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Preface

This book is primarily intended as a textbook introducing to the reader the basic

elements of the quantum theory of the electronic structure of molecular systems,

including in its first two parts the basic axioms of the nonrelativistic quantum

mechanics and rudiments of the wave function and density based theories. Its

remaining two parts, of a more monographic character, contain the Information
Theory (IT) description and some elements of the modern theory of chemical

reactivity, respectively. The basic aim of this book is to present in a single text

alternative outlooks on the molecular electronic structure, including the basic

principles and techniques of the contemporary conceptual and computational quan-

tum chemistry, covering also the insights provided by IT. Together these comple-

mentary perspectives enhance the depth of our understanding of the electronic/

geometric structure of molecules and provide a full “vocabulary” to tackle diverse

conditions, which influence their reactivity behavior. Indeed, only the insights from

several different point of view amount to a real understanding of the problem. The

emphasis is on the concepts involved and the key ideas encountered in these

alternative approaches in the molecular quantum mechanics, and on the interpreta-

tion of calculated results in chemical terms: the bonded atoms and molecular

fragments, the chemical bonds that connect these building blocks of molecules,

and on their responses in a changing environment, which shape the reactivity

preferences of reactants.

Explanation and understanding of chemical phenomena ultimately call for the

quantum mechanical description provided by the modern quantum chemistry. The

latter uses ideas and concepts that differ substantially from their classical analogs. A

precise formulation of these generalized physical concepts, which requires some new

mathematical tools, is the subject of Part I of this book. The depth and rigor of this

physical/mathematical supplement have been dictated by the main didactic purpose

of this text: to introduce all tools necessary for understanding the abstract ideas of the

modern theory of the molecular structure and chemical reactivity. The foundations

of quantummechanics are covered using the familiar axiomatic approach, with only

an introductory summary of the key experiments that led to their formulation.
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The reader can familiarize himself with these novel ideas in the simplest problem

of the stationary (bonded) states of the hydrogen-like atom presented in the part

closing chapter.

The main theories of the molecular electronic structure are presented in Part II.

In its opening chapter it examines available techniques of reducing the complexity

of solving the molecular Schrödinger equation. In particular, the rudiments of the

adiabatic separation of the electronic and nuclear motions are given and the

elements of the approximate perturbational and variational approaches for deter-

mining the electronic quantum states are outlined. This brief overview also covers

the basics of the orbital approximation and the idea of a pseudopotential, which

effectively removes the chemically inactive electrons of the atomic inner shells

from an explicit treatment in molecular calculations. The subsequent exposition of

the principal Wave Function Theories (WFT), in which the system wave-function

(probability amplitude) defines the quantum state of the molecule, covers the

Self-Consistent-Field Molecular Orbital (SCF MO) theory, major Configuration-
Interaction (CI) techniques for dealing with the Coulomb correlation problem, and

rudiments of the Valence Bond (VB) treatment, which gives a more chemical

understanding of molecules compared to its chief rival, the Molecular Orbital
(MO) description and currently experiences a notable revival.

The following presentation of theoretical basis of the modern techniques of the

Density-Functional Theory (DFT), in which the electron density or the density

matrix constitute the system basic state-variables, covers the famous Hohenberg–
Kohn (HK) theorems and some of their refinements/extensions, the basic elements

of the ground-state Kohn–Sham (KS) theory and the associated ensemble approach

to excited states. The theory of the density functional for the exchange-correlation

energy is summarized, including the rudiments of the adiabatic connection and

some more recent developments in the field of the density-matrix and orbital-

dependent functionals, time-dependent DFT and alternative approaches to the

molecular van der Waals (vdW) interactions. This short exposition also introduces

the main concepts of the density-based reactivity theory: the hardness and softness

responses of the electron distribution in molecules in the complementary electron-
following (EF) and electron-preceding (EP) perspectives.

The additional insights from IT are presented in the monographic Part III of this

textbook. Its dominating theme is the electron distribution as a source and carrier of

information in molecules. First, the basic elements are summarized in the part

opening chapter, to be followed by a brief exposition of the information principles

in molecular quantum mechanics. The local IT probes of the presence of the direct

chemical bonds are formulated and the importance of the nonadditive (interference)

information tools is emphasized. In particular, the Electron Localization Function
(ELF) and the Contra-Gradience (CG) bond criterion are used to explore the

molecular electronic structure and the IT variational principles are used to derive

the so called stockholder scheme for dividing the molecular electron density into

the associated atomic pieces. Various Charge Transfer (CT) and Polarization (P)

displacements accompanying the formation of chemical bonds in molecular
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systems are examined, including the equilibrium redistribution of electrons among

the bonded Atoms-in-Molecules (AIM) and the molecular promotion of the latter.

Alternative bond-multiplicity descriptors and the electron localization criteria

are introduced and molecules are interpreted as communication systems. This

concept, developed within the standard SCF MO description, gives rise to the

Orbital Communication Theory (OCT) of the chemical bond (Nalewajski 2010)

an extension of the bond Communication Theory in atomic resolution (Nalewajski

2006). They both use the standard entropic descriptors of information channels in

exploring patterns of the chemical bonds in molecules and their constituent parts, as

well as the bond covalent/ionic composition.

The molecularly promoted AIM are only slightly modified, compared to their

free (separated) analogs, mainly in the outer (valence) shell of electrons. These

“external” electrons are responsible for the AIM chemical behavior and the equi-

librium bonding pattern they exhibit in the field exerted by the framework of the

practically unchanged atomic-cores. This bonding shell of the (delocalized) elec-

trons is also crucial for the propagation of information in the molecule among the

system constituent AIM and the Atomic Orbitals (AO) the latter contribute to the

bonding subspace of the occupied MO, which ultimately determine the system

network of chemical bonds. Using the standard tools of IT (summarized in the

opening chapter of Part III) in treating these information scattering phenomena due

to “communications” via the system chemical bonds provides a novel perspective

on the origins and multiplicity of the system chemical bonds, as well as on the

entropic nature of their covalent and ionic composition. In particular, the IT multi-

plicities of the localized chemical bonds are generated, the bond-coupling phenom-

ena in molecular subsystems are discussed and the interference effects due to the

multiple information scattering in molecules are examined. The new indirect

(through-bridge) bonding mechanism is identified, which complements the familiar

direct (through-space) chemical interactions in molecular systems, and its origins

due to the implicit dependencies between AO in the molecular bonding subspace

are explored.

The chemical concepts are discussed in a more depth in Part IV. It first provides

a survey of alternative perspectives on diverse phenomena conditioning the chemi-

cal reactivity, stressing the importance of the conceptual approaches for a more

chemical understanding of these bond-forming/bond-breaking processes. The dis-

tinction between the “horizontal” (involving displacements of the system electron

density) and “vertical” (for the fixed electron distribution) changes in the molecular

electronic structure is made and the responses of molecular fragments in the

fragment-constrained equilibria are described in terms of the subsystem charge

sensitivities. These perturbation–response relations are summarized for all admis-

sible representations of the molecular/subsystem states, covering both the EF

perspective of the Born–Oppenheimer approximation and the complementary EP

picture, in the spirit of modern DFT. The illustrative case of the bimolecular

reactive system is discussed in a more detail and alternative measures of the

adiabatic coupling between the electronic and geometrical degrees-of-freedom of
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the molecular and reactive systems, including the novel compliant theoretical

framework, are identified and modeled.

Finally, several qualitative approaches to reactivity phenomena are summarized.

They cover recent IT probes of the elementary reaction mechanisms, chemical

reactivity indices provided by the alternative hardness/softness (Fukui function)

descriptors of molecules and their fragments, e.g., reactants in the Donor–Acceptor
(DA) systems, as well as the associated equilibrium and stability criteria of mole-

cules and the maximum hardness and the Hard/Soft Acids and Bases (HSAB)

principles of chemistry. The importance of the complementary internal and external

eigenvalue problem of quantum-mechanical observables for a compact description

of the electronic processes in molecules and reactants is stressed and alternative

hardness-decoupling schemes are examined.

This joint exposition of a variety of perspectives on the electronic structure of

molecular systems, which are usually presented in separate texts, aims at comparing

these diverse philosophies of treating the subject in the unifying language of the

(nonrelativistic) molecular quantum mechanics and IT. Such presentation should

help in uncovering the mutual relations between the specific concepts and techni-

ques of these complementary approaches by extracting their common roots in the

molecular quantum mechanics, in the frameworks of both the molecular states

involved and the associated probability/density distributions.

The book may serve as both the classroom and reference text of the classical and

modern ideas in the field of the chemical bond and reactivity theories. This text has

evolved from teaching both the graduate and undergraduate courses in quantum

chemistry, density-functional and reactivity theories, as well as the IT of molecular

systems. It is intended for graduate and advanced undergraduate students and

chemical researchers interested in the new ways of looking at the subject. It is

hoped that a significant diversity of the student backgrounds have been accommo-

dated in this textbook/monograph of the contemporary ways of thinking about

classical issues in the theory of the electronic structure and reactivity behavior of

molecules.

Cracow Roman F. Nalewajski

June 2011
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Part I

Foundations of Quantum Mechanics



Chapter 1

Sources

Abstract A brief presentation of the experimental origins of quantum mechanics

is given. The key experiments leading to contradictions with accepted physical

theories of matter and radiation, signaling a need for a thorough revision of

classical mechanics and electrodynamics, are surveyed. The early attempts to

resolve these controversies, formulated at the beginning of twentieth century and

often named as the Old Quantum Theory, which mark the genesis of the modern

quantum mechanics, are summarized. The specificity of the classical description

of physical processes is briefly outlined and main suggestions addressed to a more

general mechanics describing the elementary particles, atoms, and molecules are

enumerated. The particle diffraction experiment is examined in some detail to

pinpoint the essence of the wave–particle duality and to identify the key elements

of the quantum description: the initial and final experiments, as well as the free

evolution of the system dynamic state which separates them, without any interfer-

ence from the measuring apparatus. The internal angular momentum of an elemen-

tary particle, called spin, is introduced. The emphasis in this historical background

is on the development of the classical concepts into their more general quantum

counterparts, rather than on their discontinuity in the two theories. On one hand, the

classical (approximate) mechanics, in which some very small quantities such as the

quantum of the physical action – measured by the Planck constant – are approxi-

mated by zero, provides the geometric optics limit of the quantum (exact) mecha-

nics. On the other hand, the quantum description has to use the classical concepts

due to a macroscopic character of the measuring devices, which adds to the intimate

relationship between the two formulations.

1.1 Experimental Origins and Old Quantum Theory

At the current state of our understanding of matter the modern quantum mechanics

plays a fundamental role in describing phenomena and processes in the surrounding

world, particularly at the microscopic level of photons, elementary particles, atoms,

R.F. Nalewajski, Perspectives in Electronic Structure Theory,
DOI 10.1007/978-3-642-20180-6_1, # Springer-Verlag Berlin Heidelberg 2012
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and molecules. It should be emphasized, however, that the complete theory of

macroscopic objects, of dimensions perceived by our senses, also requires the

quantum mechanical description of interactions between their constituent atoms

and molecules since the quantum nature of these microscopic particles can be

manifested also at the macroscopic level. Clearly, in the limit of very large masses

and energies of macroscopic objects the predictions of quantum mechanics must

be identical with those resulting from its classical analog. Thus, when supple-

mented by the laws of statistical thermodynamics the quantum mechanics gives

rise to the complete description of the natural world.

It was born in the atmosphere of severe confusion at the beginning of twentieth

century, when the accepted physical theories were challenged by numerous dilemmas

resulting from a series of remarkable new experimental observations, which could

not be explained by the classical mechanics and electrodynamics. The physics at the

end of nineteenth century distinguished the categories of matter and radiation,

and used separate laws to describe them: Newton’s mechanics, to predict motions

of material bodies, and the Maxwell equations of the electromagnetic theory of

radiation, which unites the electric, magnetic, and optical phenomena. We recall at

this point that the so-called wave optics becomes the geometric optics in the limit

of infinitely small wavelength, l ! 0, i.e., for infinitely large frequency, n ! 1,

of the monochromatic radiation.

Let us now briefly summarize the key stages of the development of quantum

ideas in physics (see, e.g., van der Waerden 1968) with the experiment and intuitive

insight ultimately leading to a new philosophy of science (Heisenberg 1949, 1958;

Yourgrau and van der Merve 1979; Bohm 1980) with the exact determinism of

classical predictions being replaced by the statistical determinism of quantum

laws. This “revolution” has also led to a dramatically different way of thinking

about the process of measurement, to a discovery of the universal character of the

particle–wave dualism of both the radiation and matter, and a new definition of the

mechanical state of microscopic systems. The crisis of classical physics was indeed

observed first on the subatomic and atomic/molecular scales, in processes involv-

ing interactions of such objects with electromagnetic radiation, a diffraction of

radiation and elementary particles, etc.

We begin this short survey with the problem of the black-body radiation,

at equilibrium in the given temperature T, which could not be explained by the

classical electrodynamics and eventually led to formulation in 1901 of the famous

Planck’s hypothesis of the energy quantization. The question was this: how much

energy is present as radiation in the given volume of an empty space of a cavity in

an object held at the definite temperature T, and how it is distributed as a function of

the radiation frequency? The quantity describing such a distribution is called the

radiation energy density u(n, T), which measures the energy of the monochromatic

radiation of frequency n per unit volume of the cavity, in thermal equilibrium at

absolute temperature T. The Rayleigh–Jeans law of 1900, u(n, T) / n2T, derived
using the classical electrodynamics and statistical thermodynamics, is correct only

for low frequencies (in the infrared region of the electromagnetic radiation spec-

trum) and it dramatically fails for high frequencies (in the ultraviolet region), where
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the experimental data show a sharp drop in the energy distribution, with u ! 0 in

the geometric optics limit of n ! 1. This classical distribution has been obtained

by first calculating the number of elementary oscillators (cavity standing waves) of

the electromagnetic field, each corresponding to a particular frequency of radiation,

and then ascribing them an average energy kBT, where the Boltzmann constant

kB ¼ 1.381 � 10�23 [J K�1], in accordance with the classical energy equi-partition
principle.

In order to overcome this discrepancy, also known as the ultraviolet catastrophe,
which could not be explained by classical means, Planck has proposed that the

energy of the elementary radiation oscillator of frequency n, is restricted to integral
multiples of the energy quantum, hv � �ho, where the new universal constant h has

a dimension of the mechanical action [energy � time]; here, the radiation angular

frequency o ¼ 2pn [radians/s] and the symbol �h ¼ h=2p. In other words, this finite
“grain” of the oscillator energy constitutes the smallest amount by which the

oscillator energy can be increased or lowered. Hence, the energy absorbed by the

elementary oscillators of the surrounding cavity can also be absorbed or emitted

in integral multiples of such energy quanta, for all frequencies allowed by the

cavity standing-wave boundary conditions, as implied by the condition of a thermal

equilibrium in the black-body radiation problem: DE ¼ hn. This quantum (non-

classical) assumption gives rise to the celebrated Planck’s distribution law:

uðn; TÞ / n3½expðhn=kBTÞ � 1��1; (1.1)

which is in perfect agreement with experimental observations for the Planck

constant (quantum portion of the physical action) h ¼ 6.626 � 10�34 [Js] or �h ¼
h/2p ¼ 1.055 � 10�34 [Js].

It should be emphasized that this assumption was incompatible with the

principles of classical physics. Thus, the agreement with experiment has been

achieved only by introducing into the framework of the contemporary physics, in

which the oscillator energy and mechanical action constitute the continuous

dynamical quantities, the artificial “discrete” quantum condition, incompatible

with the basic principles of the classical theory.

This energy quantization has been generalized in 1905 by Einstein into hypo-

thesis of the elementary, localized (indivisible) portions of the electromagnetic

energy, defining the radiation particles called photons, each containing Planck’s

portion of the energy: E ¼ hn. This assumption provides the complete explanation

of the photoelectric effect discovered by Hertz in 1886 and 1887. Photoelectrons are
produced instantaneously, when the light of a frequency higher than some threshold

value n0 strikes any substance. This phenomenon is governed by the two laws

formulated by Lenard in 1899–1902: (1) the number of photoelectrons is propor-

tional to the intensity of the incident radiation; (2) their maximum velocity v and

hence also the kinetic energy are affected only by the radiation frequency, and not

by its intensity as predicted by the classical, wave theory of radiation. In Einstein’s

hypothesis the photoelectron energy of motion originates entirely from a single
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photon, representing a localized corpuscle of the energy, and satisfies the energy

conservation

1

2
mev

2 ¼ hn� hn0; (1.2)

where me denotes the mass of an electron and the threshold energy F ¼ hn0 mea-

sures the so-called work function of the irradiated substance.

