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1

General Introduction

It is certainly true that an actual economy will be
changing all the time.
J.R. Hicks

Change is a universal phenomenon in all systems.
All equilibria are temporary.
K.E. Boulding

Life is change, and without changing it would be
inexplicable.
N.A. Berdjajew

Everybody knows that life is a process. But not
everybody remembers that a process will be no
longer a process if it reaches an equilibrium.

M. Feldenkrais

Hévra pa.
Heraklit

One of the most prominent ideas in economics undoubtedly is that of equi-
librium. Even branches of economics which by their very nature are concerned
with non-equilibrium states of economic systems draw on the notion of equi-
librium, at least as a fundamental point of reference. Equally central to eco-
nomics, however, is the idea of the evolution of an economic system over time.
In fact, the understanding of an equilibrium as a final state of rest which has
been borrowed from thermodynamics being prevalent in economics is obvi-
ously completely at odds with the idea of evolution. To avoid an inappropri-
ate bipolarity of these two key concepts in economics, however, a synthesis of
both seems to be desirable. Fortunately, economic theory has proposed ways
to tie the two strings together. A first proposal comes from economic growth
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theory, which formalizes a dynamic economic system as a system of difference,
or differential, equations. There equilibria mean ‘equilibrium trajectories’ of
the whole evolution that, in a certain sense, are optimal. A particularly unsa-
tisfactory feature of this conceptualization of an equilibrium, however, is the
fact that the intertemporal optimizing approach completely predetermines the
whole future of the economic system. This “closed loop” approach gives rise
to the common reproach that economic theory is predominantly concerned
with the question of ‘how the economic system ought to behave’ rather than
with the question of ‘how does it behave actually’. This is the point at which
the new branch of evolutionary economics has made its entrance.

In contrast to growth or business cycle theory, evolutionary economics
perceives the evolution of the economic system as essentially “open” to true
novelties that are unforeseeable by their very nature. This view clearly makes
obsolete any conception of equilibrium that resorts to the idea of a final state
of rest, or to the idea of an intertemporally optimizing trajectory which is
prespecified ab initio by a system of differential equations and initial condi-
tions. To be sure, there have been attempts to reconceptualize the notion of
equilibrium from the evolutionary viewpoint. However, these proposals also
appear, in one way or another, to hinge on the ideas of rest. This particu-
larly applies to the branch of nonlinear dynamics and deterministic chaotic
motion. More specifically, this approach assumes the dynamic behavior of a
system as being governed by a fully deterministic process, namely by iterative
application of a fixed “generator” mapping. Then ‘attractors’ are sought, i.e.
a family of states that are finally run through again and again by the system
under consideration. What this approach still lacks, however, is an analytical
framework for the evolving economy which allows for a new and truly ‘open’
conceptualization of equilibrium.

To further the latter idea we will put forth here a new attempt to synthesize
the two ideas of economic equilibrium and evolution. The basic idea of our
approach is to take elaborate, but equally intuitive, models of mathematical
economic equilibrium theory as our starting point and to ‘animate’ them, or,
say, ‘let them evolve’.

This naturally leads us to the conception of an equilibrium as a “transitory
coordination solution”. As we will see, this notion of equilibrium meets the
requirement of an ‘open evolutionary’ equilibrium concept quite satisfactorily.
Before we proceed to sketch our approach and our aims, we should, however,
clarify our understanding of the term ‘evolution’ in the present study. In fact,
we will adopt a broad understanding of the term ‘evolution’. This means, we
do not think of any connotation of progress, or directed development in any
sense (anagenesis) when speaking of an evolving economic system. Particu-
larly, we may, but need not necessarily, think of an evolving economic system
as being governed by ‘evolutionistic’ rules in the sense of variation, selection,
and retention. Moreover, we will employ two understandings of an evolution: a
temporal understanding of an evolution as a process in historical time, and an
atemporal understanding of an evolution as an “artificial” evolution generated
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“in the mathematical economist’s laboratory”. In any of these two conceptual-
izations an evolution consists of a succession of states of the economic system
under consideration. As a general remark we would like to emphasize that
throughout our whole study geometrical imagination is always a good guide
for intuition.

Intuition, Scope, and Aims of the Book

Our study consists of three main Parts. In Part I, the concept of an evolu-
tion of economies is formalized analytically. This will be done on the basis
of nine different general equilibrium models, which are henceforth refered to
as the “basic models”. They have been partly adopted from the literature,
partly they are new. The necessary mathematical tools are introduced in the
‘Mathematical Preliminaries’ following this Introduction. They are mainly
intuitive concepts from geometry, general topology, homotopy theory, alge-
braic geometry, and differential topology. At the heart of our analytical for-
malization of evolution lies the notion of a “continuous one-parametrization
of states of the economy”. This way of analytically formalizing evolutions
is not only intuitive, but it also appears to be the only reasonable one for
our purposes. To aid the reader’s intuition, the single states of the evolution
correspond to the single shots of a movie, if one compares an evolution of
economies to a movie. The roots of this conceptualization as well as of further
analytical treatment can be traced back to early publications by Lehmann-
Waffenschmidt (1983, 1985, special aspects have been analysed by the author
in 1987, 1994, 1995, 2005, 2006). Moreover, continuously one-parametrized
economies have also been analyzed for instance by A. Mas-Colell in his com-
prehensive monograph from 1985 (Chapters 5 and 8). Indeed, both approaches
have originated in complete independence of each other. The reader should
note, however, that the study by Mas-Colell only provides an analytical treat-
ment of one-parametrized economies, but gives no further economic applica-
tions. Nevertheless, Mas-Colell’s contribution will be an important point of
reference for our formal analysis in Part IT of the present study. But there is a
clear distinction from the mathematical viewpoint: Our constructions primar-
ily draw on algebraic parametrized fixed point theory, whereas Mas-Colell’s
constructions come from the field of differential topology. It is noteworthy
that our approach nowhere resorts to differentiability assumptions. All our
constructions and results are solely based on assumptions of continuity.

