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PREFACE

There are many physical phenomena which lead to nonlinear vibra-
tion problems. Modern structures are increasingly being built using
more sophisticated materials that have a range of nonlinear material
properties, some of which can be designed into the system. In some
cases there are clear advantages in deliberately including nonlinear ef-
fects into the design of a structure. An obvious example are structural
dampers. The most effective dampers contain highly nonlinear pro-
cesses such as friction, fluids and most recently magneto-rheological
fluids. Understanding and modelling the behaviour of these nonlinear
effects is not a trivial process. However, there has been a dramatic in-
crease in our understanding of nonlinear systems in the past 20 years,
which has led to the realisation that beyond just modelling nonlinear
effects, engineers can also use them to their advantage.

Nonlinearity arises from a range of phenomena. For example, ge-
ometric nonlinearity, including the effects of large deformations, com-
bined stretching or compressing with vibration and nonlinear align-
ment of structural elements. Another source of nonlinearity is ex-
ternal forces acting on a linear system, such as fluid or magnetic
forces. Nonlinear behaviour also comes from constraints in the sys-
tem, freeplay, backlash, impact and friction.

Control forces can be added to a structural system in order to
control the behaviour in some way and make it an adaptive structure.
For example to reduce unwanted vibrations, detect damage, harvest
energy or to shape change (morph) the structure. However, to create
adaptive structures, the structure needs to have some awareness of its
condition and/or the environment it is in. This is achieved by having
a series of measurement sensors mounted on (or integrated into) the
structure. Information from the sensors is then used by the global
control system. This is where the smart (or intelligent) behaviour is
generated.

This volume is a direct result of a course on “Exploiting Nonlinear
Behaviour in Structural Dynamics” held at the International Centre
for Mechanical Sciences (CISM) Udine, Italy Sep 13-17, 2010. Each
chapter corresponds to a summary of the content of the lectures pre-
sented by each of the expert speakers who participated in the course.



Chapter 1 by Virgin & Wagg gives an overview and introduc-
tion to nonlinear phenomena in structural dynamics. The analysis
of nonlinear effects using state space and bifurcation analysis is in-
troduced, followed by an introduction to nonlinear control techniques.
Chapter 2 by Neild covers material on so called approximate meth-
ods for analysing nonlinear systems where the level of nonlinearity
is assumed to be relatively small. Examples include a device for har-
vesting mechanical energy, where the nonlinear effects are exploited to
increase the useful energy which can be extracted. Chapter 3 by Virgin
is devoted to the topic of vibration isolation. In particular, buckled
structures and structures with large amounts of geometric nonlinear-
ities are used as nonlinear vibration absorbers, to reduce significant
unwanted vibrations in the systems under consideration. Chapter 4
by Shaw focuses attention on the mitigation of undesirable torsional
vibration in rotating systems utilizing specifically nonlinear features
in the dynamics. Reducing vibration in automotive motors is a prob-
lem of considerable practical relevance. Tunable vibration absorbers
require careful design with the role of nonlinearities of particular rel-
evance. Chapter 5 by Ribeiro discusses the vibration of nonlinear
(beam) structures in which the motion is sufficiently large amplitude
that elasto-plastic effects are induced. Both free and forced situations
are analyzed including practical (numerical) solution procedures. Ul-
timately, more accurate modeling of these types of systems will assist
in a more complete understanding of nonlinear vibration and its rela-
tionship with material failure. Finally in Chapter 6 by Wagg, struc-
tural systems with control are considered. These include nonlinear
systems with active control, as well as morphing structures, where
snap-through mechanisms are exploited as hinges so the structure can
change its shape between two stable states.

We would like to thank all those at CISM who helped to make the
course and the production of this volume such a enjoyable experience,
in particular Mrs P. Agnola, Elsa Venir and Carla Toros who dealt
with the administration of the meeting. In addition we would like to
thank the Rectors of CISM: G. Maier, J. Salençon, W. Schneider
and the Secretary General, B.A. Schrefler. Finally, we would like to
thank Prof. Serafini for his assistance with the preparation of this
book.

Lawrie Virgin (Duke University, USA)
David J. Wagg (University of Bristol, UK)

June 2011
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Introductory Material

Lawrie Virgin and David Wagg

Duke University and University of Bristol.