The electromagnetic radiation thus exhibits a dual character. On one hand, in the

diffraction (interference) experiments, it behaves as a wave characterized by the

frequency n [s�1] or wave length l ¼ c/n, where c stands for the velocity of light in
vacuum. On the other hand, as the localized particle of energy, it should be char-

acterized by the linear momentum p. Using the relativistic expression for the energy,
E ¼ mf c

2 ¼ pf c ¼ hn, wheremf stands for the photon mass of motion (its rest mass

vanishes), one obtains the relativistic expression for the photon momentum:

pf ¼ hn=c ¼ h=l or pf ¼ �hð2p=lÞ � �hk; (1.3)

where k [m�1] stands for the photon wave number.

In 1922 this corpuscular nature of radiation has been confirmed experimentally

by Compton in the X-ray photon scattering by electrons. The collisions between

photon (particle of radiation) and electron (particle of matter) have been shown to

be governed by the conservation of the system energy and linear momentum, the

two laws that govern any perfectly elastic collisions, e.g., of the billiard balls in

the macroscopic world. It also follows from this experiment that any measurement

of the particle position, effected by a scattering of light, influences the particle

linear momentum; the more precise is this experiment, i.e., the shorter the wave

of the incident radiation, the more perturbed is the particle motion after collision

with the photon. This implies that in the microscopic world the measuring device

and the object of measurement are not absolutely separable as it is implicitly

assumed in the classical theory.

A second challenge to the established theory came from the atomic physics.

In 1911 Rutherford had demonstrated, by scattering the a-radiation particles (nuclei
of the helium atoms) on thin layers of heavy metals, that each atom contains

the positively charged, heavy nucleus, with the estimated diameter of the order

10�15 [m], surrounded by light, negatively charged electrons, with the estimated

diameter of the atom as a whole of the order 10�10 [m]. He also guessed that

electrons are moving along the circular or elliptic trajectories around the nuclear

attractor. This “planetary” model of an atom was in an obvious conflict with the

accepted classical electrodynamics, which predicted that electrons moving on a cir-

cular orbit, thus being accelerated, should radiate electromagnetic energy and ulti-

mately collapse onto the nucleus. Therefore, the very stability of such a “classical”

atomic model has been put in doubt.

To remove this troubling inconsistency, in 1913 Bohr has followed the Planck

approach of incorporating in the classical theory subsidiary quantum conditions

6 1 Sources



which contradicted it. He has achieved an excellent agreement with the available

experimental data for the hydrogen atom by assuming that in the circular motion of

an electron allowed are only specific, stationary orbits, on which the particle energy
remains fixed. These stationary energy levels {En} and corresponding radii {rn} are
identified by the orbit quantum number n ¼ 1, 2,. . .. The energy is emitted/

absorbed in the discrete manner, not continuously as predicted by the classical

electrodynamics, only when electron makes a transition between the two stationary

orbits. Emission takes place when electron “jumps” from an outer orbit, exhibiting

larger radius, to an inner orbit of smaller radius, identified by the higher and lower

values of n, respectively. Accordingly, the inner ! outer transitions are possible

only after absorbing the energy from an incident radiation. Bohr has used Planck’s

relation between the transition energy and frequency of the emitted/absorbed

radiation:

DEn!n0 ¼ En0 � En ¼ hnn!n0 : (1.4)

Bohr’s quantum conditions, which determine the stationary orbits, can be

formulated as those for the allowed, discrete values of the length of the electron

angular momentum ln ¼ rn � pn,

ln ¼ lnj j ¼ mevnrn ¼ n�h; (1.5)

where rn denotes the electron position vector on nth orbit, and pn ¼ mevn stands for
its linear momentum.

This model has been subsequently developed in 1915 and 1916 by Sommerfeld

and Planck, who introduced the elliptic orbits and the spatial quantization of the

angular momentum. This generalized planetary model still gave wrong predictions

already for helium atom (two-electron system), which signaled that this Old Quan-
tum Theory was far from the final formulation of the new, generalized mechanics

of microscopic objects. It should be realized, however, that new physical ideas

are always arrived at by understanding the novel in terms of the familiar. Clearly,

Bohr’s quantization rules, successful as they were, entail assumptions which are in

conflict with the classical physics. For example, the latter predicts that an electron

on the circular orbit should emit radiation and this contradicts the assumed station-

ary character of such a trajectory. Although it was clear already at the time of its

invention that this ad hoc synthesis of the quantum elements with the classical

theory has hardly any future as the consistent physical theory, Bohr’s planetary

model has turned out to be quite successful in explaining the observed series of

spectral lines emitted by hydrogen. The predictive power of the model was quite

limited, however, since – despite later improvements – it dramatically failed to

explain the spectral data of many electron atoms.

Since the micro-objects escape perception by human sense organs, their obser-

vation always requires the measurement devices, the macro-objects which translate
their interactions with the micro-objects in terms of macroscopic quantities. This

points out to a subtle relationship between the quantum mechanics and classical
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physics. In his celebrated Correspondence Principle Bohr has recognized that

quantum mechanics must be consistent with classical mechanics. The classical

limit corresponds to very large energies (quantum numbers), when such minute

quantities as the Planck constant can be formally treated as zeros, in the h ! 0

limit.

In 1924 the quantum condition (1.5) of Bohr’s model has gained a convincing

interpretation in de Broglie’s hypothesis of the universal character of the particle–
wave dualism, which was first observed in the electromagnetic radiation. He

suggested that the relations between corpuscular (E, p) and wave (n, l) attributes
of material particles, which exhibit a nonzero rest mass, are the same as for photons,

for which the rest mass vanishes (1.3). Therefore, there should also be a new,

wave facet of electrons, linked to their more familiar corpuscular aspect by the

associated relations:

Ee ¼ hne; pe ¼ hne=c ¼ h=le: (1.6)

The existence of such matter waves has been confirmed experimentally in 1927

by Davisson and Germer, who diffracted the electron beam on a crystal. This

development has quantitatively verified the preceding relations thus demonstrating

that the particle–wave duality constitutes a universal characteristic of nature, i.e.,

of all objects in the microworld, or the micro-objects for short, rather than being

a monopoly of light. Apparently, in this scale of the linear dimensions 10�8–10�15

[m], the differences between the material and radiation particles are significantly

blurred. The hope was that in the final version of the quantum theory this important

discovery will find a consistent synthesis and a more explicit dynamical expression.

At this time it has not been understood yet as to how de Broglie’s waves propagate

and how they influence the motion of individual particles. They do offer, however,

a solid basis for explaining Bohr’s quantum condition of (1.5). More specifically,

rewriting it in terms of the electron de Broglie’s wavelength of an electron moving

on nth stationary orbit, ln ¼ h/pn (1.6), gives: 2prn ¼ nln. This condition thus

represents the classical criterion for the standing wave along the whole perimeter of

the electron circular orbit. In other words, only on the stationary orbits of Bohr the

constructive interference of de Broglie’s (traveling) waves explains the stability of

the electron distribution. Accordingly, the destructive interference of the de Broglie

waves in an atom disallows any orbit which fails to satisfy this quantum condition.

Since science is concerned only with observable things one has to let the micro-

particle to respond to some outside influence, in order to observe it. As we have

already argued above, when examining the implications of the Compton experiment,

the measurement process inadvertently modifies the state of the micro-object.

A careful examination of the limitations imposed by this influence on the accuracies

Dx and Dpx of the simultaneous determination of the particle position (Cartesian)

coordinate x and its conjugate linear momentum px, respectively, has led Heisenberg
to formulate in 1926 and 1927 his famous Uncertainty Principle, also known as the
Principle of Indeterminacy, which states that the limiting value of the product of
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these two indeterminacies has a very small but finite value of the order of Planck’s

constant:

Dx Dpx � �h: (1.7)

The specific multiple of �h in r.h.s. of the preceding inequality depends on the

adopted measure of the measurement precision. For example, the standard devia-

tion sA of physical quantity A, DA ffi sA ¼ A� Ah ið Þ2
D E1

2 ¼ A2
� �� Ah i2

� �1
2
;

where Ah i is the average, statistical expectation value of A and A2
� �

denotes the

average value of its square, can be used to quantify the accuracy of such measure-

ments. We shall use this familiar descriptor of a random variable later in this book,

when formulating the Uncertainty Principle in terms of concepts of the molecular

wave mechanics.

This limit to the fineness of our power to observe the atomic objects and the

smallness of their accompanying disturbance in an act of measurement introduces

the absoluteness to the distinction between the micro- and macro-objects. This limit

can never be surpassed by an improved technique or increased skill of an observer,

since a fraction of a photon is never observed. It is inherent in natural world and the

dual particle–wave behavior, “anomalous” from the classical perspective, is not

peculiar to light, but it is universally present in all material particles as well.

1.2 Classical–Mechanical Description and a Need for Its

Revision in Generalized Mechanics

A necessity for a departure from the classical mechanics and its causality is thus

clearly demonstrated by the experimental observations. The classical concepts have

been proved to be inadequate to describe the molecular, atomic, and subatomic

events. The uncertainty principle denies an observer the ability to simultaneously

measure the conjugate components of the position and momentum vectors of

micro-objects with arbitrary high precision. This contradicts the basic assumption

of the classical mechanics, in the canonical formulation of the Hamilton equations

of motion, where the exact knowledge of such quantities is required for the very

definition of the particle dynamic state. According to the Heisenberg principle of

indeterminacy such simultaneously (sharply) unobserved quantities are unknow-
able. Therefore, one is forced to resign from the classical concept of the particle

trajectory, e.g., Bohr’s orbit, which is unobservable thus belonging in the micro-

world to a “metaphysical” rather than physical category.

Hence, the precise description of the time evolution of a micro-object, which

requires an exact knowledge of its position and momentum at the given time, is

unavailable in the quantum theory. This restriction does not reflect our technical

inability of a precise measurement, but rather it signifies the incompatibility of the
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two observations involved. Such physical quantities, which cannot be sharply defined

simultaneously, are called the complementary observables. As we shall see later in
the book, besides the complementary pair of the particle position and momentum,

(x, px), there is a number of such relations in quantum physics: energy and time, (E, t),
any two Cartesian components of the angular momentum, e.g., (lx, ly), etc.

The uncertainty relations give rise to statistical predictions of the quantum theory,

in contrast to the deterministic predictions of the classical physics. In the macroscale

of objects perceived by our senses, the statistical distribution of the alternative

outcomes of a measurement, represented by the normal (Gaussian) distribution,

can be made infinitely sharp in the limit of the Dirac delta function (Dirac 1967),

which can be thought of as representing the ordinary Gauss curve of the probability

theory in the limit of its vanishing variance. Therefore, the statistical (multiple-
valued) determinism of quantum mechanics constitutes a natural extension of its

limiting form in the strict (single-valued) determinism of the classical theory.

According to Bohr’sComplementarity Principle both coexisting wave and particle
aspects of all objects in the microworld are essential for their full description.

However, the precise specification of one complementary observable rules out

any specification of the other. Should the particle momentum be known exactly,

Dpx ! 0, one would then have no knowledge of its position whatsoever, Dx ! 1;

accordingly, when the object position is sharply defined, Dx ! 0, one looses all the

knowledge about its momentum: Dpx ! 1. The principle operates not only in

these limiting cases, but it also covers all intermediate, finite precisions of speci-

fying the pairs of complementary observables. The more the precise localization

of an electron (or photon) in space, when its momentum is not well specified, the

more the particle-like behavior. Accordingly, the wave-like character is uncovered,

when the particle localization is not well specified, i.e., when its momentum is

determined more precisely.

As further articulated by Bohr and his Copenhagen School, all physical quan-

tities such as position, momentum, angular momentum, energy, etc., have to be

specified by measurement, which conveys information to our senses. It has to

contain amplification mechanisms by which microscopic effects are translated

into macroscopic effects accessible to our understanding. Indeed, all experiments

in the atomic, nuclear, and subnuclear scales in the final analysis are described in

classical terms, related to attributes of the macroscopic measuring apparatus. This

emphasizes a unique, intimate relationship between the quantum mechanics and

its classical limit, with the former being destined to use the concepts of the latter

to describe the behavior of the micro-objects.

The indeterminacy principle also implies a relativity of the quantum description

with respect to the adopted method of measurement, since the specific experimental

device uncovers its own “projection” of the observed “reality.” This also constitutes

a natural extension of the classical relativity of the description of physical phenom-

ena with respect to the adopted reference frame. This feature signifies a deeper,

fully objective approach, which resigns from the subjective classical idealization

of the exact separability of the observed object and the measuring device. It is

implicitly assumed in the classical theory that the progress of a physical process is
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independent of the experimental observations, which monitor its current stage.

In other words, classical theory claims a lack of interference of the measuring

device into the state of the probed mechanical system, i.e., the absolute separability

of these two subsystems of an experimental arrangement.

Clearly, the physical objects evolve freely when undisturbed by an act of mea-

surement, but finally we have to bring them into contact with the experimental

apparatus to monitor their current (final) state. The progress of classical process is

assumed to be independent whether they are observed experimentally or not, but in

the realm of quantum mechanics the experimental monitoring is not without an

influence, sometimes decisive, on the behavior of the observed micro-object. In the

macroworld this influence can be practically neglected. For example, the pertur-

bation of the airplane trajectory created by the photons of the illuminating radar

radiation is nonexistent for all practical reasons. To summarize, the impression

of the unequivocal determinism in the Newtonian mechanics is created by the very

highmasses and energies of the classical objects. It hardly implies the universality of

this limiting macroconjecture of the absolute separability of the object and measur-

ing device, to also cover the microworld where such small perturbations do matter.

The classical description also assumes the possibility of limitless gathering of

simultaneous measurement information, i.e., the availability of the precise values of

all mechanical properties of all constituent particles at the given time. In other

words, this approach assumes that in principle at a given time all objects can be

absolutely localized in space and their momenta can be determined with arbitrary

precision, as can be any physical property of the dynamical system under consi-

deration. Clearly, for practical reasons only, we are unable to reach this level of

the precise specification of the mechanical microstate of all atoms/molecules in

a macroscopic amount of matter. However, as claimed in the classical statistical

thermodynamics, such detailed data are in principle knowable with arbitrary preci-

sion. Only due to the obvious “technical” difficulties of reaching this goal, and

in view of the implications of the Law of Large Numbers, which renders such

information irrelevant, we resort to familiar methods of the statistical mechanics in

predicting the average descriptors of the system macrostate.

Let us briefly summarize the main suggestions addressed to the generalized

mechanics capable of describing the behavior of micro-objects. As we have already

argued in the preceding section, the relation between this, yet unknown, new

mechanics and its classical analog should be similar to the relation between the

wave- and geometrical optics; the former becomes the latter in the formal short-

wave limit of l ! 0 (n ! 1), which is a characteristic of de Broglie’s wave of

a macro-object, when the free particle would not be diffracted but going along

a straight rectilinear path, just as we expect classically. The new mechanics should

thus include the classical mechanics as its limiting case for very large energies and

hence also large values of its quantum numbers � or equivalently � in the formal

limit of the vanishing quantum of the physical action: h ! 0. This can be argued

more precisely by observing that the wave aspect of matter will be hidden from

our sight, if de Broglie’s wavelength l is much lower than a characteristic length

d involved in describing the motion of a body of momentum p: l=d ¼ h=ðdpÞ � 1.
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Thus, the l ! 0 and h ! 0 limits are equivalent in identifying the range of

applications of the classical mechanics. This postulate is known as Bohr’s Corre-

spondence Principle.

In contrast to old quantum theories, the general quantum theory must be internally

consistent, i.e., all its experimental consequences must follow from the same axiom-

atic basis. It has to be capable of explaining all known experimental facts, rather than

a narrow selection of such data. In the new mechanics we have to refrain from the

classical definition of the system dynamic state, which uses the complementary

observables. The new definition must instead be based only on the strictly knowable

state parameters, which can be simultaneously determined with utmost precision.

Clearly, such a positivistic attitude is a prerequisite of any sound physical theory.

The new definition of the mechanical state must be complete so that the results

of all possible experiments performed on the microsystem can be extracted from it.

In particular, it must offer means to predict the possible outcomes (spectrum) {ai}
of any single measurement of quantity A, as well as the frequencies mi (or proba-

bilities) {pi ¼ mi/m} of these experimentally allowed values of the measured

physical quantity in many repetitions m ¼ ∑imi of the given experiment,

performed on systems in the same dynamical state. This information on a multitude

of measurements performed on replicas of the system then suffices to determine the

statistical expectation value of the measured physical quantity:

Ah i ¼
X

i
pi ai: (1.8)

1.3 Implications from the Particle Diffraction Experiment

Let us consider the double-slit interference of photons or electrons, in analogy with

Young’s optical experiment. In this experimental arrangement the monochromatic

stream of quantum particles falls on the opaque diaphragm with two slitsO1 andO2.

