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1

Introduction

Probability theory arose originally in connection with games of chance and
then for a long time it was used primarily to investigate the credibility of
testimony of witnesses in the “ethical” sciences. Nevertheless, probability has
become a very powerful mathematical tool in understanding those aspects
of the world that cannot be described by deterministic laws. Probability has
succeeded in finding strict determinate relationships where chance seemed to
reign and so terming them “laws of chance” combining such contrasting no-
tions in the nomenclature appears to be quite justified. This introductory
chapter discusses such notions as determinism, chaos and randomness, pre-
dictibility and unpredictibility, some initial approaches to formalizing ran-
domness and it surveys certain problems that can be solved by probability
theory. This will perhaps give one an idea to what extent the theory can an-
swer questions arising in specific random occurrences and the character of the
answers provided by the theory.

1.1 The Nature of Randomness

The phrase “by chance” has no single meaning in ordinary language. For
instance, it may mean unpremeditated, nonobligatory, unexpected, and so on.
Its opposite sense is simpler: “not by chance” signifies obliged to or bound to
(happen). In philosophy, necessity counteracts randomness. Necessity signifies
conforming to law — it can be expressed by an exact law. The basic laws
of mechanics, physics and astronomy can be formulated in terms of precise
quantitative relations which must hold with ironclad necessity. True, this state
of affairs existed in the classical period when science did not delve into the
microworld. But even before, chance had been encountered in everyday life at
practicaily every step. Birth and death and even the entire life of a person is a
chain of chance occurrences that cannot be computed or foreseen with the aid
of determinate laws. What then can be studied and how studied and what sort
of answers may be obtained in a world of chance? Science can merely treat the
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intrinsic in occurrences and so it is important to extract the essential features
of a chance occurrence that we shall take into account in what follows.

1.1.1 Determinism and Chaos

In a deterministic world, randomness must be absent — it is absolutely subject
to laws that specify its state uniquely at each moment of time. This idea of
the world (setting aside philosophical and theological considerations) existed
among mathematicians and physicists in the 18th and 19th centuries (New-
ton, Laplace, etc.). However, such a world was all the same unpredictable
because of its complex arrangement. In order to determine a future state, it is
necessary to know its present state absolutely precisely and that is impossible.
It is more promising to apply determinism to individual phenomena or aggre-
gates of them. There is a determinate relationship between occurrences if one
entails the other necessarily. The heating of water to 100°C under standard
atmospheric pressure, let us say, implies that the water will boil. Thus, in a
determinate situation, there is complete order in a system of phenomena or
the objects to which these phenomena pertain. People have observed that kind
of order in the motion of the planets (and also the Moon and Sun) and this
order has made it possible to predict celestial occurrences like lunar and solar
eclipses. Such order can be observed in the disposition of molecules in a crystal
(it is easy to give other examples of complete order). The most precise idea
of complete order is expressed by a collection of absolutely indistinguishable
objects.

In contrast to a deterministic world would be a chaotic world in which
no relationships are present. The ancient Greeks had some notion of such a
chaotic world. According to their conception, the existing world arose out of
a primary chaos. Again, if we confine ourselves just to some group of objects,
then we may regard this system to be completely chaotic if the things are en-
tirely distinct. We are excluding the possibility of comparing the objects and
ascertaining relationships among them (including even causal relationships).
Both of these cases are similar: the selection of one (or several objects) from
the collection yields no information. In the first case, we know right away
that all of the objects are identical and in the second, the heterogeneity of
the objects makes it impossible to draw any conclusions about the remaining
ones. Observe that this is not the only way in which these two contrasting
situations resemble one another. As might be expected, according to Hegel’s
laws of logic, these totally contrasting situations describe the exact same sit-
uation. If the objects in a chaotic system are impossible to compare, then
one cannot distinguish between them so that instead of complete disorder, we
have complete order.

1.1.2 Unpredictability and Randomness

A large number of phenomena exist that are neither completely determinate
nor completely chaotic. To describe them, one may use a system of noniden-
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tical but mutually comparable objects and then classify them into several
groups. Of interest to us might be to what group a given object belongs.
We shall illustrate how the existence of differences relates to the absence of
complete determinism. Suppose that we are interested in the sex of newborn
children. It is known that roughly half of births are boys and half are girls. In
other words, the “things” being considered split into two groups. If a strictly
valid law existed for the birth of a boy or girl, then it would still be impossi-
ble to produce the mechanism which would continually equalize the sexes of
babies being born in the requisite proportion (without assuming the effect of
the results of prior births on succeeding births, such a premise is meaning-
less). One may give numerous examples of valid statements like “such a thing
happens in such and such fraction of the cases”, for instance, “1% of males
are color-blind.” As in the case of the sex of babies, the phenomenon cannot
be explained on the basis of determinate laws. It is advantageous to view a
set-up of things as a sequence of events proceeding in time.

The absence of determinism means that future events are unpredictable.
Since events can be classified in some sort of way, one may ask to what class
will a future event belong? But once again (determinism not being present),
one cannot furnish an answer in advance. The question is ill posed in the given
situation. The examples cited suggest a proper way to state the question: how
often will a phenomenon of a given class occur in the sequence? We shall speak
about chance in precisely such situations and it will be natural to raise such
questions and to find answers for them.

1.1.3 Sources of Randomness.

We shall now point out a few of the most important existing physical sources of
randomness in the real world. In so doing, we view the world to be sufficiently
organized (unchaotic) and randomness will be understood as in Sect. 1.1.2.