Abstract This book is based on a one-week worksop at CISM.

In order to fully appreciate the benefits of nonlinearity in certain

engineering systems it is important to understand the underlying

behavior of linear systems, and this first chapter provides a general

overview of linear dynamical systems and then begins to explore the

effect of nonlinearities.

1 The Linear Oscillator

In mechanics we are primarily interested in the time evolution of systems
governed by odes

ẋ = F (x, λ, t) xεRn, tεR, (1)

where x is a state vector which describes the evolution of the system under
the vector field, F . Given an initial condition x0 at time t = 0 we can seek
to solve system 1 to obtain a trajectory, or orbit, along which the solution
evolves with time. We will then seek to ascertain the stability of the system,
generally as a function of the (control) parameter, λ (Guckenheimer and
Holmes (1983)).
The cornerstone of dynamics in a mechanics context is, of course, New-

ton’s second law, and thus sets of second-order, ordinary differential equa-
tion are dominant:

ẍ+ ω2
nx = 0, (2)

where an overdot represents a derivative with respect to time, and the sys-
tem has two initial conditions x(t = 0), ẋ(t = 0), from whence the dynamics
develops. This is the equation of motion governing the dynamic response of
the spring-mass system shown in Figure 1 with ωn =

√
k/m and all other

parameters set equal to zero. We can write the solution as

x(t) = Aeλt. (3)
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Figure 1. A spring-mass damper.

Placing 3 in to 2 we find that λ = iωn and thus the general form of the
solution is given by

x(t) = aeiωnt + be−iωnt. (4)

Alternatively, using Euler’s identities we can write:

x(t) = c cos(ωnt) + d sin(ωnt). (5)

In order to determine a and b, (or c and d), we make use of the initial
conditions to get

x(t) = x(0) cos(ωnt) +
ẋ(0)

ωn

sin(ωnt). (6)

This system can be converted in to a pair of coupled, first-order ordinary
differential equations (in state variable format) by introducing a new vari-
able

y = ẋ (7)

and substituting in equation 2 gives:

ẋ = y, ẏ = −ω2
nx (8)

and in matrix notation:[
ẋ
ẏ

]
=

[
0 1
−ω2

n 0

] [
x
y

]
. (9)

The solutions to this type of equation are harmonic, with oscillation occur-
ring about the origin (the unique equilibrium position), Inman (1994). The
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form, and frequency, of the resulting motion is independent of the initial
conditions.

2 A Nonlinear Spring

Now suppose we have a spring whereby the applied force and corresponding
deflection are related via a cubic expression:

F = k(x) = Ax +Bx3. (10)

Adding a small amount of inertia and a little damping we obtain a standard
nonlinear oscillator known as Duffing’s equation (Virgin (2000)):

ẍ+ 0.1ẋ+Ax+Bx3 = 0. (11)

We still have a spring that initially responds the same way in compression
and extension, but now the nonlinearity depends on the signs of A and B.
Superposition no longer holds. Suppose we have A = 1 and B > 0. In
this case we have a hardening spring, i.e., it becomes disproportionately
stiffer as the deflection increases. This is shown schematically in Figure 2.
Also shown is the softening case A = 1, B < 0, indicated by the dashed
line. Furthermore, if A = −1 and B > 0 we get a (still symmetrical, and

Figure 2. Force-deflection relations for some typical springs.

shown by the dotted line) system in which the origin is now unstable (to
be shown later), and the spring, given a typical load will take up one of
two available equilibrium positions. The force-deflection characteristic need
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not be symmetric, and in fact, this will typically be the case under some
pre-loading.
When incorporated into the dynamics context (equation 11) we find that

the frequency as well as the amplitude depends on the initial conditions.
Equation 11 is of course a nonlinear ordinary differential equation and does
not submit to standard methods. However, we can gain considerable insight
into the behavior of such systems, and we start by ignoring damping. As
such, the total mechanical energy is now conserved and using ẍ = ẋdẋ/dx
we can separate variables, integrate, and write