This experiment is crucial for distinguishing whether a perturbation traveling

in space is of the particle or wave character.

The intensities I1(x) and I2(x) of two streams of the noninteracting particles

passing through the openings O1 and O2, respectively, when the other slit is closed,

upon reaching the screen ℰ would produce the sum of such individual inten-

sities (probabilities), I1(x) þ I2(x). The superposition of the corresponding waves

c1(x) ¼ |c1(x)| exp[if1(x)] and c2(x) ¼ |c2(x)| exp[if2(x)],

cðxÞ ¼ c1ðxÞ þ c2ðxÞ; (1.9)

gives rise to the screen intensity distribution exhibiting the interference effects,

IðxÞ¼ cðxÞj j2¼cðxÞc	ðxÞ¼ c1ðxÞj j2þ c2ðxÞj j2þ2 c1ðxÞj j c2ðxÞj jcos½f1ðxÞ�f2ðxÞ�
�½I1ðxÞþI2ðxÞ�þ2½I1ðxÞI2ðxÞ�

1
2cos½f1ðxÞ�f2ðxÞ�� IaddðxÞþInaddðxÞ;

(1.10)

12 1 Sources



because of the last, nonadditive (oscillatory) term Inadd(x). Above, we have identi-
fied the intensity of wave by the squared modulus of the scalar wave field c(x),
by analogy to the intensities of the electric, E(x), or magnetic, H(x), fields.

It has been established experimentally that the interference fringes are the statis-

tical result of a very large number of independent particles hitting the screen, when

each particle retains its individuality being finally deposited on a single grain of

the photographic plate of the screen, at apparently random positions, hitting also

the regions no classical particle could reach. The same interference pattern appears

when a beam of particles goes through the slits simultaneously, and when single

particles are scattered, one at a time, with the impact locations being observed

in seemingly random fashion, now here, now there, over a length of time. The

statistical determinism in this scattering of micro-objects, which give the impres-

sion of being truly indeterminable and chaotic, is only revealed after very many

repetitions of such elementary, single-particle experiments, when the interference

pattern finally emerges.

The appearance of interference depends critically on both slits being open, and

it vanishes when one of them is closed, i.e., when a single particle goes definitely

through one slit or the other, giving after many repetitions the separate distributions

I1(x) or I2(x) on the screen. One thus concludes that the observance of interference

denies us the determination of the slit through which the particle has actually

passed. The interference pattern cannot be explained in the corpuscular representa-

tion, as a result of some collective effect of interactions between the beam particles.

More specifically, by diminishing the density of the incident stream of particles,

and hence also the number of particles passing through the slits in unit time, one

changes such interactions, and this should affect the interference pattern on the

screen. However, the experiment does not exhibit any influence of this kind; the

diffraction pattern remains the same even in the limit of a single particle passing

the slits at a time. The attempts to explain this phenomenon in the wave representa-

tion alone also fail, as the interference intensities, i.e., the wave determinism of the

particle distribution is uncovered only after many repetitions of the single-particle

scatterings performed at the specified dynamical conditions of the incident beam.

These apparent contradictions illustrate the wave–particle dualism of the micro-

objects. Indeed, in accordance with the Heisenberg indeterminacy principle, it

is impossible to simultaneously, sharply specify the particle momentum p ¼ h/l,
which implies the knowledge of the interference pattern, and its position, which

presupposes the knowledge of the slit, through which the particle has passed, when

the other slit remains closed.

Therefore, there is a distinct wave causality in this at first glance “random”

scattering of independent particles so that de Broglie’s wave c(x, t), or the wave
(state) function for short, indeed describes in a statistical sense a movement of

a single particle, with the wave intensity I(x, t) ¼ |c(x, t)|2 (1.10) measuring the

chance of finding it hitting the screen at location x at time t. This probabilistic

interpretation of the waves of matter is due to Born, who proposed in 1927 to call

the intensity I(x, t) the probability density of observing the particle at specified

localization at the given time. As we shall see later in the book, in the modern
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quantum mechanics this identification forms a basis for interpreting the system

wave function, which carries the complete information about the dynamic state of

the micro-object. It should also be emphasized that this function itself, the solution

of the Schr€odinger wave equation formulated in 1926, which governs the dynamics

of microsystems, cannot be treated as a measure of the likelihood of finding a

particle at the given position, since for that it should be positive everywhere, being

then incapable of the destructive interference, which is the observed fact.

The double-slit diffraction of microparticles identifies two types of experiments

involved in establishing the classical attributes of quantum systems. Let us examine

the consecutive stages of a general setup in a thought experiment shown in Fig. 1.1.

We denote the initial and final states (wave functions) of the quantum system, at

time t0 � 0 and t > 0, respectively, by c(x, t0) and c(x, t). The classical attributes
of the initial state are determined by performing the so-called initial experiment,
which in fact creates c(x, t0), e.g., the monochromatic beam of particles of the

specified momentum. Thus, this first category of experiment in quantum mechanics

always refers to the future, by preparing the quantum state the time evolution of

which we intend to study.

In the period t0 ! t the system evolves freely, c(x, t0) ! c(x, t), without any
perturbing influence from measuring devices. This wave deterministic process will

be described by the Schr€odinger equation of motion, which in the modern quantum

mechanics replaces the Newton (Hamilton) equations of motion of the classical

theory. As we shall see later in the book, this evolution of the state function in the
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Fig. 1.1 Qualitative diagram of the initial and final experiments involved in preparing the initial

state c(t0) and extracting the classical attributes of the final state c(t) reached after free (undis-

turbed by measurement) evolution in the time interval t0 ! t. The initial experiment arrangement,

including the particle collimating slits and an appropriate velocity selector, transforms the poly-

chromatic electron beam into its monochromatic component, thus preparing the initial state c(t0).
In the time interval t0 ! t the system evolves freely, without any intervention from the measuring

devices, in the specified dynamical conditions, e.g., when the particle motion is influenced by the

force field generated by the external potential v(x), in accordance with the strictly deterministic

laws of quantum dynamics: c(t0) ! c(t). The statistically distributed classical attributes of the

final state c(t) are then extracted by performing the final experiment, using, e.g., the double-slit
arrangement or a crystal as the measuring apparatus, which diffracts electrons to the movable

detector or a photographic plate. This position-extraction experiment is an illustrative example of

a general measurement-event of any physical observable A. The process of extracting the observed
values {ai} (spectrum) of A in the single-particle experiments performed on the final state c(t) has
been symbolically depicted in the diagram as performance of the relevant mathematical operation

Â on c(t), ÂcðtÞ, with the operator Â being specific for the measured quantity A. The observed

spectrum {ai} of A and the associated probabilities {pi ¼ mi/m} can be determined only after

many m ¼ (∑imi) ! 1 repetitions of the single-electron scatterings, with mi denoting the

frequency of observing ai
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specified dynamical conditions is strictly deterministic, with the given initial state

c(x, t0) giving rise to a single final state c(x, t).
The aim of the final experiment is to determine the classical descriptors of the

quantum system in state c(x, t). It should be stressed that after the particle has been
localized on the screen, by using the photographic plate or some clever monitoring

device, its dynamical state has been inadvertently and irreversibly destroyed as

a result of the interaction with such an apparatus. Indeed the particle’s precise

localization denies us of any knowledge about the particle momentum. Thus, the

final experiment can have implications only to the very past event, when the micro-

object reaches the screen.

Due to the particle–wave duality, the link between c(x, t) and possible outcomes

of the final experiment is generally of the “one-to-many” type, thus giving rise to

statistical predictions of specific values of classical descriptors of the system final

state. Indeed, we cannot a priori predict, where the scattered electron hits the screen,

but the final interference pattern, obtained after numerous repetitions of the single-

electron diffractions, uniquely identifies the probability distribution |c(x, t)|2 of the
final state. It should be emphasized that only very numerous repetitions of the

single-particle “experiment” together constitute the complete final experiment in

quantum mechanics.

The preceding discussion prompts us to revise our ideas of causality (Heisenberg

1949, 1958; Born 1964; Bohm 1980; see also: Penrose 1989). Causality applies

only to the micro-objects which are left undisturbed. Therefore, only the free-

evolution in the chain of events depicted in Fig. 1.1 represents the causal stage,

while the final measurement produces a disturbance in the state of the object serious

enough to destroy any causal connection between the separate results of obser-

vations monitoring the object final state.

The statistical predictions and the indeterminism of quantum laws are a property

inherent in nature, and should not be regarded as resulting from our temporary

ignorance, which could be removed by some future theory, better and more

complete. Although the modern quantum theory provides a thoroughly rational,

coherent, and extremely successful description of micro-objects of the subatomic

and atomic/molecular levels, one should not dogmatically rule out its future impro-

vements and extensions, e.g., on the subnuclear level. However, as much as the

quantummechanics was forced upon the modern science by the physical rather than

metaphysical necessity, these developments have to address future experimental

findings, which could not be explained by the quantum theory. Indeed, as history

teaches us, no matter how complete the description of the dynamical state may

seem today, sooner or later new experimental facts will require us to improve the

theoretical model and arrive at an even more general description, more detailed

and usually more complex.

For example, all empirical evidence, including the Stern–Gerlach experiment
and atomic spectra, points to the need for attributing to many elementary particles,

notably electrons, protons, and neutrons, the intrinsic angular momentum, or spin,
and the associated magnetic moment. Therefore, such particles can hardly be

treated as mass points without any internal structure. Hence, for the complete
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specification of their dynamic states one has to provide the relevant spin quantum

numbers, which fix these internal degrees-of-freedom of such micro-objects. These

new dynamical variables of entirely nonclassical origin have to be specified besides

the remaining simultaneously measurable observables.

1.4 Particle Spin

In 1925 Uhlenbeck and Goudsmit hypothesized the existence of yet another internal

attribute of atoms and elementary particles, called spin angular momentum and the

associated intrinsic magnetic dipole moment, which complement such properties of

these micro-objects as mass, electric dipole moment, moment of inertia, electric

charge, etc. This internal state variable has been originally introduced to simplify

the classification of atomic spectra. This goal has been achieved, when one

envisaged the existence of the internal angular momentum s of an electron, called

the spin, the length of which is quantized by the half integral quantum number

s ¼ 1

2
: s ¼ sj j ¼ ½sðs þ 1Þ�12�h (Fig. 1.2).

Confirmation of this experimental conjecture came in 1928 from the relativistic

quantum theory of Dirac. The existence of the electronic spin also transpires from

z

|s|= |s’|= 3/2)

sz = ½ spin-up state

s

y 

x                          sz = − ½ spin-down state

s’

(

Fig. 1.2 The electron spin s can be characterized in quantum mechanics by two simultaneously

observable attributes: its length s ¼ sj j ¼ ½sðs þ 1Þ�12�h ¼ ð ffiffiffi
3

p
=2Þ�h, for the half-integral spin quan-

tum number s ¼ 1
2
, and its projection on the specified axis, say axis “z” of the Cartesian coordinate

system: sz ¼ s�h, where s ¼ 
 s . These two observables do not strictly specify the spin vector, but
rather they define the whole family of admissible vector directions determining the cone surfaces

shown in the diagram. The length and a single projection exhaust the complete list of simulta-

neously observed properties of any angular momentum in quantum mechanics. In other words, the

direction of the angular momentum of the microparticle is not an observable
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the earlier Stern–Gerlach experiment of 1921 in which a beam of silver atoms,

containing a single, outermost spin-unpaired electron, produce two traces corres-

ponding to the spin-up (sz ¼ 1=2�h) and spin-down ðsz ¼ �1=2�hÞ states (Fig. 1.2) of
their valence electron, after being deflected in a nonuniform magnetic field.

These two spin states of a single electron can be uniquely specified by the quantum

numbers determining the two simultaneouslymeasurable attributes of the spin vector:
s , for its length, and s ¼ 
s , for its projection along the specified direction, say the

“z” axis in Fig. 1.2: sz ¼ s�h. They can be symbolically represented as the following

“state vectors,” in which one provides an explicit or symbolic specification of the state

spin quantum numbers within the arrow-like symbol of Dirac:

spin�up state: aj i ¼ s ; s ¼ þsj i ¼ ½;þ½j i ¼ þj i;

spin�down state: bj i ¼ s ; s ¼ �sj i ¼ ½;�½j i ¼ �j i:

1.5 Birth of Modern Quantum Mechanics

The consistent quantum mechanics (see, e.g., Messiah 1961; Davydov 1965; Dirac

1967; Merzbacher 1967; Cohen-Tannoudji et al. 1977; Fock 1986), which explains

the origins of the quantization of the physical observables and introduces the

generalized dynamics of quantum states, has emerged in 1926–1927 in two equiva-

lent forms: the Matrix Mechanics of Heisenberg and the Wave Mechanics of

Schr€odinger. Although using quite different mathematical apparatuses, the matrix

algebra and differential equations, respectively, these two rival theories gave rise

to identical physical predictions, in complete agreement with all experimental data.

It was clear, therefore, that these two approaches represent the same physical

theory, as indeed demonstrated later by Schr€odinger and Dirac (see, e.g., Buckley

and Peat 1979).

Heisenberg discovered the need for a generally noncommutative multipli-

cation of physical quantities in quantum mechanics, which gives rise to the

position–momentum indeterminacy. The analogies with systems in classical

mechanics, which are governed by the linear equations of motion, a consequence

of the superposition relationships between states of vibrating strings or membranes,

have led Schr€odinger to establish the basic equations of the Wave Mechanics. The

resulting equation of state is also linear in the unknowns, because of the assumption

of the quantum superposition principle. In Heisenberg’s approach the quantum

states and physical observables are represented by the matrix vectors and square

matrices, respectively, while in Schr€odinger’s treatment they are accordingly

associated with functions and differential operators. The important contributions

to the final form of the modern quantum theory have also been made by other
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members of the G€ottingen School, Born and Jordan, and by Dirac and Pauli, who

invented the relativistic version of the quantum theory.

These revolutionary departures from principles of the classical theory, and

particularly in the form of the quantum superposition of states demanding indeter-

minacy in the results of observations, are necessary to provide a sensible physical

interpretation and to explain all known experimental facts. These new ideas find

their expression through the introduction of a new mathematical formalisms as well

as novel axioms and rules of manipulation. The two original formulations of the

modern quantum mechanics can be united in a more general and abstract form of

the quantum theory, which includes both the wave mechanics and matrix theory as

its special cases. This “geometric” formulation requires the complex linear vector

space, called the Hilbert space, in which vectors represent state functions. Both

n-dimensional and n ! 1 spaces are invoked, including the indenumerably infi-

nite case of vectors corresponding to continuous variables. The matrix and wave

function theories then appear as corresponding to different choices of the basic

vectors in the Hilbert-space, which define the chosen reference frame for concepts

and equations of quantum mechanics. This is similar to the relationship between the

form of equations in classical physics and the adopted coordinate system in which

they are formulated. With the increased elegance and mathematical abstractness of

this unifying geometric formulation one also gains a great deal of understanding.

The geometric approach using Dirac’s vector notation is the method chosen in

the present short presentation of the principles of quantum mechanics. Its relation

to the two original formulations will be briefly explored, emphasizing their equi-

valence in predicting the possible outcomes of experiments and the dynamical

equation of motion. Since the wave mechanics appears to be conceptually simpler

in chemical applications and directly connecting to the particle–wave dualism,

a stronger emphasis will be made on this (nonrelativistic) version of the quantum

theory. However, for reasons of convenience, in specific problems covered by the

book the matrix theory will also be applied. In this study an emphasis is put on

the conceptual developments rather than specific applications. For the solvable

problems in quantum mechanics and quantum chemistry the reader is referred

to specific textbooks and monographs (e.g., Fl€ugge 1974; Szabo and Ostlund

1982; Atkins 1983; Levine 1983; McQuarrie 1983; Johnson and Pedersen 1986).
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Chapter 2

Mathematical Apparatus

Abstract The mathematical tools of quantum mechanics are summarized. This

overview, which makes no attempt to be mathematically complete and rigorous, is

intended as an introduction for readers unfamiliar with the subject. We begin with

some geometrical analogies of the basic concepts and techniques of the mathemati-

cal formalism used to treat the extended Hilbert space of the quantum-mechanical

states, the abstract vector space spanned by the state vectors or the associated wave
functions of the physical system of interest. Dirac’s vector notation, which greatly

simplifies manipulations on these mathematical objects, and the alternative rep-

resentations of the singular delta “function” are given. The linear operators acting

on the state vectors as well as their adjoints are defined and the basis set rep-

resentations of vectors and operators are introduced. The eigenvalue problem of the

linear self-adjoint (Hermitian) operators is examined in some detail and the com-

plete set of the commuting observables is defined. The two most important (contin-

uous) bases of vectors for representing quantum states of a single particle, defined

by the eigenvectors of the particle position and momentum operators, respectively,

are explored. In particular, the position representation of the momentum operator,

as well as the momentum representation of the position operator, are examined in

some detail. Next, the discrete energy representation is briefly examined and the

unitary transformation of states and operators is discussed. Finally, the functional

derivatives are introduced and the associated Taylor expansion of functionals is

formulated. The localized displacements of the functional argument function

are defined using Dirac’s delta function and the rules of functional differentiation

are outlined stressing analogies to familiar operations performed on functions

of many variables. The chain rule transformations of functional derivatives are

summarized.

