S ⊆ �n.
(i) The function f is said to be convex on S if for every x1, x2 ∈ S

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2), ∀λ ∈ [0, 1]. (1.2)

(ii) The function f is said to be strictly convex on S if for every x1, x2 ∈ S

f(λx1 + (1 − λ)x2) < λf(x1) + (1 − λ)f(x2), ∀λ ∈ (0, 1). (1.3)

A function f defined on a convex set S ⊆ �n is concave if and only if −f is
convex on S. It follows that all the results related to convex functions that we
are going to establish can be easily stated in terms of concave functions. For
the sake of completeness, and also taking into account that concave functions
are more common in Economics, in Appendix B we shall give a summary of
the main properties of concave functions.
Simple examples of convex and concave functions are given below.

Example 1.3.1.
1. An affine function f(x) = aT x+ b, x ∈ �n is both convex and concave (not
strictly);
2. The function f(x) = x + | x |, x ∈ � is convex (not strictly);
3. The function f(x) = ax2 + bx + c, x ∈ � is strictly convex if a > 0 and it
is strictly concave if a < 0.

Obviously, a strictly convex function is convex, too; the converse statement is
not true as it follows from (i) or (ii) of Example 1.3.1.
The inequalities (1.2), (1.3), may be extended to any weighted average of its
values at a finite number of points as is shown in the following theorem.

Theorem 1.3.1. (Jensen’s inequality)
(i) A function f is convex on S if and only if for every x1, ..., xn ∈ S,

f

(
n∑

i=1

λixi

)
≤

n∑
i=1

λif(xi), λi ≥ 0, i = 1, ..., n,

n∑
i=1

λi = 1. (1.4)

(ii) A function f is strictly convex on S if and only if for every x1, ..., xn ∈ S,

f

(
n∑

i=1

λixi

)
<

n∑
i=1

λif(xi), λi ≥ 0, i = 1, ..., n,

n∑
i=1

λi = 1. (1.5)

Proof. (i) Suppose that f is convex. The proof proceeds by induction on the
number n of points. For n = 2 the thesis is true by definition. By assuming that
(1.4) is verified for every convex combination of n points, we must prove that

f

(
n+1∑
i=1

λixi

)
≤

n+1∑
i=1

λif(xi), λi ≥ 0, i = 1, ..., n + 1,

n+1∑
i=1

λi = 1.
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If λi = 0 for some i, the thesis follows by means of the induction assumption,
otherwise we have (see the proof given in Theorem 1.2.2)

n+1∑
i=1

λixi = µx̄ + (1 − µ)xn+1, µ =
n∑

i=1

λi, x̄ =
n∑

i=1

λi

µ
xi.

By taking into account the convexity of f and the induction assumption, we
have

f

(
n+1∑
i=1

λixi

)
= f(µx̄ + (1 − µ)xn+1) ≤ µf(x̄) + (1 − µ)f(xn+1) ≤

≤ µ

(
1
µ

n∑
i=1

λif(xi)

)
+ λn+1f(xn+1) =

n+1∑
i=1

λif(xi).

The reverse statement follows by noting that if (1.4) is verified for every n of
points it is in particular verified for n = 2, so that by definition f is convex.
(ii) This follows analogously.

Associated with a convex function are the epigraph and the lower level sets
defined, respectively, as follows:

epif = {(x, z) : x ∈ S, z ≥ f(x)}; S≤α = {x ∈ S : f(x) ≤ α}.
A convex function is characterized by the convexity of its epigraph as is shown
in the following theorem.

Theorem 1.3.2. Let f be a function defined on a convex set S ⊆ �n. Then:
(i) f is convex if and only if epif is a convex set;
(ii) f is strictly convex if and only if epif is a convex set and it does not
contain any line segment.

Proof. (i) Let f be convex. If (x1, z1), (x2, z2) ∈ epif , then z1 ≥ f(x1),
z2 ≥ f(x2), so that, for every λ ∈ [0, 1], we have λ(x1, z1) + (1 − λ)(x2, z2) =
(λx1 + (1 − λ)x2, λz1 + (1 − λ)z2) ∈ epif since (λz1 + (1 − λ)z2) ≥ λf(x1) +
(1 − λ)f(x2) ≥ f(λx1 + (1 − λ)x2).
Assume now the convexity of epif and let x1, x2 ∈ S.
Since (x1, f(x1)) ∈ epif, (x2, f(x2)) ∈ epif , we have λ(x1, f(x1)) + (1 −
λ)(x2, f(x2)) = (λx1 + (1 − λ)x2, λf(x1) + (1 − λ)f(x2)) ∈ epif , ∀λ ∈ [0, 1].
On the other hand (λx1 + (1 − λ)x2, λf(x1) + (1 − λ)f(x2)) ∈ epif if
λf(x1) + (1 − λ)f(x2) ≥ f(λx1 + (1 − λ)x2), i.e., if f is convex.
(ii) The proof is similar to the one given in (i).