ẋ = ±
√
−Ax2 − (B/2)x4 + C, (12)

in which C is determined from the initial conditions. For A = 1 and B = 0
we obtain ellipses in the phase space corresponding to simple harmonic
motion. However, for other combinations of A and B we obtain behavior
that may be very different from simple harmonic.
We can also obtain the natural period of motion in a related way. It can

be shown that the period is equal to four times the time it takes to move
from the maximum amplitude (x̄) to zero, and rearranging equation 12 we
can evaluate the period of motion, T , (and hence natural frequency) from
Jordan and Smith (1977); Stoker (1992)

T = 4

∫ x̄

0

dx√−Ax2 − (B/2)x4 + C
. (13)

However, this integral is not easy to solve, but whereas the linear oscillator
has a natural frequency that is independent of the amplitude of motion, the
nonlinear oscillator will have a period that depends on the initial conditions
and hence the amplitude of motion. In Figure 2 was shown typical hardening
and softening spring systems. The natural frequencies, often referred to as
’backbone curves’ corresponding to these two case are shown schematically
in Figure 3. These mildly nonlinear cases are centered on an equilibrium
position. In some cases, e.g., when A = 1 and B = −1 and the motion
exceeds x = 1 the behavior can become unbounded. In general, this type
of behavior has to be investigated numerically, and we shall see that these
backbone curves have a profound resonance effect when incorporated into
the context of (harmonically) forced oscillators.

2.1 Linearization

With no force applied the ’rest length’ of the linear spring is the unique
position of equilibrium, which we consider without loss of generality to be
the origin. For a nonlinear spring, for example, the dotted line in Figure 2
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ω
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linear

Figure 3. The frequency relation for mildly nonlinear oscillators.

we see two ’remote’ equilibrium positions. These happen to be stable: their
local slopes are positive and any deviation from the position will be opposed
by the (restoring) force. In the vicinity of equilibrium (indicated by the three
shaded regions) we see that the force-deflection relation is practically linear.
More formally, we can take a Taylor series expansion about equilibria. The
equilibria are found from Ax+Bx3 = 0, from which have xe = 0 (sometimes
referred to as the trivial equilibrium) but there may also be other roots. For
example with A = −1, B = +1 we get two more real roots at xe = ±1, but
if A and B have the same sign then the origin is the only real root. Consider
a small perturbation, δ about an equilibrium, xe:

x = xe + δ. (14)

Placing this into equation 10 and assuming A = −1, B = +1 we obtain:

F = −xe − δ + x3e + 3x
2
eδ + 3xeδ

2 + δ3. (15)

Since δ is small we neglect terms in δ higher than linear, and −x + x3e = 0
to satisfy equilibrium, and thus we have

F = δ(3x2e − 1), (16)

which is valid in the vicinity of the equilibria. For xe = 0 we have a locally
negative slope and the force tends to move the system further away with
deflection. For xe = ±1 we have a locally positive slope and a restoring
force. If the spring undergoes ’large’ deflections then the system becomes
progressively more nonlinear.
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In terms of dynamic response we can still use the approach of the first
part of this chapter, but now the motion local to the equilibrium at the
origin is described by

ẍ− ω2
nx = 0. (17)

The solution again has the form x(t) = Aeλt where λ = ±ωn, and thus

x(t) = aeωnt + be−ωnt, (18)

and using the definition of hyperbolic functions we also have

x(t) = x(0) coshωnt+ (ẋ(0)/ωn) sinhωnt. (19)

In this case we do not have a periodic solution: the positive exponential
indicates that typically x→∞ as t→∞. Hence, this behavior is unstable
(Virgin (2007)). However, we also observe that we can choose very specific
initial conditions (unlikely but nevertheless important cases), where the
trajectory will end up at the origin, i.e., where the positive exponential term
is completely suppressed, as well as the case where the negative exponential
term in equation 18 dominates for a short time before the trajectory is
swept away. For all practical purposes, i.e., arbitrary initial conditions, the
motion is clearly unstable.
Thus, the key stability information is contained in (the sign of) λ in

equations 3. If it is negative then the motion will decay with time, otherwise
it will grow (Thompson and Stewart (1986)). It is convenient to introduce
a more general (state) matrix of the form:[

ẋ
ẏ

]
=

[
a b
c d

] [
x
y

]
, (20)

and extract the determinant, Δ, and trace, T :

Δ = (ad− bc), T = a+ d, (21)

and recast stability given the fact that these relate to the system eigenvalues:

λ1,2 =
1
2

(
T ±√T 2 − 4Δ)

