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Preface

In recent years, with the advent of fine line lithographical methods, molecular
beam epitaxy, organometallic vapour phase epitaxy and other experimental
techniques, low dimensional structures having quantum confinement in one,
two and three dimensions (such as inversion layers, ultrathin films, nipi’s,
quantum well superlattices, quantum wires, quantum wire superlattices, and
quantum dots together with quantum confined structures aided by various
other fields) have attracted much attention, not only for their potential in
uncovering new phenomena in nanoscience, but also for their interesting
applications in the realm of quantum effect devices. In ultrathin films, due
to the reduction of symmetry in the wave–vector space, the motion of the
carriers in the direction normal to the film becomes quantized leading to the
quantum size effect. Such systems find extensive applications in quantum
well lasers, field effect transistors, high speed digital networks and also in
other low dimensional systems. In quantum wires, the carriers are quantized
in two transverse directions and only one-dimensional motion of the carriers
is allowed. The transport properties of charge carriers in quantum wires,
which may be studied by utilizing the similarities with optical and microwave
waveguides, are currently being investigated. Knowledge regarding these
quantized structures may be gained from original research contributions in
scientific journals, proceedings of international conferences and various re-
view articles. It may be noted that the available books on semiconductor
science and technology cannot cover even an entire chapter, excluding a few
pages on the Einstein relation for the diffusivity to mobility ratio of the
carriers in semiconductors (DMR). The DMR is more accurate than any one
of the individual relations for the diffusivity (D) or the mobility (µ) of the
charge carriers, which are two widely used quantities of carrier transport in
semiconductors and their nanostructures.

It is worth remarking that the performance of the electron devices at the
device terminals and the speed of operation of modern switching transistors
are significantly influenced by the degree of carrier degeneracy present in these
devices. The simplest way of analyzing such devices, taking into account the
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degeneracy of the bands, is to use the appropriate Einstein relation to express
the performances at the device terminals and the switching speed in terms of
carrier concentration (S.N. Mohammad, J. Phys. C , 13, 2685 (1980)). It is
well known from the fundamental works of Landsberg (P.T. Landsberg, Proc.
R. Soc. A, 213, 226, (1952); Eur. J. Phys, 2, 213, (1981)) that the Einstein
relation for degenerate materials is essentially determined by their energy
band structures. It has, therefore, different values in different materials having
various band structures and varies with electron concentration, the magnitude
of the reciprocal quantizing magnetic field, the quantizing electric field as
in inversion layers, ultrathin films, quantum wires and with the superlattice
period as in quantum confined semiconductor superlattices having various
carrier energy spectra.

This book is partially based on our on-going researches on the Einstein
relation from 1980 and an attempt has been made to present a cross section of
the Einstein relation for a wide range of materials with varying carrier energy
spectra, under various physical conditions.

In Chap. 1, after a brief introduction, the basic formulation of the Ein-
stein relation for multiband semiconductors and suggestion of an experimental
method for determining the Einstein relation in degenerate materials having
arbitrary dispersion laws are presented. From this suggestion, one can also ex-
perimentally determine another two seemingly different but important quan-
tities of quantum effect devices namely, the Debye screening length and the
carrier contribution to the elastic constants. In Chap. 2, the Einstein relation
in bulk specimens of tetragonal materials (taking n-Cd3As2 and n-CdGeAs2
as examples) is formulated on the basis of a generalized electron dispersion
law introducing the anisotropies of the effective electron masses and the spin
orbit splitting constants respectively together with the inclusion of the crys-
tal field splitting within the framework of the k.p formalism. The theoretical
formulation is in good agreement with the suggested experimental method
of determining the Einstein relation in degenerate materials having arbitrary
dispersion laws. The results of III–V (e.g. InAs, InSb, GaAs, etc.), ternary
(e.g. Hg1−xCdxTe), quaternary (e.g. In1−xGaxAs1−yPy lattice matched to
InP) compounds form a special case of our generalized analysis under certain
limiting conditions. The Einstein relation in II–VI, IV–VI, stressed Kane type
semiconductors together with bismuth are also investigated by using the ap-
propriate energy band structures for these materials. The importance of these
materials in the emergent fields of opto- and nanoelectronics is also described
in Chap. 2.

The effects of quantizing magnetic fields on the band structures of com-
pound semiconductors are more striking than those of the parabolic one and
are easily observed in experiments. A number of interesting physical features
originate from the significant changes in the basic energy wave vector rela-
tion of the carriers caused by the magnetic field. Valuable information could
also be obtained from experiments under magnetic quantization regarding
the important physical properties such as Fermi energy and effective masses
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of the carriers, which affect almost all the transport properties of the electron
devices. Besides, the influence of cross-field configuration is of fundamental
importance to an understanding of the various physical properties of various
materials having different carrier dispersion relations. In Chap. 3, we study the
Einstein relation in compound semiconductors under magnetic quantization.
Chapter 4 covers the influence of crossed electric and quantizing magnetic
fields on the Einstein relation in compound semiconductors. Chapter 5 covers
the study of the Einstein relation in ultrathin films of the materials mentioned.

Since Iijima’s discovery (S. Iijima, Nature 354, 56 (1991)), carbon nan-
otubes (CNTs) have been recognized as fascinating materials with nanometer
dimensions, uncovering new phenomena in different areas of nanoscience and
technology. The remarkable physical properties of these quantum materials
make them ideal candidates to reveal new phenomena in nanoelectronics.
Chapter 6 contains the study of the Einstein relation in quantum wires of
compound semiconductors, together with carbon nanotubes.

In recent years, there has been considerable interest in the study of the
inversion layers which are formed at the surfaces of semiconductors in metal–
oxide–semiconductor field-effect transistors (MOSFET) under the influence
of a sufficiently strong electric field applied perpendicular to the surface by
means of a large gate bias. In such layers, the carriers form a two dimensional
gas and are free to move parallel to the surface while their motion is quantized
in the perpendicular to it leading to the formation of electric subbands. In
Chap. 7, the Einstein relation in inversion layers on compound semiconductors
has been investigated.