(a) Quantum-mechanical laws. The laws of quantum mechanics are state-
ments about the wave functions of micro-objects. According to these laws, we
can specify, for instance, just the wave function of an electron in a field of
force. Based on the wave function, only the probability of detecting the elec-
tron in some particular region of space may be found — to predict its position
is impossible. In exactly the same way, one cannot ascertain the energy of
an electron and it is only possible to determine a discrete number of possible
energy levels and the probability that the energy of the electron has a spec-
ified value. We perceive that the fundamental laws of the microworld make
use of the language of probability and thus phenomena in the microworld are
random. An important example of a random phenomenon in the microworld
is the emission of a quantum of light by an excited atom. Another important
example are nuclear reactions.

(b) Thermal motion of molecules. The molecules of any substance are in con-
stant thermal motion. If the substance is a solid, then the molecules range
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close to positions of equilibrium in a crystal lattice. But in fluids and gases,
the molecules perform rather complex movements changing their directions
of motion frequently as they interact with one another. The presence of such
a motion may be ascertained by watching the movement of microscopic par-
ticles suspended in a fluid or gas (this is so-called Brownian motion). This
motion is of a random nature and the energies of the individual molecules are
also random, that is, the energies of the molecules can assume different val-
ues and so one talks about the fraction of molecules having an energy within
narrow specified bounds. This is the familiar Maxwell distribution in physics.
A simple experiment will convince one that the energies of the molecules are
different. Take the phenomenon of boiling water: if all of the molecules had
the same energy, then the water would become steam all at once, that is, with
an explosion, and this does not happen.

(c) Discreteness of matter. The discreteness of matter leads to the occurrence
of randomness in another way. Items (a) and (b) also considered material par-
ticles. The following fact should now be noted: the laws of classical physics
have been formulated for macrobodies just as if matter filled up space contin-
uously. The discreteness of matter leads to the occurrence of deviations of the
actual values of physical quantities from those predicted by the laws. These
deviations or “fluctuations” are of a random nature and they affect the course
of a process substantially. Thus, the discreteness of the carriers of electricity
in metallic conductors — the electrons — is the source of fluctuation currents
which are the reason for internal noise in radios. The discreteness of matter
results in the mutual permeation of substances. Furthermore the absence of
pure substances, that is, the existence of impurities, also results in random
deviations from the calculated flow of phenomena.

(d) Cosmic radiation. Experimentation shows that it is irregular (aperiodic
and unpredictable) but it conforms to laws that can be studied by probability
theory.

1.1.4 The Role of Chance

It is hard to overestimate the role played in our lives by those phenomena that
are of a chance nature. The nuclear reactions occurring in the depths of the
Sun are the source of the energy sustaining all life on Earth. We are surrounded
by the medium of light and the electromagnetic field which are composed of the
quanta emitted by the individual atoms of the Sun’s corona. Fluctuations in
this emission — the solar flares — affect meteorological processes in a substantial
way. Random mechanisms also lead to explosions of supernova stars and to
sources of cosmic radiation. Brownian motion results in diffusion and in the
mutual permeation of substances and due to it, there are reactions possible
and hence even life. Chance mechanisms are responsible for the transmission
of hereditary characteristics from parents to children. Cosmic radiation, which
is also of a random nature, is one of the sources of mutation of genes due to
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which we have biological evolution. Many phenomena conform strictly to laws
only due to chance and this proves to be the case whenever a phenomenon
is dependent upon a large number of independent random microphenomena
(for instance, in gases, where there are a huge number of molecules moving
randomly and one has the exact Clapeyron law).

1.2 Formalization of Randomness

In order to make chance a subject of mathematical research, it is necessary
to construct a formal system which can be interpreted by real phenomena in
which chance is observed. This section is devoted to a first discussion.