The main task in Part I is to formalize the concept of evolutions in our
nine basic set-ups and to fit these formalizations into a unifying analytical
setting. This is done in order to make them accessible for an application of a
crucial result from one-parametrized algebraic fixed-point theory. In Chapter
4 evolutions in three basic models from the Walrasian exchange framework,
one of which is a model of large exchange economies will be formalized. In
fact, this model is similar to the one used by Mas-Colell as a basis for one-
parametrizations (1985, Section 5.8).
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In Chapter 5, evolutions are formalized in two basic models which relax the
usual assumptions of Walras’ law (the budget identity) and of homogeneity
of degree zero of the excess demand functions. These models are inspired
by a former model by N. Schulz (1985) the purpose of which has been to
model a subsystem of the system of all conceivable markets in an economy.
Nevertheless, the relaxation of these two standard assumptions will prove to
be of great help later in our study when a new formalization of an economy
evolving in historical time is developed (Section 19.2.2).

In Chapter 6, evolutions are formalized in two models with production,
tax, and subsidy schemes originally developed by T. Kehoe (1985b). Finally,
in Chapter 7 evolutions are formalized in two models from the quantity con-
strained equilibrium framework. More precisely,a micromodel with effective
demand of the Benassy type is employed, which we have slightly adapted for
our purposes. Furthermore, a new model is designed with many productive
sectors on a medium level of aggregation.

In Part IT of our study, the main analytical results which will provide the
basis for later applications in Part III are derived. Any proofs in Part IT which
employ advanced mathematical results are relegated to the appendices at the
end of this monograph.

The central analytical results of this study are given in Chapter 10. Using
a certain core result from parametrized algebraic fixed point theory it is shown
that for any evolution of each one of the nine types introduced in Part I, there
is a certain structural property of its equilibrium set. This structural property
ensures the existence of what we call ‘near-equilibrium paths’. This result is
certainly not at all clear from the outset since even for simple examples a total
indeterminacy of the equilibrium set of one-parametrizations can be observed.
The intuitive geometrical meaning of a near-equilibrium path is that of a
polygonal path, which lies in the graph of the Walras correspondence of the
given evolution of economies. For the pure exchange framework a related result
has been formerly shown by Lehmann-Waffenschmidt (1983, 1985). Another
related result for a basic model of a large exchange economy has been provided
by Mas-Colell (1985, 5.8.24).

A mathematical criterion is provided for checking which points lie on near-
equilibrium paths. In Chapter 11, it is shown how any evolution can be approx-
imated so that there even exists a geometrically, nicely behaved equilibrium
path, i.e., a path consisting only of true equilibrium points. To our knowledge
so far there is no precursor in the literature of our class of well-behaved paths
and our approximating evolutions. From Mas-Colell’s extension of the regular
theory to the one-parametrized case merely follows the existence of approxi-
mating evolutions in the basic exchange framework. We will come back to this
below. To achieve our aims, we have to accomplish three tasks. First, we must
design a general class of paths that deserve the qualification “well-behaved”.
Second, we must provide a general construction of approximating evolutions
for each of our basic models, and third we have to verify that our appro-
ximating evolutions always possess an equilibrium path from the designed
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well-behaved class. While this makes some analytical efforts necessary, in our
eyes they are fully justified by the achievements that become possible with
their help.

Actually, it is the notion of a (near-)equilibrium path which will later pro-
vide the basis for our new concept of a ‘homeostatic equilibrium’ of an evo-
lution. In Section 11.1 two alternative methods of approximating evolutions
of exchange economies are developed. The first one is based on piecewise lin-
ear functions, whereas the second one is based on polynomial approximation.
Both methods have advantages. While the first one is completely constructive,
the second one can easily be generalized to other basic frameworks.

It is noteworthy that as a byproduct of our constructions it can be shown
that the graphs of the equilibrium correspondence of each of the nine basic
models from Part I are “maximally well-connected”. This result significantly
extends the related global results on the arc-connectedness of the graph of
the Walras correspondence by Y. Balasko and others (see Balasko 1988, 1996
for surveys, see also Balasko, Lang 1998 and Bonnisseau, Cayupi 1999). At
this point it is also natural to examine the relationship of our results in this
monograph to the results of the so-called law of demand (Hildenbrand 1989,
1994, 1998, 1999a, b). Actually, the validity of the law of demand would
ensure uniqueness of the equilibrium set of any single state economy of an
evolution. Then the existence of geometrically well-behaved (near)-equilibrium
paths of our type would directly follow from the continuity of evolutions.
Unfortunately, all theoretical and empirical results supporting the validity of
the law of demand pertain to special static equilibrium model types different
from any one of the nine basic models developed here. What’s more, the law
of demand cannot hold true for the exchange model, as simple computation
shows.