R.F. Nalewajski, Perspectives in Electronic Structure Theory,
DOI 10.1007/978-3-642-20180-6_2, # Springer-Verlag Berlin Heidelberg 2012
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2.1 Geometrical Analogies

The ordinary three-dimensional physical space R3 is spanned by the orthonormal

basis {i, j, k} � e(3) (a row vector of vector elements), consisting of three unit

vectors {ei, i ¼ 1 � x, 2 � y, 3 � z} along the mutually perpendicular axes {x, y, z},
respectively, in the Cartesian coordinate system. The orthogonality of different

basis vectors, i 6¼ j, expressed by the vanishing scalar product ei·ej ¼ 0, and their

unit length (normalization), ei·ei ¼ jeij2 � ei
2 ¼ 1, can be combined into the

orthonormality relations expressed in terms of Kronecker’s delta,

ei � ej ¼ di; j ¼ f1; for i ¼ j; 0; for i 6¼ jg; (2.1a)

defining the three-dimensional, unit-metric tensor represented by the identity

matrix I(3) ¼ {di,j}:

eð3Þ � eð3Þ � eð3ÞTeð3Þ ¼ Ið3Þ; (2.1b)

where e(3)T denotes the transposed (T), column vector of transposed vector elements.

Any vector in R3 can be expanded in this reference system,

A ¼ Ax þ Ay þ Az �
X3
i¼1

Ai ¼ iax þ jay þ kaz �
X3
i¼1

eiai ¼ eð3Það3ÞT; (2.2)

with the row vector of coordinates a(3) ¼ {ai ¼ ei·A} ¼ [ax, ay, az], measuring the

lengths {ai ¼ jAij} of projections {Ai} of A onto the corresponding axes, providing

the matrix representation of A in the adopted basis set: A$a(3).
It should be also observed that in the preceding equation the resolution of A into

its projections {Ai} along the directions of basic vectors e(3) in this coordinate

system can be also interpreted as a result of acting on Awith the projection operator

P̂ðR3Þ onto the whole R3 space,

P̂ðR3Þ ¼
X3
i¼1
ðeiei�Þ �

X3
i¼1

P̂ðeiÞ; (2.3)

defined by the sum of individual projectors fP̂ðeiÞg onto the specified axes. Indeed,
the following identity directly follows from (2.2):

A ¼
X3
i¼1

eiai ¼
X3
i¼1

eiei�
 !

A ¼ P̂ðR3ÞA ¼
X3
i¼1

P̂ðeiÞA �
X3
i¼1

Ai: (2.4)

The preceding relation also implies that the projection of any vector A in R3,

or A(R3) for short, amounts to multiplying it by the unity (identity) operation
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P̂ðR3Þ ¼ 1: P̂ðR3ÞAðR3Þ ¼ A R3ð Þ. Clearly, the sum of projections onto any two

basis vectors P̂ðei; ejÞ ¼ P̂ðeiÞ þ P̂ðejÞ defines the projection onto the plane defined

by these two axes:

P̂ðei; ejÞA ¼ P̂ðeiÞAþ P̂ðejÞA ¼ Ai þ Aj � Aði; jÞ: (2.5)

This overall projection onto the whole physical space allows one to interpret the

scalar product of two vectors A and B in R3 in terms of their coordinates a(3) and
b(3), respectively:

A � B ¼ A � P̂ðR3ÞB ¼
X3
i¼1
ðA � eiÞðei � BÞ ¼

X3
i¼1

aibi ¼ að3Þbð3ÞT: (2.6)

As seen from this example, the coordinate-resolved expression results directly from

placing the identity operator P̂ðR3Þ ¼ 1 between the two vectors in the scalar

product. Obviously, this formal manipulation has no effect on the product value.

The characteristic property of projections is that the effect of a singular projec-

tion is identical to that of the subsequent repetition of the same projection. This

immediately implies the idempotency property of the projection operators,

P̂ðR3ÞP̂ðR3Þ � ½P̂ðR3Þ�2 ¼ P̂ðR3Þ; ½P̂ðei;ejÞ�2 ¼ P̂ðei;ejÞ; ½P̂ðeiÞ�2 ¼ P̂ðeiÞ; (2.7)

where we have identified the square of an operator as a double execution of the

operation it symbolizes. One can straightforwardly verify these identities using the

orthonormality relations of (2.1a, 2.1b), which also imply that the product of

projections into the mutually orthogonal subspaces identically vanishes, e.g.,

P̂ðiÞP̂ðkÞ ¼ P̂ðiÞP̂ð jÞ ¼ P̂ð jÞP̂ðkÞ ¼ P̂ði; jÞP̂ðkÞ ¼ 0: (2.8)

These observations can be naturally generalized into the n-dimensional Euclid-
ean space Rn, spanned by n orthonormal basic vectors e(n) ¼ {ei, i ¼ 1, 2, . . ., n},
e(n)T·e(n) ¼ I(n), also including the n ! 1 limit. In particular, the matrix repre-

sentations of vectors and the coordinate-resolved expression for the scalar product

of vectors A(Rn) and B(Rn) directly follow from applying the projector onto the

whole space Rn,

P̂ðRnÞ ¼
Xn
i¼1
ðeiei�Þ �

Xn
i¼1

P̂ðeiÞ; (2.9)

AðRnÞ ¼ P̂ðRnÞAðRnÞ ¼
Xn
i¼1

P̂ðeiÞAðRnÞ ¼
Xn
i¼1

ei½ei � AðRnÞ�

¼
Xn
i¼1

eiai ¼
Xn
i¼1

Ai ¼ eðnÞaðnÞT; (2.10)
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AðRnÞ � BðRnÞ ¼ AðRnÞ � P̂ðRnÞBðRnÞ ¼
Xn
i¼1
ðA � eiÞðei � BÞ

¼
Xn
i¼1

aibi ¼ aðnÞbðnÞT: (2.11)

In particular, for two identical vectors A(Rn) ¼ B(Rn) one obtains the following

expression for the vector length (norm):

A ¼ jAj ¼
ffiffiffiffiffiffi
A2

p
¼

Xn
i¼1

a2i

 !1=2

� 0: (2.12)

One similarly defines the projection operators into various subspaces in Rn, e.g.,

its complementary, mutually orthogonal parts Pm ¼ fei; i ¼ 1; 2; . . . ;mg � P and

Qn�m ¼ fei; j ¼ mþ 1;mþ 2; . . . ; ng � Q:

P̂ðPmÞ � P̂P ¼
X
i2P

P̂ðeiÞ; P̂ðQn�mÞ � P̂Q ¼
X
j2Q

P̂ðejÞ; P̂P P̂Q ¼ 0;

AðRnÞ ¼ ðP̂P þ P̂QÞAðRnÞ ¼ AP þ AQ ; (2.13)

where AP and AQ stand for the projections of A(Rn) into the Pm and Qn�m

subspaces, respectively.

The scalar product of (2.11) can be also given the (linear) functional interpreta-
tion. In mathematics the linear functional F[’] of the argument ’, e.g. a function or
vector, is a linear operation performed on the argument, which gives the scalar

quantity F, F[’] ¼ F, e.g., the definite integral I f½ � ¼ R
x2

x1

f ðxÞ dx ¼ I. The same

property can be associated with the (discrete) scalar product, say a projection of the

argument vector A � A
!
onto another vector B � B

!
:

B � A ¼ B
! � A! � B

 ½A!�; (2.14)

where B
 ½V!� denotes the functional of the vector argument V

!
giving the value of its

scalar product with the vector B
!
. The latter thus defines the functional B

 ½X� itself,
denoted as the “reversed” vector, by specifying the direction onto which the

argument vector X is to be projected.

It can be then demonstrated that these scalar product functionals also span the

vector space, called the dual space, since any combination of such quantities

represents another linear functional of the same type. Let us examine these

reversed “vector” quantities (functionals) associated with the independent basis

vectors fei ¼ e
!
ig. They represent the dual basis “vectors” fe i½V

!� � e
 
ig of the
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scalar product functionals. Indeed, any combination of them also belongs to this

dual space, e.g.,

Cie
 
i½V
!� þ Cje

 
j½V
!� ¼ ðCie

!
i þ Cje

!
jÞ � V

! � W
! � V! ¼ W

 ½V!�; (2.15)

and to every vector A
!
corresponds its functional analog A

 
in the dual space, since

the vector is uniquely specified by the complete set of its scalar products

(components) with all independent vectors e(n):

A
! ¼

Xn
i¼1

aie
!
i ¼

Xn
i¼1

A
!
i ) A

 ½V!� ¼
Xn
i¼1

aie
 
i½V
!� ¼

Xn
i¼1

A
 
i½V
!�: (2.16)

It also follows from these relations that in Euclidean space this correspondence

is linear: the linear combination of vectors in Rn is represented in the associated

dual space by the associated combination, with the same expansion coefficients, of

the corresponding dual-space functionals.

It should be emphasized that the dual-space elements, the “reversed” vectors,

represent mathematical quantities (functionals of vectors) quite different from the

original (argument) vectors on which they act.

2.2 Dirac’s Vector Notation and Delta Function

In accordance with the Superposition Principle of quantum mechanics (Dirac

1967), any combination of states represents an admissible quantum state of the

given molecular or atomic system. This property is also typical of ordinary vectors,

CA A þ CB B ¼ C, where the numerical coefficients CA and CB determine the

relative participation of both vectors in the combination. We shall use this analogy

in the vector notation of Dirac, in which the quantum statesC and F are denoted as

arrowed “ket” symbols jCi, jFi, . . ., called state vectors. Their linear combination

CCjCi þ CFjFi ¼ jYi determines another state jYi. When these states are

functions of the continuous parameter x∈[x, z ], jCi ¼ jC(x)i � j xi, this summa-

tion of vector states is generalized into its continuous (integral) analog:

jYi ¼
ðz

x

cðxÞ xj i dx: (2.17)

Here, the combination coefficients {c(x), c(x0), . . .} are in general complex since the

quantum states are complex entities. The resultant state jYi of the given combina-

tion is said to be dependent upon the component states {jxi, jx0i, . . .}. These
independent state vectors cannot be expressed as combinations, with nonvanishing

coefficients, of the remaining states in this basis set.
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In the quantum kinematics it is the direction of the state vector jCi that matters

and uniquely identifies the quantum state C. Therefore, the opposite state vectors

along the same direction, e.g., jCi and�jCi, in fact represent the same stateC, and

any combination of the state with itself, C1jCi þ C2jCi ¼ (C1 þ C2) jCi ¼ CjCi
� Meif jCi, where M and f stand for the modulus and phase of the complex

coefficient C, also denote the same state C. As we shall see later in this chapter,

the length (norm) of the state vectors in quantum mechanics will be fixed by the

appropriate normalization requirement resulting from the probabilistic interpreta-

tion of quantum states. In case of the square integrable wave functions it calls for

M ¼ 1, but the phase f will be left undetermined as immaterial and having no

physical meaning.

This property of the quantum superposition rule distinguishes it from the

corresponding classical principle, e.g., that for combining vibrations of a string or

a membrane, in which the combination of a state with itself gives another state

exhibiting different amplitude. There is also another important distinction between

the quantum and classical kinematics: in quantum mechanics the state vector of the

vanishing norm (length), which thus has no specified direction in the vector space of

quantum states, does not exist and thus has no physical meaning, while the classical

vibration of the vanishing amplitude everywhere does in fact represent the real

physical state of rest of a string or a membrane.

It was shown in the preceding section that to any vector space the dual space of

the “reversed” vectors, the entities of quite different mathematical variety

(functionals), can be ascribed through the concept of the scalar product (projection)

of the vectors themselves. The dual space to the ket-space of state vectors {jCii} is
called the bra-space of the reversed “vectors” (functionals) {hCij}, with the one-

to-one (antilinear) correspondence: hCij $ jCii, (hCij þ hCjj) $ (jCii þ jCji),
C*hCj $ CjCi, etc., where C* denotes the complex conjugate of C. In the original

terminology of Dirac the bra- “vector” hCj represents the conjugate-imaginary of
the associated ket-vector jCi. Again, the basic difference between the elements of

the two vector spaces, with the “bras” in fact representing the functionals acting

on “kets,” it is improper to regard the bra-“vectors” as the complex conjugates of
the corresponding ket-vectors.

In Dirac’s notation the bra hFj and ket jCi symbols are examples of an

incomplete “bracket,” while the result of hFj acting on jCi gives the complete
bracket of the scalar product of jCi and jFi, hFjCi � F[jCi], which measures the

projection of jCi on jFi. The complete bracket generates the complex number. This

association also explains the English nomenclature of the “bra” and “ket” symbols.

This definition also implies that in contrast to the Euclidean space the complex

numbers of the projections of jCi on jFi and of jFi on jCi, respectively, are not

equal in general, one representing the complex conjugate of the other:

hFjCi ¼ F½jCi� � hCjFi� ¼ C½jFi��: (2.18)

One also observes that this linear functional of the ket vector:
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F½jC1C1 þ C2C2i� ¼ C1F½jC1i� þ C2F½jC2i�; (2.19)

is antilinear with respect to the bra vector, which determines the direction on which

the projection is made:

hC1F1 þ C2F2jCi ¼ C1
�F1½jCi� þ C2

�F2½jCi�: (2.20)

Any vector in the ket space has its unique analog in the dual space of the bra

“vectors” (functionals). There is a close analogy with the Euclidean space, in which

the scalar product functional has also been used to define the dual “vector”. Indeed

the vector is uniquely defined by its projections on all (independent, orthonormal)

vectors {jXii ¼ jii}, possibly including indenumerable vectors {jX(x)i � jxi} labeled
by the continuous parameter(s) x. The set of projections {hFjXii ¼ hXijFi*} thus

uniquely determines the original ket |Fi associated with the functional F[] ¼ hFj.
The “orthonormality” relations for the continuous basis vectors {|xi} are

expressed in terms of the continuous analog of the Koronecker delta di,j ¼ hijji,
called the Dirac delta “function” d(x0 � x) ¼ hxjx0i. For any function f(x) of the
continuous argument(s) x this kernel satisfies the following “projection” identity:

f ðxÞ ¼
ð
dðx0 � xÞf ðx0Þ dx0: (2.21)

This equation indicates that this singular function represents the kernel of the

integral operator
Ð
dx0d(x0 � x), which acting on function f(x0) generates f(x).

Moreover, since the integral of the preceding equation formally expresses the

functional f(x) ¼ f [f(x0)], Dirac’s delta can also be interpreted as the functional

derivative (see Sect. 2.7):

dðx0 � xÞ ¼ df ðxÞ
df ðx0Þ : (2.22)

We shall discuss other properties of this mathematical entity later in this section.

