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Preface

My purpose in this monograph is to present an essentially self-contained
account of the mathematical theory of Galerkin finite element methods as
applied to parabolic partial differential equations. The emphases and selection
of topics reflects my own involvement in the field over the past 25 years,
and my ambition has been to stress ideas and methods of analysis rather
than to describe the most general and farreaching results possible. Since the
formulation and analysis of Galerkin finite element methods for parabolic
problems are generally based on ideas and results from the corresponding
theory for stationary elliptic problems, such material is often included in the
presentation.

The basis of this work is my earlier text entitled Galerkin Finite Element
Methods for Parabolic Problems, Springer Lecture Notes in Mathematics,
No. 1054, from 1984. This has been out of print for several years, and I
have felt a need and been encouraged by colleagues and friends to publish an
updated version. In doing so I have included most of the contents of the 14
chapters of the earlier work in an updated and revised form, and added four
new chapters, on semigroup methods, on multistep schemes, on incomplete
iterative solution of the linear algebraic systems at the time levels, and on
semilinear equations. The old chapters on fully discrete methods have been
reworked by first treating the time discretization of an abstract differential
equation in a Hilbert space setting, and the chapter on the discontinuous
Galerkin method has been completely rewritten.

The following is an outline of the contents of the book:
In the introductory Chapter 1 we begin with a review of standard material

on the finite element method for Dirichlet’s problem for Poisson’s equation
in a bounded domain, and consider then the simplest Galerkin finite element
methods for the corresponding initial-boundary value problem for the linear
heat equation. The discrete methods are based on associated weak, or vari-
ational, formulations of the problems and employ first piecewise linear and
then more general approximating functions which vanish on the boundary
of the domain. For these model problems we demonstrate the basic error
estimates in energy and mean square norms, in the parabolic case first for
the semidiscrete problem resulting from discretization in the spatial vari-
ables only, and then also for the most commonly used fully discrete schemes



VI Preface

obtained by discretization in both space and time, such as the backward Euler
and Crank-Nicolson methods.

In the following five chapters we study several extensions and generaliza-
tions of the results obtained in the introduction in the case of the spatially
semidiscrete approximation, and show error estimates in a variety of norms.
First, in Chapter 2, we formulate the semidiscrete problem in terms of a more
general approximate solution operator for the elliptic problem in a manner
which does not require the approximating functions to satisfy the homoge-
neous boundary conditions. As an example of such a method we discuss a
method of Nitsche based on a nonstandard weak formulation. In Chapter 3
more precise results are shown in the case of the homogeneous heat equation.
These results are expressed in terms of certain function spaces Ḣs(Ω) which
are characterized by both smoothness and boundary behavior of its elements,
and which will be used repeatedly in the rest of the book. We also demon-
strate that the smoothing property for positive time of the solution operator
of the initial value problem has an analogue in the semidiscrete situation, and
use this to show that the finite element solution converges to full order even
when the initial data are nonsmooth. The results of Chapters 2 and 3 are
extended to more general linear parabolic equations in Chapter 4. Chapter
5 is devoted to the derivation of stability and error bounds with respect to
the maximum-norm for our plane model problem, and in Chapter 6 negative
norm error estimates of higher order are derived, together with related results
concerning superconvergence.

In the next six chapters we consider fully discrete methods obtained by
discretization in time of the spatially semidiscrete problem. First, in Chapter
7, we study the homogeneous heat equation and give analogues of our pre-
vious results both for smooth and for nonsmooth data. The methods used
for time discretization are of one-step type and rely on rational approxima-
tions of the exponential, allowing the standard Euler and Crank-Nicolson
procedures as special cases. Our approach here is to first discretize a par-
abolic equation in an abstract Hilbert space framework with respect to time,
and then to apply the results obtained to the spatially semidiscrete problem.
The analysis uses eigenfunction expansions related to the elliptic operator
occurring in the parabolic equation, which we assume positive definite. In
Chapter 8 we generalize the above abstract considerations to a Banach space
setting and allow a more general parabolic equation, which we now analyze
using the Dunford-Taylor spectral representation. The time discretization is
interpreted as a rational approximation of the semigroup generated by the
elliptic operator, i.e., the solution operator of the initial-value problem for
the homogeneous equation. Application to maximum-norm estimates is dis-
cussed. In Chapter 9 we study fully discrete one-step methods for the inho-
mogeneous heat equation in which the forcing term is evaluated at a fixed
finite number of points per time stepping interval. In Chapter 10 we apply
Galerkin’s method also for the time discretization and seek discrete solutions
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as piecewise polynomials in the time variable which may be discontinuous
at the now not necessarily equidistant nodes. In this discontinuous Galerkin
procedure the forcing term enters in integrated form rather than at a finite
number of points. In Chapter 11 we consider multistep backward difference
methods. We first study such methods with constant time steps of order at
most 6, and show stability as well as smooth and nonsmooth data error es-
timates, and then discuss the second order backward difference method with
variable time steps. In Chapter 12 we study the incomplete iterative solution
of the finite dimensional linear systems of algebraic equations which need to
be solved at each level of the time stepping procedure, and exemplify by the
use of a V-cycle multigrid algorithm.

The next two chapters are devoted to nonlinear problems. In Chapter 13
we discuss the application of the standard Galerkin method to a model non-
linear parabolic equation. We show error estimates for the spatially semidis-
crete problem as well as the fully discrete backward Euler and Crank-Nicolson
methods, using piecewise linear finite elements, and then pay special atten-
tion to the formulation and analysis of time stepping procedures based on
these, which are linear in the unknown functions. In Chapter 14 we derive
various results in the case of semilinear equations, in particular concerning
the extension of the analysis for nonsmooth initial data from the case of linear
homogenous equations.

In the last four chapters we consider various modifications of the stan-
dard Galerkin finite element method. In Chapter 15 we analyze the so called
lumped mass method for which in certain cases a maximum-principle is valid.
In Chapter 16 we discuss the H1 and H−1 methods. In the first of these, the
Galerkin method is based on a weak formulation with respect to an inner
product in H1 and for the second, the method uses trial and test functions
from different finite dimensional spaces. In Chapter 17, the approximation
scheme is based on a mixed formulation of the initial boundary value problem
in which the solution and its gradient are sought independently in different
spaces. In the final Chapter 18 we consider a singular problem obtained by
introducing polar coordinates in a spherically symmetric problem in a ball in
R3 and discuss Galerkin methods based on two different weak formulations
defined by two different inner products.

References to the literature where the reader may find more complete
treatments of the different topics, and some historical comments, are given
at the end of each chapter.

A desirable mathematical background for reading the text includes stan-
dard basic partial differential equations and functional analysis, including
Sobolev spaces; for the convenience of the reader we often give references to
the literature concerning such matters.

The work presented, first in the Lecture Notes and now in this monograph,
has grown from courses, lecture series, summer-schools, and written material
that I have been involved in over a long period of time. I wish to thank my
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students and colleagues in these various contexts for the inspiration and sup-
port they have provided, and for the help they have given me as discussion
partners and critics. As regards this new version of my work I particularly
address my thanks to Georgios Akrivis, Stig Larsson, and Per-Gunnar Mar-
tinsson, who have read the manuscript in various degrees of detail and are
responsible for many improvements. I also want to express my special grat-
itude to Yumi Karlsson who typed a first version of the text from the old
lecture notes, and to Gunnar Ekolin who generously furnished me with expert
help with the intricacies of TEX.

Göteborg Vidar Thomée
July 1997



Preface to the Second Edition

I am pleased to have been given the opportunity to prepare a second edition
of this book. In doing so, I have kept most of the text essentially unchanged,
but after correcting a number or typographical errors and other minor inad-
equacies, I have also taken advantage of this possibility to include some new
material representing work that I have been involved in since the time when
the original version appeared about eight years ago.

This concerns in particular progress in the application of semigroup theory
to stability and error analysis. Using the theory of analytic semigroups it is
convenient to reformulate the stability and smoothing properties as estimates
for the resolvent of the associated elliptic operator and its discrete analogue.
This is particularly useful in deriving maximum-norm estimates, and has led
to improvements for both spatially semidiscrete and fully discrete problems.
For this reason a somewhat expanded review of analytic semigroups is given
in the present Chapter 6, on maximum-norm estimates for the semidiscrete
problem, where now resolvent estimates for piecewise linear finite elements
are discussed in some detail. These changes have affected the chapter on
single step time stepping methods, expressed as rational approximation of
semigroups, now placed as Chapter 9. The new emphasis has led to certain
modifications and additions also in other chapters, particularly in Chapter
10 on multistep methods and Chapter 15 on the lumped mass method.

I have also added two chapter at the end of the book on other topics
of recent interest to me. The first of these, Chapter 19, concern problems
in which the spatial domain is polygonal, with particular attention given to
noncovex such domains. rather than with smooth boundary, as in most of the
rest of the book. In this case the corners generate singularites in the exact
solution, and we study the effect of these on the convergence of the finite
element solution.