Chapter 12 provides further natural interpretations and extensions of the
general concept of an economic evolution developed here. Obviously our con-
ceptualization of economic evolution by one-parametrizations gives room for
two economic interpretations. On the one hand, one may emphasize the aspect
that a one-parametrization connects its initial state with its terminal state. In
this case, we speak of a “connection evolution”. On the other hand, one may
understand an evolution in this context as starting from its initial state and
openly evolving in some continuous way. In this case we speak of a “course
evolution”. A particularly interesting question is whether for each of the basic
models there is always a connection evolution for any two given economies.
Fortunately, it can not only be shown that the correct answer is “yes”, but
also general standard constructions of connection evolutions for each basic
model can be provided.

Whether one adheres to the understanding of an evolution as the perfor-
mance of the economic system in historical time, or one employs the formal
understanding of evolution as any succession of states, be it chronological,
or artificial, it seems to be desirable to admit both cases of ‘new comodities’
appearing on markets and of ‘old commodities’ disappearing from markets
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during the evolution. This will be our theme in Section 12.2 where we provide
the analytical constructions that are necessary to realize this in each of the
nine basic models.

The structure results of the existence of (near)-equilibrium paths from
Chapters 10 and 11 raise the following natural question: Is this the only
structural property of the equilibrium set of evolutions that generally holds?
In Chapter 13 the answer to this question will be given as affirmative for the
basic models from the exchange framework in Chapters 4 and 5. Moreover,
the one-parametrized extension of Mas-Colell’s famous result from 1977 which
extended the celebrated decomposition result of market excess demand func-
tions by Sonnenschein, Debreu, and Mantel will be achieved. More precisely,
our result shows that in the one-parametrized case of an evolution of econo-
mies there is a structural property of the equilibrium set, whereas Mas-Colell’s
result has verified the total lack of restriction on the equilibrium price set of
a static exchange economy. As a notable corollary of our result, any two non-
empty compact subsets of the price domain can be realized as the equilibrium
sets of two arbitrarily close exchange economies.

Our results are also closely related to the results on the local surjectiveness
of the graph of the Walras correspondence by B. Allen (1981). As we will see
in Chapter 13 our results and those by B. Allen neither extend, nor contain
each other, but are complementary in their characterization of the graph of
the Walras correspondence. Together with the above mentioned global results
by Y. Balasko and others, these results provide a fairly detailed understanding
of the shape of the graph of the Walras correspondence.

In Chapter 14, we present a detailed comparison of our results with re-
lated results in the literature. As a general remark we repeat that our approach
nowhere resorts to differentiability assumptions. All of our conceptualizations
and results are based solely on continuity. In Section 14.1 we summarize the
achievements of our results compared with the well-known global structural
results on the graph of the Walras correspondence. Section 14.2 deals with the
relationship of our approach and its results to the theory of regular economies
and its extension to regular one-parametrizations by Mas-Colell (1985, Chap-
ter 8). In a nutshell our conclusion is that the static regular theory produces
stronger results than ours in the local sense, but if one leaves a connected
component of the subspace of regular economies, these strong results break
down. In this case our results have significant advantages.

There is certainly a close relationship between the theory of regular one-
parametrizations and the approximation results in Section 11.1. However,
there are advantages of our approach: Our method of achieving approxima-
ting evolutions by well-behaved equilibrium paths is constructive, whereas the
theory of regular one-parametrizations merely provides an abstract existence
result. Of course, equilibrium paths for an evolution are just selections from
its equilibrium set. Thus they are non-unique in general, since the equilibrium
set may well exhibit irregularities such as multifurcations, or ‘thick’ parts, i.e.
continua. On the other hand, though they are isomorphic to linear segments,
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the ‘regular equilibrium paths’ found by the regular theory may exhibit geo-
metrically wild features. For instance, they may have infinite Euclidean length
as simple considerations show. Moreover, we can show here that the compart-
mentalization of the space of exchange economies as well as of the space of
exchange one-parametrizations by the subspace of critical economies and crit-
ical one-parametrizations, respectively, is fairly complicated. We emphasize
that this weakens the structure results of the regular theory considerably. Ac-
tually, slightly perturbing a critical economy, or one-parametrization, leads
to a regular economy with probability one. But the complex structure of the
subspace of critical economies makes it almost impossible to predict the pro-
perties of the obtained regular economy, or one-parametrization,respectively.
A last issue concerns the labels ‘critical’ and ‘regular’. In fact, speaking of ‘non-
regular’, or ‘critical’, economies (one-parametrizations) means that they are
exceptional, or negligible. To be precise, this implicitly presumes a uniform
probability distribution on the space of economies (one-parametrizations).
However, so far no consistent underpinning has been provided by economic
theory which would justify the assumption of negligibility. Instead, experience
with real social systems strongly suggests that ‘critical’ states are not at all
negligible.