The Dirac delta function d(x0 � x) of (2.21) represents the unity-normalized,Ð
d(x0 � x)dx0 ¼ 1, infinitely sharp distribution centered at x0 ¼ x, exhibiting

vanishing values at any finite distance from this point. It can be thus envisaged as

the limiting form of the ordinary Gaussian (normal) distribution of the probability

theory in the limit of the vanishing variance:

dðx0 � xÞ ¼ lim
s!0

1ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp �ðx

0 � xÞ2
2s2

 !
: (2.23)

Alternatively, one can use any complete, say discrete, set of orthonormal basis

functions {wi(x)},
Ð
wi
*(x)wj(x)dx ¼ di,j, to generate the analytical representation of

this singular function. Indeed, expanding f(x) in terms of the complete (orthonor-

mal) basis set {wi(x)} gives:
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f ðxÞ ¼
X
i

wiðxÞci ¼
X
i

wiðxÞ½
ð
wi
�ðx0Þf ðx0Þ dx0�

¼
ð �X

i

wi
�ðx0ÞwiðxÞ

�
f ðx0Þ dx0: (2.24)

Hence, comparing the last equation with (2.21) gives the closure relation:

dðx0 � xÞ ¼
X
i

wiðxÞwi�ðx0Þ: (2.25a)

For the continuous orthonormal basis set {ua(x)} labeled by the continuous index
a,
Ð
ua

*(x) ua0 (x) dx ¼ d(a0�a), one similarly finds

dðx0 � xÞ ¼
ð
uaðxÞ ua�ðx0Þ da: (2.25b)

When the complete basis set is “mixed,” containing the discrete and continuous

parts, {wi(x), ua(x)}, with
Ð
ua

*(x) wi(x) dx ¼ 0, this closure relation reads

dðx0 � xÞ ¼
X
i

wiðxÞwi�ðx0Þ þ
ð
uaðxÞ ua�ðx0Þ da: (2.25c)

Another important example of the continuous analytical representation of

Dirac’s delta originates from the Fourier-transform relations, e.g., between the

wave function in the position and momentum representations of quantum mechan-

ics (see Sect. 2.6),

FðkÞ ¼ 1ffiffiffiffiffiffi
2p
p

ð
expð�ikxÞf ðxÞdx and f ðxÞ ¼ 1ffiffiffiffiffiffi

2p
p

ð
expðik0xÞFðk0Þdk0;

i ¼
ffiffiffiffiffiffiffi
�1
p

:

(2.26)

Substituting the second, inverse transformation into the first one then gives

FðkÞ ¼ 1

2p

ð
Fðk0Þ f

ð
exp½ixðk0 � kÞ� dxg dk0 (2.27)

and hence

dðk0 � kÞ ¼ 1

2p

ð
exp½ixðk0 � kÞ� dx: (2.28)

The singular Dirac delta function d(x0 � x) � d(z) satisfies the following

identities:
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dðzÞ ¼ dð�zÞ; zdðzÞ ¼ 0;

dðazÞ ¼ j aj�1dðzÞ; f ðx0Þdðx0 � xÞ ¼ f ðxÞdðx0 � xÞ;
ð
dðx0 � xÞ d x� x00ð Þdx ¼ d x0 � x00ð Þ;

dðx2 � a2Þ ¼ ð2jajÞ�1½dðx� aÞ þ dðxþ aÞ�: (2.29)

Of interest also are the related properties of the derivative of Dirac’s delta

“function,” d 0(z) � dd(z)/dz,

ð
f ðzÞd0ðzÞdz ¼ �f 0ð0Þ or

ð
f ðzÞd0ð�zÞdz ¼ f 0ð0Þ; zd0ðzÞ ¼ �dðzÞ: (2.30)

2.3 Linear Operators and Their Adjoints

The complex number resulting from the scalar product between two state vectors is

the result of applying the functional represented by its bra factor to its ket argument.

When the linear action of a mathematical object on ket results in another ket, i.e.,

when it attributes in the linear fashion the uniquely specified result-vector jC0i to
the given argument-vector jCi, it is said to define the linear operator Â:

ÂjCi ¼ jÂCi � jC0i; ÂjC1C1 þ C2C2i ¼ C1ÂjC1i þ C2ÂjC2i : (2.31)

The operator is defined when its action on every ket is determined; it becomes zero,

Â ¼ 0, when its action on every ket jCi gives zero. Thus, two operators are equal

when they produce equal results when applied to every ket.

The linear operators can be added and multiplied:

ðÂþ B̂ÞjCi ¼ ÂjCi þ B̂jCi; ðÂB̂ÞjCi ¼ ÂðB̂jCiÞ � ÂB̂jCi: (2.32)

In general, they do not commute, giving rise to nonvanishing commutator

½Â; B̂� � ÂB̂� B̂Â 6¼ 0: (2.33)

A multiplication by a number is a trivial case of a linear operation, which commutes

with all linear operators. It can be easily verified that commutators satisfy the

following identities:

½Â; B̂� ¼ �½B̂; Â�; ½Â; B̂þ Ĉ� ¼ ½Â; B̂� þ ½Â; Ĉ�;
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½Â; B̂Ĉ� ¼ ½Â; B̂�Ĉ þ B̂½Â; Ĉ�; ½Â; ½B̂; Ĉ�� þ ½B̂; ½Ĉ; Â�� þ ½Ĉ; ½Â; B̂�� ¼ 0:

(2.34)

Linear operators can also act on the bra vectors, with the latter always put to the

left of the operator, giving other bras. Indeed, the symbol ÂhFj has no meaning of

the bra vector (functional), since its action on the ket vector jCi gives another

operator, (ÂhFjÞjCi ¼ ÂhFjCi ¼ hFjCiÂ, thus representing an alien object in the
present mathematical formalism. However, it can be straightforwardly demon-

strated, again using the scalar product functional as the link to the definition of

(2.31), that hFjÂ ¼ hF0j: Indeed, since Â is linear and the scalar product depends

linearly on the ket, the scalar products F½ÂjCi� ¼ hFjðÂjCiÞ for the specified hFj
and Â, associate with every ket |Ci in the vector space a number which depends

linearly on jCi. This new linear functional thus defines a new bra vector hF0j, which
can be regarded as a result of Â acting on hFj:

hFjðÂjCiÞ ¼ ðhFjÂÞjCi ¼ hF0jCi: (2.35)

Therefore, the linear operators act either on bras to their left or on kets to their

right. In other words, the position of parentheses in the above matrix element of Â is

of no importance:

hFjðÂjCiÞ ¼ ðhFjÂÞjCi ¼ hFjÂjCi: (2.36)

The operation hFjÂ ¼ hF0j is linear, because for arbitrary jCi and hOj ¼
C1hF1j þ C2hF2| one obtains:

ðhOjÂÞjCi ¼ hOjðÂjCiÞ ¼ C1hF1jðÂjCiÞ þ C2hF2jðÂjCiÞ
¼ C1ðhF1jÂÞjCi þ C2ðhF2jÂÞjCi; (2.37)

and hence hOjÂ ¼ C1hF1jÂþ C2hF2jÂ.
It can be directly verified that the product of the ket and bra vectors, jCi hFj,

represents an operator. When acting on ket jXi it generates another ket vector along
jCi, jCi hFjXi ¼ hFjXi jCi, while the result of its action on bra hOj produces
another bra vector (functional), proportional to hFj: hOjCi hFj. It thus defines the
linear operator:

jCi hFjC1X1 þ C2X2i ¼ C1hFjX1ijCi þ C2hFjX2ijCi;

ðC1hO1j þ C2hO2jÞjCi hFj ¼ C1hO1jCi hFj þ C2hO2jCi hFj: (2.38)

In particular, the operator jXii hXij defined by the normalized vector jXii � jii
and its bra conjugate amounts to the projection onto the jii direction:

jii hijCi � P̂ijCi ¼ hijCi jii � Cijii; (2.39)

30 2 Mathematical Apparatus



whereCi stands for ith component of jCi in the jii ¼ {jii} representation (row

vector). The projector idempotency then directly follows:

P̂i
2 ¼ ij i i j ih i ih j ¼ ij i ih j ¼ P̂i: (2.40)

When this discrete (countable) basis set spans the complete space, the sum of all

such projectors, i.e., the projection on the whole space, amounts to the identity

operation,

P̂ ¼ ij i ih j ¼
X
i

P̂i ¼ 1; (2.41a)

where ih j stands for the column vector of bras associated with the row vector of the

basis kets jii, because then P̂jCi ¼ jCi: Similarly, when the complete basis set

jxi ¼ {jxi} is noncountable in character, with the orthonormality relations

expressed by Dirac’s delta “function” of (2.21), the summation is replaced by the

integral over the continuous parameter(s),

P̂ � xj i xh j ¼
ð

xj i xh j dx ¼
ð
P̂ðxÞ dx ¼ 1; (2.41b)

where we have again interpreted jxi and xh j as the (continuous) row and column

vectors, respectively. Finally, when the complete (mixed) basis contains both the

discrete part jai ¼ {jai} and the indenumerable subspace jyi ¼ {jyi}, jmi ¼ [jai,
jyi] the identity operator of the complete overall projection operator includes both

the discrete and continuous projections:

P̂ � mj i mh j ¼ aj i ah j þ yj i yh j ¼
X
a

P̂a þ
ð
P̂ðyÞdy ¼ 1: (2.41c)

The (antilinear) one-to-one correspondence between kets and bras associates

with every linear operator Â its adjoint (linear) operator Ây by the requirement that

the bra associated with the ket ÂjCi ¼ jÂCi � jC0i is given by the result of action
of Ây on the bra associated with jCi:

hC0j ¼ hÂCj � hCjÂy: (2.42)

Hence, since hFjÂCi ¼ hÂCjFi� one obtains:

Fh jÂC� � Fh jÂ Cij ¼ ÂC
� ��Fi� � Ch jÂy Fj i�: (2.43)

Moreover, because (ÂyÞy ¼ Â and hence hÂyFj ¼ hFjÂ, the adjoint operators can
be alternatively defined by the identity:

hÂyFjCi ¼ Fh jÂ Cij ¼ Fh jÂC�: (2.44)

2.3 Linear Operators and Their Adjoints 31



Next, it is easy to show that ðlÂÞy ¼ l�Ây and ðÂþ B̂Þy ¼ Ây þ B̂y: To deter-

mine the adjoint of the product of two operators one observes that the ket jOi ¼
ÂB̂ Cj i � Â Yj i is associated with the bra

hOj ¼ hCjðÂ B̂Þy ¼ hYjÂy ¼ hCjB̂y Ây; (2.45)

where we have realized that the bra associated with jYi; hYj ¼ hCjB̂y: Hence,
ðÂB̂Þy ¼ B̂yÂy: This change of order, when one takes the adjoint of a product of

operators, can be generalized to an arbitrary number of them: (ðÂB̂ . . . ĈÞy ¼
Ĉy . . . B̂yÂy: One also observes that the following identity is satisfied for com-

mutators: ½Â; B̂�y ¼ ½B̂y; Ây�:
We can now summarize the mutual relations between the mathematical entities

hitherto introduced in terms of the general Hermitian conjugation denoted by the

adjoint symbol “{”. In the Dirac notation the ket jCi and its associated bra hCj are
said to be Hermitian conjugates of each other: hCj ¼ jCi{ and hCj{ ¼ jCi. More-

over, the operators Â and Ây are also related by the Hermitian conjugation. As we

have observed in the preceding equation the hermitian conjugation of the product

of operator factors changes the order in the product of the adjoint operators. This rule

holds for other entities as well. For example, the Hermitian conjugate of ÂjCi gives:

ðÂjCiÞy ¼ jÂCiy ¼ jCiyÂy ¼ hCjÂy: (2.46)

Similarly,

ðjCi hFjÞy ¼ ðhFjyÞðjCiyÞ¼ jFihCj; ðhFjCiÞy ¼ ðjCiyÞðhFjyÞ ¼ hCjFi;
ðlhFjCijCi hFjÞy ¼ jFihCjhCjFil� ¼ l�hCjFijFihCj; etc: (2.47)

Thus, to obtain the adjoint (Hermitian conjugate) of any expression composed of

constants, kets, bras and linear operators, one replaces the constants by their

complex conjugates, kets by the associated bras, bras by the associated kets,

operators by their adjoints and reverses the order of factors in the products.

However, as we have observed in the last line of (2.47), the position of constants,

l*, hCjFi, etc., is of no importance.

2.4 Basis Set Representations of Vectors and Operators

Selection of the complete (orthonormal) basis of the reference ket vectors in

the vector space of the system quantum-mechanical states, either discrete jii ¼
{jii}, hij ji ¼ di,j, or the continuous infinity of vectors jxi ¼ {jxi}, hxjx0i ¼
d(x0�x), defines the specific representation in which both the vectors and operators
can be expressed. By convention the basis vectors jii and jxi are arranged as the row
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vectors. Accordingly, their Hermitian conjugates define the respective column

vectors of the bra basis: jii{ ¼ hij and jxi{ ¼ hxj.
Using the closure relations of (2.41a), (2.41b) and the above orthonormality

relations for these basis vectors gives the associated expansions of any ket jCi:

jCi ¼
X
i

jii hijCi ¼
X
i

jiiCi ¼ jii hijCi � jiiCðiÞ;

jCi ¼
ð
jxi hxjCi dx ¼

ð
jxiCðxÞ dx � jxi hxjCi � jxiCðxÞ: (2.48a)

The components {Ci } or {C(x), C(x0), . . .}, by convention arranged vertically

as the column vectors,C(i) ¼ hijCi andC(x) ¼ hxjCi, provide the representations
of the ket jCi in the basis sets jii and jxi, respectively. In the mixed basis set case of

(2.41c) the expansion of ket jCi in jmiwill contain both the discrete and continuous
components:

jCi ¼ jmi hmjCi � jmiCðmÞ ¼ jai hajCi þ jyi hyjCi ¼ jai CðaÞ þ jyiCðyÞ

¼
X
a

jai hajCi þ
ð
jyi hyjCi dy:

(2.48b)

The associated expansions of the bra vector hFj in terms of the reference

bra vectors hij, hxj, and hmj, respectively, directly follow from applying the

corresponding unity-projections of (2.41a)–(2.41c) to hFj (from the right):

hFj ¼
X
i

hFjii hij ¼
X
i

F�i hij ¼ hFjiihij � FðiÞyhij;

hFj ¼
ð
hFjxi hxj dx ¼

ð
F�ðxÞ hxj dx ¼ hFjxi hxj � FðxÞy hxj;

hFj ¼ hFjmi hmj � FðmÞyhmj ¼ hFjai haj þ hFjyi hyj � FðaÞyhaj þFðyÞyhyj:
(2.49)

Therefore, the vector components F(i){ ¼ hFjii, F(x){ ¼ hFjxi and [{Fa
*}, F*(y)]

¼ [hFjai, hFjyi], when arranged horizontally as the associated row vectors, con-

stitute the corresponding representations of hFj in these three types of the basis set.
Again, the continuous representation of the bra vector, e.g., the complex conjugate

wave function F*(x) ¼ hFjxi, can also be regarded as the continuous row vector

with components [F*(x), F*(x0), . . .].
In these three types of the basis sets, the linear operator Â is accordingly

represented by the square matrix and/or the continuous kernel, respectively,
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Aði; i0Þ � hijÂji0i ¼ fAi;i0 ¼ hijÂji0ig � AðiÞ;

Aðx; x0Þ � hxjÂjx0i ¼ fAðx; x0Þ ¼ hxjÂjx0ig � AðxÞ;

Aðm;m0Þ � hm ^jAjm0i¼ Aða;a0Þ ¼ ah jÂ a0j i Aða; y0Þ ¼ ah jÂ y0j i
Aðy;a0Þ ¼ yh jÂ a0j i Aðy; y0Þ ¼ yh jÂ y0j i

" #
� AðmÞ:

(2.50)

The adjoint operator Ây is similarly represented by the corresponding Hermitian

conjugates of these “matrices,”

hijÂyji0i¼hÂ iji0i¼ hi0jÂjii� ¼Aði0;iÞ� ¼ ½Aði;i0Þ��T¼Aði;i0Þy �AyðiÞ;

hxjÂyjx0i¼hx0jÂjxi� ¼hxjÂjx0iy ¼Aðx;x0Þy ¼ ½Aðx;x0Þ��T�AyðxÞ;

hmjÂyjm0i¼hm0jÂjmi� ¼hmjÂjm0iy ¼Aðm;m0Þy ¼ ½Aðm;m0Þ��T

¼ Aða;a0Þy ¼ a0h jÂ aj i� Aða;y0Þy ¼ y0h jÂ aj i�
Aðy;a0Þy ¼ a0h jÂ yj i� Aðy;y0Þy ¼ y0h jÂ yj i�

" #
�AyðmÞ: (2.51)

Hence, the Hermitian (self-adjoint) operator Â of the physical observable A,
for which Ây ¼ Â; is represented by the Hermitian matrix/kernel: A{(b) ¼ A(b),

b ¼ i, x, m.