The second new chapter, Chapter 20, considers an alternative to time
stepping as a method for discretization in time, which is based on representing
the solution as an integral involving the resolvent of the elliptic operator
along a smooth curve extending into the right half of the complex plane,
and then applying an accurate quadrature rule to this integral. This reduces
the parabolic problem to a finite set of elliptic problems that may be solved
in parallel. The method is then combined with finite element discretization
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in the spatial variable. When applicable, this method gives very accurate
approximations of the exact solution in an efficient way.

I would like to take this opportunity to express my warm gratitude to
Georgios Akrivis for his generous help and support. He has critically read
through the new material and made many valuable suggestions.

Göteborg Vidar Thomée
March 2006
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1. The Standard Galerkin Method

In this introductory chapter we shall study the standard Galerkin finite
element method for the approximate solution of the model initial-boundary
value problem for the heat equation,

ut − ∆u = f in Ω, for t > 0,(1.1)
u = 0 on ∂Ω, for t > 0, with u(·, 0) = v in Ω,

where Ω is a domain in R
d with smooth boundary ∂Ω, and where u = u(x, t),

ut denotes ∂u/∂t, and ∆ =
∑d

j=1 ∂2/∂x2
j the Laplacian.

Before we start to discuss this problem we shall briefly review some ba-
sic relevant material about the finite element method for the corresponding
stationary problem, the Dirichlet problem for Poisson’s equation,

(1.2) −∆u = f in Ω, with u = 0 on ∂Ω.

Using a variational formulation of this problem, we shall define an approxi-
mation of the solution u of (1.2) as a function uh which belongs to a finite-
dimensional linear space Sh of functions of x with certain properties. This
function, in the simplest case a continuous, piecewise linear function on some
partition of Ω, will be a solution of a finite system of linear algebraic equa-
tions. We show basic error estimates for this approximate solution in energy
and least square norms.

We shall then turn to the parabolic problem (1.1) which we first write in
a weak form. We then proceed to discretize this problem, first in the spatial
variable x, which results in an approximate solution uh(·, t) in the finite
element space Sh, for t ≥ 0, as a solution of an initial value problem for a
finite-dimensional system of ordinary differential equations. We then define
the fully discrete approximation by application of some finite difference time
stepping method to this finite dimensional initial value problem. This yields
an approximate solution U = Uh of (1.1) which belongs to Sh at discrete
time levels. Error estimates will be derived for both the spatially and fully
discrete solutions.

For a general Ω ⊂ R
d we denote below by ‖ · ‖ the norm in L2 = L2(Ω)

and by ‖ · ‖r that in the Sobolev space Hr = Hr(Ω) = W r
2 (Ω), so that for

real-valued functions v,
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‖v‖ = ‖v‖L2 =
(∫

Ω

v2 dx
)1/2

,

and, for r a positive integer,

(1.3) ‖v‖r = ‖v‖Hr =
( ∑

|α|≤r

‖Dαv‖2
)1/2

,

where, with α = (α1, . . . , αd), Dα = (∂/∂x1)α1 · · · (∂/∂xd)αd denotes an
arbitrary derivative with respect to x of order |α| =

∑d
j=1 αj , so that the

sum in (1.3) contains all such derivatives of order at most r. We recall that
for functions in H1

0 = H1
0 (Ω), i.e., the functions v with ∇v = grad v in L2

and which vanish on ∂Ω, ‖∇v‖ and ‖v‖1 are equivalent norms (Friedrichs’
lemma, see, e.g., [42] or [51]), and that

(1.4) c‖v‖1 ≤ ‖∇v‖ ≤ ‖v‖1, ∀v ∈ H1
0 , with c > 0.

Throughout this book c and C will denote positive constants, not necessarily
the same at different occurrences, which are independent of the parameters
and functions involved.

We shall begin by recalling some basic facts concerning the Dirichlet prob-
lem (1.2). We first write this problem in a weak, or variational, form: We
multiply the elliptic equation by a smooth function ϕ which vanishes on ∂Ω
(it suffices to require ϕ ∈ H1

0 ), integrate over Ω, and apply Green’s formula
on the left-hand side, to obtain

(1.5) (∇u,∇ϕ) = (f, ϕ), ∀ϕ ∈ H1
0 ,

where we have used the L2 inner products,

(1.6) (v, w) =
∫

Ω

vw dx, (∇v,∇w) =
∫

Ω

d∑

j=1

∂v

∂xj

∂w

∂xj
dx.

A function u ∈ H1
0 which satisfies (1.5) is called a variational solution of (1.2).

It is an easy consequence of the Riesz representation theorem that a unique
such solution exists if f ∈ H−1, the dual space of H1

0 . In this case (f, ϕ)
denotes the value of the functional f at ϕ. Further, since we have assumed
the boundary ∂Ω to be smooth, the solution u is smoother by two derivatives
in L2 than the right hand side f , which may be expressed in the form of the
elliptic regularity inequality

(1.7) ‖u‖m+2 ≤ C‖∆u‖m = C‖f‖m, for any m ≥ −1.

In particular, using also Sobolev’s embeddning theorem, this shows that the
solution u belongs to C∞ if f belongs to C∞. We refer to, e.g., Evans [96]
for such material.
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We remark for later reference that, for m = −1, 0, (1.7) holds also in the
case of a convex polygonal domain Ω, but that this is not true for nonconvex
polygonal domains.

As a preparation for the definition of the finite element solution of (1.2),
we consider briefly the approximation of smooth functions in Ω which vanish
on ∂Ω. For concreteness, we shall exemplify by piecewise linear functions in
a convex plane domain.

Let thus Ω be a convex domain in the plane with smooth boundary ∂Ω,
and let Th denote a partition of Ω into disjoint triangles τ such that no
vertex of any triangle lies on the interior of a side of another triangle and
such that the union of the triangles determine a polygonal domain Ωh ⊂ Ω
with boundary vertices on ∂Ω.

Let h denote the maximal length of the sides of the triangulation Th. Thus
h is a parameter which decreases as the triangulation is made finer. We shall
assume that the angles of the triangulations are bounded below by a positive
constant, independently of h, and sometimes also that the triangulations are
quasiuniform in the sense that the triangles of Th are of essentially the same
size, which we express by demanding that the area of τ ∈ Th is bounded
below by ch2, with c > 0, independent of h.

Let now Sh denote the continuous functions on the closure Ω̄ of Ω which
are linear in each triangle of Th and which vanish outside Ωh. Let {Pj}Nh

j=1

be the interior vertices of Th. A function in Sh is then uniquely determined
by its values at the points Pj and thus depends on Nh parameters. Let Φj be
the pyramid function in Sh which takes the value 1 at Pj but vanishes at the
other vertices. Then {Φj}Nh

j=1 forms a basis for Sh, and every χ in Sh admits
a unique representation

χ(x) =
Nh∑

j=1

αjΦj(x), with αj = χ(Pj).

A given smooth function v on Ω which vanishes on ∂Ω may now be
approximated by, for instance, its interpolant Ihv in Sh, which we define as
the function in Sh which agrees with v at the interior vertices of Th, i.e.,

(1.8) Ihv(x) =
Nh∑

j=1

v(Pj)Φj(x).

Using this notation in our plane domain Ω, the following error estimates for
the interpolant defined in (1.8) are well known (see, e.g., [42] or [51]), namely,
for v ∈ H2 ∩ H1

0 ,

(1.9) ‖Ihv − v‖ ≤ Ch2‖v‖2 and ‖∇(Ihv − v)‖ ≤ Ch‖v‖2.

They may be derived by showing the corresponding estimate for each τ ∈ Th

and then taking squares and adding. For an individual τ ∈ Th the proof is
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achieved by means of the Bramble-Hilbert lemma (cf. [42] or [51]), noting
that Ihv − v vanishes on τ for v linear.

We shall now return to the general case of a domain Ω in R
d and assume

that we are given a family {Sh} of finite-dimensional subspaces of H1
0 such

that, for some integer r ≥ 2 and small h,

(1.10) inf
χ∈Sh

{‖v − χ‖ + h‖∇(v − χ)‖} ≤ Chs‖v‖s, for 1 ≤ s ≤ r,

when v ∈ Hs ∩ H1
0 . The number r is referred to as the order of accuracy of

the family {Sh}. The above example of piecewise linear functions in a plane
domain corresponds to d = r = 2. In the case r > 2, Sh often consists of
piecewise polynomials of degree at most r−1 on a triangulation Th as above.
For instance, r = 4 in the case of piecewise cubic polynomial subspaces. Also,
in the general situation estimates such as (1.10) may often be obtained by
exhibiting an interpolation operator Ih : Hr ∩ H1

0 → Sh such that

(1.11) ‖Ihv − v‖ + h‖∇(Ihv − v)‖ ≤ Chs‖v‖s, for 1 ≤ s ≤ r.