In Part III of the study the economic content of the preceding concep-
tualizations and results are explored. Following the common classification, a
distinction is made between applications on the temporal and on the atem-
poral field.

On the atemporal field, i.e. in the mathematical economist’s laboratory,
two major strings of applications are presented (Chapter 17). The first one
has to do with the computation of equilibria, and the second one with eman-
cipating comparative statics from its paralysis through the indeterminateness
phenomenon. More precisely, it is shown that our results, in a certain sense,
achieve an extension of the well-known path following computational method
of equilibria of regular exchange economies (see e.g. Mas-Colell, 1985, Section
5.6 for a survey on the topic). The method used here works in each of our nine
basic set-ups and, particularly, is not confined to regular economies. This is,
however, at the cost of loss of algorithmic comfort.

In our second atemporal application the notorious paralysis of compar-
ative statics caused by multiplicity of equilibria is dealt with. In fact, it is
our conviction that the multiplicity phenomenon is intrinsically linked to the
present-day way of economic thinking. Our conclusion from this is that a way
should be sought to give comparative statics a meaning, also in the multi-
plicity case. In Section 17.2 will be demonstrated that our preceding results
indeed provide a way to reconstruct comparative statics when equilibria are
multiple. Moreover, our main result from Chapter 13 implies that the pro-
posed ‘genetic comparative static method’ in fact is the only general way to
achieve this.

The main economic applications of our approach and of our results, how-
ever, are on the temporal field. In Chapter 18, the methodological viewpoint
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and the scope of the analysis are explained at some length. We will not strive
for an analysis which is dynamic, or even evolutionary, in the strict sense,
but confine ourselves to an analysis that is something like a continuous, or
evolutionary comparative analysis (a ‘genetic comparative analysis’; for an
evolutionary approach see e.g. Bosch 1990, Kirzner 1990, Loasby 1991, and
Faber, Proops 1998, Witt 2003). From physics we have borrowed the term *ki-
netic’ for our approach. As already mentioned the procedure used here is to
conceptualize and formalize different types of classes of reasonable evolutions
by means of continuous one-parametrizations, and then to analyze them for
their general structural properties. Kinetics does not inquire into the causal
explanation of the individual evolution of the real economic system in histor-
ical time, but searches for general regularity, or structural, properties of the
dependent evolutions of the endogenous key variables. Thus, one can say, that
while dynamics studies the ‘laws of motion’ of the economic system, kinetics
studies the ‘laws of the effects of motion of the economic system’. In this sense
our temporal applications can be seen as being complementary to dynamics,
and especially to evolutionary economics.

Having clarified our method, we will start with applications in discrete
historical time (Chapter 19.1). The first step is to formalize evolving economies
in discrete historical time for the nine basic models. This is achieved in a
natural way by employing the common ‘period approach’. Essentially our
applications in this context are based on the atemporal applications given in
Chapter 17.

The main body of our temporal applications, however, are applications in
historical time (Sections 19.2-19.4). In Section 19.2 we begin by designing two
alternative models of evolving economies in continuous time. While the first
one is based on the idea of continuous flows of commodities and services, the
second one provides an entirely new approach. Its main idea is to describe the
evolution of a market over time by varying time intervals between two succes-
sive demand, or supply, events. In our opinion, the resulting ‘frequency model’
achieves a realistic theoretical framework describing an evolving economy in
continuous historical time. The main ingredient of the frequency model is the
basic framework of an exchange economy that relaxes Walras’ law and the
homogeneity assumption on excess demand functions from Section 5.1.

What are the economic achievements of the application of the analytical
work from Part II to these conceptualizations of evolving economies in his-
torical continuous time? In a nutshell, it provides the opportunity to tune
equilibria, at least piecewise, continuously to their changing values when the
economy undergoes an evolution. In other words, we establish the existence
of a ‘homeostatic equilibrium’ for evolving economies. It should be empha-
sized that this result merely ensures the opportunity for some policy making
institution to achieve a (piecewise) fine tuning of equilibrium values, but does
not endogenously model the policy making institution itself. In particular, our
understanding of the notion of equilibrium is not that of a description of the
real state of an economy. Indeed, this is made impossible by the multiplic-
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ity of equilibria. Instead, we understand the equilibria of a given momentary
state of an evolving economy here solely as momentary, or transitory, coordi-
nation solutions to this state. Consequently, it is not our concern to explain
the actual states of an evolving economy, but rather to support the provision
of the opportunity for ‘equilibrium engineering’, i.e. for continually selecting
equilibrating solution values with the least possible friction. Regarding the
underlying evolution of the economic system, two model approaches will be
applied: In the first one the open evolution of the economic system is not
touched by the “equilibrium engineering” procedure, in the second one cer-
tain “backtracking” phases in the open evolution of the economy have to be
employed. We will come back to this issue shortly.