, Δ = λ1λ2, T = λ1 + λ2. (22)

Hence for stability (negative eigenvalues) we require T negative and Δ pos-
itive (Strogatz (1994)). In the case of the two systems considered earlier
both times the trace is zero (Newton’s laws provide certain restrictions for
typical mechanical systems), but for the system in equation 2 we have a
positive Δ and hence stability, and a negative Δ for the system described
by equation 17. We will now refine this to take account of damping.
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2.2 Damping

Most real systems undergo a form of energy dissipation. With the in-
evitable presence of damping the question of stability becomes less ambigu-
ous. Typical motion will then consist of a transient followed by some kind
of recurrent long-term behavior, e.g. the motion will die out and the mass
position is maintained at equilibrium.
Suppose we now allow for some energy dissipation in the form of linear

viscous damping, i.e., c �= 0 in Figure 1. The equation of motion is now
ẍ+ 2ζωnẋ+ ω2

nx = 0, (23)

in which a nondimensional damping ratio, ζ = c/(2mωn) has been intro-
duced. Solutions to this equation now also depend on the value of ζ. For
lightly damped systems we have ζ < 1 and solutions of the form

x(t) = e−ζωnt

(
ẋ(0) + ζωnẋ(0)

ωd

sinωdt+ x(0) cosωdt

)
(24)

where the damped natural frequency ωd is given by

ωd = ωn

√
1− ζ2. (25)

A typical underdamped response (ζ = 0.1) is shown in Figure 4(a) and (b)
as a time series and phase portrait. The origin in Figure 4 (b) indicates the
position of asymptotically stable equilibrium. The trajectory gradually spi-
rals down to this rest state: we can imagine a family of trajectories forming
a flow as time evolves. Since this equilibrium is unique, the whole of the
phase space is the attracting set for all initial conditions and disturbances.
Damping in this range, e.g., ζ ≈ 0.1, is quite typical for mechanical and
structural systems.
For a heavily (or overdamped) system ζ > 1, and in this case the form

of the solution is

x(t) = Ae(−ζ+
√

ζ2
−1)ωnt + Be(−ζ−

√
ζ2
−1)ωnt (26)

where

A =
ẋ(0) + (ζ +

√
ζ2 − 1)ωnx(0)

2ωn

√
ζ2 − 1 (27)

and

B =
−ẋ(0)− (ζ −

√
ζ2 − 1)ωnx(0)

2ωn

√
ζ2 − 1 . (28)

The motion is a generally monotonically decreasing function of time and
may take a relatively long time to overcome relatively heavy damping forces
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Figure 4. Time series and phase portraits for underdamped (oscillatory)
motion. x(0) = 1.0; ẋ(0) = 0.0; ζ = 0.1.

on the way to equilibrium. The boundary between these two cases is the
critically damped case, i.e., ζ = 1 when the eigenvalues are equal.
Returning to the state variable matrix format of the linear oscillator and

adding damping we therefore have[
ẋ
ẏ

]
=

[
0 1
−ω2

n −2ζωn

] [
x
y

]
. (29)

We can also write the solution in terms of the eigenvalues of the state matrix,
i.e., the roots of the characteristic equation

λ2 + 2ζωnλ+ ω2
n = 0. (30)

Now, the only difference with the expressions given in equation 9 is that the
trace, T , becomes −2ζωn, i.e., negative.
Given the scenario of a system losing stability we can usefully view all the

response possibilities of this type of linear system according to the location
of the roots in the complex plane. For example, having two complex roots
with negative real parts corresponds to an exponentially decaying oscilla-
tion. Summarizing these outcomes in terms of the trace and determinant
leads to Figure 5. In general we will have a system with positive stiffness
and damping and thus a root structure corresponding to the lower right
quadrant. Critical damping corresponds to the dashed parabola, and phase
portraits and eigenvalues are indicated for various combinations of (T,Δ)
and hence the natural frequency and damping.

3 A Nonlinear Damper

Another basic nonlinearity sometimes occurring in mechanical vibration is
the appearance of energy dissipation in which the damping force is not
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Figure 5. The root structure of a linear oscillator.

necessarily proportional to the velocity of motion. The adoption of linear
viscous damping in our spring-mass-damper model is partly motivated by
relevant damping processes, for example, the mechanism by which a dashpot
(and other related devices) utilizes this type of energy dissipation. However,
it is also used because of its relative analytic simplicity, i.e., assumption of
linear viscous damping does not violate the rules of linearity, and this also
has certain advantages in the study of dynamics in continuous dynamical
systems.