When ∂Ω is curved and r > 2 there are difficulties in the construction and
analysis of such operators near the boundary, but this may be accomplished,
in principle, by mapping a curved triangle onto a straight-edged one (isopara-
metric elements). We shall not dwell on this here, but return in Chapter 2 to
this problem.

We remark for later reference that if the family {Sh} is based on a family
of quasiuniform triangulations Th and Sh consists of piecewise polynomials
of degree at most r − 1, then one may show the inverse inequality

(1.12) ‖∇χ‖ ≤ Ch−1‖χ‖, ∀χ ∈ Sh.

This follows by taking squares and adding from the corresponding inequality
for each triangle τ ∈ Th, which in turn is obtained by a transformation
to a fixed reference triangle, and using the fact that all norms on a finite
dimensional space are equivalent, see, e.g., [51].

The optimal orders to which functions and their gradients may be approx-
imated under our assumption (1.10) are O(hr) and O(hr−1), respectively, and
we shall now construct approximations to these orders of the solution of the
Dirichlet problem (1.2) by the finite element method. The approximate prob-
lem is then to find a function uh ∈ Sh such that, cf., (1.5),

(1.13) (∇uh,∇χ) = (f, χ), ∀χ ∈ Sh.

This way of defining an approximate solution in terms of the variational
formulation of the problem is referred to as Galerkin’s method, after the
Russian applied mathematician Boris Grigorievich Galerkin (1871-1945).

Note that, as a result of (1.5) and (1.13),

(1.14) (∇(uh − u),∇χ) = 0, ∀χ ∈ Sh,
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that is, the error in the discrete solution is orthogonal to Sh with respect to
the Dirichlet inner product (∇v,∇w).

In terms of a basis {Φj}Nh
1 for the finite element space Sh, our dis-

crete problem may also be formulated: Find the coefficients αj in uh(x) =
∑Nh

j=1 αjΦj(x) such that

Nh∑

j=1

αj(∇Φj ,∇Φk) = (f, Φk), for k = 1, . . . , Nh.

In matrix notation this may be expressed as

Aα = f̃ ,

where A = (ajk) is the stiffness matrix with elements ajk = (∇Φj ,∇Φk),
f̃ = (fk) the vector with entries fk = (f, Φk), and α the vector of unknowns
αj . The dimensions of all of these arrays then equal Nh, the dimension of Sh

(which equals the number of interior vertices in our plane example above).
The stiffness matrix A is a Gram matrix and thus in particular positive
definite and invertible so that our discrete problem has a unique solution. To
see that A = (ajk) is positive definite, we note that

d∑

j,k=1

ajkξjξk = ‖∇
( d∑

j=1

ξjΦj

)
‖2 ≥ 0.

Here equality holds only if ∇(
∑d

j=1 ξjΦj) ≡ 0, so that
∑d

j=1 ξjΦj = 0 by
(1.4), and hence ξj = 0, j = 1, . . . , Nh.

When Sh consists of piecewise polynomial functions, the elements of the
matrix A may be calculated exactly. However, unless f has a particularly sim-
ple form, the elements (f, Φj) of f̃ have to be computed by some quadrature
formula.

We shall prove the following estimate for the error between the solutions
of the discrete and continuous problems. Note that these estimates are of
optimal order as defined by our assumption (1.10). Here, as will always be
the case in the sequel, the statements of the inequalities assume that u is
sufficiently regular for the norms on the right to be finite.

We remark that since we require ∂Ω to be smooth, according to the
elliptic regularity estimate (1.7), the solution of (1.2) can be guaranteed to
have any degree of smoothness required by assuming the right hand side f
to be sufficiently smooth. In particular, u ∈ Hr ∩ H1

0 if f ∈ Hr−2, and the
solution u belongs to C∞ if ∂Ω ∈ C∞ and f ∈ C∞.

Theorem 1.1 Assume that (1.10) holds, and let uh and u be the solutions
of (1.13) and (1.2), respectively. Then, for 1 ≤ s ≤ r,

‖uh − u‖ ≤ Chs‖u‖s and ‖∇uh −∇u‖ ≤ Chs−1‖u‖s.
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Proof. We start with the estimate for the error in the gradient. Since by (1.14)
uh is the orthogonal projection of u onto Sh with respect to the Dirichlet inner
product, we have by (1.10)

(1.15) ‖∇(uh − u)‖ ≤ inf
χ∈Sh

‖∇(χ − u)‖ ≤ Chs−1‖u‖s.

For the error bound in L2−norm we proceed by a duality argument. Let
ϕ be arbitrary in L2, take ψ ∈ H2 ∩ H1

0 as the solution of

(1.16) −∆ψ = ϕ in Ω, with ψ = 0 on ∂Ω,

and recall the fact that by (1.7) the solution ψ of (1.16) is smoother by two
derivatives in L2 than the right hand side ϕ, so that

(1.17) ‖ψ‖2 ≤ C‖∆ψ‖ = C‖ϕ‖.

For any ψh ∈ Sh we have

(uh − u, ϕ) = −(uh − u,∆ψ) = (∇(uh − u),∇ψ)

= (∇(uh − u),∇(ψ − ψh)) ≤ ‖∇(uh − u)‖ ‖∇(ψ − ψh)‖,
(1.18)

and hence, using (1.15) together with (1.10) with s = 2 and (1.7) with m = 0,

(uh − u, ϕ) ≤ Chs−1‖u‖s h‖ψ‖2 ≤ Chs‖u‖s‖ϕ‖.

Choosing ϕ = uh − u completes the proof. ��

After these preparations we now turn to the initial-boundary value prob-
lem (1.1) for the heat equation. As in the elliptic case we begin by writing the
problem in weak form: We multiply the heat equation by a smooth function
ϕ which vanishes on ∂Ω (or ϕ ∈ H1

0 ), integrate over Ω, and apply Green’s
formula to the second term, to obtain, with (v, w) and (∇v,∇w) as in (1.6),

(1.19) (ut, ϕ) + (∇u,∇ϕ) = (f, ϕ), ∀ϕ ∈ H1
0 , t > 0.

We say that a function u = u(x, t) is a weak solution of (1.1) on [0, t̄] if (1.19)
holds with u ∈ L2(0, t̄;H1

0 ) and ut ∈ L2(0, t̄;H−1), and if u(·, 0) = v. Again,
since the boundary ∂Ω is smooth, such a solution is smooth provided the
data are smooth functions, and in this case also satisfy certain compatibility
conditions at t = 0. Similarly to (1.7) this may be expressed by a parabolic
regularity estimate such as, cf. [96], with u(j) = (∂/∂t)ju and C = Cm,t̄,

(1.20)
m+1∑

j=0

∫ t̄

0

‖u(j)‖2
2(m−j)+2dt ≤ C

(
‖v‖2

2m+1 +
m∑

j=0

∫ t̄

0

‖f (j)‖2
2(m−j)dt

)
,

for m ≥ 0. The compatibility conditions required express that the different
conditions imposed in (1.1) at ∂Ω are consistent with each other. The first
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such condition, required for m = 0, is that since u(t) = 0 on ∂Ω for t > 0,
then u(0) = v also has to vanish on ∂Ω. Next, for m = 1, since ut(t) = 0 on
∂Ω for t > 0, smoothness requires that ut(0) = g := ∆v + f(0) = 0 on ∂Ω,
and similarly for u(m)(0) with m ≥ 2. Again we refer to, e.g., Evans [96] for
details.

As indicated above it is convenient to proceed in two steps with the deriva-
tion and analysis of the approximate solution of (1.1). In the first step we
approximate u(x, t) by means of a function uh(x, t) which, for each fixed t,
belongs to a finite-dimensional linear space Sh of functions of x of the type
considered above. This function will be a solution of an h-dependent finite sys-
tem of ordinary differential equations in time and is referred to as a spatially
discrete, or semidiscrete, solution. As in the elliptic case just considered, the
spatially discrete problem is based on a weak formulation of (1.1). We then
proceed to discretize this system in the time variable to obtain produce a fully
discrete approximation of the solution of (1.1) by a time stepping method. In
our basic schemes this discretization in time will be accomplished by a finite
difference approximation of the time derivative.

We thus first pose the spatially semidiscrete problem, based on the weak
formulation (1.19), to find uh(t) = uh(·, t), belonging to Sh for t ≥ 0, such
that

(1.21) (uh,t, χ)+ (∇uh,∇χ) = (f, χ), ∀ χ ∈ Sh, t > 0, with uh(0) = vh,

where vh is some approximation of v in Sh.
In terms of the basis {Φj}Nh

1 for Sh, our semidiscrete problem may be
stated: Find the coefficients αj(t) in uh(x, t) =

∑Nh

j=1 αj(t)Φj(x) such that

Nh∑

j=1

α′
j(t)(Φj , Φk) +

Nh∑

j=1

αj(t)(∇Φj ,∇Φk) = (f, Φk), k = 1, . . . , Nh,

and, with γj the components of the given initial approximation vh, αj(0) = γj

for j = 1, . . . , Nh. In matrix notation this may be expressed as

Bα′(t) + Aα(t) = f̃(t), for t > 0, with α(0) = γ,

where B = (bjk) is the mass matrix with elements bjk = (Φj , Φk), A = (ajk)
the stiffness matrix with ajk = (∇Φj ,∇Φk), f̃ = (fk) the vector with entries
fk = (f, Φk), α(t) the vector of unknowns αj(t), and γ = (γk). The dimension
of all these items equals Nh, the dimension of Sh.