At this point, however, we would like to mention a direct application of this
result to the issue of time consuming equilibrium adjustment processes. It has
been known for a long time that, in general, a time consuming equilibrium ad-
justment process faces a moving target (e.g. Kloek 1984, for a comprehensive
survey see e.g. Fisher 1983). This has already been illustrated by V. Pareto in
a different context by his famous ‘courbes de pursuite’. The adjustment of a
moving equilibrium is symbolized by him as a running hare being tracked by
a hound. To our knowledge we show for the first time that for any evolution
of any of our basic models there is something like ‘the path of the hare’ which
can be actually tracked by an agent purposed to “catch the hound” (Section
19.3).

So far the results just show that a ‘frictionless equilibrium engineering’, or
tuning, in general is only piecewise possible, i.e., up to finitely many discrete
jumps. In the final Section 19.4 we will show, however, that this deficiency
can also be removed. The key idea for this is to “re-manipulate” the evolu-
tion of economies continuously without bringing new momentary states into
play such that no discrete jumps in the equilibrium values are necessary when
tuning them. In fact, three of the nine basic models are, from their econo-
mic conceptualization, suitable for this. These are the two models from the
framework with production, taxes, and subsidies (Chapter 6) and the multi-
sectoral quantity constrained model (Chapter 7). All these models have in
common that they contain explicit parameters that are, in principle, acces-
sible to an external control by some economic policy institution. These are
prices and wages in the case of the quantity constrained multi-sectoral model
from Chapter 7, and tax and subsidy rates in the case of the two models from
Chapter 6.

In order to ensure a perfect homeostatic equilibrium, i.e., a continually
frictionless tuning of equilibrium values during an evolution, it is only neces-
sary for a policy institution to intervene at finitely many dates. In concrete
terms, an effective intervention means that the evolution of the control param-
eters governing the evolution of the economic system is partly backtracked,
i.e., is in parts repeated in a continuous way. The reader should be well aware
that we have a tuning on two different levels, namely on the level of economic
state parameters and on the level of equilibrium values, whereas in Section
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19.2 there is only a tuning of equilibrium values. We also want to emphasize
again that our result only provides the general opportunity to realize a perfect
homeostatic equilibrium during an evolution to an external policy institution,
but does not endogenously model policy institutions, or their actions.

The pros und cons of a continuous fine tuning of economic state parame-
ters such as taxes, subsidies, or prices, according to the applied basic model
set-up, have been, for the first time, extensively discussed in the literature
during the debate on gradual versus bang-bang tax reform in the seventies
(e.g. Hatta 1977, Hettich 1979). This controversy has later experienced a re-
vival in a slightly different context, namely in the debate on macroeconomic
policy design (e.g. Fellner et al. 1981, Zodrow 1985, Marangos 2002). To sum
up, the following arguments are in favor of a continuous ‘fine tuning’ policy:
Enactment of an “bang-bang”, “cold turkey”, or shock therapy policy en-
tails greater administrative as well as greater social and political costs. This
may largely be attributed to the agents’ attitude of risk aversion and con-
servatism in economic affairs, which appears to be predominant in reality.
Moreover, gradual control makes at least partial foresight possible for the
economic agents. In economics this is generally considered as favorable for a
stabilized evolution of the economy. This argument is beyond the scope of the
model framework developed and employed in this book, but the reader should
note that a discontinuous monitoring of equilibrium prices will not only cause
sudden changes in consumed quantities, but also of individual wealth and thus
of the agents’ economic status. Last, but not least, tuning equilibria follow-
ing a “well-behaved” path while the economy evolves is clearly much more
comfortable for the agency than searching for new equilibria anywhere in the
domain of all possible equilibria.

However, this does not mean that we take a one-sided position favouring
a strict gradualism in economic policy making. For both positions of a gradu-
alistic policy and a shock therapy there are striking metaphors: How would it
be possible on one hand to change moving forward to moving backward other
than gradually? The shock therapy position, on the other hand is favoured by
the metaphor of changing from driving on the left to driving to the right in
a state. We are well aware of the disadvantages of the gradualistic principle.
The German reunification, for instance, may serve as an example of how po-
litical motives and uncertainties concerning the future evolution of boundary
conditions may well favour a quasi bang-bang policy enactment of reforms.
What we want to say is that it seems to be worthwhile investigating the condi-
tions and opportunities for enacting a gradual, shock-free policy. A thorough
assessment to decide whether a gradual adjustment, or a shock therapy policy
adjustment is preferable can only be made on a case-by-case basis.

The monograph is rounded off in Part IV by general conclusions, an out-
look on further possible research work and the Appendices A to C.

I have now reached the point where I would like to take the opportunity
to thank all who have helped me with their comments and suggestions. In
fact, there is a number of people who have contributed to the evolution of
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my personal ideas and views on my subject over the years and who have
helped me to make them precise and comprehensible. Particular thanks are
due to the Konrad Lorenz Institute for Evolution and Cognition Research in
Altenberg near Vienna where I found the environment to do the last “finish”
on this monograph, and to Barbara Fefl from Springer Verlag for her help
and encouragement as well as all people who gave technical support to the
realization of this book.
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Notations and Mathematical Preliminaries

Notations

RY, Ry,
R”, R2_
OR™
Anfl

aAn—l
Aon—l
At

An—l

€

Anfl

€

An—l,a

Acn—l,a
<1}17 ey Uk+1>

closed (open) positive orthant of R™

closed (open) negative orthant of R™

boundary of R"}, i.e. R \R% |

closed (n — 1)-dimensional unit simplex in R, i.e.
{zeRY| Yz =1}

boundary of the (n — 1)unit simplex, i.e.