3.1 Coulomb Damping

Friction commonly occurs in mechanical systems in which rubbing, or
contact, between two dry surfaces causes the dissipation of energy (often in
the form of heat). The assumption here is that the damping force is equal
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to the product of the normal force and a material-dependent coefficient of
friction, Thomson (1981). The free response consists of a linear (as opposed
to an exponential) decay of motion (with a frequency of oscillation the same
as the underlying undamped system), and the mass may come to rest with
a slight static offset if the static force of friction is greater than the restoring
force of the spring. A typical example is shown in Figure 6. This type of

Figure 6. Time series for a mass subject to Coulomb damping.

energy dissipation can lead to a variety of interesting behavior especially
in the context of forced vibrations. For example, stick-slip occurs in many
mechanical systems.

3.2 Motion-dependent Damping

Another type of nonlinear energy dissipation is the mechanism underly-
ing the appearance of certain types of limit cycle. The classic example is
the van der Pol equation (van der Pol (1934)):

ẍ− μ(1 − x2)ẋ+ x = 0. (31)

The parameter μ has a profound effect on the behavior of this system. For
positive μ, we see that if x2 > 1 then the damping term is positive and
energy is dissipated. However, again for positive μ the damping becomes
negative when x2 < 1. Using the same linearization process as detailed in
section 2.1 we consider small perturbations about equilibrium (the origin)
which leads to: [

ẋ
ẏ

]
=

[
0 1
−1 μ

] [
x
y

]
, (32)

The eigenvalues of this system are

λ =
μ

2
± 1
2

√
μ2 − 4. (33)
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The determinant Δ = 1 and the trace T = μ. Thus, we have real negative
roots when μ ≤ 0 indicating stable behavior. If 0 < μ < 2 the roots are
complex with positive real parts indicating an unstable spiral. Thus, we
locate these possible responses within Figure 5. This behavior is only valid
in the vicinity of equilibrium. Solving equation 31 numerically for various

Figure 7. Time series and phase portraits for van der Pol’s equation, (a)
and (b) μ = 0.1; (c) and (d) μ = 0.5; (e) and (f) μ = 1.5

positive values of μ leads to the results shown in Figure 7 as time series
and phase projections. These are sometimes called relaxation oscillations,
and since transients are attracted from within and without the oscillation
this type of behavior is called a limit cycle oscillation (LCO). A pertur-
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bation approach (see chapter 2) and Jordan and Smith (1977), assuming
μ is relatively small, can be used to show that the amplitude of the LCO
remains close to 2 and that the frequency of oscillation is approximately
ω = 1− (1/16)μ2.
We conclude this section by showing a couple of flows in phase space.

An unforced Duffing system of the form ẍ+ 0.1ẋ− x+ x3 = 0 is shown for
a variety of initial conditions in phase space in Figure 8(a). Likewise, the

Figure 8. Flows in phase space: (a) Duffing’s equation, (b) van der Pol’s
equation.

behavior of van der Pol’s equation of the form ẍ − 1.5(1 − x2)ẋ + x = 0
is displayed in part (b). In both cases, for these parameter values, we see
an unstable origin. In part (a) we have (Δ, T ) = (−1,−0.1) indicating a
saddle point and motion is swept away (and ultimately settles about one
of the two stable equilibria at xe = ±1), whereas in part (b) we have
(Δ, T ) = (+1,+1.5) and motion spirals away from the origin and settles
onto the stable periodic orbit.
We thus observe what will typically happen when the stiffness or damp-

ing of the system changes, and especially where one of these parameters
drops to zero, corresponding to an instability. The important issue here is
that linear scenarios occur naturally within the context of nonlinear oscilla-
tors. The geometric view afforded by a consideration of the root structure
and phase portraits of families of solution about equilibrium points is very
useful.
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4 Bifurcations