Since, like the stiffness matrix A, the mass matrix B is a Gram matrix,
and thus in particular positive definite and invertible, the above system of
ordinary differential equations may be written

α′(t) + B−1Aα(t) = B−1f̃(t), for t > 0, with α(0) = γ,

and hence obviously has a unique solution for t positive.
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Our first aim is to prove the following estimate in L2 for the error between
the solutions of the semidiscrete and continuous problems.

Theorem 1.2 Let uh and u be the solutions of (1.21) and (1.1), and assume
v = 0 on ∂Ω. Then

‖uh(t) − u(t)‖ ≤ ‖vh − v‖ + Chr
(
‖v‖r +

∫ t

0

‖ut‖r ds
)
, for t ≥ 0.

Here as earlier we require that the solution of the continuous problem has
the regularity implicitly assumed by the presence of the norms on the right.
Note also that if (1.11) holds and vh = Ihv, then the first term on the right
is dominated by the second. This also holds if vh = Phv, where Ph denotes
the orthogonal projection of v onto Sh with respect to the inner product in
L2, since this choice is the best approximation of v in Sh with respect to the
L2 norm, and thus at least as good as Ihv.

Another such optimal order choice for vh is the so-called elliptic or Ritz
projection Rh onto Sh which we define as the orthogonal projection with
respect to the inner product (∇v,∇w), so that

(1.22) (∇Rhv,∇χ) = (∇v,∇χ), ∀ χ ∈ Sh, for v ∈ H1
0 .

In view of (1.14), this definition may be expressed by saying that Rhv is
the finite element approximation of the solution of the corresponding elliptic
problem with exact solution v. A pervading strategy throughout the error
analysis in the rest of this book is to write the error in the parabolic problem
as a sum of two terms,

(1.23) uh(t) − u(t) = θ(t) + ρ(t), where θ = uh − Rhu, ρ = Rhu − u,

which are then bounded separately. The second term, ρ(t), is thus the error
in an elliptic problem and may be handled as such, whereas the first term
θ(t) will be the main object of the analysis.

It follows at once from setting χ = Rhv in (1.22) that the Ritz projection
is stable in H1

0 , or

(1.24) ‖∇Rhv‖ ≤ ‖∇v‖, ∀ v ∈ H1
0 .

As an immediate consequence of Theorem 1.1 we have the following error
estimate for Rhv.

Lemma 1.1 Assume that (1.10) holds. Then, with Rh defined by (1.22) we
have

‖Rhv − v‖ + h‖∇(Rhv − v)‖ ≤ Chs‖v‖s, for v ∈ Hs ∩ H1
0 , 1 ≤ s ≤ r.

Proof of Theorem 1.2. We write the error according to (1.23) and obtain eas-
ily by Lemma 1.1 and obvious estimates
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(1.25) ‖ρ(t)‖ ≤ Chr‖u(t)‖r ≤ Chr
(
‖v‖r +

∫ t

0

‖ut‖r ds
)
.

In order to bound θ, we note that by our definitions

(θt, χ) + (∇θ,∇χ)

= (uh,t, χ) + (∇uh,∇χ) − (Rhut, χ) − (∇Rhu,∇χ)

= (f, χ) − (Rhut, χ) − (∇u,∇χ) = (ut − Rhut, χ),

(1.26)

or

(1.27) (θt, χ) + (∇θ,∇χ) = −(ρt, χ), ∀χ ∈ Sh, t > 0,

where we have used the easily established fact that the operator Rh commutes
with time differentiation. Since θ belongs to Sh, we may choose χ = θ in (1.27)
and conclude

(1.28) (θt, θ) + ‖∇θ‖2 = −(ρt, θ), for t > 0.

Here the second is nonnegative, and we obtain thus

1
2

d

dt
‖θ‖2 = ‖θ‖ d

dt
‖θ‖ ≤ ‖ρt‖ ‖θ‖,

and hence, after cancellation of one factor ‖θ‖ (the case that ‖θ(t)‖ = 0 for
some t may easily be handled), and integration,

(1.29) ‖θ(t)‖ ≤ ‖θ(0)‖ +
∫ t

0

‖ρt‖ ds.

Here, using Lemma 1.1, we find

‖θ(0)‖ = ‖vh − Rhv‖ ≤ ‖vh − v‖ + ‖Rhv − v‖ ≤ ‖vh − v‖ + Chr‖v‖r,

and since
‖ρt‖ = ‖Rhut − ut‖ ≤ Chr‖ut‖r,

the desired bound for ‖θ(t)‖ now follows. ��

In the above proof we have made use in (1.28) of the fact that ‖∇θ‖2

is nonnegative, and simply discarded this term. By using it in a somewhat
more careful way, one may demonstrate that the effect of the initial data
upon the error tends to zero exponentially as t tends to ∞. In fact, with λ1

the smallest eigenvalue of −∆, with Dirichlet boundary data, we have

(1.30) ‖∇v‖2 ≥ λ1‖v‖2, ∀v ∈ H1
0 ,

and hence (1.28) yields
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1
2

d

dt
‖θ‖2 + λ1‖θ‖2 ≤ ‖ρt‖‖θ‖.

It follows as above that

d

dt
‖θ‖ + λ1‖θ‖ ≤ ‖ρt‖,

and hence

‖θ(t)‖ ≤ e−λ1t‖θ(0)‖ +
∫ t

0

e−λ1(t−s)‖ρt(s)‖ ds

≤ e−λ1t‖vh − v‖ + Chr
(
e−λ1t‖v‖r +

∫ t

0

e−λ1(t−s)‖ut(s)‖r ds
)
.

(1.31)

Using the first part of (1.25) we conclude that with vh appropriately chosen

‖uh(t) − u(t)‖ ≤ Chr
(
e−λ1t‖v‖r + ‖u(t)‖r +

∫ t

0

e−λ1(t−s)‖ut(s)‖r ds
)
.

We shall not pursue the error analysis for large t below.

We shall now briefly look at another way of expressing the argument in
the proof of Theorem 1.2, which consists in working with the equation for θ
in operator form. We first recall that by Duhamel’s principle, the solution of
(1.1) may be written

(1.32) u(t) = E(t)v +
∫ t

0

E(t − s)f(s) ds.

Here E(t) is the solution operator of the homogeneous equation, the case
f ≡ 0 of (1.1), i.e., the operator which takes the initial values u(0) = v
into the solution u(t) at time t. This operator may also be thought of as the
semigroup e∆t on L2 generated by the Laplacian, considered as defined in
D(∆) = H2 ∩ H1

0 . We now introduce a discrete Laplacian ∆h : Sh → Sh by

(1.33) (∆hψ, χ) = −(∇ψ,∇χ), ∀ψ, χ ∈ Sh;

this analogue of Green’s formula clearly defines ∆hψ =
∑Nh

j=1 djΦj by

Nh∑

j=1

dj(Φj , Φk) = −(∇ψ,∇Φk), for k = 1, . . . , Nh,

since the matrix of this system is the positive definite mass matrix encoun-
tered above. The operator −∆h is easily seen to be selfadjoint and positive
definite in Sh with respect to (·, ·). Note that ∆h is related to our other
operators by
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(1.34) ∆hRh = Ph∆.

For, by our definitions,

(∆hRhv, χ) = −(∇Rhv,∇χ) = −(∇v,∇χ) = (∆v, χ) = (Ph∆v, χ), ∀χ ∈ Sh.

With this notation the semidiscrete equation takes the form

(uh,t, χ) − (∆huh, χ) = (Phf, χ), ∀χ ∈ Sh, t > 0,

and thus, since the factors on the left are all in Sh, (1.21) may be written as

(1.35) uh,t − ∆huh = Phf, for t > 0, with uh(0) = vh.

Using (1.34) we hence obtain for θ

θt − ∆hθ = (uh,t − ∆huh) − (Rhut − ∆hRhu)

= Phf + (Ph − Rh)ut − Ph(ut − ∆u) = Ph(I − Rh)ut = −Phρt,

or

(1.36) θt − ∆hθ = −Phρt, for t > 0, with θ(0) = vh − Rhv.

We now denote by Eh(t) the discrete analogue of the operator E(t) intro-
duced above, the solution operator of the homogeneous semidiscrete problem
(1.35). The analogue of (1.32), together with (1.36), then shows

(1.37) θ(t) = Eh(t)θ(0) −
∫ t

0

Eh(t − s)Phρt(s) ds.

We now note that Eh(t) is stable in L2, or, more precisely, as in the proof
of (1.31),

(1.38) ‖Eh(t)vh‖ ≤ e−λ1t‖vh‖ ≤ ‖vh‖, for vh ∈ Sh, t ≥ 0.