The semiconductor superlattices find wide applications in many impor-
tant device structures such as avalanche photodiode, photodetectors, electro-
optic modulators, etc. Chapter 8 covers the study of the Einstein relation in
nipi structures. In Chap. 9, the Einstein relation has been investigated under
magnetic quantization in III-V, II-VI, IV-VI, HgTe/CdTe superlattices with
graded interfaces. In the same chapter, the Einstein relation under magnetic
quantization for effective mass superlattices has also been investigated. It also
covers the study of quantum wire superlattices of the materials mentioned.
Chapter 10 presents an initiation regarding the influence of light on the Ein-
stein relation in optoelectronic materials and their quantized structures which
is itself in the stage of infancy.

In the whole field of semiconductor science and technology, the heavily
doped materials occupy a singular position. Very little is known regarding the
dispersion relations of the carriers of heavily doped compound semiconductors
and their nanostructures. Chapter 11 attempts to touch this enormous field of
active research with respect to Einstein relation for heavily doped materials in
a nutshell, which is itself a sea. The book ends with Chap. 12, which contains
the conclusion and the scope for future research.

As there is no existing book devoted totally to the Einstein relation for
compound semiconductors and their nanostructures to the best of our knowl-
edge, we hope that the present book will be a useful reference source for
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the present and the next generation of readers and researchers of solid state
electronics in general. In spite of our joint efforts, the production of error free
first edition of any book from every point of view enjoys the domain of im-
possibility theorem. Various expressions and a few chapters of this book have
been appearing for the first time in printed form. The positive suggestions of
the readers for the development of the book will be highly appreciated.

In this book, from Chap. 2 to the end, we have presented 116 open and
60 allied research problems in this beautiful topic, as we believe that a proper
identification of an open research problem is one of the biggest problems in
research. The problems presented here are an integral part of this book and
will be useful for readers to initiate their own contributions to the Einstein
relation. This aspect is also important for PhD aspirants and researchers. We
strongly contemplate that the readers with a mathematical bent of mind would
invariably yearn for investigating all the systems from Chapters 2 to 12 and
the related research problems by removing all the mathematical approxima-
tions and establishing the appropriate respective uniqueness conditions. Each
chapter except the last one ends with a table containing the main results.

It is well known that the studies in carrier transport of modern semicon-
ductor devices are based on the Boltzmann transport equation which can, in
turn, be solved if and only if the dispersion relations of the carriers of the dif-
ferent materials are known. In this book, we have investigated various disper-
sion relations of different quantized structures and the corresponding electron
statistics to study the Einstein relation. Thus, in this book, the alert readers
will find information regarding quantum-confined low-dimensional materials
having different band structures. Although the name of the book is extremely
specific, from the content one can infer that it will be useful in graduate
courses on semiconductor physics and devices in many Universities. Besides,
as a collateral study, we have presented the detailed analysis of the effective
electron mass for the said systems, the importance of which is already well
known, since the inception of semiconductor science. Last but not the least, we
do hope that our humble effort will kindle the desire of anyone engaged in ma-
terials research and device development, either in academics or in industries,
to delve deeper into this fascinating topic.
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1

Basics of the Einstein Relation

1.1 Introduction

It is well known that the Einstein relation for the diffusivity-mobility ratio
(DMR) of the carriers in semiconductors occupies a central position in the
whole field of semiconductor science and technology [1] since the diffusion con-
stant (a quantity very useful for device analysis where exact experimental de-
termination is rather difficult) can be obtained from this ratio by knowing the
experimental values of the mobility. The classical value of the DMR is equal
to (kBT / |e|) , (kB, T , and |e| are Boltzmann’s constant, temperature and the
magnitude of the carrier charge, respectively). This relation in this form was
first introduced to study the diffusion of gas particles and is known as the Ein-
stein relation [2,3]. Therefore, it appears that the DMR increases linearly with
increasing T and is independent of electron concentration. This relation holds
for both types of charge carriers only under non-degenerate carrier concen-
tration although its validity has been suggested erroneously for degenerate
materials [4]. Landsberg first pointed out that the DMR for semiconduc-
tors having degenerate electron concentration are essentially determined by
their energy band structures [5, 6]. This relation is useful for semiconductor
homostructures [7, 8], semiconductor–semiconductor heterostructures [9, 10],
metals–semiconductor heterostructures [11–19] and insulator–semiconductor
heterostructures [20–23]. The nature of the variations of the DMR under dif-
ferent physical conditions has been studied in the literature [1–3, 5, 6, 24–50]
and some of the significant features, which have emerged from these studies,
are:

(a) The ratio increases monotonically with increasing electron concentration
in bulk materials and the nature of these variations are significantly in-
fluenced by the energy band structures of different materials;

(b) The ratio increases with the increasing quantizing electric field as in in-
version layers;
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(c) The ratio oscillates with the inverse quantizing magnetic field under mag-
netic quantization due to the Shubnikov de Hass effect;

(d) The ratio shows composite oscillations with the various controlled quan-
tities of semiconductor superlattices.

(e) In ultrathin films, quantum wires and field assisted systems, the value of
the DMR changes appreciably with the external variables depending on
the nature of quantum confinements of different materials.

Before the in depth study of the aforementioned cases, the basic formula-
tion of the DMR for multi-band non-parabolic degenerate materials has been
presented in Sect. 1.2. Besides, the suggested experimental method of deter-
mining the DMR for materials having arbitrary dispersion laws has also been
included in Sect. 1.3.

1.2 Generalized Formulation of the Einstein Relation
for Multi-Band Semiconductors

The carrier energy spectrum in the ith band in multi-band semiconducting
materials can be expressed as [31]

E =
(

�
2k2

2m∗
i (E)

)
+ Ei = Eki + Ei, (1.1)

where E is the total energy of the carrier as measured from the edge of the
band in the vertically upward direction, � = h / 2π, h is Planck constant, k is
the magnitude of the wave vector of the carrier, m∗

i (E) is the effective mass
of the charge carrier, Ei is the energy of the carrier in the ith band in the
z-direction and Eki is the kinetic energy of the carrier in the ith band.