{y € A" 1|y; = 0 for at least one i = 1,...,n}
boundaryless, or open, (n—1)-dimensional unit sim-
plex, i.e. An~1\gAr—1

i-facet of A"~1 i.e. the subspace {x € A" 1|z, =
0} of the boundary A" 1(i € {1,...,n})

for € > 0 the inscribed “e-unit simplex”, i.e.

{x € A" YV,_1, . x > €} (note that clearly the
Euclidean distance from any i-facet of A"~! to the
i-facet of A"~1 is greater than ¢)

the i-facet of AP~! ie. the subspace {z €
AP Moy = €}

for any real number a > 0 the (n — 1)-dimensional
simplex {y € R%|>"  y; = a}, also called the
“a — (n — 1)-simplex”; thus A"~1< is parallel to
the unit simplex with intercepts o on the coordinate
axes. For o« < 1 it is also called the “a-section of
T™” (see below); « is also called the “simplex-level”
of An—l,a

open a — (n — 1)-simplex A"~b* NR” |

for £k + 1 points v1,...,v541 in R™ the m-
dimensional simplex generated by them, i.e. their
convex hull
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2 Notations

s
{pt}
(1, ..

T>Y,T>Y

Ty

Y\X
XC

coX

oy Ljy e

(m <k<n)

(n—1)-dimensional unit sphere, i.e. {z € R"|||z|| =
1}

closed positive part of S*71, i.e. {z € R7|||z|| = 1}
strictly positive part of S"~!, ie. {z € R?_|||z|| =
1}

for € > 0 the contained closed e-unit sphere, i.e.

{z € 5171|Vi:1,...,n x; > €}

for any real number o > 0 the orthogonal projection
of Ame C R} := R% x R, into the coordinate
hyperplane R%, i.e. T™® := {z € R[> a; <
a}, also called “embedded a-n-simplex”

the open embedded a-n-simplex

{z e R[5, 2 < a}

abbreviation of T™! also called “embedded n-
dimensional unit simplex”

the null vector of R™

the pointed embedded n-dimensional unit simplex
Tm\{0"}

for arbitrarily large real positive « and arbitrarily
small real positive v the “inscribed embedded a-~-
n-simplex”

{a:ERﬂZ;L’iSaandmz’y forall i=1,...,n}
i=1

Tt

the single point space (singleton set)

the vector (1,1,...,1) of R

the 4-th unit vector (0,...,0,1,0,...,0) of R"

the n — 1-vector (.I‘l, ey Li—1y L Ly e v vy I‘n)

for n-vectors = and y means that the weak (strong)
inequality holds for every component

for n-vectors = and y the (straight line) segment
with endpoints  and y

for a column vector x € R™ the transposed row
vector

for spaces X C Y the difference set {y € Y|y ¢ X}
for spaces X C Y the complement of X in Y, i.e.
Y\ X

for a subspace X C R"™ denotes the convex hull of
X in R™
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dist(F, Q) means for any two nonempty compact subsets F, G
of a metric space X the Hausdorff distance, i.e.

min{e > 0|F C B.(G) and G C B.(F)}

where B.(Y) = {z € X|d(z,y) < e for some y € Y}

forany Y C X
B(x) the closed n-ball with center x and radius » > 0,
ie.
{y eR" [ly -zl <r}
im f for a mapping f : X — Y the image f(X)CY
Fiz f for a self-mapping f : X — X the fixed point set,
ie. {z € X|f(x) =x}
Fix F for a homotopy F : X x [0,1] — X the set
{(z,s) € X x [0,1]|F(x,s) =z}
X x [0,1] homotopy space, i.e. the domain of a homotopy

F : X x[0,1] — Y; due to their geometrical
shape the special homotopy spaces A"~1 x [0, 1]
and T"~! x [0, 1] are called “homotopy prisms”

X x {s} for 0 < s <1 the “s-slice” of the homotopy space
X % [0,1]

N natural numbers including 0

M(n x m;R) the set of n X m-matrices with real entries

| Al for an m x n-matrix A = (a;;) with real entries the

m x n-matrix (|a;;|) of absolute values of the entries

Mathematical Preliminaries

Now we are going to provide the reader with the formal standard notions from
general and algebraic topology and algebraic geometry as well which will play
an important role in our analysis!. Our exposition will be self-contained as re-
gards our subsequent analysis. The reader who still misses further background
informations is referred to the relevant textbook literature.