Since obviously Ph has unit norm in L2, (1.37) implies (1.29), from which
Theorem 1.2 follows as above. The desired estimate for θ is thus a consequence
of the stability estimate for Eh(t) combined with the error estimate for the
elliptic problem applied to ρt = (Rh − I)ut.

In a similar way we may prove the following estimate for the error in the
gradient.

Theorem 1.3 Under the assumptions of Theorem 1.2 we have

‖∇uh(t) −∇u(t)‖ ≤ C‖∇vh −∇v‖

+ Chr−1
(
‖v‖r + ‖u(t)‖r +

(
∫ t

0

‖ut‖2
r−1 ds

)1/2
)
, for t ≥ 0.



12 1. The Standard Galerkin Method

Proof. As before we write the error in the form (1.23). Here, by Lemma 1.1,

‖∇ρ(t)‖ = ‖∇(Rhu(t) − u(t))‖ ≤ Chr−1‖u(t)‖r.

In order to estimate ∇θ, we use again (1.27), now with χ = θt. We obtain

‖θt‖2 + 1
2

d

dt
‖∇θ‖2 = −(ρt, θt) ≤ 1

2‖ρt‖2 + 1
2‖θt‖2,

so that (d/dt)‖∇θ‖2 ≤ ‖ρt‖2 or

‖∇θ(t)‖2 ≤ ‖∇θ(0)‖2 +
∫ t

0

‖ρt‖2 ds

≤
(
‖∇(vh − v)‖ + ‖∇(Rhv − v)‖

)2 +
∫ t

0

‖ρt‖2 ds.

(1.39)

Hence, in view of Lemma 1.1,

(1.40) ‖∇θ(t)‖2 ≤ 2‖∇(vh − v)‖2 + Ch2r−2
(
‖v‖2

r +
∫ t

0

‖ut‖2
r−1 ds

)
,

which completes the proof. ��

Note that if vh = Ihv or vh = Rhv, then, by Lemma 1.1 or (1.11), respec-
tively, the first term on the right hand side in Theorem 1.3 is again bounded
by the second.

In the case of a quasiuniform family of triangulations Th of a plane domain,
or, more generally, when the inverse estimate (1.12) holds, an estimate for
the error in the gradient may also be obtained directly from the result of
Theorem 1.2. In fact, we obtain then, for χ arbitrary in Sh,

‖∇uh(t) −∇u(t)‖ ≤ ‖∇(uh(t) − χ)‖ + ‖∇χ −∇u(t)‖

≤ Ch−1‖uh(t) − χ‖ + ‖∇χ −∇u(t)‖

≤ Ch−1‖uh(t) − u(t)‖ + Ch−1(‖χ − u(t)‖ + h‖∇χ −∇u(t)‖).

(1.41)

Here, by our approximation assumption (1.10), we have, with suitable χ ∈ Sh,

‖χ − u(t)‖ + h‖∇χ −∇u(t)‖ ≤ Chr‖u(t)‖r,

and hence, bounding the first term on the right in (1.41) by Theorem 1.2, for
the appropriate choice of χ,

‖∇uh(t) −∇u(t)‖ ≤ Chr−1
(
‖v‖r +

∫ t

0

‖ut(s)‖r ds
)
.

We make the following observation concerning the gradient of the term
θ = uh − Rhu in (1.23): Assume that we have chosen vh = Rhv so that
θ(0) = 0. Then, in addition to (1.40), we have from (1.39)
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(1.42) ‖∇θ(t)‖ ≤ C
(∫ t

0

‖ρt‖2 ds
)1/2

≤ Chr
(∫ t

0

‖ut‖2
r ds
)1/2

.

Hence ∇θ(t) is of order O(hr), whereas the gradient of the total error can only
be O(hr−1). Thus ∇uh is a better approximation to ∇Rhu than is possible
to ∇u. This is an example of a phenomenon which is sometimes referred to
as superconvergence .

Because the formulation of Galerkin’s method is posed in terms of L2

inner products, the most natural error estimates are expressed in L2-based
norms. Error analyses in other norms have also been pursued in the literature,
and for later reference we quote the following maximum-norm error estimate,
for piecewise linear approximating functions in a plane domain Ω, see, e.g.,
[42]. Here we write L∞ = L∞(Ω) and W r

∞ = W r
∞(Ω), with

‖v‖L∞ = sup
x∈Ω

|u(x)|, ‖v‖W r
∞ = max

|α|≤r
‖Dαv‖L∞ .

We note first that the error in the interpolant introduced above is second
order also in maximum-norm, so that (cf. (1.9))

(1.43) ‖Ihv − v‖L∞ ≤ Ch2‖v‖W 2
∞

, for v ∈ W 2
∞ ∩ H1

0 .

The error estimate for the elliptic finite element problem is then the following.

Theorem 1.4 Let Ω ⊂ R
2 and assume that Sh consists of piecewise linear

finite element functions, and that the family Th is quasiuniform. Let uh and
u be the solutions of (1.13) and (1.2), respectively. Then

(1.44) ‖uh − u‖L∞ ≤ Ch2�h‖u‖W 2
∞

, where �h = max(1, log(1/h))

We note that, in view of (1.43), this error estimate is nonoptimal, but it
has been shown, see Haverkamp [116], that the logarithmic factor in (1.44)
cannot be removed. Note that although �h is unbounded for small h, it is of
moderate size for realistic values of h.

Recall the definition (1.22) of the Ritz projection Rh : H1
0 → Sh, and

its stability in H1
0 . When the family of triangulations is quasiuniform, this

projection is known to have the almost maximum-norm stability property

(1.45) ‖Rhv‖L∞ ≤ C�h‖v‖L∞ .

The proof of this is relatively difficult, and will not be included here. We
remark that in contrast to (1.24) and (1.45), Rh is not bounded in L2. The
error bound of Theorem 1.4 is now an easy consequence of this stability result
and the interpolation error estimate of (1.43), since

‖Rhv − v‖L∞ ≤ ‖Rh(v − Ihv)‖L∞ + ‖Ihv − v‖L∞ ≤ Ch2�h‖v‖W 2
∞

.
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As a simple example of an application of the superconvergent order esti-
mate (1.42), we shall indicate briefly how it may be used to show an essentially
optimal order error bound for the parabolic problem in the maximum-norm.
Consider thus the concrete situation described in the beginning of this chap-
ter with Ω a plane smooth convex domain and Sh consisting of piecewise
linear functions (d = r = 2) on quasiuniform triangulations of Ω. Then, by
Theorem 1.4,

(1.46) ‖ρ(t)‖L∞ = ‖Rhu(t) − u(t)‖L∞ ≤ Ch2�h‖u(t)‖W 2
∞

.

In two dimensions, Sobolev’s inequality almost bounds the maximum-norm
by the norm in H1, and it may be shown (cf. Lemma 6.4 below) that for
functions in the subspace Sh,

‖χ‖L∞ ≤ C�
1/2
h ‖∇χ‖, ∀χ ∈ Sh.

Applied to θ this shows, by (1.42) (with r = 2), that

‖θ(t)‖L∞ ≤ Ch2�
1/2
h

(∫ t

0

‖ut‖2
2 ds
)1/2

,

and we may thus conclude for the error in the parabolic problem that

‖uh(t) − u(t)‖L∞ ≤ ‖ρ(t)‖L∞ + ‖θ(t)‖L∞ ≤ C(t, u)h2�h.

We now turn our attention to some simple schemes for discretization
also with respect to the time variable. We introduce a time step k and the
time levels t = tn = nk, where n is a nonnegative integer, and denote by
Un = Un

h ∈ Sh the approximation of u(tn) to be determined.
We begin by the backward Euler Galerkin method, which is defined by

replacing the time derivative in (1.21) by a backward difference quotient, or,
if ∂̄Un = (Un − Un−1)/k,

(1.47) (∂̄Un, χ) + (∇Un,∇χ) = (f(tn), χ), ∀χ ∈ Sh, n ≥ 1, U0 = vh.

For Un−1 given this defines Un implicitly from the equation

(Un, χ) + k(∇Un,∇χ) = (Un−1 + kf(tn), χ), ∀χ ∈ Sh,

which is the finite element formulation of an elliptic equation of the form
(I − k∆)u = g. With matrix notation as in the semidiscrete situation, this
may be written

(B + kA)αn = Bαn−1 + kf̃(tn),

where B + kA is positive definite and hence, in particular, invertible.
We shall prove the following error estimate.
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Theorem 1.5 With Un and u the solutions of (1.47) and (1.1), respectively,
we have, if ‖vh − v‖ ≤ Chr‖v‖r and v = 0 on ∂Ω,

‖Un − u(tn)‖ ≤ Chr
(
‖v‖r +

∫ tn

0

‖ut‖r ds
)

+ k

∫ tn

0

‖utt‖ ds, for n ≥ 0.