The carrier concentration ni in the ith band can be written as

ni (EFi) = (4π3)−1

∫
f0i d3k, (1.2)

where EFi = EF−Ei, EF is the Fermi energy, f0i the Fermi–Dirac equilibrium
distribution function of the carriers in the ith band can, in turn, be expressed
as

f0i =
[
1 + exp

[
(kBT )−1 (Eki + Ei − EF)

]]−1
, (1.3)

and d3k is the differential volume of k space.
The solution of the Boltzmann transport equation under relaxation time

approximation leads to the expression of the conduction current jci con-
tributed by the carriers in the ith band in the presence of an electric field
ζ0 in the z-direction as given by [31]

jci = −
(
4π3
)−1 (

ζ0e
2 / �

2
) ∫

(∇kzE)2 τi (E) (∂f0i / ∂Eki) d3k = |e| (niµiζ0),

(1.4)
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where µi is the mobility and τi (E) is the relaxation time. For scattering
mechanisms, for which the relaxation time approximation is invalid, (1.4)
remains invariant where τi (E) is being replaced by φi (E). The perturbation
in the distribution function can be written as

fi ≡ f0i −
[
(∇kz

E)
(

∂f0i

∂Eki

)
φi(E)

](
eζ0

�

)
,

The current density due to conduction mechanism can be expressed as

Jc = |e|
∑

i

niµiζ0 = |e|µn0ζ0,

where µ is the average mobility of the carriers and n0 is the total electron
concentration defined by n0 =

∑

i

ni.

It may be noted that the diffusion current density will also exist when
the carrier concentration varies with the position and consequently the con-
centration gradient is being created. Let us assume that it varies along the
z-direction, under these conditions, both EF and Ei will in general be func-
tions of z. The application of the same process leads to the expression of the
diffusion current density contributed by the carriers in the ith band as

jDi = −
(
4π3
)−1
( e

�2

)∫
(∇kz

E)2τi (E)
(

∂f0i

∂z

)
d3k, (1.5)

We note that
∂f0i

∂z
=

∂f0i

∂EFi

∂EFi

∂z
= − ∂f0i

∂Eki

∂EFi

∂z
,

and
∂n

∂z
=

∂

∂z

∑

i

ni (EFi) =
∂EFi

∂z
βi, (1.6)

where

βi =
∑

j

∂nj (EFi)
∂EFj

∂EFj

∂EFi
(1.7)

in which j stands for the jth band.
Using (1.5), (1.6) and (1.7), one can write

JDi =
1

4π3

e

�2

∂n0

∂z

∫
(∇kz

E)2 τi (E)
∂f0i

∂Eki
β−1

i d3k = − e

|e|
∂n0

∂z
niµiβ

−1
i . (1.8)

Hence the total diffusion current is given by

jD =
∑

i

jDi = −
(

e

|e|

)(
∂n0

∂z

)∑

i

niµi(βi)−1 = −De

(
∂n0

∂z

)
, (1.9a)

where D is the diffusion constant.
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Thus, we get [31]

D =
1
|e|

[
∑

i

niµi (βi)
−1

]

(1.9b)

and

D

µ
=
[

1
|e|

]
n0

∑

i

niµiβ
−1
i

∑

i

niµi
(1.10)

When Eis are z invariant, (1.10) assumes the well known form as [31]

D

µ
=
(

n0

|e|

)
/
(

dn0

dEF

)
. (1.11)

The electric quantum limit as in inversion layers and nipi structures refers
to the lowest electric sub-band and for this particular case i = j = 0. There-
fore, (1.10) can be written as

D

µ
=
(

n̄0

|e|

)
/

(
dn̄0

d
(
ĒF0 − Ē0

)

)

, (1.12)

where n̄0, ĒF0 and Ē0 are the electron concentration, the energy of the electric
sub-band and the Fermi energy in the electric quantum limit.

It should be noted that (1.11) is valid for different kinds of multi-band ma-
terials and low dimensional systems if the contribution of the charge density
to the internal potential is small except for inversion layers and nipi struc-
tures. For these cases (1.10) should be used for the evaluation of DMR. For
inversion layers and nipis under the electric quantum limit and for heavily
doped semiconductors, (1.12) may be used.

1.3 Suggestions for the Experimental Determination
of the Einstein Relation in Semiconductors Having
Arbitrary Dispersion Laws

(a) It is well-known that the thermoelectric power of the carriers in semicon-
ductors in the presence of a classically large magnetic field is independent
of scattering mechanisms and is determined only by their energy band spec-
tra [51]. The magnitude of the thermoelectric power G can be written as [51]

G =
1

|e|Tn0

∞∫

−∞

(E − EF) R (E)
[
−∂f0

∂E

]
dE, (1.13)

where R (E) is the total number of states. Equation (1.13) can be written
under the condition of carrier degeneracy [52,53] as
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G =
(

π2kB
2T

3 |e|n0

)(
∂n0

∂EF

)
. (1.14)

The use of (1.11) and (1.14) leads to the result [52]

D

µ
=

(
π2kB

2T

3 |e|2 G

)

. (1.15)

Thus, the DMR for degenerate materials can be determined by knowing
the experimental values of G.