In many practical situations the forces acting on a system change. For
example, the spring force in equation 10 might be subject to changing values
of A and B, and this of course has a fundamental impact on the nature
of solutions. Bifurcation theory (Doedel (1986); Seydel (1994)), classifies
the generic ways in which an equilibrium loses its stability. Under the
action of a single control parameter, for example, the stiffness or damping
in an oscillator, we have already seen how the instability corresponds to
an eigenvalue moving into the positive half-plane. The behavior of the
linear oscillator provides an informative local view of behavior, but in a
practical situation we might expect nonlinear effects to influence, or limit,
the response in some way. As a parameter is varied the response of a system
changes, and often gradually, but it is the qualitative change in the dynamics
that is classified as a bifurcation. The elementary bifurcations are essentially
one-dimensional but since the focus here is dynamics, we embed these (four
elementary) bifurcations within the context of oscillations (Guckenheimer
and Holmes (1983)).

4.1 Bifurcations from a Trivial Equilibrium

There are some systems in which some kind of initial symmetry is present,
e.g., Euler buckling (Virgin (2007)). They represent an important class of
instability in structural mechanics: super- and sub-critical pitchfork bifur-
cations. For the super-critical pitchfork bifurcation we can consider the
oscillator:

ẍ+ 0.1ẋ+ x3 − μx = 0. (34)

Again we observe the fundamental xe = 0 solution, which is stable for
μ < 0. We immediately see how the example of Duffing’s equation de-
scribed earlier is a specific example with positive μ. At μ = 0 a secondary
equilibrium intersects the fundamental and it can be shown that the two
(symmetric) non-trivial solutions are stable (see Figure 9(a)). The stability
of equilibrium is determined using the (linearization) approach of section
2.1. This corresponds to the classic ‘double-well’ potential which is also
shown superimposed for a specific (positive) value for μ.
The corresponding sub-critical pitchfork bifurcation is given by:

ẍ+ 0.1ẋ− x3 − μx = 0, (35)

and is shown in Figure 9(b). In this case, starting from a negative value of
μ the trivial equilibrium is again stable but becomes completely unstable
at the critical point, i.e., there is no local stable equilibrium to gradually



14 L.N. Virgin and D.J. Wagg

Figure 9. (a) A super-critical pitchfork bifurcation, (b) A sub-critical pitch-
fork bifurcation.

move onto. Furthermore, as the critical point is approached, the adjacent
saddle points (associated with the unstable equilibria) start to erode the
size of allowable perturbations. Although these two bifurcations have the
same stable trivial equilibrium and critical point they have quite different
consequences if encountered in practice. Hence, they are sometimes charac-
terized as ’safe’ or ’unsafe’ according to whether a local post-critical stable
equilibrium is available.
Another elementary bifurcation is the transcritical, or asymmetric, bi-

furcation:
ẍ+ 0.1ẋ+ x2 − μx = 0, (36)

and illustrated in Figure 10(a). Here, a fundamental (trivial) equilibrium
for negative μ loses stability as μ passes the through the origin. The other
equilibrium becomes stable at this point and deflection occurs in the positive
x direction.
Figure 10(b) shows the final example of an elementary bifurcation. It

is also perhaps the most fundamental, since later we will show that the
symmetry of the bifurcations already described is unlikely to be exactly
observed in practice. The saddle-node bifurcation is characterized by the
control parameter μ and coordinate x linked quadratically:

ẍ+ 0.1ẋ+ x2 − μ = 0. (37)

Equilibrium corresponds to the rest state and thus

xe = ±√μ. (38)
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Figure 10. (a) A transcritical bifurcation, (b) A saddle-node bifurcation.

and we see either two co-existing solutions (one stable and the other sta-
ble) or no (real) solutions, depending on the sign of μ. The fundamental
path is nonlinear, rather than the trivial initial path exhibited by the other
bifucations.
We conclude this section by relating these situations to the changing

potential energy (Bazant and Cedolin (1991)). For example, the potential
energy associated with the saddle-node can be written as

V =
x3

3
− μx+ C, (39)

and equilibrium from
dV

dx
= x2 − μ = 0. (40)

The sign of the curvature of the potential energy governs stability:

d2V

dx2
= 2x, (41)

which is evaluated about equilibrium. When xe =
√

μ the second derivative
of the potential energy function is positive indicating that this is a minimum
and hence is stable. The opposite conclusion can be drawn from the other
equilibrium branch thus confirming the results of the stability properties
based on the decay or growth of local perturbations. As the value of μ is
reduced the two equilibria come together (the frequency of small oscillations
will decrease and effective damping increases) as the potential surface flat-
tens out. Just prior to coalescence the stable equilibrium can be thought of



16 L.N. Virgin and D.J. Wagg

as a node, and the unstable equilibrium is a saddle. Hence their approach
(at the critical point) is called a saddle-node bifurcation. No equilibria exist
for negative μ and trajectories would simply be swept away. This instability
is also sometimes referred to as a fold or limit point. The potential energy
is shown in Figures 9 and 10 (shown dotted) for a given value of the control
parameter.