1.2.1 Selection from Among Several Possibilities.
Random Experiments. Events

A most simple scheme in which unpredictable phenomena occur is in the
selection of one element from a finite collection. To describe this situation,
probability theory makes use of urn models. Let there be an urn containing
balls that differ from one another. A ball is drawn from the urn at random.
The phrase “at random” means that each ball in the urn can be withdrawn.
Later, we shall make at random still more precise. This single selection can
be described strictly speaking as being the enumeration of possibilities and
furnishes little for discussion. The matter changes substantially when there
are a large number of selections. After drawing a ball from the urn and ob-
serving what it was, we return it and we again remove one ball from the urn
(at random). Observing what the second ball was, we return it to the urn and
we repeat the operation again and so on. Let the balls be numbered 1,2,...,s
and repeat the selection n times. The results of our operations (termed an
experiment in what follows) can be described by the sequence of numbers of
the balls drawn: aq, ag, ..., a, with a,, € {1,2, ..., s}. Questions of interest in
probability include this one. How often is the exact same number encountered
in such a sequence? At first glance, the question is meaningless: it can still be
anything. Nevertheless, although there are certain restrictions, they are based
on the following fact. If n; is the number of times that ball numbered i is
drawn, then ny + no + ...+ ng = n. This is of course a trivial remark but, as
explained later on, it will serve as a starting point for building a satisfacto-
rily developed mathematical theory. However, there is another nontrivial fact
demonstrated by the simplest case s = 2. We write out all of the possible
results of the n extractions of which there are 2. These are all of the possible
sequences of digits 1 and 2 of length ny 4+ ny = n, where ny is the number
of ones in the sequence and no the number of twos. Let N. be the amount
of those sequences for which |ny/n —1/2| > e. Then lim,,_,o 27" N, = 0 for
all positive . This is an important assertion and it indicates that for large n
the fraction of ones in an overwhelming majority of the sequences is close to
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1/2. If the same computation is done for s balls, then it can be shown that
the fraction of ones is 1/s in an overwhelming majority of the sequences. This
holds for any ¢ < s. That the “encounterability” of different numbers in the
sequences must be the same can be discerned directly without computation
by way of the following symmetry property. If the places of two numbers are
interchanged, there are again the same 2" sequences. Probability theory treats
this property as the “equal likelihood’ of occurrence of each of the numbers
in the sequence. Assertions about the relative number of sequences for which
n;/n deviates from 1/s by less than e are examples of the “law of large num-
bers”, the class of probability theorems most generally used in applications.
We now consider the notion of “random experiment”’, which is a generaliza-
tion of the selection scheme discussed above. Suppose that a certain complex
of conditions is realized resulting in one of several possible events, where gen-
erally a different event can occur on iterating the conditions. We then say
that we have a random experiment. It is determined by the set of conditions
and the set of possible outcomes (observed events). The conditions of the
experiment may or may not depend on the will of an experimenter (created
artificially) and the presence or absence of an experimenter also plays no role.
It is also inessential whether it is possible in principle to observe the outcome
of the experiment. Any sufficiently complicated event can generally be placed
under the concept of random experiment if one chooses as conditions those
that do not determine its course completely. The pattern of its course is then
a result of the experiment. The main thing for us in a random experiment
is the possibility of repeating it indefinitely. Only for large series of iterated
experiments is it possible to obtain meaningful assertions. Examples of phys-
ical phenomena have already been given above in which randomness enters.
If we consider radioactive decay, for example, then each individual atom of
a radioactive element undergoes radioactive conversion in a random fashion.
Although we cannot follow each atom, a conceptual experiment can be per-
formed which can help establish which of the atoms have already undergone
a nuclear reaction and which still have not. In the same way, by considering a
volume of gas, we can conceive an experiment which can ascertain the energies
of all of the molecules in the gas. If the possible outcomes of an experiment are
known, then we can imagine the experiment as choosing from among several
possibilities. Again considering an urn containing balls, we can assume that
each ball has one of the possible outcomes of the pertinent experiment written
on it and any possibility has been written on one of the balls. On drawing
one of the balls, we ascertain which one of the possibilities has been realized.
Such a description of an experiment is advantageous because of its uniform-
ness. We point out two difficulties arising in associating an urn model with
an experiment. First, it is easy to imagine an experiment which in principle
has infinitely many different outcomes. This will always be the case when-
ever an experiment is measuring a continuously varying quantity (position,
energy, etc.). However, in practical situations a continuously varying quantity
is measured with a certain accuracy. Second, there is a definite symmetry
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among the possibilities in the urn model, which was discussed above. It would
be unnatural to expect every experiment to have this property. However, the
symmetry can be broken by increasing the number of balls and viewing some
of them as identical. The indistinguishable balls correspond to one and the
same outcome of the experiment but the number of such balls varies from
outcome to outcome. Say that an experiment has two outcomes and one ball
corresponds to outcome 1 and two balls to outcome 2. Then in a long run of
trials, outcome 2 should be encountered twice as often as outcome 1.

In discussing the outcomes of an experiment above, we meant all possible
mutually exclusive outcomes. They are usually called “elementary events” or
“sample points’. They can be used to construct an “algebra of events” that
are observable in an experiment. Events that are observable in an experiment
will be denoted by A, B, C,.... We now define operations on events. The sum
or union of two events A and B is the event that occurs if and only if at least
one of A or B occurs and it is denoted by AU B or A + B. The product or
intersection of two events A and B is the event that both A and B occur
(simultaneously) and it is denoted by AN B or AB. An event is said to be
impossible if it can never occur in an experiment (we denote it by () and to be
sure if it always occurs (we denote it by U). The event A is the complement
of A and corresponds to A not happening. The event A N B is the difference
of A and B and is denoted by A\ B.

A collection A of events observable in an experiment is called an algebra
of events if together with each A it contains A and together with each pair
A and B it contains AU B (the collection A is nonempty). Since AU A = U,

UcAand ) =U € A If Aand B € A, then ANB = (AUB) € A and
ANB € A. Thus the operations on events introduced above do not lead out of
the algebra. Let Ay, Ao, ..., A, be a set of events. A smallest algebra of events
exists containing these events. We introduce the natural assumption that the
events that are observable in an experiment form an algebra. If Ay, As,..., Ay,
are all elementary events of a given experiment, then the algebra of events
observable in the experiment comprises events of the form

A={J A, Ac{L2....m}, (1.2.1)
keA

where A is any subset of the segment of integers 1,m; if A = (), then A is
considered to be the impossible event. Let {2 denote the set of elementary
events or sample space. Every event may be viewed as a subset of {2. More
precisely, one can associate with each event A the set of elementary events Ay,
occurring in the union on the right of (1.2.1).

As a result there is a one-to-one correspondence between the events in an
experiment and the subsets of {2 in which a sum of events corresponds to a
union of sets, a product of events to an intersection of sets and the opposite
event to the complement of a set in {2. The relation A C B for subsets of {2 has
the probabilistic meaning that the event A implies event B because B occurs
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whenever A occurs. The interpretation of events as subsets of a set enables
us to make set theory the basis of our probability-theoretic development and
to avoid in what follows such indefinite terminology as “event”, “occurs in an
experiment” and so on.