The suggestion for the experimental determination of the DMR for degen-
erate semiconductors having arbitrary dispersion laws as given by (1.15) does
not contain any energy band constants. For a fixed temperature, the DMR
varies inversely as G. Only the experimental values of G for any material as a
function of electron concentration will generate the experimental values of the
DMR for that range of n0 for that system. Since G decreases with increasing
n0, from (1.15) one can infer that the DMR will increase with increase in
n0. This statement is the compatibility test so far as the suggestion for the
experimental determination of DMR for degenerate materials is concerned.
(b) For inversion layers and the nipi structures, under the condition of electric
quantum limit, (1.13) assumes the form

G =
(

π2kB
2T

3 |e| n̄0

)[
dn̄0

d
(
ĒF0 − Ē0

)

]

. (1.16)

Using (1.16) and (1.12) one can again obtain the same (1.15). For quantum
wires and heterostructures with small charge densities, the relation between
D/µ and G is thus given by (1.15). Equation (1.15) is also valid under magnetic
quantization and also for cross-field configuration. Thus, (1.15) is independent
of the dimensions of quantum confinement. We should note that the present
analysis is not valid for totally k-space quantized systems such as quantum
dots, magneto-inversion and accumulation layers, magneto size quantization,
magneto nipis, quantum dot Superlattices and quantum well Superlattices
under magnetic quantization. Under the said conditions, the electron motion is
possible in the broadened levels. The experimental results of G for degenerate
materials will provide an experimental check on the DMR and also a technique
for probing the band structure of degenerate compounds having arbitrary
dispersion laws.
(c) In accordance with Nag and Chakravarti [32]

D

µ
= Pn |e| b, (1.17)

where Pn is the available noise power in the band width b. We wish to remark
that (1.17) is valid only for semiconductors having non-degenerate electron
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concentration, whereas the compound small gap semiconductors are degener-
ate in general.
(d) In this context, it may be noted that the results of this section find the
following two important applications in the realm of quantum effect devices:
(1) It is well known that the Debye screening length (DSL) of the carriers
in the semiconductors is a fundamental quantity, characterizing the screening
of the Coulomb field of the ionized impurity centers by the free carriers. It
affects many special features of the modern semiconductor devices, the carrier
mobilities under different mechanisms of scattering, and the carrier plasmas
in semiconductors [53–55]. The DSL (LD)can, in general, be written as [54–56]

LD =

(
|e|2

εsc

∂n0

∂EF

)−1/ 2

, (1.18)

where εsc is the semiconductor permittivity.
Using (1.18) and (1.14), one obtains

LD =
(
3 |e|3 n0G / εscπ

2k2
BT
)−1/ 2

. (1.19)

Therefore, we can experimentally determine LD by knowing the experi-
mental curve of G vs. n0 at a fixed temperature.
(2) The knowledge of the carrier contribution to the elastic constants are
useful in studying the mechanical properties of the materials and has been in-
vestigated in the literature [57–60]. The electronic contribution to the second-
and third-order elastic constants can be written as [57–60]

∆C44 = −G2
0

9
∂n0

∂EF
, (1.20)

and

∆C456 =
G3

0

27
∂2n0

∂E2
F

, (1.21)

where G0 is the deformation potential constant. Thus, using (1.14), (1.20) and
(1.21), we can write

∆C44 =
[
−n0G

2
0 |e|G /

(
3π2k2

BT
)]

, (1.22)

and

∆C456 =
(
n0 |e|G3

0G
2 / (3π4k3

BT )
)
(

1 +
n0

G

∂G

∂n0

)
. (1.23)

Thus, again the experimental graph of G vs. n0 allows us to determine the
electronic contribution to the elastic constants for materials having arbitrary
spectras.
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1.4 Summary

Section 1.2 of this chapter presents the expression of the Einstein relation
together with the special practical cases. The formulation of the Einstein re-
lation requires the relation between the electron concentration and the Fermi
energy, which, in turn, is determined by the respective energy band structure.
For various materials the electron dispersion relations are different and con-
sequently all the subsequent formulations change radically introducing new
information. The dispersion relation for bulk materials gets modified under
magnetic quantization, in inversion layers, ultrathin films, quantum wires, and
with various types of semiconductor superlattices. The electron energy spec-
trum also changes in a fundamental way for heavily doped semiconductors
and also in the presence of external photo-excitation, respectively. We shall
study these aspects in the incoming chapters. The experimental determina-
tion of DMR has been investigated in Sect. 1.3 for materials having arbitrary
band structures and this suggestion is dimension independent. Besides, the
experimental methods for determining the Debye screening length and the

Table 1.1. Main results of Chap. 1

(a) The generalized expression for the DMR can be written as

D

µ
=

(
1

|e|

)
n0

∑

i

niµiβ
−1
i

∑

i

niµi
, (1.10)

For Ei’s independent of z, (1.10) gets simplified to the well-known form as

D

µ
=

(
n0

|e|

)
/

(
dn0

dEF

)
. (1.11)

For inversion layers and nipis under electric quantum limit, (1.10) transforms into
the form

D

µ
=

(
n̄0

|e|

)
/

(
dn̄0

d
(
ĒF0 − Ē0

)

)

. (1.12)

(b) The DMR, the screening length and the carrier contribution to the elastic con-
stants can be experimentally determined by knowing the experimental curve of the
thermoelectric power under large magnetic field vs. the carrier concentration as given
by the following, respectively.

D

µ
=

(
π2k2

BT

3 |e|2 G

)
, (1.15)

LD =
(
3 |e|3 n0G / εscπ

2k2
BT
)−1/ 2

, (1.19)

∆C44 = [−n0G
2
0 |e|G / (3π2k2

BT )], (1.22)

∆C456 =
(
n0 |e|G3

0G
2 / (3π4k3

BT )
)
(

1 +
n0

G

∂G

∂n0

)
, (1.23)
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carrier contribution to the elastic constants have also been suggested in this
context. As a condensed presentation, the main results have been presented
in Table 1.1.
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2

The Einstein Relation in Bulk Specimens
of Compound Semiconductors

2.1 Investigation on Tetragonal Materials

2.1.1 Introduction

It is well known that the A2
IIIB

5
II and the ternary chalcopyrite compounds

are called tetragonal materials due to their tetragonal crystal structures [1].
These materials find extensive use in non-linear optical elements [2], photo-
detectors [3] and light emitting diodes [4]. Rowe and Shay [5] showed that
the quasi-cubic model [6] can be used to explain the observed splitting and
symmetry properties of the band structure at the zone center of k space of the
aforementioned materials. The s-like conduction band is singly degenerate and
the p-like valence bands are triply degenerate. The latter splits into three sub-
bands because of the spin–orbit and the crystal field interactions. The largest
contribution to the crystal field splitting is from the non-cubic potential [7].
The experimental results on the absorption constants, the effective mass, and
the optical third order susceptibility indicate that the fact that the conduc-
tion band in the same materials corresponds to a single ellipsoidal revolution
at the zone center in k-space [1, 8]. Introducing the crystal potential in the
Hamiltonian, Bodnar [9] derived the electron dispersion relation in the same
material under the assumption of an isotropic spin–orbit splitting constant.
It would, therefore, be of much interest to investigate the DMR in these com-
pounds by including the anisotropies of the spin–orbit splitting constant and,
the effective electron mass together with the inclusion of crystal field splitting,
within the framework of k.p formalism since, these are the important physical
features of such materials [1].