The relations between vectors of (2.31) and (2.42) are thus transformed into the

corresponding equations in terms of the basis set components. For example, (2.31)

then reads:

ÂjCi ¼ jC0i $ AðbÞCðbÞ ¼C0ðbÞ; b ¼ i; x;m; i:e:;
X
i0
Ai;i0 Ci0 ¼ Ci

0;
ð
Aðx; x0Þ Cðx0Þ dx0 ¼ C0ðxÞ;

X
a0
Aa;a0Ca0 þ

ð
Aða; y0Þ Cðy0Þ dy0 ¼ Ca

0 and

X
a0
Aðy; a0ÞCa0 þ

ð
Aðy; y0ÞCðy0Þdy0 ¼ C0ðyÞ: (2.52)

The corresponding basis set transcriptions of (2.42) similarly give:

hC0j ¼ hCjÂy , ðÂjCi ¼ jC0iÞy $ CðbÞyAyðbÞ ¼C0yðbÞ; b ¼ i; x;m; i:e:;
X
i0
Ci0
�Ai0;i

� ¼ C0i �;
ð
Cðx0Þ�Aðx0; xÞ�dx0 ¼ C0ðxÞ�;

X
a0
Ca0

�ðAa0;aÞ� þ
ð
Cðy0Þ� Aðy0; aÞ� dy0 ¼ ðCa

0Þ� and

X
a0

Ca0
�Aða0; yÞ� þ

ð
Cðy0Þ�Aðy0; yÞ� dy0 ¼ C0ðyÞ�: (2.53)

34 2 Mathematical Apparatus



It should be emphasized that the basis set representations of the state vector

are fully equivalent to the state specification by the vector itself. For example

(see Sect. 2.6), when the continuous basis set is labeled by the position of a

particle in space, x ¼ r, or its momentum, x ¼ p, the associated representations

C(r) � C(r) ¼ hrjCi and C(p) � C(p) ¼ hpjCi, called the wave functions in

the position (r) and momentum (p) representations, respectively, provide alterna-

tive specifications of the quantum state of the particle, which uniquely establish the

direction of the ket jCi in the system Hilbert space.

2.5 Eigenvalue Problem of Linear Hermitian Operators

For the linear operator to represent the physically observable quantity in quantum

mechanics it has to be self-adjoint, i.e., its hermitian conjugate (adjoint) must be

identical with the operator itself: Ây ¼ Â: Only such Hermitian operators can be

associated with the measurable quantities of physics. They satisfy the following

scalar product identity [see (2.43)]:

Fh jÂ Cij ¼ Ch jÂ Fj i� ¼ Fh jÂ Cij y: (2.54)

The projector P̂C ¼ Cj i Ch j provides an example of the Hermitian operator:

P̂
y
C ¼ P̂C. One also observes that the change of order of the adjoint factors in the

Hermitian conjugate of the product of two operators implies that the product of the

commuting Hermitian operators also represents the Hermitian operator. Indeed,

when ½Â; B̂� ¼ 0; ðÂB̂Þy ¼ B̂yÂy ¼ B̂Â ¼ ÂB̂:
In quantum mechanics the eigenvalue problem of the linear Hermitian operator

Â corresponding to the physical quantity A is of paramount importance in deter-

mining the outcomes of its measurement. It is defined by the following equation:

Â Ciij ¼ ai Ciij or Cih jÂy ¼ Cih jai� ¼ Cih jÂ ¼ Cih jai; (2.55a)

where ai denotes ith eigenvalue (a number) and jCii � jaii and hCij � haij stand
for the associated eigen-ket(bra), i.e., the eigenvector belonging to ai. Therefore,
the action of Â on its eigenvector does not affect the direction of the latter, with only

its length being multiplied by the corresponding eigenvalue.

A trivial example is the multiplication by a number a. This operator has just one
eigenvalue, this number itself: any ket is an eigenket and any bra is an eigenbra

corresponding to this eigenvalue. One observes that this number has to be real for

such a number operator to be self-adjoint [see (2.55a)].

In quantum theory the Hermitian operator Â, the eigenvectors of which form a

basis in the state space, is called an observable. The projections onto all such

eigenstates amounts to the identity operations of (2.41a)–(2.41c). The projector

P̂C is an example of the quantum-mechanical observable, which exhibits only two
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eigenvectors. Indeed, for an arbitrary ket jFi the two functions j1i � P̂CjFi and
j0i � ð1� P̂CÞjFi can be shown to satisfy the eigenvalue problem of P̂C:

P̂Cj1i ¼ P̂2CjFi ¼ P̂CjFi ¼ j1i; P̂Cj0i ¼ ðP̂C � P̂2CÞjFi ¼ 0j0i; (2.56)

where we have used the idempotency property of projection operators [(2.40)].

Therefore, the two state vectors {j1i, j0i} are the eigenvectors of P̂C corresponding

to eigenvalues {1, 0}. Since every ket in the state space can be expanded in these

two eigenstates, jFi ¼ j1i þ j0i, they form the basis in the state space, j1ih1j þ
j0ih0j ¼ 1, thus confirming that P̂C is an observable.

The eigenbra problem is similarly defined by the Hermitian conjugate of (2.55a):

hCijÂ ¼ hCijai�: (2.55b)

It then follows from the Hermitian character of Â that all its eigenvalues are real

numbers. It suffices to multiply (2.55a) by hCij (from the left) and (2.55b) by jCii
(from the right), subtract the resulting equations and use (2.54) (forF ¼ C¼Ci) to

obtain the identity:

0 ¼ ðai � ai
�Þ hCijCii ) ai ¼ ai

�: (2.57)

The eigenvalues can be degenerate, when several independent eigenvectors

{jCi,ji} ¼ {jCi,1i, jCi,2i, . . ., jCi,gi} � {jiji, j ¼ 1, 2, . . ., g} belong to the same

eigenvalue ai:

Âji1i ¼ aiji1i; Âji2i ¼ aiji2i; . . . ; Âjigi ¼ aijigi; (2.58)

here the number g of such linearly independent (mutually orthogonal) components

determines the multiplicity of such degenerate eigenvalue. It then directly follows

from the linear character of Â that any combination of such states, say jCi ¼
C1ji1i þ C2ji2i þ . . . Cgjigi, also represents the eigenvector of Â belonging to this

eigenvalue:

ÂjCi ¼ C1Âji1i þ C2Âji2i þ � � � þ CgÂjigi ¼ aijCi: (2.59)

The Hermitian character of the linear operator also implies that eigenvectors

jCii � jii and jCji � j ji, which belong to different eigenvalues ai 6¼ aj, respec-
tively, are automatically orthogonal. Indeed, the associated eigenvalue equations,

Âjii ¼ aijii and hjjÂ ¼ hjjaj; give by an analogous manipulation involving a

multiplication of the former by hjj, of the latter by jii, and a subtraction of the

resulting equations,

0 ¼ ðai � aiÞ hjjii ) hjjii ¼ 0: (2.60)

In the degenerate case, each vector belonging to the subspace {jiki} of eigen-

value ai is thus orthogonal to every vector belonging to the subspace {jjli} of
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eigenvalue aj: hikj jli ¼ 0. Inside each degenerate subspace the vectors can always

be constructed as othonormal, hikjili ¼ dk,l, by choosing appropriate combinations

of the initial independent (normalized but nonorthogonal) state vectors.

For the given representation in the Hilbert space, say, specified by the discrete

orthonormal basis jii, the eigenvalue equation (2.55a) assumes the form of the

separate systems of algebraic equations for each eigenvalue, which can be

summarized in the joint matrix form [see (2.52)]:

AðiÞCðiÞ ¼ aCðiÞ; (2.61)

with the operator represented by the square matrix AðiÞ ¼ fhijÂji0ig; the diagonal
matrix a ¼ fasds;s0 ¼ hCsjÂjCsids;s0 g grouping the eigenvalues {as} corresponding
to eigenvectors jCi ¼ {jCsi � jsi} determined by the corresponding columns

Cs
(i) ¼ hijsi of the rectangular matrix C(i) ¼ {Cs

(i)} ¼ hijCi ¼ {hijsi} grouping
the relevant expansion coefficients (projections).

Moreover, since both jCi and jii form bases in the Hilbert space, the overall

projection jCihCj ¼ jiihij ¼ 1 and hence

CðiÞCðiÞy ¼ hijCi hCjii ¼ hijii ¼ fdi;i0 g ¼ IðiÞ and

CðiÞyCðiÞ ¼ hCjii hijCi ¼ hCjCi ¼ fds;s0 g ¼ IðCÞ: (2.62)

Thus, the basis set components of eigenvectors, C(i), define the unitary matrix:

(C(i)){ ¼ (C(i))�1. Hence, the multiplication, from the right, of both sides of (2.61)

by C(i){ allows one to rewrite this matrix equation as the unitary (similarity)

transformation (“rotation”), which diagonalizes the Hermitian matrix A(i), the

basis set representation of the Hermitian operator Â, to its eigenvector representa-

tion a ¼ hCjÂjCi � AðCÞ:

CðiÞyAðiÞCðiÞ ¼ ðCðiÞÞ�1AðiÞCðiÞ ¼ a: (2.63)

This is the standard numerical procedure, which is routinely applied in the com-

puter programs for the finite basis set determination of eigenvalues of Hermitian

matrices.

When dealing with problems of the simultaneous measurements of physical

quantities in quantum mechanics, one encounters the common eigenvalue problem

of several mutually commuting observables. It can be straightforwardly

demonstrated that the commutation of operators Â and B̂; ½Â; B̂� ¼ 0, implies the

existence of their common eigenvectors, which form the basis in the space of state

vectors. In other words, for the case of the discrete spectrum of eigenvalues {ai} and
{bj} of these two operators, there exist the common eigenvectors {jai, bji} of Â

and B̂, which satisfy the simultaneous eigenvalue problems of these two operators:

Âjai; bji ¼ aijai; bji and B̂jai; bji ¼ bjjai; bji: (2.64)
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Indeed, when jaii denotes the eigenvector of Â; Âjaii ¼ aijaii; and ½Â; B̂� ¼ 0,

applying B̂ to both sides of this eigenvalue equation gives: B̂Âjaii ¼ ÂðB̂jaiiÞ ¼
aiðB̂jaiiÞ: Therefore, B̂jaii is also the eigenvector of Â belonging to the same

eigenvalue ai. Hence, for the nondegenerate eigenvalue ai; B̂jaii must be collinear

with jaii, since there is only one independent eigenstate corresponding to ai,
identified by the direction of jaii. Hence, B̂jaii is then proportional to jaii, thus
also satisfying the eigenvalue equation of B̂,

B̂jaii ¼ bjjaii ) jaii ¼ jai; bji: (2.65)

For the degenerate eigenvalue ai; B̂jaii gives a vector belonging to the subspace

{jaiik} of ai, so that such eigenvalue subspace of Â remains globally invariant under

the action of B̂. One also observes that for such a pair of commuting operators,

the two eigenvectors for different eigenvalues of one operator, say jaii and jaji of
Â; ai 6¼ aj; give the vanishing matrix element of the other operator: haijB̂jaji ¼ 0:

This directly follows from their vanishing commutator which implies

haij½Â; B̂�jaji ¼ ðai � ajÞhaijB̂jaji ¼ 0 ) haijB̂jaji ¼ 0; (2.66)

where we have recognized the Hermitian character of Â.

In fact the commutation of two operators constitutes both the necessary and

sufficient condition for the two operators to have the common eigenvectors. The

above demonstration of the sufficient criterion can be supplemented by the inverse

theorem of the necessary condition that the existence of the common eigenvalue

problem of the two operators implies that they commute. Since the common

eigenvectors {jai, bji} constitute the basis (complete) set one can expand any ket

jCi ¼
X
i;j

ai; bj
�� �

ai; bj
� ��Ci �

X
i;j

ai; bj
�� �

Ci;j: (2.67)

Therefore:

½Â; B̂� Cj i ¼
X
i;j

Ci;j½ÂB̂� B̂Â�jai; bji ¼
X
i;j

Ci;jðaibj � bjaiÞ ai; bj
�� � ¼ 0

) ½Â; B̂� ¼ 0: (2.68)

The minimum set of the mutually commuting observables fÂ; B̂; . . . ; Ĉg; which
uniquely specify the direction of the state vector jCi, is called the complete set of

commuting observables. Hence, there exists a unique orthonormal basis of their

common eigenvectors and the corresponding eigenvalues (ai, bj, . . ., ck) provide
the complete specification of the state under consideration: jCi ¼ jai, bj, . . ., cki.
One should realize, however, that for a given molecular system there exist several

such sets of observables. We shall encounter their examples in the next section.
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2.6 Position and Momentum Representations

Two important cases of the continuous basis sets in the vector space of quantum

states of a single (spinless) particle combine all state vectors corresponding to its

sharply specified position r ¼ (x, y, z) or momentum p ¼ (px, py, pz). These states,
{jri} and {jpi}, respectively, labeled by the respective three continuous coordinates
are the eigenvectors of the particle position and momentum operators, r̂ ¼ ðx̂; ŷ; ẑÞ
and p̂ ¼ ðp̂x; p̂y; p̂zÞ,

r̂ r0j i ¼ r0 r0j i; rh r0j i ¼ dðr0 � rÞ ¼ ur0 ðrÞ;
ð

rj i rh j dr ¼ 1;

p̂ p0j i ¼ p0 p0j i; ph p0j i ¼ dðp0 � pÞ ¼ up0 ðpÞ;
ð

pj i ph j dp ¼ 1: (2.69)

The Dirac deltas fdðr0 � rÞg and fdðp0 � pÞg in these equations define the continu-
ous basis functions {ur0(r)} and {up0(p)} for expanding the particle wave functions

C(r0) ¼ hr0|Ci and C(p0) ¼ hp0|Ci in these two bases:

Cðr0Þ ¼
ð
hr0jrihrjCi dr ¼

ð
ur0
�ðrÞ CðrÞ dr;

Cðp0Þ ¼
ð
hp0jpihpjCi dp ¼

ð
up0
�ðpÞ CðpÞ dp: (2.70)

Indeed, these two equations express the basic integral property of Dirac’s delta

function [(2.21)]:

Cðr0Þ ¼
ð
dðr � r0ÞCðrÞ dr and Cðp0Þ ¼

ð
dðp� p0ÞCðpÞ dp:

They also identify the function “coordinates” as the corresponding projections in

the function space spanned by the bases {ur0(r)} and {up0(p)}, respectively.
The orthogonality relation between quantum states jCi and jFi can thus be

expressed as the isomorphic relations between the corresponding wave functions:

hCjFi ¼
ð
hCjrihrjFi dr ¼

ð
C�ðrÞFðrÞ dr

¼
ð
hCjpihpjFi dp ¼

ð
C�ðpÞFðpÞ dp ¼ 0: (2.71)

It also follows from (2.69) that the basis functions ur0(r) and up0(p) are themselves

wave functions of quantum states with the sharply defined position r ¼ r0 and
momentum p ¼ p0, respectively. There is one-to-one correspondence between

wave functions and the associated state vectors they represent, e.g.,

ur0 ðrÞ , jr0i; up0 ðpÞ , jp0i; CðrÞ , jCi; CðpÞ , jCi: (2.72)
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Of interest also are the relations between the wave functions in the momentum

and position representations. They are summarized by the Fourier transformations

of (2.26), which in three dimensions read in terms of the wave vector k ¼ p/�h,

CðkÞ¼ ð2pÞ�3=2
ð
expð�ik � rÞCðrÞdr or CðpÞ¼ ð2p�hÞ�3=2

ð
expð� i

�h
p � rÞCðrÞ dr;

CðrÞ¼ ð2pÞ�3=2
ð
expðik � rÞCðkÞdk¼ð2p�hÞ�3=2

ð
expð i

�h
p � rÞCðpÞ dp:

(2.73)

Substituting one transform into the other then generates the following analytical

representations of the Dirac deltas [see (2.28)]:

dðr0 � rÞ ¼ ð2p�hÞ�3
ð
exp

i

�h
p � ðr0 � rÞ

� 	
dp;

dðp0 � pÞ ¼ ð2p�hÞ�3
ð
exp

i

�h
ðp0 � pÞ � r

� 	
dr: (2.74)

Hence, by transcribing (2.73) in terms of corresponding state vectors,

CðpÞ ¼ p jCh i ¼
ð

p j ri rh jCh i dr ¼
ð
u�pðrÞCðrÞ dr;

CðrÞ ¼ r jCh i ¼
ð

r j pi ph jCh i dp ¼
ð
u�r ðpÞCðpÞ dp; (2.75)

one identifies the following representation of basis vectors of one representation in

terms of vectors comprised in the other basis set:

upðrÞ ¼ hrjpi ¼ ð2p�hÞ�3=2 expð i
�h
p � rÞ and

urðpÞ ¼ hpjri ¼ upðrÞ� ¼ ð2p�hÞ�3=2 expð� i

�h
p � rÞ: (2.76)

Let us now examine the associated representations of the position and momen-

tum operators in these two continuous basis sets. We first observe that these

operators are the continuous diagonal when represented in the basis set of their

own eigenvectors [see (2.69)]:

r00h jr̂ r0j i ¼ r0 r00h jr0i ¼ r0dðr0 � r00Þ; p00h jp̂ p0j i ¼ p0 p00h jp0i ¼ p0dðp0 � p00Þ: (2.77)