1.2.2 Relative Frequencies.
Probability as an Ideal Relative Frequency

Consider some experiment and let {2 be the set of elementary events that
can occur in the experiment. Let A be an algebra of observable events in the
experiment. A is a collection of subsets of which together with A contains
2\ A and together with each pair of sets A and B contains A U B. The
elements of 2 will be denoted by w,ws,w’, etc. Suppose that the experiment
is repeated n times. Let wy denote the outcome in the k-th experiment; the
n-fold repetition of the experiment determines a sequence (wi,...,wy), or in
other words, a point of the space 2™ (the n-th Cartesian power of {2). An
event A occurred in the k-th experiment if wy € A. Let n(A) denote the
number of occurrences of A in these n experiments. The quantity

n(4)

n

vp(4) = (1.2.2)
is the relative frequency of A (in the stated series of experiments). The relative
frequency of A characterizes a connection between A and the conditions of the
experiment. Thus, if the conditions of the experiment always imply the occur-
rence of A, that is, the connection between the conditions of the experiment
and A is determinate, then v, (A) = 1. If A is impossible under the conditions
of the experiment, then v,(A) = 0. The closer v,,(A) is to 1 or 0, the more
“strictly” is the occurrence (nonoccurrence) of A tied to the conditions of the
experiment.
We now indicate the basic properties of a relative frequency.

1. 0 < vyp(A) <1 with v,(0) = 0 and v, (U) = 1. Two events A and B are
said to be disjoint or mutually exclusive if AN B = (), that is, they cannot
occur simultaneously.

2. If A and B are mutually exclusive events, then v, (AUB) = v, (A)+v,(B).
Thus the relative frequency is a non-negative additive set-function defined
on A and it is normalized: v, (§2) = v, (U) = 1.

Relative frequency is a function of the sequence of outcomes of an experiment:
n

vn(A) =n"1 " Ta(wr), (1.2.3)
k=1

where I, is the indicator function of A. If another sequence of outcomes is
considered, the relative frequency can change. In the discussion of the urn
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model, it was said that for a large number n of observations, the fraction
of sequences (wry,...,w,) for which a relative frequency differs little from a
certain number approaches 1. Therefore the variability of relative frequency
does not preclude some “ideal” value around which it fluctuates and which it
approaches in some sense. This ideal value of the relative frequency of an event
is then its probability. Our discussion has a very vague meaning and it may be
viewed as a heuristic argument. Just as actual cats are imperfect “copies” of an
ideal cat (the idea of a cat) according to Plato, relative frequencies are likewise
realizations of an absolute (ideal) relative frequency — the probability. The sole
pithy conclusion that can be drawn from the above heuristic discussion is that
probability must preserve the essential properties of relative frequency, that
is, it should be a non-negative additive function of events and the probability
of the sure event should be 1.

1.2.3 The Definition of Probability

The preceding considerations can be used in different ways to define probabil-
ity. The initial naive view of the matter was that probabilities of events exist
objectively and therefore probability needs no defining. The question was how
to calculate a probability.

(a) The classical definition of probability. Games of chance and the analysis
of testimony of witnesses were originally the basic areas of application of
probability theory. Games of chance involving cards, dice and flipping coins
naturally permitted the creation of appropriate random experiments (this
terminology first appeared in the twentieth century) so that their outcomes
had symmetry in relation to the conditions of the experiment. These outcomes
were treated as “equally likely” and they were assigned the same probabilities.
Thus, if there are s outcomes in the experiment, each elementary event was
assigned a probability of 1/s (it is easy to see that an elementary event has
that probability using the additivity of probability and the fact that the sure
event has probability one). If an event is expressed as the union of r elementary
events (r < s), then the probability of A is r/s by virtue of the additivity.
Thus we arrive at the definition of probability that has been in use for about
two centuries.

The probability of an event A is the quotient of the number of outcomes fa-
vorable to A and the number of all possible outcomes. The outcomes favorable
to A are understood to be those that imply A.

This is the classical definition of probability. With this definition as a
starting point, it is possible to establish that probability has the properties
indicated in Sect. 1.2.2. The definition is convenient, consistent and allows
results obtained by the theory to have a simple interpretation. A deficiency
is the impossiblity of extending it to experiments with infinitely many out-
comes or to any case in which the outcomes are asymmetric in relation to the
conditions of the experiment. In particular, the classical set-up has no events
with irrational probabilities.
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(b) The azioms of von Mises. The German mathematician R. von Mises pro-
posed as the definition of probability the second of the properties mentioned
for urn models — the convergence of a relative frequency to some limiting value
in the sense indicated there. Von Mises gave a system of probability axioms
whose first one postulates the existence of the limit of a relative frequency
and this limit is called the probability of an event. Such a system of axioms
results in considerable mathematical difficulties. On the one hand, there is the
possibility of varying the sequence of experiments and on the other hand, the
definition is too empirical and so it hardly accommodates mathematical study.
The ideas of von Mises can be used in some interpretations of the results of
probability but they are untenable for constructing a mathematical theory.

(¢) The axioms of Kolmogorov. The set of axioms of A.N. Kolmogorov has
been universally recognized as the starting point for the development of prob-
ability theory. He proposed them in his book “Fundamental Concepts of Prob-
ability Theory.” These axioms employ only the most general properties which
are inherent to probability about which we spoke above. First of all, Kol-
mogorov considered the set-theoretic treatment already discussed above and
also the notion of random experiment. He postulated the existence of the
probability of each event occurring in a random experiment. Probability was
assumed to be a nonnegative additive function on the algebra of events with
the probability of the sure event equal to 1. Thus a random experiment is for-
mally specified by a triple of things: 1. a sample space {2 of elementary events;
2. an algebra A of its subsets, the members of A being the random events; 3.
a nonnegative additive function P(A) defined on A for which P(£2) = 1; P(A)
is termed the probability of A. If random experiments with infinitely many
outcomes are considered, then it is natural to require that A be a o-algebra
(or o-field). In other words, together with each sequence of events A,,, A also
contains the countable union (J,, A, and P(A) must be a countably-additive
function on A: if A, N A, = 0 for n # m, then P(U, 4n) = >, P(4n).
This means that P is a measure on A and since P({2) = 1, the measure is
normalized.

