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Preface

Cooperative systems are pervasive in a multitude of environments and at
all levels. We find them at the microscopic biological level up to complex
ecological structures. They are found in single organisms and they exist in
large sociological organizations. Cooperative systems can be found in machine
applications and in situations involving man and machine working together.
While it may be difficult to define to everyone’s satisfaction, we can say that
cooperative systems have some common elements: 1) more than one entity, 2)
the entities have behaviors that influence the decision space, 3) entities share
at least one common objective, and 4) entities share information whether
actively or passively.

Because of the clearly important role cooperative systems play in areas
such as military sciences, biology, communications, robotics, and economics,
just to name a few, the study of cooperative systems has intensified. That be-
ing said, they remain notoriously difficult to model and understand. Further
than that, to fully achieve the benefits of manmade cooperative systems, re-
searchers and practitioners have the goal to optimally control these complex
systems. However, as if there is some diabolical plot to thwart this goal, a
range of challenges remain such as noisy, narrow bandwidth communications,
the hard problem of sensor fusion, hierarchical objectives, the existence of
hazardous environments, and heterogeneous entities.

While a wealth of challenges exist, this area of study is exciting because
of the continuing cross fertilization of ideas from a broad set of disciplines
and creativity from a diverse array of scientific and engineering research. The
works in this volume are the product of this cross-fertilization and provide
fantastic insight in basic understanding, theory, modeling, and applications in
cooperative control, optimization and related problems. Many of the chapters
of this volume were presented at the 5th International Conference on “Coop-
erative Control and Optimization,” which took place on January 20-22, 2005
in Gainesville, Florida. This 3 day event was sponsored by the Air Force Re-
search Laboratory and the Center of Applied Optimization of the University
of Florida.
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Optimally Greedy Control of Team
Dispatching Systems

Venkatesh G. Rao1 and Pierre T. Kabamba2

1 Mechanical and Aerospace Engineering, Cornell University
Ithaca, NY 14853
E-mail:vr47@cornell.edu

2 Aerospace Engineering, University of Michigan
Ann Arbor 48109
E-mail: kabamba@engin.umich.edu

Summary. We introduce the team dispatching (TD) problem arising in coopera-
tive control of multiagent systems, such as spacecraft constellations and UAV fleets.
The problem is formulated as an optimal control problem similar in structure to
queuing problems modeled by restless bandits. A near-optimality result is derived
for greedy dispatching under oversubscription conditions, and used to formulate an
approximate deterministic model of greedy scheduling dynamics. Necessary condi-
tions for optimal team configuration switching are then derived for restricted TD
problems using this deterministic model. Explicit construction is provided for a spe-
cial case, showing that the most-oversubscribed-first (MOF) switching sequence is
optimal when team configurations have low overlap in their processing capabilities.
Simulation results for TD problems in multi-spacecraft interferometric imaging are
summarized.

1 Introduction

In this chapter we address the problem of scheduling multiagent systems
that accomplish tasks in teams, where a team is a collection of agents that acts
as a single, transient task processor, whose capabilities may partially overlap
with the capabilities of other teams. When scheduling is accomplished using
dispatching [1], or assigning tasks in the temporal order of execution, we re-
fer to the associated problems as TD or team dispatching problems. A key
characteristic of such problems is that two processes must be controlled in
parallel: task sequencing and team configuration switching, with the associ-
ated control actions being dispatching and team formation and breakup events
respectively. In a previous paper [2] we presented the class of MixTeam dis-
patchers for achieving simultaneous control of both processes, and applied it
to a multi-spacecraft interferometric space telescope. The simulation results
in [2] demonstrated high performance for greedy MixTeam dispatchers, and
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provided the motivation for this work. A schematic of the system in [2] is in
Figure 1, which shows two spacecraft out of four cooperatively observing a
target along a particular line of sight. In interferometric imaging, the resolu-
tion of the virtual telescope synthesized by two spacecraft depends on their
separation. For our purposes, it is sufficient to note that features such as this
distinguish the capabilities of different teams in team scheduling domains.
When such features are present, team configuration switching must be used
in order to fully utilize system capabilities.

g
g

i

Line of Sight

r

Effective baseline

Observation plane

Baseline

Space telescopes

Fig. 1. Interferometric Space Telescope Constellation

The scheduling problems handled by the MixTeam schedulers are NP-
hard in general [3]. Work in empirical computational complexity in the last
decade [4, 5] has demonstrated, however, that worst-case behavior tends to be
confined to small regions of the problem space of NP-hard problems (suitably-
parameterized), and that average performance for good heuristics outside this
region can be very good. The main analytical problem of interest, therefore, is
to provide performance guarantees for specific heuristic approaches in specific
parts of problem space, where worst-case behavior is rare and local structure
may be exploited to yield good average performance. In this work we are
concerned with greedy heuristics in oversubscribed portions of the problem
space.

TD problems are structurally closest to multi-armed bandit problems [6]
(in particular, the sub-class of restless bandit problems [7, 8, 9]), and in [2] we
utilized this similarity to develop exploration/exploitation learning methods
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inspired by the multi-armed bandit literature. Despite the broad similarity of
TD and bandit problems, however, they differ in their detailed structure, and
decision techniques for bandits cannot be directly applied. In this chapter we
seek optimally greedy solutions to a special case of TD called RTD (Resricted
Team Dispatching). Optimally greedy solutions use a greedy heuristic for dis-
patching (which we show to be asymptotically optimal) and an optimal team
configuration switching rule.