In what follows, in Sect. 2.1.2 on the theoretical background the expressions
for the electron concentration and the DMR for tetragonal compounds have
been derived on the basis of the generalized dispersion relation. In Sect. 2.1.3,
it has been shown that the corresponding results for III–V, ternary and qua-
ternary materials form special cases of our generalized analysis. The expres-
sions for n0 and DMR for semiconductors whose energy band structures are
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defined by the two-band model of Kane and that of parabolic energy bands
have further been formulated under certain constraints. For the purpose of
numerical computations, n-Cd3As2 and n-CdGeAs2 have been used as exam-
ples of A2

IIIB
5
II and the ternary chalcopyrite compounds, which are being

extensively used in Hall pick-ups, thermal detectors, and non-linear optics [3].
In addition, the DMR has also been numerically investigated by taking n-
InAs and n-InSb as examples of III–V semiconductors, n-Hg1−xCdxTe as an
example of ternary compounds and n-In1−xGaxAsyP1−y lattice matched to
InP as example of quaternary materials in accordance with the three and the
two band models of Kane together with parabolic energy bands, respectively,
for the purpose of relative comparison. The importance of the aforementioned
materials in electronics has been discussed in Sect. 2.1.3. Section 2.1.4 contains
the results and discussions.

2.1.2 Theoretical Background

The form of k.p matrix for tetragonal semiconductors can be expressed, ex-
tending Bodnar’s [9] relation, as

H =
[

H1 H2

H2
+ H1

]
, (2.1)

where H1 ≡

⎡

⎢
⎢
⎣

Eg 0 P‖kz 0
0
(
−2∆||/3

) (√
2∆⊥/3

)
0

P‖kz

(√
2∆⊥/3

)
−
(
δ + 1

3∆‖
)

0
0 0 0 0

⎤

⎥
⎥
⎦ and H2 ≡

⎡

⎢
⎢
⎣

0 −f,+ 0 f,−
f,+ 0 0 0
0 0 0 0

f,+ 0 0 0

⎤

⎥
⎥
⎦ ,

in which Eg is the band gap, P|| and P⊥ are the momentum matrix elements
parallel and perpendicular to the direction of crystal axis respectively, δ is
the crystal field splitting constant, ∆|| and ∆⊥ are the spin–orbit split-
ting constants parallel and perpendicular to the C-axis respectively, f,± ≡(
P⊥/

√
2
)
(kx ± iky) and i =

√
−1. Thus, neglecting the contribution of the

higher bands and the free electron term, the diagonalization of the above
matrix leads to the dispersion relation of the conduction electrons in bulk
specimens of tetragonal compounds [1] as

ψ1 (E) = ψ2 (E) k2
s + ψ3 (E) k2

z , (2.2)

where

ψ1(E) ≡ E(E + Eg)
[

(E + Eg)
(
E + Eg + ∆||

)
+ δ

(
E + Eg +

2
3
∆||

)

+
2
9

(
∆2

|| − ∆2
⊥

) ]
, ks

2 = kx
2 + ky

2,
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ψ2(E) ≡ �
2Eg (Eg + ∆⊥)

[
2m∗

⊥
(
Eg + 2

3∆⊥
)]
[

δ

(
E + Eg +

1
3
∆||

)
+ (E + Eg)

×
(

E + Eg +
2
3
∆||

)
+

1
9

(
∆2

|| − ∆2
||

) ]
,

ψ3 (E) ≡ �
2Eg(Eg+∆||)

[2m∗
||(Eg+ 2

3∆||)]
[
(E + Eg)

(
E + Eg + 2

3∆||
)]

,m∗
|| and m∗

⊥ are the

longitudinal and transverse effective electron masses at the edge of the con-
duction band respectively.

The general expression of the density-of-states (DOS) function in bulk
semiconductors is given by

D0(E) =
2gv

(2π)3

(
∂

∂E
[V (E)]

)
, (2.3a)

where gv is the valley degeneracy and V (E) is the volume of k space. Using
(2.2) and (2.3a), we get

D0 (E) = gv

(
3π2
)−1

ψ4(E), (2.3b)

ψ4 (E) ≡
[

3
2

√
ψ1 (E) [ψ1 (E)]′

ψ2 (E)
√

ψ3 (E)
− [ψ2 (E)]′ [ψ1 (E)]3/2

[ψ2 (E)]2
√

ψ3 (E)

−1
2

[ψ3 (E)]′ [ψ1 (E)]3/2

ψ2 (E) [ψ3 (E)]3/2

]
,

[ψ1 (E)]′ ≡ [ (2E + Eg) ψ1 (E) [E (E + Eg)]
−1 + E(E + Eg)

×
(
2E + 2Eg + δ + ∆||

)
] ,

[ψ2 (E)]′ ≡
[
2m∗

⊥

(
Eg +

2
3
∆⊥

)]−1 [
�

2Eg (Eg + ∆⊥)
]

×
[
δ + 2E + 2Eg +

2
3
∆||

]
,

and [ψ3 (E)]′ ≡
[
2m∗

||
(
Eg + 2

3∆||
)]−1 [

�
2Eg

(
Eg + ∆||

)] [
2E + 2Eg + 2

3∆||
]
,

in which, the primes denote the differentiation of the differentiable functions
with respect to E.