Therefore, the action of the position operator on the wave function in the

position representation amounts to a straightforward multiplication by the position

vector:
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ð
r00h jr̂ r0j i r0h jCi dr0 ¼

ð
r0dðr0 � r00ÞCðr0Þdr0 ¼ r00Cðr00Þ: (2.78)

The action of the momentum operator on the wave function in the momentum

representation similarly represents the multiplication by the momentum vector:

ð
p00h jp̂ p0j i p0h jCi dp0 ¼

ð
p0dðp0 � p00ÞCðp0Þdp0 ¼ p00Cðp00Þ: (2.79)

Next, let us establish the form of the momentum operator in the position
representation. It can be recognized by examining the position representation of

the ket p̂jCi;

rh jp̂ Cj i ¼
ð

rh jpi ph jp̂ Cj i dp ¼ ð2p�hÞ�3=2
ð
exp

i

�h
p � r


 �
pCðpÞ dp: (2.80)

Hence, by comparing the previous equation with the last (2.73) gives:

rh jp̂ Cj i ¼ �i�hrr rh jCi � p̂ðrÞCðrÞ; (2.81)

where the differential vector operator rr ¼ i@ @x= þ j@ @y= þ k@ @z= � @ @r=
stands for the position gradient. Therefore, the action of the momentum operator

in the position representation amounts to performing the differential operation

p̂ðrÞ ¼ �i�hrr on the wave function C(r). Hence, the matrix element Fh jp̂ Cj i in
this representation is determined by the associated integral in terms of the position

wave functions:

Fh jp̂ Cj i ¼
ð

Fh jri rh jp̂ Cj i dr ¼ �i�h
ð
F�ðrÞrrCðrÞ dr: (2.82)

One could alternatively calculate the kernel p̂ðr; r0Þ ¼ rh jp̂ r0j i (the continuous

matrix element) of the momentum operator, in terms of which the operation of

(2.81) reads:

rh jp̂ Cj i ¼
ð

rh jp̂ r0i r0h jCj i dr0 ¼
ð
p̂ðr; r0ÞCðr0Þ dr0: (2.83)

By twice inserting the closure relation into this matrix element, and using the

analytical expression for the Dirac delta (2.74) one then finds:

rh jp̂ r0j i ¼
ðð

rh jpi ph jp̂ p0i p0h jr0j i dp dp0

¼
ðð

u�r ðpÞ pdðp0 � pÞ ur0 ðp0Þ dp0dp

¼ ð2p�hÞ�3
ð
exp

i

�h
p � ðr0 � rÞ

� 	
p dp ¼ i�hrr0dðr0 � rÞ: (2.84)
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Substituting this result to (2.83), after integration by parts [see (2.30)], gives the

same result as in (2.82):

ð
p̂ðr; r0ÞCðr0Þ dr0 ¼ i�h

ð
rr0dðr0 � rÞCðr0Þ dr0:

¼ �i�h
ð
dðr0 � rÞrr0Cðr0Þ dr0 ¼ �i�hrrCðrÞ: (2.85)

One similarly derives the remaining kernel providing the momentum represen-

tation of the position operator,

r̂ðp; p0Þ ¼ ph jr̂ p0j i ¼
ðð

ph jri rh jr̂ r0i r0h jp0j i dr dr0 ¼
ðð

u�pðrÞ rdðr0 � rÞ up0 ðr0Þ dr dr0

¼ ð2p�hÞ�3
ð
exp

i

�h
ðp0 � pÞ � r

� 	
r dr ¼ �i�hrp0dðp0 � pÞ;

(2.86)

where the momentum gradient rp ¼ i@ @px= þ j@ @py
� þ k@ @pz �= @ @p= . It gives

rise to the following momentum representation of the ket r̂|Ci:

ph jr̂ Cj i ¼
ð

ph jr̂ p0i p0h jCj i dp0 ¼
ð
r̂ðp; p0ÞCðp0Þ dp0

¼ �i�h
ð
rp0dðp0 � pÞCðp0Þ dp0 ¼ i�h

ð
dðp0 � pÞrp0Cðp0Þ dr0

¼ i�hrpCðpÞ � r̂ðpÞCðpÞ: (2.87)

Therefore, the action of the position operator in the momentum space coincides

with the differential operation r̂ðpÞ ¼ i�hrp performed on the wave function CðpÞ.
The same result directly follows from inserting the closure identity into the

initial scalar product of the preceding equation:

ph jr̂ Cj i ¼
ð

ph jri rh jr̂ Cj i dr ¼ ð2p�hÞ�3=2
ð
expð� i

�h
p � rÞrCðrÞ dr: (2.88)

Hence, by comparing this expression with the second (2.73) again gives:

ph jr̂ Cj i ¼ i�hrp ph jCi ¼ r̂ðpÞCðpÞ: (2.89)

2.7 Energy Representation and Unitary Transformations

The energy representation of quantum states and operators is defined by the basis

set of the (orthonormal) eigenvectors {jEni} of the system energy operator, the

Hamiltonian Ê � Ĥ,
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Ĥ Enj i ¼ En Enj i: (2.90)

They represent the stationary states, with the sharply specified energy. Here, for

the sake of simplicity we have assumed the discrete spectrum of the allowed energy

levels {En}.

In the position representation j ¼ {jxi, jx0i, . . .} ¼ {jxi}, hx0jxi ¼ d(x � x0),
where x groups the system coordinates, the eigenkets {jEni} of the energy basis set
are represented by the associated wave functions {’En

ðxÞ ¼ hxjEnig ¼ hjjEni of
the continuous column vector, while the corresponding eigenbras define the

associated continuous row vector: {’�En
ðxÞ ¼ hxjEni� ¼ hEnjxig ¼ hEnjji: In this

position basis the Hamiltonian Ĥ is similarly represented by the continuous (diago-

nal) matrix: Ĥ) fĤðx; x0Þ ¼ xh jĤ x0j i ¼ ĤðxÞdðx0 � xÞg: In the position represen-
tation the energy eigenvalue problem of (2.90) reads:

ð
xh jĤ x0i x0h jEnj i dx0 ¼ En xh Enj i (2.91)

or

ð
Ĥðx; x0Þ’En

ðx0Þ dx0 ¼
ð
Ĥðx0Þdðx0 � xÞ’En

ðx0Þ dx0 ¼ ĤðxÞ’En
ðxÞ ¼ En’En

ðxÞ:
(2.92)

The orthonormality of the energy eigenvectors (discrete spectrum), hEnjEni ¼
dEm;En

, can be also expressed in terms of the associated wave functions:

hEmjEni ¼
ð

Emh xi xh jEnj i dx ¼
ð
’�Em
ðxÞ ’En

ðxÞ dx ¼ dEm;En
: (2.93)

Any state vector jCi is thus equivalently represented either by the components

{CEn
¼ hEnjCi ¼

Ð
’�En
ðxÞCðxÞ dxg �CðEÞ in the energy representation or by the

wave function C(x) ¼ hx|Ci � C(j) in the position representation. They are

related via the following transformations:

CðxÞ ¼ hxjCi ¼
X
m

xh Emi Emh jCj i ¼
X
m

’Em
ðxÞ CEm

or CðjÞ ¼ Tðj;EÞCðEÞ;

CEn
¼ hEnjCi ¼

ð
Enh xi xh jCj i dx ¼

ð
’�En
ðxÞCðxÞ dx or CðEÞ ¼ TðE; jÞCðjÞ:

(2.94)

Thus, the energy eigenfunctions f’Em
ðxÞg, with the continuous (discrete) position

(energy) labels, transform the energy representation of the state vector to its

associated position representation. Accordingly, the complex conjugate functions

f’�Em
ðxÞg are seen to define the reverse transformation of the state vector, from its

position representation to the energy representation.
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Therefore, should one regard the coefficients of these mutually reverse trans-

formations as elements of the corresponding transformation matrices identified by

the discrete {En} and continuous {x} indices,

f’Em
ðxÞg � Tðj;EÞ ¼ hjjEi;

f’�Em
ðxÞg � TðE; jÞ ¼ hEjji ¼ Tðj;EÞy; (2.95)

their mutual reciprocity relations imply:

Tðj0;EÞTðE; jÞ ¼ hj0jEi hEjji ¼ hj0jji ¼ dðj � j0Þ
) TðE; jÞ ¼ Tðj;EÞy ¼ Tðj;EÞ�1;

TðE; jÞTðj;E0Þ ¼ hEjji hjjE0i ¼ hEjE0i ¼ dE;E0 ¼ I:

) Tðj;EÞ ¼ TðE; jÞy ¼ TðE; jÞ�1: (2.96)

One thus concludes that each of these mutually inverse transformation matrices is

the Hermitian conjugate of the other thus defining the unitary transformations

(“rotations”) of one orthonormal basis set into another.

To summarize, the system energy, with discrete (or continuous/mixed) set of

eigenvalues, constitutes the independent variable of the energy representation. The

square of the modulus of the component CEn
¼ hEnjCi measures the (conditional)

probability W(EnjC) of observing the system in state jCi at the specified energy:

WðEnjCÞ ¼ jhEnjCij2 ¼ hCjEni hEnjCi;X
n

WðEnjCÞ ¼
X
n

hCjEnihEnjCi ¼ hCjCi ¼ 1: (2.97)

As we have already observed in (2.75) of the preceding section, the wave

functions (2.76) define another pair of such mutually reverse transformations:

urðpÞ ¼ hpjri � tðp; rÞ and upðrÞ ¼ hrjpi � tðr; pÞ;
ð
tðp; rÞ tðr; p0Þdr ¼ dðp� p0Þ;

ð
tðr; pÞ tðp; r0Þdp ¼ dðr � r0Þ: (2.98)

They also define the unitary kernels,

tðp; rÞ ¼ tðr; pÞy ¼ tðr; pÞ�1 and tðr; pÞ ¼ tðp; rÞy ¼ tðp; rÞ�1; (2.99)

of the integral transformations between the position and momentum representations:

ð
tðp; rÞCðrÞ dr � Tðp; rÞCðrÞ ¼CðpÞ or bTðp; rÞCðrÞ ¼ CðpÞ;

ð
tðr; pÞCðpÞ dp � Tðr; pÞCðpÞ ¼CðrÞ or bTðr; pÞCðpÞ ¼ CðrÞ: (2.100)
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Above, T(p, r) represents the integral operator bTðp; rÞ defined by the kernel t(p, r),
which replaces the arguments of the wave function: r ! p, etc.

It follows from the preceding equations that these transformations are unitary:

Tðr; pÞ ¼ Tðp; rÞ�1 ¼ Tðp; rÞy or bT�1ðp; rÞ ¼ bTyðp; rÞ ¼ bTðr; pÞ; (2.101)

where the inverse operator bT�1ðp; rÞ replaces the variables in the wave function

it acts upon in the inverse order: p ! r. Therefore, the reciprocity relations of

(2.98) in fact express the unitary character of the above (integral) transformation

operators,

bT(r;pÞbTyðr;pÞ ¼ bT(r;p)bT(p; rÞ ¼ 1 and

bT(p;rÞbTyðp;rÞ ¼ bT(p;r)bT(r; pÞ ¼ 1; (2.102)

because the double exchange of variables p ! r! p amounts to identity operation

on the wave functionC(p) and the double exchange r ! p!r operation performed

of C(r) leaves it unchanged.
Transitions from one set of independent variables to another are called the

canonical transformations. They have been shown to correspond to unitary

operators, which also transform the matrix representations of the quantum-mechan-

ical operators to a new set of variables. Indeed, by unitary transforming both sides

of the momentum representation of (2.31),

ð
Âðp; p0ÞCðp0Þ dp0 ¼ C0ðpÞ;

and using the identity (2.102) one obtains

½bT(r;pÞÂðp; p0ÞbTyðr0;p0)][bT(r0;p0ÞCðp0Þ� � Âðr; r0ÞCðr0Þ
= bT(r;pÞC0ðpÞ � C0ðrÞ: (2.103)

Hence, the canonically transformed resultant vector C0(p) in the new variables

becomes: bT(r;pÞ C0(p) ¼ C0(r). It results from the transformed vector bT(r0;p0Þ
C(p0) ¼ C(r0) by the action of the transformed operator

bT(r;pÞÂðp; p0ÞbTyðr0;p0Þ ¼ bT(r;pÞÂðp; p0ÞbT�1ðp0;r0Þ ¼ Âðr; r0Þ (2.104)

with the preceding equation thus expressing a general transformation law for

changing representations of linear operators.

Another important type of the unitary operators is represented by the phase
transformation ŜðxÞ ¼ exp½iâðxÞ�. It involves the linear Hermitian operator âðxÞ,
the function of the same list of variables as those of the wave function itself.
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This transformation of C(x) modifies the wave function without affecting its set of

the independent state variables.

All physical predictions of quantum mechanics can be shown to remain unaf-

fected by the unitary transformations of states and operators, since they are related

to specific invariants of such operations. These invariant properties include the

linear and Hermitian character of quantum-mechanical observables, all algebraic

relations between them, e.g., the commutation rules, spectrum of eigenvalues and

the matrix elements of operators.

The diversity of unitary transformations is not limited to those changing a

description of the system quantum-mechanical states at the given time (quantum

kinematics): C(x) ¼ C(x, t ¼ 0). In the next chapter, we shall examine other

examples of unitary transformations of wave functions and operators, which gener-

ate different pictures of the quantum-mechanical dynamics, e.g., the evolution of

quantum states with time in the Schr€odinger picture:

Cðx; tÞ ¼ ÛðtÞCðxÞ; Û
yðtÞÛðtÞ ¼ 1: (2.105)

2.8 Functional Derivatives

The functional of the state vector argument or of its continuous basis

representation – the wave function – gives the scalar. The representative example

of such a mathematical entity is the definite integral, e.g., the scalar product of two

wave functions. It may additionally involve various derivatives of the function

argument. For simplicity, let us assume the functional F of a single function f(x) of
the continuous variable x,

F½f � ¼
ð
L½x; f ðxÞ; f 0ðxÞ; . . .�dx: (2.106)

This functional attributes to the argument function f the scalar F ¼ F[f]. It is
defined by the functional density L½x; f ðxÞ; f 0ðxÞ; . . .�, which in a general case

depends on the current value of x, the argument function itself, f(x), and its

derivatives: f 0ðxÞ ¼ df ðxÞ=dx, etc.
An important problem, which we shall often encounter in this book, is to find the

functional variation dF ¼ F[f þ df]�F[f] due to a small modification of the argu-

ment function, df ¼ eh, where e is a small parameter and h stands for the displace-

ment function (perturbation). The first differential of the functional is the

component of dF that depends on df linearly:

dð1ÞF ¼
ð

dF
df ðxÞ df ðxÞ dx; (2.107)

46 2 Mathematical Apparatus



with the (local) coefficient before df(x) in the integrand defining the first functional
derivative of F with respect to f at point x. It is seen to transform the local

displacements of the argument function into the first differential of the functional.

This expression can be viewed as the continuous generalization of the familiar

differential of the function of several variables: d(1)f(x1, x2, . . .) ¼ ∑i (∂f/∂xi) dxi.
The global shift df in the functional argument can be viewed as composed

of local manipulations on f which are conveniently expressed in terms of the

Dirac delta function: df(x) ¼ Ð df ðx0�xÞ dx0, where df(x0 � x) ¼ df(x0)d(x0 � x) ¼
eh(x0)d(x0 � x) � eh(x0 � x)}. Here, df(x0 � x) stands for the localized displace-

ment of the argument function, centered around x, in terms of which the first

functional derivative, itself the functional of f, reads:

dF
df ðxÞ ¼ lim

e!0

F½f ðx0Þ þ ehðx0 � xÞ�x0 � F½f ðx0Þ�x0
e

� g½f ; x� ; (2.108)

where subscript x0 in the functional symbol symbolizes integration over this argu-

ment [see (2.106)].

One similarly introduces higher functional derivatives, which define the con-

secutive terms in the functional Taylor–Volterra expansion (Volterra 1959; Gelfand

and Fomin 1963):

dF½f � ¼
ð

dF
df ðxÞ df ðxÞ dxþ

1

2

ðð
df ðxÞ d2F

df ðxÞ df ðx0Þ df ðx
0Þ dx dx0 þ . . .