1.3 Problems of Probability Theory

Initially, probability theory was the study of ways of computing probabilities
of events knowing the probabilities of other given events. The techniques de-
veloped for computing the probabilities of certain classes of events now form
a constituent unit of probability but only partly and far from the main part.
However, as before, probability theory only deals with the probabilities of
events independently of what meaningful sense can be invested in the words
“the probability of event A is p”. This means that probability theory itself
does interpret its results meaningfully but in so doing it does not exclude the
term “probability”. There is no statement like “A always occurs” but rather
the statement “A occurs with probability one”.



1.3 Problems of Probability Theory 15
1.3.1 Probability and Measure Theory

Kolmogorov’s axioms make probability theory a special part of measure theory
namely finite measure theory (being finite and being normalized are clearly
essentially equivalent since any finite measure may be converted into a nor-
malized measure by multiplication by a constant). If this is so, is probability
theory unnecessary? The answer to this question has already been given by the
development of probability theory following the introduction of Kolmogorov’s
axioms. Probability theory does employ measure theory in an essential way
but classical measure theory really involves the construction of a measure by
extension and the development of the integral and its properties including the
Radon-Nikodym theorem. Probability theory has inspired new problems in
measure theory: the convergence of measures and construction of a measure
fibre (”conditional” measure); these now belong traditionally to probability
theory. A completely new area of measure theory is the analysis of abso-
lute continuity and singularity of measures. The Radon-Nikodym theorem
of measure theory serves merely as a starting point for the development of
the very important theory of absolute continuity and singularity of proba-
bility measures (also of consequence in applications). Its meaningfulness lies
in the broad class of special probability measures that it examines. Finally,
the specific classes of measures in probability theory, say, product measures
or fibre bundles of measures, establish the nature of its position in relation
to general measure theory. This manifests itself in the concepts utilized such
as independence, weak dependence and conditional dependence, which are
more associated with certain physical ideas at the basis of our probabilistic
intuition. These same concepts lead to problems whose reformulations in the
language of measure theory prove to be cumbersome, unclear and perplex-
ing making one wonder where these problems arose. (For individuals familiar
with probability theory, as an example, it is suggested that one formulate
the degeneracy problem for the simplest branching process in terms of mea-
sure theory.) Nonetheless, there are a number of sections of probability that
can relate immediately to measure theory, for instance, measure theory in
infinite-dimensional linear spaces. Having originated in probability problems,
they remain traditionally within the framework of probability theory.

1.3.2 Independence

Independence is one of the basic concepts of probability theory. According
to Kolmogorov, it is exactly this that distinguishes probability theory from
measure theory. Independence will be discussed more precisely later on. For
the moment, we merely point out that stochastic independence and physical
independence of events (one event having no effect on another) are identical in
content. Stochastic independence is a precisely-defined mathematical concept
to be given below. At this point, we note that independence was already used
in latent form in the definition of random experiment. One of the requirements
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imposed on an experiment is the possibility of iterating it indefinitely. To
iterate it assumes that the conditions of the experiment can be reconstructed
after which the one just performed and all of the prior ones have no affect on
the outcome of the next experiment. This means that the events occurring in
different experiments must be independent.

Probability theory also studies laws of large numbers for independent ex-
periments. One such law has already been stated on an intuitive level. An
example is Bernoulli’s form of the law of large numbers: “Given a series of
independent trials in each of which an event A can occur with probability p
and v, (A) the relative frequency of A in the first n trials. Then the probability
that |v,(A) — p| > € tends to zero as n — oo for any positive €.” Observe
that the value of v,(A) is random and so the fulfillment of the inequality
in this theorem is a random event. The theorem is a precise statement of
the fact that the relative frequency of an event approaches its probability.
As will be seen below, the proof of this assertion is strictly mathematical. It
may seem paradoxical that it is possible to use mathematics to obtain precise
knowledge about randomly-occurring events (that it is possible to do so in a
determinate world, say, to calculate the dates of lunar eclipses, is quite nat-
ural). In fact, the choice of p is supposedly arbitrary and only the fulfillment
of Kolmogorov’s axioms is required. However, something interesting can be
extracted from Bernoulli’s theorem only if events of small probability actually
rarely occur in practice. It is precisely these kinds of events (or events whose
probability is close to 1) that interest us primarily in probability. If one comes
to the point of view that events of probability 0 practically never occur and
events of probability 1 practically always occur, then the kind of conclusions
that may be drawn from random premises will be of interest.