Proof. In analogy with (1.23) we write

Un − u(tn) = (Un − Rhu(tn)) + (Rhu(tn) − u(tn)) = θn + ρn,

and here ρn = ρ(tn) is bounded as claimed in (1.25). This time, a calculation
corresponding to (1.26) yields

(1.48) (∂̄θn, χ) + (∇θn,∇χ) = −(ωn, χ), ∀χ ∈ Sh, n ≥ 1,

where

ωn = Rh∂̄u(tn) − ut(tn) = (Rh − I)∂̄u(tn) + (∂̄u(tn) − ut(tn)) = ωn
1 + ωn

2 .

Choosing χ = θn in (1.48), we have (∂̄θn, θn) ≤ ‖ωn‖ ‖θn‖, or

‖θn‖2 − (θn−1, θn) ≤ k‖ωn‖ ‖θn‖,

so that

(1.49) ‖θn‖ ≤ ‖θn−1‖ + k‖ωn‖,

and, by repeated application,

(1.50) ‖θn‖ ≤ ‖θ0‖ + k

n∑

j=1

‖ωj‖ ≤ ‖θ0‖ + k

n∑

j=1

‖ωj
1‖ + k

n∑

j=1

‖ωj
2‖.

Here, as before, θ0 = θ(0) is bounded as desired. We write

(1.51) ωj
1 = (Rh − I)k−1

∫ tj

tj−1

ut ds = k−1

∫ tj

tj−1

(Rh − I)ut ds,

and obtain

k

n∑

j=1

‖ωj
1‖ ≤

n∑

j=1

∫ tj

tj−1

Chr‖ut‖r ds = Chr

∫ tn

0

‖ut‖r ds.

Further,

(1.52) k ωj
2 = u(tj) − u(tj−1) − kut(tj) = −

∫ tj

tj−1

(s − tj−1)utt(s) ds,

so that

k

n∑

j=1

‖ωj
2‖ ≤

n∑

j=1

‖
∫ tj

tj−1

(s − tj−1)utt(s) ds‖ ≤ k

∫ tn

0

‖utt‖ ds.

Together our estimates complete the proof of the theorem. ��



16 1. The Standard Galerkin Method

In order to show an estimate for ∇θn we may choose instead χ = ∂̄θn in
(1.48) to obtain ∂̄‖∇θn‖2 ≤ ‖ωn‖2, or, if ∇θ0 = 0,

(1.53) ‖∇θn‖2 ≤ k

n∑

j=1

‖ωj‖2 ≤ Ch2s

∫ tn

0

‖ut‖2
s dt + Ck2

∫ tn

0

‖utt‖2 dt,

for 1 ≤ s ≤ r. Together with the standard estimate for ∇ρ this shows, with
s = r − 1 in (1.53),

‖∇(Un − u(tn))‖ ≤ C(u)(hr−1 + k).

If one uses Theorem 1.5 together with the inverse inequality (1.12) one now
obtains the weaker estimate ‖∇(Un −u(tn))‖ ≤ C(u)(hr−1 + kh−1). We also
note that with s = r in (1.53) one may conclude the maximum-norm estimate

‖Un − u(tn)‖L∞ ≤ C(u)�h(hr + k).

Note that because of the nonsymmetric choice of the discretization in
time, the backward Euler Galerkin method is only first order in k. We
therefore now turn to the Crank-Nicolson Galerkin method. Here the semi-
discrete equation is discretized in a symmetric fashion around the point
tn− 1

2
= (n − 1

2 )k, which will produce a second order accurate method in

time. More precisely, we set Ûn = 1
2 (Un + Un−1) and define Un ∈ Sh by

(1.54) (∂̄Un, χ) + (∇Ûn,∇χ) = (f(tn− 1
2
), χ), ∀χ ∈ Sh, for n ≥ 1,

with U0 = vh. Here the equation for Un may be written in matrix form as

(B + 1
2kA)αn = (B − 1

2kA)αn−1 + kf̃(tn− 1
2
),

with a positive definite matrix B + 1
2kA. Now the error estimate reads as

follows.

Theorem 1.6 Let Un and u be the solutions of (1.54) and (1.1), respec-
tively, and let ‖vh − v‖ ≤ Chr‖v‖r and v = 0 on ∂Ω. Then we have, for
n ≥ 0,

‖Un − u(tn)‖ ≤ Chr
(
‖v‖r +

∫ tn

0

‖ut‖r ds
)

+ Ck2

∫ tn

0

(‖uttt‖ + ‖∆utt‖) ds.

Proof. With ρn bounded as above, we only need to consider θn. We have

(1.55) (∂̄θn, χ) + (∇θ̂n,∇χ) = −(ωn, χ), for χ ∈ Sh, n ≥ 1,



1. The Standard Galerkin Method 17

where now

ωn =(Rh − I)∂̄u(tn) + (∂̄u(tn) − ut(t
n− 1

2
))(1.56)

+ ∆
(
u(t

n− 1
2
) − 1

2 (u(tn) + u(tn−1))
)

= ωn
1 + ωn

2 + ωn
3 .

Choosing this time χ = θ̂n in (1.55), we find

(∂̄θn, θ̂n) ≤ 1
2‖ω

n‖(‖θn‖ + ‖θn−1‖),

or
‖θn‖2 − ‖θn−1‖2 ≤ k‖ωn‖(‖θn‖ + ‖θn−1‖),

so that, after cancellation of a common factor,

‖θn‖ ≤ ‖θn−1‖ + k‖ωn‖, for n ≥ 1.

After repeated application this yields

‖θn‖ ≤ ‖θ0‖ + k
n∑

j=1

(
‖ωj

1‖ + ‖ωj
2‖ + ‖ωj

3‖
)
.

With θ0 and ωj
1 estimated as before, it remains to bound the terms in ωj

2 and
ωj

3. We have

k‖ωj
2‖ = ‖u(tj) − u(tj−1) − kut(tj− 1

2
)‖

= 1
2

∥
∥
∥

∫ t
j− 1

2

tj−1

(s − tj−1)2uttt(s) ds +
∫ tj

t
j− 1

2

(s − tj)2uttt(s) ds
∥
∥
∥

≤ Ck2

∫ tj

tj−1

‖uttt‖ ds,

and similarly,

k‖ωj
3‖ = k‖∆

(
u(tj− 1

2
) − 1

2 (u(tj) + u(tj−1))
)
‖ ≤ Ck2

∫ tj

tj−1

‖∆utt‖ ds.

Altogether,

(1.57) k

n∑

j=1

(‖ωj
2‖ + ‖ωj

3‖) ≤ Ck2

∫ tn

0

(‖uttt‖ + ‖∆utt‖) ds,

which completes the proof. ��
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Another way to attain second order accuracy in the discretization in time
is to approximate the time derivative in the differential equation by a second
order backward difference quotient. Setting

D̄Un = ∂̄Un + 1
2k∂̄2Un = (3

2Un − 2Un−1 + 1
2Un−2)/k,

we have at once by Taylor expansion, for a smooth function u,

D̄u(tn) = ut(tn) + O(k2), as k → 0.

We therefore pose the discrete problem

(1.58) (D̄Un, χ) + (∇Un,∇χ) = (f(tn), χ), ∀χ ∈ Sh, n ≥ 2.

Note that for n fixed this equation employs three time levels rather than the
two of our previous methods. We therefore have to restrict its use to n ≥ 2,
because we do not want to use Un with n negative. With U0 = vh given, we
then also need to define U1 in some way, and we choose to do so by employing
one step of the backward Euler method, i.e., we set

(1.59) (∂̄U1, χ) + (∇U1,∇χ) = (f(t1), χ), ∀χ ∈ Sh.

We note that in our earlier matrix notation, (1.58) may be written as

( 3
2B + kA)αn = 2Bαn−1 − 1

2Bαn−2 + kf̃(tn), for n ≥ 2,

with the matrix coefficient of αn again positive definite.
We have this time the following O(hr + k2) error estimate.

Theorem 1.7 Let Un and u be the solutions of (1.58) and (1.1), with U0 =
vh and U1 defined by (1.59). Then, if ‖vh − v‖ ≤ Chr‖v‖r and v = 0 on ∂Ω,
we have

‖Un − u(tn)‖ ≤ Chr
(
‖v‖r +

∫ tn

0

‖ut‖r ds
)

+ Ck

∫ k

0

‖utt‖ ds + Ck2

∫ tn

0

‖uttt‖ ds, for n ≥ 0.

Proof. Writing again Un −u(tn) = θn + ρn we only need to bound θn, which
now satisfies

(D̄θn, χ) + (∇θn,∇χ) = −(ωn, χ), for n ≥ 2,

(∂̄θ1, χ) + (∇θ1,∇χ) = −(ω1, χ),
(1.60)

where

ωn = D̄Rhun − un
t = (Rh − I)D̄un + (D̄un − un

t ) = ωn
1 + ωn

2 , n ≥ 2,

ω1 = (Rh − I)∂̄u1 + (∂̄u1 − u1
t ) = ω1

1 + ω1
2 .
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We shall show the inequality

(1.61) ‖θn‖ ≤ ‖θ0‖ + 2k

n∑

j=2

‖ωj‖ + 5
2k‖ω1‖, for n ≥ 1.