At the heart of our formalizations stands the notion of a continuous
one-parametrization. Generally a continuous one-parametrization, or evolu-
tion, homotopy, deformation, family or perturbation, is a continuous mapping
F : X x[0,1] — Y where X and Y are topological spaces. To be sure,
the notion of a continuous one-parametrization has intuitive appeal since it
can be viewed as a continuous one-parameter family of “ordinary” continuous
mappings (Fy)sejo,1) : X — Y where Fi(x) := F(z,s). For instance, any
continuous movement process is an example of a continuous one-parametri-
zation (cf. Figure 2.1). The subspace X x {s}, s € [0,1], is called the s-slice

1 As this Section consists of a collection of definitions we will omit the term ”defi-
nition” throughout.
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Fig. 2.1: Formal Representation of a Movie as a Homotopy

of the homotopy space X x [0,1] (corresponds to the snap—shot photo at time
t = s in Figure 2.1). We furthermore call s the homotopy, deformation, or
evolution, parameter and the mapping Fs(—) = F(—,s) the s-state mapping
of the one-parametrization F. Thus one can visualize a one-parametrization
F : X x[0,1] — Y for Euclidean subspaces X C R™ and ¥ C R" by
the continuous evolution of the graphs of the n component functions Fj(z, s).
FEvolutions of economic systems which we will employ in our study will always
be formally representable by one-parametrizations. Recall from the General
Introduction that in our study we neither restrict the term ‘evolution’ to eco-
nomic systems which are characterized by ‘evolutionary’ (technical) progress,
nor do we even stick to the narrow understanding of evolutions as necessarily
being evolutions over (historical) time. Rather, we will introduce evolutions of
economic systems in the general notion of any continuous changes governed
by a scalar parameter s. In Part III of our study we will study evolutions of
economies in both interpretations of the evolution parameter s: in the techni-
cal atemporal interpretation, and in the interpretation as elapsing historical
time.

Clearly, one can combine, or say compose, two homotopies F', F? : X x
[0,1] — Y when F} = F2,ie. Fl(z,1) = F%(z,0) for all x € X. We also say
that the obtained homotopy F : X x [0,1] — Y,
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B Fl(m728) if s € [071/2]7
F(z,s) = {FQ(x725 —1) ifse(1/2,1],

is the composition of the two homotopies F! and F?, or the composite homo-
topy of F' and F2. Composing k homotopies in this way accordingly leads to
a (k — 1)-fold composite homotopy.

A contractible topological space X is homotopic to the single point space,
i.e. there is a homotopy F': X x [0,1] — X with F(—,0) = idx, and F(—,1)
is a constant mapping into some point z € X. Contractible spaces are special
examples of acyclic spaces. The Lefschetz number of a space is an algebraic
topological characteristic. For an acyclical space it is +1 (the interested reader
is referred to Brown, 1971, II). A subspace X of R™ which is not convex can
still be star-shaped, that means there is a point xy € X such that any two
points x,y € X can be connected by the two segments TZy and zgy. Clearly,
a star-shaped space is contractible.

If the homotopy space equals the unit interval a special type of a homotopy
called “path” obtains. Indeed, the concept of a Euclidean path w : [0,1] — R™
will be crucial for our study, and it especially gives rise to the following concept
of a connected component of a space.

A connected component Z of some topological space X cannot be separated
into two disjoint open subsets, i.e. there are no disjoint open subsets A, B of X
with (AUB)NZ = Z. For any two points z, y of a path (connected) component
Z' of X there is a continuous path w : [0,1] — X with w(0) =z, w(l) = y.
w is a path in X connecting x with y. A path connected component is maximal
with this property.

One has to distinguish carefully between the notion of a path w and of
its arc, i.e. its image w[0,1] in X C R™. Identifying [0,1] with {y} x [0,1] a
path w: [0,1] — X can also be viewed as a continuous one-parametrization
w: {y} x [0,1] — X of its arc w[0,1]. Note particularly that in a graphic
representation the parameter ¢t € [0,1] in general is not identifiable on the
coordinate azes. The Euclidean length of a path w : [0,1] — X C R" is
defined as supyy, L(w, W) where W}, denotes a subdivision of [0, 1] by k + 1

points 0 = to < t1 < ... <t = 1L and L(w, W) 1= 35y d(w(t;—1),w(t;)) =
Z§:1 [fw(t;) —w(tj—1)||. If supy, L(w,Wy) is finite then one says that w is
of finite length, or w is rectifiable. It is well-known that a path w is rectifiable
if and only if each of its component functions w;, ¢ = 1,...,n, is of bounded

variation over [0, 1], that means
k
sup Y _ ||wi(t;) — wi(t;—1)|| < oo.

The everyday connotation of the term ‘path’ clearly is ‘to be viable, or pass-
able’ in the intuitive geometrical sense. This is also our intuition in this study.
Unfortunately, arcs of continuous paths can still have wild shapes as the fol-
lowing examples show: the graph of the continuous function z - sinl/z on
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[—1,1] has infinite length (one estimates from below by the divergent har-
monic series). But even if the arc of a continuous path is of finite length, it
still may oscillate, or tremble, infinitely often, as the function

w3sinl/x, x€[-1,0[ U J0,+1]
€T —
0, z=0

shows (‘a damped oscillation’; see Fig. 5).

Fig. 2.2: Damped Oscillation

Fortunately, there is a way to analytically design a broad class of paths
whose arcs are really “nice” in the intuitive geometrical sense. In other words
they do not display any features of impassableness. We will come back to this
later in our study (Section 11.1).