1.3.3 Asymptotic Behavior of Stochastic Systems

Many physical, engineering and biological objects may be viewed as randomly
evolving systems. Such a system is in one of its possible states (frequently
viewable as finitely many) and with the passage of time the system changes
its state at random. One of the major problems of probability is to study the
asymptotic behavior of these systems over unbounded time intervals. We give
one of the possible results in order to demonstrate the problems arising here.
Let T;(E) be the total time that a system spends in the state E on the time
interval [0,¢]. Then the nonrandom

1
tliglo th(E) =m(E)
exists with probability 1; 7(FE) is the probability that the system will be found
in the state E after a sufficiently long time. More precisely, the probability
that the system is in the state E at time ¢ tends to 7w(E) as ¢ — oo. This
assertion holds of course under certain assumptions on the system in ques-
tion. We cannot state them at this point since the needed concepts still have
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not been introduced. Assertions of this kind are lumped together under the
generic name of ergodic theorems. Just as for the laws of large numbers, they
provide reliable conclusions from random premises. One may be interested
in a more exact behavior of the sojourn time in a given state, for instance,
in studying the behavior of the difference [t~1T}(F) — 7(E)] multiplied by
a suitable increasing function of ¢ (the difference itself tends to zero). Under
very broad assumptions, this difference multiplied by v/ behaves primarily the
same way for all systems. We have now the second most important probability
law (after the law of large numbers), which may be called the law of normal
fluctuations. It holds also for relative frequencies and says that the deviation
of a relative frequency from a probability after multiplication by a suitable
constant behaves the same way in all cases (this is expressed precisely by the
phrase “has a normal distribution”; what this means will be explained later
on). Among the practically important problems involving stochastic systems
is “predicting” their behavior from observations of their past behavior.

1.3.4 Stochastic Analysis

Moving on from the concept of random event, one could “randomize” any
mathematical object. Such randomization is widely employed and studied in
probability. The new objects do not result in idle philosophizing. They come
about in an essential way and nontrivial important theorems are associated
with them that find extensive application in the natural sciences and engineer-
ing. The first thing of this kind is the random number (or random variable in
the accepted terminology). Such variables appear in experiments in which one
or more characteristics of the experimental results are being measured. Fol-
lowing this, it is natural to consider the arithmetic of these variables and then
to extend the concepts of mathematical analysis to them: limit, functional
dependence and so on. Thus we arrive at the notions of random function,
random operator, random mapping, stochastic integral, stochastic differential
equation, etc. This is a comparatively new rather intensively developing area
of probability theory. Despite their stochastic coloration, the problems that
arise here are often analogous to problems of ordinary analysis.
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Probability Space

The probability space is the basic object of study in probability theory and
formalizes the notion of random experiment. A probability space is defined by
three things: the space {2 of elementary events or sample space, a o-algebra A
of subsets of {2 called events, and a countably-additive nonnegative normalized
set function P(A) defined on A, which is called probability. A probability
space defined by this triple is denoted by ({2, 4, P).

2.1 Finite Probability Space

A finite probability space is one whose sample space is a finite set and A
comprises all of the subsets of (2. The probability is defined by its values on
the elementary events.

2.1.1 Combinatorial Analysis

Suppose that the probabilities of all of the elementary events are the same
(they are equally likely). To find the probability of an event A, it is necessary
to know the overall number of elementary events and the number of those
elementary events which imply A. The number of elements in a finite set
can be calculated using direct methods that sort out all of the possibilities
or combinatorial methods. Only the latter are of mathematical interest. We
consider some examples applying them.

(a) Allocation of particles in cells. Problems of this kind arise in statistical
physics. Given n cells in which N particles are distributed at random. What
is the distribution of the particles in the cells? The answer depends on what
are considered to be the elementary events.
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Mazwell-Boltzmann statistics. We assume that all of the particles are distinct
and all allocations of particles are equally likely. An elementary event is given
by the sequence (ki, ka2, ... kn), where k; is the number of the cell into which
the particle numbered ¢ has fallen. Since each k; assumes n distinct values,
the number of such sequences is n?. The probability of an elementary event
is n=V.

Bose-Finstein statistics. The particles are indistinguishable. Again all of the
allocations are equally likely. An elementary event is given by the sequence
(l1,...,0,), where ({1+...4+¢, = N and ¢; is the number of particles in the i-th
cell, i < n. The number of such sequences can be calculated as follows. With
each (¢1,...,¢,) associate a sequence of zeroes and ones (i1, ..., ik+n—1) With
zeroes in the positions numbered £1 41,61 +0o+2,..., 01 +lo+.. . +€,_1+n—1
(there are n — 1 of them) and ones in the remaining positions. The number of
such sequences is equal to the number of combinations of N+n—1 things taken

-1
n — 1 at a time. The probability of an elementary event is (N;fl 1) .
Fermi-Dirac statistics. In this case N < n and each cell contains at most one
o\
N
For each of the three statistics, we find the probability that a given cell
(say, number 1) has no particle. Each time the number of favorable elemen-
tary events equals the number of allocations of the particles into n — 1 cells.

Therefore if we let p1, p2, and p3 be the probabilities of the specified event for
each statistics (in order of discussion), we have

p1<n1>N/nN(11)N7
= (00 () e
w2/ ()2

If N/n = a and n — oo, then

particle. Then the number of elementary events is

B 1
C14a

(03

pr=e€e ", D2

y pgilfoé.

For small a, these probabilities coincide up to O(a?). o characterizes the
“average density” of the particles. If « is small, then the three probabilities
are primarily equal.

(b) Samples. A sample may be defined in general as follows. There are m
finite sets A1, Ao, ..., A,,. From each set, we choose an element a; € A; one by
one. The collection (aq, ..., a,) is then the sample. Samples are distinguished
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by identification rules (let us say, we are not interested in the order of the
elements in a sample). Each sample is regarded as an elementary event and
the elementary events are considered to be equally likely.

1. Sampling with replacement. In this instance, the A; coincide: A; = A and
the number of samples is n”*, where n is the number of elements in A.