4.2 Initial Imperfections

Initial geometric imperfections or load eccentricities that tend to break
the symmetry may have a relatively profound effect on stability (Virgin
(2007)). We shall consider this type of effect and its influence on the sub-
critical pitchfork. Incorporating a small offset causes equation 35 to be
altered to

ẍ+ 0.1ẋ− x3 − μx+ ε = 0, (42)

where ε is a small parameter which breaks the symmetry. Figure 11 shows
how the instability transition is changed. We see that for large negative μ

Figure 11. A perturbed sub-critical pitchfork bifurcation.

we have an equilibrium slightly offset from x = 0, and this grows as μ ap-
proaches the underlying critical value for the perfect geometry, but then falls
off and the system completely loses stability. There is also a complementary
(remote) solution for negative x but this wouldn’t ordinarily be accessed as
μ is monotonically increased (and it is unstable in any event). However,
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the fundamental solution does posses a critical point, and this is actually
a saddle-node bifurcation. We also note the small tilt in the potential en-
ergy function. This behavior is termed ’imperfection-sensitive’ (Thompson
and Hunt (1973)) since the maximum value of the control parameter dimin-
ishes with the magnitude of the initial imperfection. The saddle-node and
super-critical bifurcations are not imperfection sensitive.

4.3 Hopf Bifurcation

The other way in which an equilibrium can lose its stability under the
operation of a single control parameter is the Hopf bifurcation (Thompson
and Stewart (1986)). We have already seen this in van der Pol’s equation, in
which a complex conjugate pair of eigenvalues changes from having negative
real parts to positive. That is, given a positive value of the determinant, the
trace becomes positive (see figure 5). This instability is inherently dynamic,
and is the main mechanism by which limit cycle oscillations occur. This also
occurs in both the sub- and super-critical forms.
Figure 12 shows some typical transitions through these elementary bi-

furcations, in which the control is made a linear (ramp) function of time.
Part (a) is a sub-critical pitchfork bifurcation in which the control parame-
ter evolves with time according to μ = 0.01t− 1 and thus the (quasi-static)
critical point is reached after 100 time units. A slight delay in the realization
is observed since the system remains somewhat in the vicinity of the un-
stable equilibrium after the critical point, before losing stability completely.
The initial conditions for this case are x(0) = 0.2, ẋ(0) = 0.0. In part (b)
is shown the corresponding super-critical case where the post-critical path
follows one of the two available non-trivial (but stable) equilibrium paths.
Part (c) is the saddle-node. Since there is no trivial equilibrium in this
case the simulation was initiated at x(0) = 1.2, i.e., not far from equilib-
rium at xe = 1 when μ = −1. Finally part (d) illustrates a realization of
a super-critical Hopf bifurcation. In this case μ = 1 − 0.5t and thus the
quasi-static critical point is reached after approximately 20 time units, and
again a delay is observed. Also seen in this figure is the lengthening of the
period for larger t (and hence μ) anticipated from the initial post-critical
approximation ω = 1− (1/16)μ2, as well as the motion becoming gradually
less sinusoidal.

5 Forced (Linear) Oscillators

This section will focus on externally-excited systems, i.e., where F (t) �= 0
in Figure 1. An important class of forcing function is harmonic excitation:
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Figure 12. Examples of transitions through generic instabilities, (a) sub-
critical pitchfork, (b) super-critical pitchfork, (c) saddle-node, (d) Hopf.