Combining (2.3b) with the Fermi–Dirac occupation probability factor and
using the generalized Sommerfeld’s lemma [10], the electron concentration can
be written as

n0 = gv

(
3π2
)−1

[M (EF) + N (EF)] , (2.4)

where M(EF) ≡
[

[ψ1(EF)]
3
2

ψ2(EF)
√

ψ3(EF)

]
, EF is the Fermi energy as measured from

the edge of the conduction band in the vertically upward direction in the
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absence of any quantization, N(EF) ≡
s∑

r=1
L(r)M(EF), r is the set of real

positive integers whose upper limit is s, L(r) ≡
[
2 (kBT )2r (1 − 21−2r

)
ξ (2r)

]

×
[

∂2r

∂E2r
F

]
and ζ(2r) is the Zeta function of order 2r [11].

Thus the use of the (2.4) and (1.11) leads to the expression of DMR as

D

µ
=

1
|e|

[M (EF) + N (EF)]
[
{M (EF)}′ + {N (EF)}′

] . (2.5)

2.1.3 Special Cases for III–V Semiconductors

(a) Under the substitutions δ = 0,∆|| = ∆⊥ = ∆(the isotropic spin–orbit
splitting constant) and m∗

|| = m∗
⊥ = m∗(the isotropic effective electron

mass at the edge of the conduction band), (2.2) assumes the form [1]

�
2k2

2m∗ = γ(E), γ(E) ≡
E(E + Eg)(E + Eg + ∆)

(
Eg + 2

3∆
)

Eg(Eg + ∆)
(
E + Eg + 2

3∆
) , (2.6)

which is the well-known three band model of Kane [1]. Equation (2.6) is the
dispersion relation of the conduction electrons of III–V, ternary and quater-
nary materials and should be used as such for studying the electron transport
in n-InAs where the spin orbit splitting constant is of the order of band gap.
The III–V compounds are used in integrated optoelectronics [12, 13], pas-
sive filter devices [14], distributed feedback lasers and Bragg reflectors [15].
Besides, we shall also use n-Hg1−xCdxTe and n-In1−xGaxAsyP1−y lattice
matched to InP as examples of ternary and quaternary materials respectively.
The ternary alloy n-Hg1−xCdxTe is a classic narrow-gap compound and is
technologically an important optoelectronic semiconductor because its band
gap can be varied to cover a spectral range from 0.8 to over 30 µm by adjusting
the alloy composition [16]. The n-Hg1−xCdxTe finds applications in infrared
detector materials [17] and photovoltaic detector [18] arrays in the 8-12 µm
wave bands. The above applications have spurred an Hg1−xCdxTe technology
for the production of high mobility single crystals, with specially prepared sur-
face layers and the same material is suitable for narrow subband physics be-
cause the relevant material constants are within experimental reach [19]. The
quaternary compounds are being extensively used in optoelectronics, infrared
light emitting diodes, high electron mobility transistors, visible heterostruc-
ture lasers for fiber optic systems, semiconductor lasers, [20], tandem solar
cells [21], avalanche photodetectors [22], long wavelength light sources, detec-
tors in optical fiber communications, [23] and new types of optical devices,
which are being prepared from the quaternary systems [24].

Under the aforementioned limiting conditions, the density-of-states func-
tion, the electron concentration, and the DMR in accordance with the three
band model of Kane assume the following forms
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D0 (E) = 4πgv

(
2m∗

h2

)3/2√
γ (E) [γ1 (E)] , (2.7)

n0 =
gv

3π2

(
2m∗

�2

)3/2

[M1 (EF) + N1 (EF)] , (2.8)

and

D

µ
=

1
|e| [M1 (EF) + N1 (EF)]

[
{M1 (EF)}′ + {N1 (EF)}′

]−1
, (2.9)

where γ1 (E) ≡ γ (E)
[

1
E + 1

E+Eg
+ 1

E+Eg+∆ − 1
E+Eg+ 2

3∆

]
, M1 (EF) ≡

[γ (EF)]3/2 and N1 (EF) ≡
s∑

r=1
L (r) M1 (EF).

(b) Under the inequalities ∆ � Eg or ∆ 	 Eg, (2.6) gets simplified as [1]

�
2k2

2m∗ = E (1 + αE) , α ≡ 1/Eg, (2.10)

which is known as the two-band model of Kane [1]. Under the above con-
straints, the forms of the DOS, the electron statistics and the DMR can,
respectively, be written as,

D0 (E) = 4πgv

(
2m∗

h2

)3/2√
I (E) [I1 (E)] , (2.11)

n0 =
gv

3π2

(
2m∗

�2

)3/2

[M2 (EF) + N2 (EF)] , (2.12)

and

D

µ
=

1
|e| [M2 (EF) + N2 (EF)]

[
{M2 (EF)}′ + {N2 (EF)}′

]−1
, (2.13)

where I (E) ≡ E (1 + αE), I1 (E) ≡ (1 + 2αE), M2 (EF) ≡ [I (EF)]3/2 and

N2 (EF) ≡
s∑

r=1
L (r) M2 (EF).

(c) Under the constraints ∆ � Eg or ∆ 	 Eg together with the inequality
αEF 	 1, we can write [1]

n0 = gvNc

[
F1/2(η) +

(
15αkBT

4

)
F3/2(η)

]
, (2.14)

and
D

µ
=
[
kBT

|e|

] [ (
F1/2(η) +

(
15αkBT

4

)
F3/2(η)

)

(
F−1/2(η) +

(
15αkBT

4

)
F1/2(η)

)

]

, (2.15)
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where NC ≡ 2
(

2πm∗kBT
h2

)3/2
η ≡ EF

kBT and Fj(η) is the one parameter Fermi–
Dirac integral of order j which can be written as [25],

Fj(η) =
(

1
Γ (j + 1)

) ∞∫

0

yj (1 + exp (y − η))−1 dy, j > −1, (2.16)

where Γ (j + 1) is the complete Gamma function or for all j, analytically
continued as a complex contour integral around the negative axis

Fj(η) = Aj

(0+)∫

−∞

yj (1 + exp (−y − η))−1 dy, (2.17)

in which Aj ≡ Γ(−j)

2π
√
−1

.