A gluing (hat) function o : A"t — [0, 1] which continuously glues some
continuous function f : A"~! — R™ with some other continuous function
g: A" — R™ over the area A?il\ﬁggl such that f prevails on the inner
part A3~ 1and g on the boundary area A1\ A"~ s a continuous function
with the properties

a‘An—l\Ag_l = 0
a|Ag€_1 =1.

The glued function is given by the convex, or linear, combination

a(x) f(z) + (1 - a(z))g().

An “(affine) simplex of dimension k > 0 embedded into R™” is the convex
hull of £+ 1 different points vy, v1, ..., vx in R™ which moreover are in general
position. The latter means that the affine linear subspace of R"”

{yER"

k
yZ’Uo—FZ/\i(Ui—’Uo), /\z ER}

i=1
spanned by v, v1,...,v; is not spanned by any subset of {vg,vi,...,vk}.
Thus, the affine simplex (vg,...,vg) C R™ generated by vg,v1,...,v is the

subspace
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k k
{Z)\ivi Z)\i:L every )\i>0}~
=0

i=0
v, . .., Uk are also called the wertices of the simplex (vo,...,v). Each subset
{vig,...,v;, } of the set of vertices spans an affine subsimplex (v;,,...,v;) of
(Vo -+« Vk). (Vig,...,v;) is also called an [-dimensional face of the simplex
(vo, . .., vk). In this terminology, the vertices are precisely the 0-faces, and the

1-faces are called the edges of the simplex. The maximal dimension of an affine
simplex in R” is clearly n.

A subspace X of R™ is a finite simplicial complex ) of dimension k if it
is the union of finitely many affine simplices of dimension < k which satisfy
the following rules of adjacency: for any simplex from )y each of its faces
also belongs to > y . The intersection of any two simplices from ) y is either
empty or is a common face.

One also calls X = |J o the support of the simplicial complex ",

UEZX
and says that X is finitely simplicially decomposed, or finitely triangulated,
by the simplicial complex } . In this study we will only deal with finite
simplicial decompositions of simple Euclidean subspaces like A"~ or AP~
for instance.

There is obviously no difficulty to extend a given simplicial triangulation
Sy of AP to A1 e, to provide a simplicial decomposition >y of A1
whose restriction to A?~! equals )" . Furthermore it is straightforward for
these simple spaces to obtain a finite triangulation »_, for any two given
triangulations Yy and Y~y which is a common refinement of 3"’y and 3%,
i.e. which contains both complexes Z/X and Zl)’{ as subcomplexes.

The spaces A" ! and Sifl are standard examples of neighborhood retracts
in a Euclidean space. Generally, a Fuclidean neighborhood retract A in R™ is
a subspace which is a retract of some of its neighborhoods, i.e. there is a
neighborhood U(A) of A in R™ and a continuous mapping

r:U(A) — A with r|4 = ida.

For the purpose of our present study, i.e. for the equilibrium analysis of
evolutions of economic systems, the notion of a homotopy is still not quite sat-
isfactory. The reason for this is that the continuity of a homotopy is a fairly
weak property still allowing for some pathologies of the one-parametrized fam-
ily of state mappings if the domain is not a compact space. More formally, the
continuity of a homotopy F is equivalent to C°-uniform convergence of the
state mappings Fs on compacta, i.e. to convergence of the state mappings F
on any compact subset A C X with respect to the maximum norm. However,
if X is an open subspace of R™ this admits for instance the following pathol-
ogy for a continuously one-parametrized family of excess demand functions
(Cs)sef0,1] An=1 R (see Figure 2.3): The sequence of excess demand
functions (¢ k) k=1,2,... obviously converges to the excess demand function ¢
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Fig. 2.3: Convergence Pathology

on compacta, though there is an increasing deviation of the functional val-
ues for the critical arguments P!, P2,.... This is possible since the critical
arguments run to the boundary of the non-closed domain. Clearly such a be-
havior strongly contradicts the intuition underlying the notion of a continuous
evolution of economic behavior functions. That means that neighboring state
functions of an evolution should have similar values on their whole domain
— not only on compacta. Thus, throughout our whole study we will employ
the stronger concept of overall C°-uniform convergence for one-parametriza-
tions instead of mere continuity, i.e. the state functions must converge on their
whole domain with respect to the usual supremum norm.

Given subspaces X C Y C R", areal € > 0, and a function g : X — R™,
we say that a function f: Y — R™ e-approximates g uniformly on X when
the restriction f3x is in the e-neighbourhood of g, i.e.

m

1f(z) = g(@)]| = Z(fi(m)—gi(a?))Q < € forall z € X.

i=1

Now we are going to introduce the concept of semi-algebraic subsets of R™.
We will employ these sets since they have very nice geometrical properties
and help us to formalize the notion of “nice paths”. Let us first recall some
elementary definitions from algebraic geometry: a polynomial in n-variables
over R is a continuous mapping f : R™ — R of the form

flze,...,zy) = Zail...in St gt

where the coefficients a;, . ;, are fixed real numbers and the sum is taken over a
finite set of n-tuples (i1, ...,i,) of positive integers. R[z1, ..., z,] denotes the