2. Sampling without replacement. A sample is constructed as follows. A; = A,
As = A\{a1},..., A = A\{a1,...,ar—1}. In other words, only samples
(a1,...,am), a; € A, are considered in which all of the elements are dis-
tinct. If A has n elements, then the number of samples without replace-
ment isn(n—1)...(n—m+1)/m! = "

3. Sampling without replacement from intersecting sets. In this instance, the
A; have points in common but we are considering samples in which all of
the elements are distinct. The number of such samples may be computed
as follows. Consider the set A = [J;.; Aj and the algebra A of subsets of
it generated by Ajp,...,A,,. This is a finite algebra. Let By, Bs,..., By
be atoms of the algebra, that is, they each have no subsets belonging to
the algebra other than the empty set and themselves. Let n(B;,,...,B;,)
denote the number of samples without replacement from B, ,...,B;, ,
where each B;, may be any atom. The value of n(B;,, ..., B;, ) depends on
the distinct sets encountered in the sequence and on the number of times
these sets are repeated. Let n(f1,¢s,...,¢n) be the number of samples
from such a sequence, where B; occurs £; times, By occurs /o times and
soon, ¥; > 0,01 + ...+ {n = m. If B; has n; elements, then

N

n(ly,...,In) = —_— .
The number of samples of interest to us equals
n<Bi1 yeee Bim>
B;, CA1,..,Bi,, CAm

2.1.2 Conditional Probability

The conditional probability of an event A given event B having positive prob-
ability has occurred is the quantity

P(ANB)

PAIB) = =55

(2.1.1)
As a function of A, P(A|B) possesses all of the properties of a probability.
The meaning of conditional probability may be explained as follows. Together
with the original experiment, consider a conditional probability experiment
which is performed if event B has happened in the original experiment. Thus if
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the original experiment has been done n times and B has happened np times,
then this sequence contains npg conditional experiments. The event A will have
occurred in the conditional experiment if A and B occur simultaneously, i.e.,
if ANB occurs. If n4np is the number of experiments in which the event ANB
is observed (of the n carried out), then the relative frequency of occurrence in
the np conditional experiments is nanp/np = v, (ANB) /v, (B). If we replace
the relative frequencies by the probabilities, then we have the right-hand side
of (1.2.1).

(a) Formula of total probability. Bayes’s theorem. A finite collection of events
Hy Hs,... H, is said to form a complete group of events if they are pair-
wise disjoint and their union is the sure event: 1. H; N H; = 0 if ¢ # j;
2. U, H; = £2. One can consider a supplementary experiment in which the
H; are the elementary events and the original experiment is viewed as a com-
pound experiment: first one clarifies which H; has occurred and then knowing
H;, one performs a conditional experiment under the assumption that H; has
occurred. An event A occurs in the conditional experiment with probability
P(A|H;), the conditional probability of A given H;. In many problems, the
H; are called the causes or hypotheses and the conditional probabilities given
the causes are prescribed. The following relation expressing the probability of
an event in terms of these conditional probabilities and the probabilities of
causes is called the formula of total probability:

P(A) = iP(A|Hi)P(Hi) . (2.1.2)

On the basis of (2.1.1) the right-hand side becomes Y _;_, P(AN H;) and since
the events A N H; are mutually exclusive and UH; = {2, it follows that

zT:P(AﬂHZ-) —-P (O(AﬂHﬁ) -P <AOOHZ-> =P(A).

i=1 i=1 i=1
Formula (2.1.2) is really useful when considering a compound experiment.

Ezample. There are r urns containing black and white balls. The probability
of drawing a white ball from the urn numbered i is p;. One of the urns is
chosen at random and then a ball is drawn from it. By formula (2.1.2), we
determine the probability of drawing a white ball. In our case, P(H;) = 1/r,
P(A|H;) = p; and hence P(A) =r~'>"_ p;.

The formula of total probability leads to an important result called Bayes’s
theorem. It enables one to find the conditional probabilities of the causes given
that an event A has occurred:

P(Hy|4) = P(A|H})P(Hy) / S PAHPH) . (213)
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This formula is commonly interpreted as follows. The conditional probabilities
of an event given each of the causes Hi,..., H, and the probabilities of the
causes are assumed to be known. If the experiment has resulted in the occur-
rence of event A, then the probabilities of the causes have changed: once we
know that A has already occurred, then it is natural to treat the probabilities
of the causes as their conditional probabilities given A. The P(H;) are called
the apriori probabilities of the causes and the P(H;|A) are their aposteriori
probabilities. Bayes’s theorem expresses the aposteriori probabilities of the
causes in terms of their apriori probabilities and the conditional probabilities
of an event given the various causes.

Ezample. There are two urns of which the first contains 2 white and 8 black
balls and the second 8 white and 2 black balls. An urn is selected at random
and a ball is drawn from it. It is white. What is the probability that the first
urn was chosen? Here we have P(H;) = P(Hz) = 1/2, P(A|H;) = 1/5 and
P(A|Hy) = 4/5. By (2.1.3),

P(H,|A)=1/2-1/5/(1/2-1/5+1/2-4/5) =1/5.