(d) For relatively wide gap materials Eg → ∞ and (2.14) and (2.15) assume
the forms

n0 = gvNcF1/2(η) (2.18)

and
D

µ
=
(

kBT

|e|

)[
F1/2(η)
F−1/2(η)

]
. (2.19)

Equation (2.19) was derived for the first time by Landsberg [1].

(e) Combining (2.18) and (2.19) and using the formula d
dη [Fj(η)] = Fj−1(η)

[25] as easily derived from (2.16) and (2.17) together with the fact that
under the condition of extreme carrier degeneracy

F1/2(η) =
[

4
3
√

π

]
(η)

3/2 , (2.20)

we can write

n0 =
gv

3π2

[
2m∗EF(1 + αEF)

�2

]3/2
, (2.21)

and
D

µ
=

1
|e|

(
2
3

)
EF

(1 + αEF)
(1 + 2αEF)

, (2.22)

For α → 0, (2.21) and (2.22) assume the forms

n0 =
gv

3π2

[
2m∗EF

�2

]3/2
, (2.23)

and
D

µ
=

2EF

3 |e| . (2.24)
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(f) Under the condition of non-degenerate electron concentration η 	
0 and Fj(η) ∼= exp(η) for all j [25]. Therefore (2.18) and (2.19) assume
the well-known forms as [1]

n0 = gvNc exp(η), (2.25)

and
D

µ
=

kBT

|e| . (2.26)

2.1.4 Result and Discussions

Using n-Cd3As2 as an example of A2
IIIB

5
II compounds for the purpose of

numerical computations and using (2.4) and (2.5) together with the energy
band constants at T = 4.2K, as given in Table 2.1, the variation of the
DMR as a function of electron concentration has been shown in curve (a)
of Fig. 2.1. The circular points exhibit the same dependence and have been
obtained by using (1.15) and taking the experimental values of the thermo-
electric power in n−Cd3As2 in the presence of a classically large magnetic
field [26]. The curve (b) corresponds to δ = 0. The curve (c) shows the depen-
dence of the DMR on n0 in accordance with the three-band model of Kane
using the energy band constants as Eg = 0.095 eV, m∗ =

(
m∗

|| + m∗
⊥

)
/ 2

and ∆ =
(
∆|| + ∆⊥

)
/ 2. The curves (d) and (e) correspond to the two-band

model of Kane and that of the parabolic energy bands. By comparing the
curves (a) and (b) of Fig. 2.1, one can easily assess the influence of crystal
field splitting on the DMR in tetragonal compounds. Figure 2.2 represents all
cases of Fig. 2.1 for n-CdGeAs2 which has been used as an example of ternary
chalcopyrite materials where the values of the energy band constants of the
said compound are given in Table 2.1.

It appears from Fig. 2.1 that, the DMR in tetragonal compounds increases
with increasing carrier degeneracy as expected for degenerate semiconductors
and agrees well with the suggested experimental method of determining the
same ratio for materials having arbitrary carrier energy spectra. It has been
observed that the tetragonal crystal field affects the DMR of the electrons
quite significantly in this case. The dependence of the DMR is directly deter-
mined by the band structure because of its immediate connection with the
Fermi energy. The DMR increases non-linearly with the electron concentra-
tion in other limiting cases and the rates of increase are different from that in
the generalized band model.

From Fig. 2.2, one can assess that the DMR in bulk specimens of
n-CdGeAs2 exhibits monotonic increasing dependence with increasing elec-
tron concentration. The cases (b), (c) and (d) of Fig. 2.2 for n-CdGeAs2
exhibit the similar trends with change in the respective numerical values of
the DMR. The influence of spectrum constants on the DMR for n-Cd3As2
and n-CdGeAs2 can also be assessed by comparing the respective variations
as drawn in Figs. 2.1 and 2.2 respectively.
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Table 2.1. The numerical values of the energy band constants of few materials

Materials

n − Cd3As2

|Eg| = 0.095 eV, ∆|| = 0.27 eV, ∆⊥ = 0.25 eV,
m∗

|| = 0.00697m0 (m0 is the free electron mass),
m∗

⊥ = 0.013933m0, δ = 0.085eV, gv = 1 [25,73] and
εsc = 16ε0 (εsc and ε0 are the permittivity of the
semiconductor and free space respectively) [74]

n − CdGeAs2 Eg = 0.57 eV, ∆‖ = 0.30 eV, ∆⊥ = 0.36 eV,
m∗

‖ = 0.034mo, m∗
⊥ = 0.039mo, T = 4 K,

δ = −0.21 eV, gv = 1 [1,26] and εsc = 18.4ε0 [75]

n-InAs Eg = 0.36 eV, ∆ = 0.43 eV and m∗ = 0.026m0, gv = 1,
εsc = 12.25ε0 [76]

n-InSb Eg = 0.2352 eV, ∆ = 0.81 eV and m∗ = 0.01359m0,
gv = 1, εsc = 15.56ε0 [76]

n − Ga1−xAlxAs Eg (x) = (1.424 + 1.266x + 0.26x2)eV,
∆ (x) = (0.34 − 0.5x)eV, m∗ (x) = [0.066 + 0.088x] m0

gv = 1, εsc (x) = [13.18 − 3.12x] ε0 [77]

Hg1−xCdxTe Eg (x) =
(
−0.302 + 1.93x + 5.35 × 10−4(1 − 2x)T

−0.810x2 + 0.832x3 ) eV,
∆ (x) =

(
0.63 + 0.24x − 0.27x2

)
eV,

m∗ = 0.1m0Eg(eV)−1, gv = 1 and
εsc =

[
20.262 − 14.812x + 5.22795x2

]
ε0 [78]

In1−xGaxAsyP1−y

lattice matched to InP
Eg =

(
1.337 − 0.73y + 0.13y2

)
eV,

∆ =
(
0.114 + 0.26y − 0.22y2

)
eV,

m∗ = (0.08 − 0.039y) mo,
y = (0.1896 − 0.4052x)(0.1896 − 0.0123x)−1, gv = 1 [79]
and εsc = [10.65 + 0.1320y] ε0 [80]