Assuming this for a moment, we need to bound the errors ωj
1 and ωj

2. Using
Taylor expansions with the appropriate remainder terms in integral form we
find easily, for j ≥ 2,

k‖ωj
1‖ ≤ Chrk‖D̄uj‖r ≤ Chr

∫ tj

tj−2

‖ut‖r ds, k‖ωj
2‖ ≤ Ck2

∫ tj

tj−2

‖uttt‖ ds.

As for the backward Euler method we have

k‖ω1
1‖ + k‖ω1

2‖ ≤ Chr

∫ k

0

‖ut‖r ds + k

∫ k

0

‖utt‖ ds,

and we hence conclude

k

n∑

j=1

‖ωj‖ ≤ Chr

∫ tn

0

‖ut‖r ds + k

∫ k

0

‖utt‖ ds + Ck2

∫ tn

0

‖uttt‖ ds.

Together with our earlier estimate for θ0, this completes the proof of the
estimate for θn and thus of the theorem.

It remains to show (1.61). Introducing the difference operators δlθ
n =

θn−θn−l for l = 1, 2, we may write kD̄θn = 2δ1θ
n− 1

2δ2θ
n. Since 2(δlθ

n, θn) =
δl‖θn‖2 + ‖δlθ

n‖2, we therefore have

k(D̄θn, θn) = δ1‖θn‖2 − 1
4δ2‖θn‖2 + ‖δ1θ

n‖2 − 1
4‖δ2θ

n‖2, for n ≥ 2.

Replacing n by j and then summing from 2 to n, we have

n∑

j=2

(δ1‖θj‖2 − 1
4δ2‖θj‖2) = 3

4‖θ
n‖2 − 1

4‖θ
n−1‖2 − 3

4‖θ
1‖2 + 1

4‖θ
0‖2,

and further, since δ2θ
n = δ1θ

n + δ1θ
n−1, we obtain

n∑

j=2

(‖δ1θ
j‖2 − 1

4‖δ2θ
j‖2) ≥

n∑

j=2

(
‖δ1θ

j‖2 − 1
4 (‖δ1θ

j‖ + ‖δ1θ
j−1‖)2

)

≥ 1
2

n∑

j=2

(‖δ1θ
j‖2 − ‖δ1θ

j−1‖2) = 1
2 (‖δ1θ

n‖2 − ‖δ1θ
1‖2).

Hence,
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k(∂̄θ1, θ1) + k

n∑

j=2

(D̄θj , θj)

≥ 1
2

(
‖θ1‖2 − ‖θ0‖2 + ‖δ1θ

1‖2
)

+ 1
2

(
‖δ1θ

n‖2 − ‖δ1θ
1‖2
)

+
(

3
4‖θ

n‖2 − 1
4‖θ

n−1‖2 − 3
4‖θ

1‖2 + 1
4‖θ

0‖2
)

≥ 3
4‖θ

n‖2 − 1
4‖θ

n−1‖2 − 1
4‖θ

1‖2 − 1
4‖θ

0‖2.

(1.62)

But by (1.60) with χ = θn we have

k(∂̄θ1, θ1) + k

n∑

j=2

(D̄θj , θj) + k

n∑

j=1

(∇θj ,∇θj) = −k

n∑

j=1

(ωj , θj),

and by (1.62) this yields

‖θn‖2 ≤ 1
3

(
‖θn−1‖2 + ‖θ1‖2 + ‖θ0‖2

)
+ 4

3k

n∑

j=1

‖ωj‖ ‖θj‖.

Suppose m is chosen so that ‖θm‖ = max0≤j≤n ‖θj‖. Then

‖θm‖2 ≤ 1
3

(
‖θm‖ + ‖θ1‖ + ‖θ0‖ + 4k

n∑

j=1

‖ωj‖
)
‖θm‖,

whence

‖θn‖ ≤ ‖θm‖ ≤ 1
2 (‖θ1‖ + ‖θ0‖) + 2k

n∑

j=1

‖ωj‖.

Since, as follows from above, ‖θ1‖ ≤ ‖θ0‖ + k‖ω1‖, this completes the proof
of (1.61) and thus of the theorem. ��

In the above time discretization schemes we have used a constant time step
k. We shall close this introductory discussion of fully discrete methods with
an example of a variable time step version of the backward Euler method.

Let thus 0 = t0 < t1 < · · · < tn < · · · be a partition of the positive time
axis and set kn = tn − tn−1. We may then consider the approximation Un of
u(tn) defined by

(1.63) (∂̄nUn, χ) + (∇Un,∇χ) = (f(tn), χ), ∀χ ∈ Sh, n ≥ 1,

with U0 = vh, where ∂̄nUn = (Un − Un−1)/kn. We have the following error
estimate which reduces to that of Theorem 1.5 for constant time steps.

Theorem 1.8 Let Un and u be the solutions of (1.63) and (1.1), with U0 =
vh such that ‖vh − v‖ ≤ Chr‖v‖r and v = 0 on ∂Ω. Then we have for n ≥ 0

‖Un − u(tn)‖ ≤ Chr
(
‖v‖r +

∫ tn

0

‖ut‖r ds
)

+
n∑

j=1

kj

∫ tj

tj−1

‖utt‖ ds.
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Proof. This time we have for θn,

(∂̄nθn, χ) + (∇θn,∇χ) = −(ωn, χ), ∀χ ∈ Sh, n ≥ 1,

where now

ωn = (Rh − I)∂̄nun + (∂̄nun − un
t ) = ωn

1 + ωn
2 .

Referring to the proof of Theorem 1.5, (1.49) will be replaced by ‖θn‖ ≤
‖θn−1‖ + kn‖ωn‖, and hence (1.50) by

‖θn‖ ≤ ‖θ0‖ +
n∑

j=1

kj(‖ωj
1‖ + ‖ωj

2‖).

Now
n∑

j=1

kj‖ωj
1‖ ≤

n∑

j=1

∫ tj

tj−1

Chr‖ut‖r ds = Chr

∫ tn

0

‖ut‖r ds,

and, since (1.52) still holds, with k replaced by kj ,

n∑

j=1

kj‖ωj
2‖ ≤

n∑

j=1

∥
∥
∥

∫ tj

tj−1

(s − tj−1)utt(s) ds
∥
∥
∥ ≤

n∑

j=1

kj

∫ tj

tj−1

‖utt‖ ds.

Together with the standard estimates for ρn and θ0, this completes the proof
of the theorem. ��

We note that the form of the error bound in Theorem 1.8 suggests using
shorter time steps when ‖utt‖ is larger. We shall return to such considerations
in later chapters.

We complete this introductory chapter with some short remarks about
other initial boundary value problems for the heat equation than (1.1), and
consider first a simple situation with Neumann rather than Dirichlet bound-
ary conditions. Consider thus instead of (1.1) the initial boundary value prob-
lem

ut − ∆u + u = f in Ω, for t > 0,(1.64)
∂u

∂n
= 0 on ∂Ω, for t > 0, u(·, 0) = v in Ω,

where ∂u/∂n denotes the derivative in the direction of the exterior normal
to ∂Ω. The corresponding stationary problem is then

(1.65) −∆u + u = f in Ω, with
∂u

∂n
= 0 on ∂Ω.

In order to formulate this in variational form, we now multiply by ϕ ∈ H1,
thus without requiring ϕ = 0 on ∂Ω, integrate over Ω, and use Green’s
formula to obtain
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(∇u,∇ϕ) + (u, ϕ) = (f, ϕ), ∀ϕ ∈ H1.

We note that if u is smooth, this in turn shows

(−∆u + u, ϕ) +
∫

∂Ω

∂u

∂n
ϕds = (f, ϕ), ∀ϕ ∈ H1,

from which (1.65) follows since ϕ is arbitrary. In particular, the boundary
condition is now a consequence of the variational formulation, in contrast to
our earlier discussion when the boundary condition was enforced by looking
for a solution in H1

0 . We therefore say that ∂u/∂n = 0 is a natural boundary
condition, whereas the Dirichlet boundary condition is referred to as an es-
sential boundary condition. The lower order term in the differential equation
was included to make (1.65) uniquely solvable; note that λ = 0 is an eigen-
value of −∆ under Neumann boundary conditions since ∆1 ≡ 0, whereas
−∆ + I is positive definite.

From the above variational formulation it is natural to assume now that
the approximating space Sh is a subspace of H1, without requiring its el-
ements to vanish on ∂Ω, and safisfies (1.10) when v ∈ Hs. The discrete
stationary problem is then

(∇uh,∇χ) + (uh, χ) = (f, χ), ∀χ ∈ Sh,

and this may be analyzed as in Theorem 1.1. The corresponding spatially
discrete version of (1.64) is

(uh,t, χ) + (∇uh,∇χ) + (uh, χ) = (f, χ), ∀χ ∈ Sh, t > 0, uh(0) = vh,

and the analysis of this method, and also of corresponding fully discrete ones,
follow the same lines as in the case of Dirichlet boundary conditions.