� dð1ÞF½f � þ dð2ÞF½f � þ . . . (2.109)

For example, in the localized perspective on modifying the argument function of

the functional, one interprets its second functional derivative as the limiting ratio:

d2F
df ðxÞ df ðx0Þ ¼

dg½f ; x�
df ðx0Þ ¼ lim

e!0

g½f ðx000Þ þ ehðx000x0Þ; x�x000 � g½f ; x�
e

: (2.110)

In (2.109) it determines the continuous transformation of the two-point
displacements of the argument function, df ðx00 � xÞdf ðx000 � x0Þ, centered around x
and x0, respectively, into the second differential d(2)F[f]. The latter again parallels

the familiar expression for the second differential of a function of several variables:

d(2)f(x1, x2, . . .) ¼ ½∑i∑j (∂
2f/∂xi∂xj) dxi dxj.

The rules of the functional differentiation thus represent the local, function

generalization of those characterizing the differentiation of functions. The func-

tional derivatives of the sum and product of two functionals, respectively, read:

d
df ðxÞ faF½f � þ bG½f �g ¼ a

dF
df ðxÞ þ b

dG
df ðxÞ ;

d
df ðxÞ fF½f �G½f �g ¼ G

dF
df ðxÞ þ F

dG
df ðxÞ : (2.111)
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The chain rule transformation of functional derivatives also holds. Consider

the composite functional F½f � ¼ F½f ½g�� � �F½g�. Substituting the first differential of

f (x) ¼ f [g; x],

dð1Þf ½g; x� ¼
ð
df ðxÞ
dgðx0Þ dgðx

0Þ dx0; (2.112)

into d (1)F[f] of (2.108) gives:

dð1Þ �F½g� ¼
ð

d �F
dgðx0Þ dgðx

0Þ dx0 ¼
ð

dF
df ðxÞ

ð
df ðxÞ
dgðx0Þ dgðx

0Þ dx0
	
dx:

�
(2.113)

Hence, the functional derivative of the composite functional follows from the chain

rule

d �F
dgðx0Þ ¼

ð
dF

df ðxÞ
df ðxÞ
dgðx0Þ dx: (2.114)

One similarly derives the chain rules for implicit functionals. When functional

F[f, g] is held constant, the variations of the two argument functions are not

independent, since the relation F[f, g] ¼ const. implies the associated functional

relation between them, e.g., g ¼ g[f]F. The vanishing first differential,

dð1ÞF½f ; g� ¼
ð

@F

@f ðxÞ

 �

g

½df ðxÞ�F þ
@F

@gðxÞ

 �

f

½dgðxÞ�F
" #

dx ¼ 0; or

ð
@F

@f ðxÞ

 �

g

½df ðxÞ�F dx ¼ �
ð

@F

@gðx0Þ

 �

f

½dgðx0Þ�F dx0; (2.115)

is determined by the partial functional derivatives, a natural local extension of the

ordinary partial derivatives of a function of several variables, e.g.,

@F

@f ðxÞ

 �

g

¼ lim
e!0

F½f ðx0Þ þ ehðx0 � xÞ; g�x0 � F½f ; g�
e

: (2.116)

Finally, differentiating both sides of Eq. (2.115) with respect to one of the argument

functions for constant F gives the following implicit chain rules:

@F

@f ðxÞ

 �

g

¼ �
ð

@F

@gðx0Þ

 �

f

@gðx0Þ
@f ðxÞ


 �

F

dx0;

@F

@gðx0Þ

 �

f

¼ �
ð

@F

@f ðxÞ

 �

g

@f ðxÞ
@gðx0Þ

 �

F

dx: (2.117)
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These relations parallel familiar manipulations of derivatives in the classical

thermodynamics.

For the fixed value of the composite functional F[f[u], g[u]] ¼ ~F½u� ¼ const:
one similarly finds:

@gðx0Þ
@f ðxÞ


 �
~F

¼
ð

@gðx0Þ
@uðx00Þ

 �

~F

@uðx00Þ
@f ðxÞ


 �
~F

dx00;

@f ðxÞ
@gðx0Þ

 �

~F

¼
ð

@f ðxÞ
@uðx00Þ

 �

~F

@uðx00Þ
@gðx0Þ


 �
~F

dx00: (2.118)

Let us further assume that functions f(x) and g(x) are unique functionals of each
other, f(x) ¼ f [g; x] and g(x0) ¼ g[f; x0]. Substitution of (2.112) into

dð1Þg½f ; x00� ¼
ð
dgðx00Þ
df ðxÞ df ðxÞ dx; (2.119)

then gives:

dð1Þg½f ; x00� ¼
ð
dgðx00Þ
df ðxÞ df ðxÞdx ¼

ðð
dgðx00Þ
df ðxÞ

df ðxÞ
dgðx0Þdgðx

0Þdx0dx: (2.120)

This equation identifies the Dirac delta function as the functional derivative of the

function at one point with respect to its value at another point, as also implied by

(2.107):

ð
dgðx00Þ
df ðxÞ

df ðxÞ
dgðx0Þdx ¼

dgðx00Þ
dgðx0Þ ¼ dðx00 � x0Þ; (2.121)

where we have applied the functional chain rule. The preceding equation also

defines the mutually inverse functional derivatives:

dgðx0Þ
df ðxÞ ¼

df ðxÞ
dgðx0Þ

 ��1

: (2.122)

Let us assume the functional (2.106) in the typical form including the depen-

dence of its density on the argument function itself and its first n derivatives:

f (i)(x) ¼ di f(x)/dxi , i ¼ 1, 2, . . ., n:

LðxÞ ¼ Lðx; f ðxÞ; f ð1ÞðxÞ; f ð2ÞðxÞ; . . . ; f ðnÞðxÞÞ: (2.123)

The functional derivative of F[ f ] is then given by the following general

expression:
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dF
df ðxÞ ¼

@LðxÞ
@f ðxÞ �

d

dx

@LðxÞ
@f ð1ÞðxÞ

 �

þ d2

dx2
@LðxÞ
@f ð2ÞðxÞ

 �

� � � � þ ð�1Þn dn

dxn
@LðxÞ
@f ðnÞðxÞ

 �

:

(2.124)

The first term in the r.h.s. of the preceding equation defines the so-called variational
derivative. It determines the functional derivative of the local functionals, the
densities of which depend solely upon the argument function itself.

This development can be straightforwardly generalized to cover functionals of

functions in three dimensions. Consider, e.g., the functional of f(r) depending on

the position vector in the physical space: r ¼ (x, y, z). Equation (2.124) can be then
extended to cover the f ¼ f(r) case by replacing the operator d dx= by its three-

dimensional analog – the gradient r � @ @r= . For example, for Lðr; f ðrÞ; rf ðrÞj jÞ
the functional derivative of F[f] is given by the expression:

dF
df ðrÞ ¼

@LðrÞ
@f ðrÞ � r

@LðrÞ
@ rf ðrÞj j

 �

: (2.125)

Similarly, for

~F½f � ¼ F½f � þ
ð
l Df ðrÞð Þ dr �

ð
~L r; f ðrÞ; rf ðrÞj j;Df ðrÞð Þ dr; D ¼ r2;

d ~F
df ðrÞ ¼

dF
df ðrÞ þ D

@~LðrÞ
@Df ðrÞ

 !
: (2.126)
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Chapter 3

Basic Concepts and Axioms

Abstract The postulates of quantum mechanics are formulated using the

mathematical tools of the preceding chapter. First, the axioms related to the

quantum kinematics are summarized, dealing with a variety and physical meaning

of quantum states at the specified time. They include alternative definitions and

interpretations of the wave functions of microobjects as amplitudes of the particle

probability distributions in the configuration or momentum spaces. As an illustra-

tive example the electron densities are then discussed. The superposition principle

is formulated, and the symmetry implications of indistinguishability of identical

particles in quantum mechanics are examined. The links between the quantum

states and outcomes of the physical measurements are then surveyed and the

physical observables are attributed to quantum mechanical operators, linear and

Hermitian, and their specific forms in the position and momentum representations

are introduced. The eigenvalues of the quantum mechanical operator are

postulated to determine a variety of all possible results of a single experiment

measuring the physical property the operator represents, while the operator

expectation value represents the average value of this quantity in a very large

number of repeated measurements performed on the system in the same quantum

state. The eigenstates of the quantum mechanical operator are shown to corre-

spond to the sharply specified value of the physical property under consideration,

while other quantum states exhibit distributions of its allowed eigenvalues. The

statistical mixtures of quantum states are defined in terms of the density operator and

the ensemble averages of physical observables in such mixed states are examined.

The simultaneous sharpmeasurement of several physical observables is linked to the

mutual commutation of their operators and the quantum mechanical formulation of

the general Principle of Indeterminacy is given. Properties of the electron angular

momentum and spin operators are examined.

In the dynamical development, the pictures of time evolution in quantum mecha-

nics are introduced through the alternative time-dependent unitary transformations of

the state vectors/operators. The Schr€odinger equation is explored in some detail, with

the emphasis placed upon the stationary states, time dependence of expectation

values, conservation laws, the probability current, and continuity equation. The

R.F. Nalewajski, Perspectives in Electronic Structure Theory,
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correspondence between the quantum and classical dynamics is established through

the Ehrenfest principle. Finally, the rudiments of the Heisenberg and interaction

pictures of quantum dynamics are briefly summarized.

3.1 N-Electron Wave Functions and Their Probabilistic

Interpretation

In the canonical formulation of classical mechanics, the system dynamics is

formulated in terms of the Hamilton function E ¼ H(Q, P) expressing the system

energy E in terms of its generalized coordinates Q ¼ {Qa} and their conjugated

momenta P ¼ {Pa}, a ¼ 1, 2, . . ., f, with f denoting the system number of

dynamical degrees of freedom. Together these conjugate dynamical variables

uniquely specify the system mechanical state. Indeed, the knowledge of Q(t) and
P(t) at the specified time t ¼ t0 allows one to determine the exact time evolution of

these state parameters, via the Hamilton equations of motion:

_Qa ¼ dQa

dt
¼ @H

@Pa
; _Pa ¼ dPa

dt
¼ � @H

@Qa
; a ¼ 1; 2; . . . ; f : (3.1)

Since these are the first-order differential equations, their solutions {Q(t), P(t)} are
uniquely specified when the values of these classical state variables are fixed at

t ¼ t0. Thus, knowing the state {Q(t0), P(t0)} of the classical system at this time,

one can in principle predict with certainty the system mechanical state at t 6¼ t0, i.e.,
precisely determine the outcome of any measurement at an earlier or later stage of

the system time evolution.

As we have argued in Chap. 1, this classical specification of the mechanical state

is inapplicable in the quantum theory, due to the simultaneous indeterminacy of

coordinates and momenta of microobjects (the Heisenberg principle). Indeed, since

the state variables must be precisely specified, either the position coordinates or the

components of the canonically conjugated momenta of the system particles should

be used to uniquely characterize its quantum state. Therefore, at the given time t,
which in the simplest (nonrelativistic) formulation of the quantum theory plays the

role of a parameter, the quantum state corresponding to the state vector jC(t)i is
represented by the wave functions in either the position or momentum

representations,

CðQ; tÞ ¼ QjCðtÞh i or CðP; tÞ ¼ PjCðtÞh i; (3.2a)

here, the representation basis sets {jQi} and {jPi} correspond to the position and

momentum eigenstates, respectively, in which these molecular variables are known

precisely. For quantum particles these classical state “coordinates” should be also

supplemented with all nonclassical, internal (spin) degrees of freedom for each
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particle, S ¼ {Sk}. Therefore, the full specification of the mechanical state of the

given quantum system, in either the position-spin or momentum-spin represen-

tations, is embodied in the corresponding wave functions:

CðQ;S; tÞ ¼ Q;SjCðtÞh i or CðP;S; tÞ ¼ P;SjCðtÞh i: (3.2b)

Since the theoretical description of the electronic structure of molecules is the

main objective of this book, in what follows we shall focus on a general (atomic or

molecular) N-electron system, with the list of the (coordinate/momenta)-spin

variables in the Cartesian coordinates:

Q;Sj i � qN
�� � ¼ fqkgj i � QN

�� �
; qk ¼ ðrk; skÞ;

P;Sj i � uN
�� � ¼ fukgj i � PN

�� �
; uk ¼ ðpk; skÞ; k ¼ 1; 2; . . . ;N;

(3.3)

here rk ¼ xk; yk; zkð Þ; pk ¼ ðpxk ; pyk ; pzkÞ and sk, respectively, denote the continuous
position, momentum vectors of kth electron and its discrete spin orientation variable

sk 2 (þ½, �½) (see Fig. 1.2).

Therefore, the vector space of the N-electron system is spanned by all basis

vectors in either the position fjQNig or momentum fjPNig representations. In what
follows we shall call this vector space the molecular Hilbert space. The specific

state of such an N-electron system in time twill be denoted by the ket jCN(t)i. Since
each basis vector is specified by the three position/momentum coordinates and one

spin variable for each electron, the overall dimensionality of either the position-spin
ormomentum-spin spaces is 4N. The basis vectors jQNi and jPNi are then identified
by corresponding points in these configurational spaces. It should be observed that

in the classical mechanics the system state was uniquely specified at the given time

by selecting the point in the 6N-dimensional position–momentum phase space of N
particles.

Moreover, the corresponding position-spin or momentum-spin data for the

atomic nuclei are also required for the complete specification of the molecular

state. However, as we shall argue in Part II of this book, due to a huge difference in

masses between the (light) electrons and (heavy) nuclei, the dynamics of the former

can be to a good approximation described by examining their fast movements in the

effective potential generated by the “frozen” nuclear framework, with the fixed

positions of nuclei playing the role of parameters in the electronic structure theory.

In this adiabatic approximation of Born and Oppenheimer the nuclei, sources

of the external potential in which electrons move, thus determine the assumed

molecular geometry.

After these short preliminaries, we are now in a position to formulate the important

postulate of quantum mechanics, due to Born, which provides the physical interpre-

tation of the wave functions of (3.2a) and (3.2b):

Postulate I: The (normalized) quantum mechanical state of the molecular system

containing N-electrons in time t, hCNðtÞjCNðtÞi � CNðtÞ�� ��2 ¼ 1; where CNðtÞ�� ��
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stands for the norm (“length”) of the state vector, is uniquely specified by the

orientation of the state-vector jCN(t)i in the molecular Hilbert space or equivalently

by its equivalent representations (wave functions) in the position or momentum

basis sets, respectively,

CðQN; tÞ ¼ QNjCNðtÞ� �
or CðPN; tÞ ¼ PNjCNðtÞ� �

: (3.2c)

These in general complex-valued functions determine the probability amplitudes of

simultaneously observing at this time the specified positions/momenta and spin

orientations of all N electrons, with the corresponding probability densities being

determined by the squares of the wave function moduli:

pðQN; tÞ ¼ QN
��CNðtÞ� ��� ��2 ¼ CðQN; tÞ�� ��2 � P½QNjCNðtÞ�;ð

pðQN; tÞ dQN ¼
ð

CNðtÞ��QN
�
QN
� ��CNðtÞ� �

dQN ¼ CNðtÞ ��CNðtÞ� � ¼ 1;

pðPN; tÞ ¼ PN
��CNðtÞ� ��� ��2 ¼ CðPN; tÞ�� ��2 � P½PNjCNðtÞ�;ð

pðPN; tÞ dPN ¼
ð

CNðtÞ��PN
�
PN
� ��CNðtÞ� �

dPN ¼ CNðtÞ ��CNðtÞ� � ¼ 1:

(3.4)

Here, the generalized “integration” symbol
Ð
dQN actually denotes the definite

integrations over the position coordinates and summations over the spin variables

of all electrons:

ð
dQN �

ð
dq1 . . . dqN �

ð
dr1 . . . drN

X
s1

:::
X
sN

; (3.5a)

The related operation in the momentum-spin space similarly reads:

ð
dPN �

ð
du1 . . . duN �

ð
dp1 . . . dpN

X
s1

:::
X
sN

: (3.5b)

In fact, the normalization conditions of this postulate, for the position-spin and

momentum-spin probability densities pðQN; tÞ and pðPN; tÞ, respectively, express
the unit probability of the sure event that at the specified time t all electrons are
located somewhere in the physical or momentum spaces, and assume one of its

allowed spin orientations. We have also indicated in (3.4) that the probability

densities P½QNjCNðtÞ� and P½PNjCNðtÞ� of the particle positions and momenta,

respectively, are conditional upon the specified quantum state. Indeed, these densities

represent the conditional probabilities of observing the basis set events corresponding

to the wave function arguments QN or PN (variables), given the molecular state

jCN(t)i (the parameter): pðQN; tÞ ¼ P½QNjCNðtÞ� and pðPN; tÞ ¼ P½PNjCNðtÞ�. The
normalization relations thus involve the integrations/summations of these conditional
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