F (t) = F0 sinωt, or y(t) = Y0 sinωt, where this latter expression relates to
a base movement that transmits motion to the mass via the support system
(Thomson (1981); Inman (1994)). This latter situation is an important
practical aspect of vibration and underlies the concept of vibration isolation
to be considered from a nonlinear perspective in chapter 3.
For the case when the force is applied directly to the mass we have a

governing equation of motion of the form

mẍ+ cẋ+ kx = F0 sinωt, (43)

or in nondimensional terms

ẍ+ 2ζωnẋ+ ω2
nx = f0 sinωt, (44)

where f0 = F0/m. The solution of equation 44 consists of the summation
of two parts: a homogeneous solution, obtained from the free vibration
(obtained in the previous section); and the particular solution, which is
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related primarily to the forcing. Its general solution has the form:

x(t) = X1e
−ζωnt sin(

√
1− ζ2ωnt+ φ1) +

f0
k

sin(ωt− φ)√
[1− (ω/ωn)2]

2
+ [2ζω/ωn]

2
,

(45)
where trigonometric identities have been used to combine the harmonic
terms from equation 24, and X1 and φ1 depend on the initial conditions.
The first (transient) part of the solution decays with time leaving the sec-

ond part as the steady-state oscillation. Some sample responses are shown
in Figure 13 in which the (lightly damped) system is started from rest at
three different forcing frequencies. Parts (a) and (b) show that for a forc-
ing frequency, ω = 0.3, which is less than the system natural frequency,
ωn = 1.0, the transient is relatively mild compared with the steady-state
response and is quickly attracted to the harmonic oscillation. When the
forcing frequency is equal to the natural frequency, as in parts (c) and (d)
resonance occurs, i.e., a significant magnification effect (the denominator in
the second term in equation 45 becomes small for ω ≈ ωn). Note the much
larger amplitude of the response. In parts (e) and (f) the forcing frequency
is increased to a value of 1.6, and now the transient solution is on the same
order of magnitude as the steady-state, and the steady-state amplitude is
back down to a lower level. Thus we observe that both parts of the solution
depend quite strongly on the frequency ratio. The rate, and hence duration,
of the transient decay is primarily a function of the damping. In all these
cases the final steady-state motion is independent of the initial conditions
(the choice of the origin in Figure 13 is arbitrary). This will not necessarily
be the case for nonlinear systems, and indeed transients may be repelled by
an unstable solution, as for example one of the cases shown in Figure 2.
It is useful to summarize how the maximum amplitude of the (steady-

state) response (A = xmaxk/F0) varies with the frequency ratio Ω, where
Ω = ω/ωn. The normalized amplitude of response can also be written as
A = xmaxω2

n/f0 (Inman (1994)). The response scales linearly with the
forcing amplitude f0. Figure 14 (a) shows a typical amplitude response
diagram for four different damping values. The phenomenon of resonance
is apparent, i.e., a significant amplitude magnification when the forcing
frequency is close to the natural frequency (i.e., Ω ≈ 1). In fact we see for
zero damping a growth to infinite amplitudes. The resonant peak is thus
very sensitive to damping (Ares ≈ 1/2ζ, for light damping), and since many
of the nonlinearities of interest are related to larger amplitude motion, we
might anticipate interesting behavior in the vicinity of resonantly forced,
lightly damped systems.
When the system is subject to y(t) = Y sinωt (a displacement applied
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Figure 12. Examples of transitions through generic instabilities, (a) sub-
critical pitchfork, (b) super-critical pitchfork, (c) saddle-node, (d) Hopf.

F (t) = F0 sinωt, or y(t) = Y0 sinωt, where this latter expression relates to
a base movement that transmits motion to the mass via the support system
(Thomson (1981); Inman (1994)). This latter situation is an important
practical aspect of vibration and underlies the concept of vibration isolation
to be considered from a nonlinear perspective in chapter 3.
For the case when the force is applied directly to the mass we have a

governing equation of motion of the form

mẍ+ cẋ+ kx = F0 sinωt, (43)

or in nondimensional terms

ẍ+ 2ζωnẋ+ ω2
nx = f0 sinωt, (44)

where f0 = F0/m. The solution of equation 44 consists of the summation
of two parts: a homogeneous solution, obtained from the free vibration
(obtained in the previous section); and the particular solution, which is
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Figure 14. Amplitude response diagrams for linear oscillators, (a) direct
mass excitation, (b) support motion (relative response), (c) support motion
(absolute response). The same damping values as used in (a).