We also mention the time periodic boundary value problem

ut − ∆u = f in Ω, for 0 < t < ω,(1.66)
u = 0 on ∂Ω, for 0 < t < ω, u(·, 0) = u(·, ω) in Ω,

where ω > 0 is the period. Setting u(0) = v we have by Duhamel’s principle
for a possible solution

v = u(ω) = E(ω)v +
∫ ω

0

E(ω − s)f(s) ds,

and since ‖E(ω)‖ < 1 by (1.38), this equation has a unique solution v. Once v
is known, (1.66) may be solved as an initial value problem. Spatially semidis-
crete and fully discrete versions of the problem may be formulated in obvious
ways and analyzed by the techniques developed here.

The finite element method originated in the engineering literature in the
1950s, when structural engineers combined the well established framework
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analysis with variational methods in continuum mechanics into a discretiza-
tion method in which a structure is thought of as consisting of elements
with locally defined strains or stresses; a standard reference from the engi-
neering literature is Zienkiewicz [249]. In the mid 1960s, a number of papers
appeared independently in the numerical analysis literature which were con-
cerned with the construction and analysis of finite difference schemes for
elliptic problems by variational principles, e.g., Céa [45], Demjanovič [68],
Feng [98], Friedrichs and Keller [101], and Oganesjan and Ruchovets [187].
By considering approximating functions as defined at all points rather than
at meshpoints, the mathematical theory of finite elements then became es-
tablished through contributions such as Birkhoff, Schultz and Varga [27],
where the theory of splines was brought to bear on the development, and
Zlámal [250], with the first stringent error analysis of more complicated el-
ements. The duality argument for the L2 error estimate quoted in Theorem
1.1 was developed independently by Aubin [7], Nitsche [179] and Oganesjan
and Ruchovets [188], and later maximum-norm error estimates such as (1.44)
were shown by Scott [214], Natterer [175], and Nitsche [182], see Schatz and
Wahlbin [208]. The sharpness of this estimate, with the logarithmic factor,
was shown in Haverkamp [116].

General treatments of the mathematics of the finite element method for
elliptic problems can be found in textbooks such as, e.g., Babuška and Aziz
[11], Strang and Fix [221], Ciarlet [51] and Brenner and Scott [42], and we
shall sometimes quote these for background material.

The development of the theory of finite elements for parabolic problems
started around 1970. At this time finite difference analysis for such problems
had reached a high level of refinement after the fundamental 1928 paper by
Courant, Friedrichs and Lewy [52], and became the background and starting
point for the finite element analysis of such problems. Names of particular
distinction in the development of finite differences in the 50s and 60s are,
e.g., F. John, D. G. Aronson, H. O. Kreiss, O. B. Widlund, J. Douglas, Jr.,
and collaborators, Russian researchers such as Samarskii, etc. (cf. the survey
paper Thomée [230]).

The material presented in this introductary chapter is standard; some
early references are Douglas and Dupont [74], Price and Varga [196] and Fix
and Nassif [99]. An important step in the development was the introduction
and exploitation by Wheeler [246] of the Ritz projection, which made it pos-
sible to improve earlier suboptimal L2-norm error estimates to optimal order
ones. The nucleus of the present survey is Thomée [229]. Several of the topics
that have been touched upon only lightly in this chapter will be developed in
more detail in the rest of the book where we will consider both more general
equations and wider classes of discretization methods, as well as more de-
tailed investigations of the dependence of the error bounds on the regularity
of the exact solutions of our problems. Concerning the discretization of the



24 1. The Standard Galerkin Method

time-periodic problem mentioned at the end, see Carasso [44], Bernardi [26],
and Hansbo [114].

For standard material concerning the mathematical treatment of elliptic
and parabolic differential equations we refer to Evans [96], cf. also Lions and
Magenes [156] and, for parabolic equations, Friedman [100].



2. Methods Based on More General
Approximations of the Elliptic Problem

In our above discussion of finite element approximation of the parabolic
problem, the discretization in space was based on using a family of finite-
dimensional spaces Sh ⊂ H1

0 = H1
0 (Ω), such that, for some r ≥ 2, the

approximation property (1.10) holds. The most natural example of such a
family in a plane domain Ω is to take for Sh the continuous functions which
reduce to polynomials of degree at most r−1 on the triangles τ of a triangu-
lation Th of Ω of the type described in the beginning of Chapter 1, and which
vanish on ∂Ω. However, for r > 2 and in the case of a domain with smooth
boundary, it is not possible, in general, to satisfy the homogeneous boundary
conditions exactly for this choice. This difficulty occurs, of course, already for
the elliptic problem, and several methods have been suggested to deal with it.
In this chapter we shall consider, as a typical example, a method which was
proposed by Nitsche for this purpose. This will serve as background for our
subsequent discussion of the discretization of the parabolic problem. Another
example, a so called mixed method, will be considered in Chapter 17 below.

Consider thus, with Ω a plane domain with smooth boundary, the Dirich-
let problem

(2.1) −∆u = f in Ω, with u = 0 on ∂Ω.

Let now the Th = {τj}Mh
j=1 belong to a family of quasiuniform triangulations

of Ω, with maxj diam(τj) ≤ h, where the boundary triangles are allowed
to have one curved edge along ∂Ω, and let Sh denote the finite-dimensional
linear space of continuous functions on Ω̄ which reduce to polynomials of
degree ≤ r−1 on each triangle τj , without any boundary conditions imposed
at ∂Ω, i.e.,

(2.2) Sh = {χ ∈ C(Ω̄); χ
∣
∣
τj

∈ Πr−1},

where Πs denotes the set of polynomials of degree at most s.
In addition to the inner product in L2 = L2(Ω) we set

〈ϕ,ψ〉 =
∫

∂Ω

ϕψ ds, and |ϕ| = 〈ϕ,ϕ〉1/2 = ‖ϕ‖L2(∂Ω),

and introduce the bilinear form
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(2.3) Nγ(ϕ,ψ) = (∇ϕ,∇ψ) − 〈∂ϕ

∂n
, ψ〉 − 〈ϕ,

∂ψ

∂n
〉 + γh−1〈ϕ,ψ〉,

where γ is a positive constant to be fixed later and ∂/∂n denotes differenti-
ation in the direction of the exterior normal to ∂Ω.

Now let u be a solution of our Dirichlet problem (2.1). Then, using Green’s
formula, we have, since u vanishes on ∂Ω,

Nγ(u, χ) = (∇u,∇χ) − 〈∂u

∂n
, χ〉 − 〈u,

∂χ

∂n
〉 + γh−1〈u, χ〉

= −(∆u,χ) = (f, χ), for χ ∈ Sh.
(2.4)

With this in mind we define Nitsche’s method for (2.1) to find uh ∈ Sh

satisfying the variational equation

(2.5) Nγ(uh, χ) = (f, χ), ∀χ ∈ Sh.

We shall demonstrate below that if γ is appropriately chosen, then this prob-
lem admits a unique solution for which optimal order error estimates hold.

For our analysis we introduce, for ϕ appropriately smooth, the norm

|||ϕ||| =
(
‖∇ϕ‖2 + h

∣
∣
∣
∂ϕ

∂n

∣
∣
∣
2

+ h−1|ϕ|2
)1/2

.

We first note the following inverse property.

Lemma 2.1 There is a constant C independent of h such that

|||χ||| ≤ Ch−1‖χ‖, ∀χ ∈ Sh.

Proof. Because of the quasiuniformity of the family of triangulations Th, ∇χ
is estimated by (1.12). Further,

(2.6)
∣
∣
∣
∂χ

∂n

∣
∣
∣
2

≤ C0h
−1‖∇χ‖2, ∀χ ∈ Sh.

This follows easily by using for each boundary triangle τj a linear transforma-
tion to map it onto a unit size reference triangle τ̃j with vertices (0, 0), (1, 0),
and (0, 1), say, with the curved edge between (0, 1) and (1, 0), and noting that
here ‖η‖L2(∂τ̃j) ≤ C‖η‖L2(τ̃j) for η = ∂χ/∂xi, since the right hand side is a
norm on Πr−2. Using the inverse of the linear transformation to map τ̃j back
to τj , we obtain ‖∂χ/∂xi‖2

L2(∂τj)
≤ Ch−1‖∂χ/∂xi‖2

L2(τj)
, and (2.6) follows by

summation over the boundary triangles. Using also (1.12) this bounds ∂χ/∂n
in the desired way. Finally, in the same way, |χ|2 ≤ C0h

−1‖χ‖2 for χ ∈ Sh.
Together these estimates show the lemma. ��

We now show that the bilinear form Nγ(·, ·) defined in (2.3) is continuous
in terms of ||| · ||| and positive definite when restricted to Sh.