(b) Independence. An event A does not depend on an event B if the condi-
tional probability P(A|B) equals the unconditional probability P(A). In that
case,

P(ANB) =P(A)P(B) (2.1.4)

which shows that the property of independence is symmetric. Formula (2.1.4)
could serve as a definition of independence of two events A and B. The first
definition is more meaningful: the fact that B has occurred has no affect on
the probability of A and it is reasonable to assume that A does not depend
on B. It follows from (2.1.4) that the independence of A and B implies the
independence of A and B, A and B, and A and B (A is the negation of the
event A). Independence is defined for several events as follows. Ay, As, ..., A,
are said to be mutually independent if

P(A;, N Ay, N...NA;) =P(A;)...P(A;,) (2.1.5)

for any k < m and i; < ig... < i < m. Thus for three events A, B and C'
their independence means that the following four equalities hold: P(ANB) =
P(AP(B),P(ANC)=PA)PC), P(BNC)=P(B)P(C) and P(AN BN
C)=PAP(B)P(C).

Bernstein’s example. The sample space consists of four elements E1, Fs, E3,
and Ey with P(Ey) = 1/4, k =1,2,3,4. Let A; = E; U E4,i = 1,2,3. Then
Ai1NAy=A1NA3 = Ay N A3 = AN Ay N A3 = E4. Therefore P(A1 N Ag) =
P(Al)P(AQ), P(Al ﬁAg) = P(Al)P(A?,) and P(AgﬂAg) = P(AQ)P(Ag) But
P(A1NAyN A3) # P(A1)P(A2)P(A3). The events are pairwise independent
but they are not mutually independent.
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2.1.3 Bernoulli’s Scheme. Limit Theorems

Let Ay, Ao, ..., A, be a complete group of events. An event B is independent
of this group if it does not depend on any of the events Ay, k= 1,...,r. Let A
be the algebra generated by the events A1, ..., A,; it comprises the impossible
event and all unions of the form J, A;,, ix < 7. Then B is independent of the
algebra A, that is, it does not depend on any event A € A. Two algebras of
events A, and A, are said to be independent if A; and A, are independent for
each pair of events A; € A; and Ay € Ay. Algebras of events Aj, Ao, ..., Apn
are independent if Ay, Ag, ..., A,, are mutually independent, where A; € A;,
1 < m. To this end, it suffices that

P <ﬁ Ai> - ﬁP(AZ-) (2.1.6)
i=1 =1

for any choice of A; € A;. (This definition simplifies as compared to that of
independent events in (2.1.5) because some A; may be chosen to be (2.)

Consider several experiments specified by the probability spaces
(2, A, Pr), k=1,2,...,n. We now form a new probability space ({2, A, P).
(2 is taken to be the Cartesian product {21 X {25 X ... X £2,,. The algebra A is
the product of algebras A1 @ As ® ... R A, of subsets of {2 generated by sets
of the form Ay X As X ... x A, with Ay € A, k =1,2,...,n (an algebra is
said to be generated by a collection of sets if it is the smallest algebra contain-
ing that collection). Finally, the measure P is the product of measures Py:
P = Hz:l Pk, that iS7 P(Al X A2 oo X An) = P(Al)P(AQ) .. P(An) The
probability space (2, 4, P) corresponds to a compound experiment in which
each of the n experiments specified above is performed independently.

(a) Bernoulli’s scheme involves a series of independent and identical experi-
ments (trials). This just means that a probability space (21 X ... X 2,,, 41 ®
.. ® A, [T, P;) is defined for every n in which each probability space
(2, A, P) coincides with the exact same space (£2, A, P). (As we shall see
below, it is possible to consider an infinite product of such probability spaces
right away; it will not be finite if the given space is nontrivial, that is, {2
contains more than one element.) Let A € A. The event 2x ... x AXx...x {2,
where A is in the k-th position and the remaining factors are (2, is inter-
preted as the event “A occurred in the k-th experiment.” Let p,(m) denote
the probability that A happens exactly m times in n independent trials. Then

palm) = ()=, p=P(). (217)

Indeed, our event of interest is the union of events of the form A x fl_x oo X
Ax...xAx...x A, where A occurs in the product m times and A occurs

n — m times. There are <:1> such distinct products and the probability of

one such event is p™(1 — p)"~ ™.
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Let A, As,... A, be a complete group of events in an algebra A. Let
pn(k1, ..., k) be the probability that in n independent trials A; occurs k;
times, ¢ = 1,...,7 and k14, ..., +k, = n. Similarly to the preceding, one can
establish that
n! k.

'k!p’fl...pr’, pi=P(A), i=1,...,r. (2.1.8)

pn(kj17...7kr) = klli

The probabilities (2.1.7) are called the binomial probabilities and (2.1.8) the
multinomial probabilities.

(b) The law of large numbers. This law has been mentioned several times in
the introductory chapter. We are now in a position to prove it.

Bernoulli’s Theorem. Let v, be the number of occurences of an event A in
n independent trials having probability p in each trial, 0 < p < 1. Then for
any positive €,

1
lim P{ un—p’ >€} =0. (2.1.9)

Proof. For fixed n, the event {v,, = k} has probability p, (k). For different
values of k, these events are mutually exclusive. Therefore

1
P{‘nl/n —p‘ > 5} = Z pn (k) + Z pn (k) .
k<n(p—e) k>n(p+e)
Starting with (2.1.7), we find that

pn(k+1) :n—k P
pn(k) k+11-p

Therefore for k > n(p + ¢),

o (k+ 1 -
polk+1) n—nlpte) p L ¢

pn(k) np 1-p = 1-p°

Let k* denote the smallest value of k satisfying k > n(p + ¢) and let k,
be the smallest value of k for which (n — k)p/[(k + 1)(1 — p)] < 1. Then
pn(k 4+ 1) < pp(k) for k > k.. Therefore

S o) = Y palk) < pulk i ( . )m _ (1;p)pn(k*)-

kE>n(p+e) k>k* m=0

Next,

1> Z pn Z k*)pn(k*)