Regarding the lower level sets of a convex function we have the following
theorem.

Theorem 1.3.3. Let f be a convex function defined on a convex set S ⊆ �n.
Then, S≤α is convex for every α ∈ �.
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Proof. The thesis is true by convention if S≤α = ∅ or S≤α is a singleton
set. The points x1, x2 belong to S≤α if and only if f(x1) ≤ α, f(x2) ≤ α
so that, by means of the convexity of f , we have f(λx1 + (1 − λ)x2) ≤
(λf(x1)+(1−λ)f(x2) ≤ λα+(1−λ)α) = α. It follows that λx1 +(1−λ)x2 ∈
S≤α.

Remark 1.3.1. The necessary condition for a function to be convex stated in
Theorem 1.3.3 is not generally sufficient. For instance, any increasing nonlin-
ear concave single-variable function has convex lower sets but it is not convex.
This fact has led to the introduction of a new class of functions, as we will
see in the next chapter.

1.3.1 Algebraic Structure of the Convex Functions

The class of convex functions defined on a convex set is closed with respect to
the addition and with respect to the non-negative scalar multiplication. More
precisely, we have the following theorem.

Theorem 1.3.4. Let f1, f2, ..., fm be functions defined on a convex set S ⊆
�n and set f(x) =

m∑
i=1

αifi(x), αi ≥ 0. Then:

(i) If fi, i = 1, .., m, are convex on S, then f is convex on S.
(ii) If fi, i = 1, .., m, are strictly convex on S, then f is strictly convex on S.

Proof. See Exercise 1.24.

1.3.2 Composite Function

Another important property is related to the composition product.

Theorem 1.3.5. Let f : S → � be a convex function defined on a convex
set S ⊆ �n and let g : A → � be a non-decreasing convex function, with
f(S) ⊆ A. Then the composite function h(x) = g(f(x)) is convex on S.
Furthermore, if f is strictly convex and g is an increasing convex function,
then h is strictly convex.

Proof. See Exercise 1.25.

Let us note that the requirement of the convexity of g is essential to guar-
anteeing the convexity of the composite function. For instance, the function
h(x) = x is convex, the function g(x) = x3 is an increasing non-convex func-
tion and the composite function f(x) = g(h(x)) = x3 is not convex.
Theorems 1.3.4, 1.3.5 and the analogous ones for concave functions are
sometimes useful in constructing convex or concave functions.
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Example 1.3.2.
1. The function f(x) = eaT x+b, x ∈ �n is convex since the affine function
aT x+b is convex and the exponential function is an increasing convex function.
2. The function f(x) = (aT x + b)2 is convex on S = {x ∈ �n : aT x + b > 0}
since the affine function aT x + b is convex and the square function is an
increasing convex function on the set of positive real numbers.

Example 1.3.3.
1. The power f(x) = xα, x ≥ 0, is strictly concave for 0 < α < 1 and it is
strictly convex for α < 0 and for α > 1;
2. f(x) = log x, x > 0, is strictly concave.

Example 1.3.4. If f is a positive concave function, then z(x) = log f(x) is
concave since the logarithm function is increasing and concave.

Example 1.3.5. If f is a positive concave function, then 1
f is convex. In fact,

z(x) = log 1
f(x) = − log f(x) is convex as the opposite of the concave function

log f(x). It follows that ez(x) = 1
f(x) is convex.

1.3.3 Differentiable and Twice Differentiable Convex Functions

A convex function is continuous on the interior of its domain but not necessar-
ily differentiable. For instance, the convex function f(x) = |x| is continuous
on � but it is not differentiable at x = 0.
From a geometrical point of view, a differentiable function is convex if and
only if its graph lies on or above the tangent in any point of the graph; it is
strictly convex if its graph lies above the tangent in any point of the graph.
From an analytical point of view, the convexity of a function of one variable
may be characterized by means of its first and second derivatives, according
to the following properties:
• Let I be an open interval of the real line. A differentiable function f is
convex on I if and only if for every x0 ∈ I we have

f(x) ≥ f(x0) + f ′(x0)(x − x0), ∀x ∈ I. (1.6)

• Let I be an open interval of the real line. A twice differentiable function f
is convex on I if and only if

f ′′(x) ≥ 0, ∀x ∈ I. (1.7)

The extensions of (1.6) and (1.7) to functions of more variables are given
below.

Theorem 1.3.6. Let f be a differentiable function defined on a nonempty
open convex set S ⊆ �n. Then, f is convex on S if and only if for every
x0 ∈ S

f(x) ≥ f(x0) + (x − x0)T∇f(x0), ∀x ∈ S. (1.8)