CdS m∗
‖ = 0.7mo, m∗

⊥ = 1.5mo and λ̄0 = 1.4 × 10−10 eVm,
gv = 1 [76] and εsc = 15.5ε0 [81]

n-PbTe m−
t = 0.070m0, m−

l = 0.54m0, m+
t = 0.010m0,

m+
l = 1.4m0, P|| = 141meV nm, P⊥ = 486 meV nm,

Eg = 190meV, gv = 4 [12] and εsc = 33ε0 [76, 82]
n-PbSnTe m−

t = 0.063m0, m−
l = 0.41m0, m+

t = 0.089m0,
m+

l = 1.6m0, P|| = 137meV nm, P⊥ = 464 meV nm,
Eg = 90meV, gv = 4 [12] and εsc = 60ε0 [76, 82]

n-Pb1−xSnxSe x = 0.31, gv = 4, m−
t = 0.143m0, m−

l = 2.0m0,
m+

t = 0.167m0, m+
l = 0.286m0, P|| = 3.2 × 10−10 eVm,

P⊥ = 4.1 × 10−10 eVm, Eg = 0.137eV, gv = 4 [12] and
εsc = 31ε0 [76, 83]

Stressed n-InSb m∗ = 0.048mo, Eg = 0.081 eV, B2 = 9 × 10−10 eVm,
Cc

1 = 3 eV, Cc
2 = 2 eV, a0 = −10 eV, b0 = −1.7 eV,

d0 = −4.4 eV, Sxx = 0.6 × 10−3 (kbar)−1,
Syy = 0.42 × 10−3 (kbar)−1, Szz = 0.39 × 10−3 (kbar)−1

and Sxy = 0.5 × 10−3 (kbar)−1, εxx = σSxx, εyy = σSyy,
εzz = σSzz, εxy = σSxy and σ is the stress in kilobar,
gv = 1 [44]

(Continued)
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lattice matched to InP on the alloy composition of x for all cases of Fig. 2.6.
The DMR decreases with increasing x for all types of band models in this
case. From Figs. 2.5 up to 2.8, one can infer the influence of energy band
constants on the DMR for ternary and quaternary compounds respectively.

It may be noted that in recent years, the electron mobility in compound
semiconductors has been extensively investigated, but the diffusion constant
(a very important device quantity which cannot be easily determined exper-
imentally) of such materials has been relatively less investigated. Therefore,
the theoretical results presented in this chapter will be useful in determining
the diffusion constants for even relatively wide gap materials whose energy
band structures can be approximated by the parabolic energy bands.

We wish to point out that in formulating the basic dispersion relation we
have taken into account the combined influences of the crystal field-splitting
constant, the anisotropies in the effective electron masses, and the spin–orbit
splitting constants, respectively, since these are the significant physical fea-
tures of the tetragonal compounds.

In the absence of crystal-field splitting together with the assumptions of
isotropic effective electron mass and isotropic spin–orbit splitting constant
respectively, our basic equation (2.2) converts to the well-known form of the
three-band model of Kane as given by (2.6). Many technologically important
compounds obey the inequalities ∆ � Eg or ∆ 	 Eg. Under these con-
straints, (2.6) gets simplified into (2.10) and is known as the two-band model
of Kane. Finally, for Eg → ∞, as for relatively wide gap materials the above
equation transforms into the well-known form E = �

2k2/2m∗. In addition,
the DMR in ternary and quaternary materials has also been investigated in
accordance with the three and two band models of Kane together with the
parabolic energy band for the purpose of relative assessment. Therefore, the
influence of energy band constants on the DMR can also be studied from the
present investigation and the basic equation (2.2) covers various materials
having different energy band structures. Finally, one infers that, this simpli-
fied analysis exhibits the basic features of the DMR in bulk specimens of many
technologically important compounds and for n-Cd3As2, the theoretical result
is in good agreement with the suggested experimental method of determining
the same ratio.

2.2 Investigation for II–VI Semiconductors

2.2.1 Introduction

The II–VI compounds are being extensively used in infrared detectors [27],
ultra high speed bipolar transistors [28], optic fiber communications [29], and
advanced microwave devices [30]. These materials possess the appropriate di-
rect band gap to produce light emitting diodes and lasers from blue to red
wavelengths [31]. The Hopfield model describes the energy spectra of both
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the carriers of II–VI semiconductors where the splitting of the two-spin states
by the spin orbit coupling and the crystalline field has been taken into ac-
count [32]. The DMR in II–VI compounds on the basis of the Hopfield model
has been studied by formulating the expression of carrier concentration in
Sect. 2.2.2. Section 2.2.3 contains the result and discussions for the numerical
computation of the DMR taking p-CdS as an example.

2.2.2 Theoretical Background

The group theoretical analysis shows that, based on the symmetry properties
of the conduction and valence band wave functions, both the energy bands of
II–VI semiconductors can be written as [32]

E = a′
0k

2
s + b′0k

2
z ± λ̄0ks, (2.27)

where a′
0 ≡ �

2

2m∗
⊥

, b′0 ≡ �
2

2m∗
||

and λ̄0 represents the splitting of the two spin-
states by the spin–orbit coupling and the crystalline field.

The volume in k-space enclosed by (2.27) can be expressed as

V (E)=
π

2a
′2
0

(E/b′0)
1/2

∫
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1/2

[
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0b
′
0k

2
z − λ̄0

(
λ̄2

0 − 4a′
0b

′
0k

2
z + 4a′

0E
)1/2
]
dkz,

(2.28)
From (2.28), one can write

V (E) =
4π
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Hence, the density of states function can be written using (2.3a) and (2.29) as

D0 (E) =
gv

2π2a′
0

√
b′0

⎡

⎢
⎢
⎣
√

E −
(
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2
√
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0
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⎥
⎥
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Combining (2.30) with the Fermi–Dirac occupation probability factor, the
carrier concentration can be written as

n0 =
4πgv

3a′
0

√
b′0

[τ1 (EF) + τ2 (EF)] , (2.31)