The results in this chapter are as follows. First, we develop an input-output
representation of switched team systems, and formulate the TD problem. Next
we show that greedy dispatching is asymptotically optimal for a single static
team under oversubscription conditions. We use this to develop a deterministic
model of the scheduling process, and then pose the restricted team dispatch-
ing (RTD) problem of finding optimal switching sequences with respect to
this deterministic model. We then show that switching policies for RTD must
belong to the class OSPTE (one-switch-persist-till-empty) under certain real-
istic constraints. For this class, we derive a necessary condition for the optimal
configuration switching functions, and provide an explicit construction for a
special case. A particularly interesting result is that when the task processing
capabilities of possible teams overlap very little, then the most oversubscribed
first (MOF) switching sequence is optimal for minimizing total cost. Quali-
tatively, this can be interpreted as the principle that when team capabilities
do not overlap much, generalist team configurations should be instantiated
before specialist team configurations.

The original contribution of this chapter comprises three elements. The
first is the development of a systematic representation of TD systems. The
second is the demonstration of asymptotic optimality properties of greedy
dispatching under oversubscription conditions. The third is the derivation of
necessary conditions and (for a special case) constructions for optimal switch-
ing policies under realistic assumptions.

In Section 2, we develop the framework and the problem formulation. In
Sections 3 and 4, we present the main results of the chapter. In Section 5 we
summarize the application results originally presented in [2]. In Section 6 we
present our conclusions.The appendix contains sketches of proofs. Full proofs
are available in [3].

2 Framework and Problem Formulation

Before presenting the framework and formulation for TD problems in de-
tail, we provide an overview using an example.

Figure 2 shows a 4-agent TD system, such as Figure 1, represented as a
queuing network. A set of tasks G(t) is waiting to be processed (in general
tasks may arrive continuously, but in this chapter we will only consider tasks
sets where no new jobs arrive after t = 0). If we label the agents a, b, c and d,
and legal teams are of size two, then the six possible teams are ab, ac, ad, bc,
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bd and cd. Legal configurations of teams are given by ab-cd, ac-bd and ad-bc
respectively. These are labeled C1, C2 and C3 in Figure 1. Each configuration,
therefore, may be regarded as a set of processors corresponding to constituent
teams, each with a queue capable of holding the next task. At any given
time, only one of the configurations is in existence, and is determined by the
configuration function C̄(t). Whenever a team in the current configuration is
free, a trigger is sent to the dispatcher, d, which releases a waiting feasible
task from the unassigned task set G(t) and assigns it to the free team, which
then executes it. The control problem is to determine the signal C̄(t) and the
dispatch function d to optimize a performance measure. In the next subsection,
we present the framework in detail.

Fig. 2. System Flowchart

2.1 System Description

We will assume that time is discrete throughout, with the discrete time
index t ranging over the non-negative integers N. There are three agent-based
entities in TD systems: individual agents, teams, and configurations of teams.
We define these as follows.
Agents and Agent Aggregates

1. Let A �
= {A1, A2, . . . , Aq} be a set of q distinguishable agents.
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2. Let T �
= {T1, T2, . . . , Tr} be a set of r teams that can be formed from

members of A, where each team maps to a fixed subset of A. Note that
multiple teams may map to the same subset, as in the case when the
ordering of agents within a team matters.

3. Let C �
= {C1, C2, . . . , Cm} be a set of m team configurations, defined as a

set of teams such that the subsets corresponding to all the teams constitute
a partition of A. Note that multiple configurations can map to the same
set partition of A. It follows that an agent A must belong to exactly one
team in any given configuration C.

Switching Dynamics
We describe formation and breakup by means of a switching process de-

fined by a configuration function.

1. Let a configuration function C̄(t) be a map C̄ : N → C that assigns a
configuration to every time step t. The value of C̄(t) is the element with
index it in C, and is denoted Cit . The set of all such functions is denoted
C.

2. Let time t be partitioned into a sequence of half-open intervals [tk, tk+1),
k = 0, 1, . . . , or stages, during which C̄(t) is constant. The tk are referred
to as the switching times of the configuration function C̄(t).

3. The configuration function can be described equivalently with either time
or stage, since, by definition, it only changes value at stage boundaries.
We therefore define C(k) = C̄(t) for all t ∈ [tk, tk+1). We will refer to both
C(k) and C̄(t) as the configuration function. The sequence C(0), C(1), . . .
is called the switching sequence

4. Let the team function T̄ (C, j) be the map T : C × N → T given by
team j in configuration C. The maximum allowable value of j among
all configurations in a configuration function represents the maximum
number of logical teams that can exist simultaneously. This number is
referred to as the number of execution threads of the system, since it is
the maximum number of parallel task execution processes that can exist
at a given time. In this chapter we will only analyze single-threaded TD
systems, but present simulation results for multi-threaded systems.

Tasks and Processing Capabilities
We require notation to track the status of tasks as they go from unsched-

uled to executed, and the capabilities of different teams with respect to the
task set. In particular, we will need the following definitions:

1. Let X be an arbitrary collection of teams (note that any configuration C

is by definition such a collection). Define G(X, t)
�
= {gr : the set of all

tasks that are available for assignment at time t, and can be processed by
some team in X}.
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Ḡ(C, t) = G(C, t) −
⋃

Ci �=C

G(Ci, t)

Ḡ(T, t) = G(T, t)−
⋃

Ti �=T

G(Ti, t). (1)

If X = T , then the set G(X, t) = G(T , t) represents all unassigned tasks
at time t. For this case, we will drop the first argument and refer to such
sets with the notation G(t). A task set G(t) is by definition feasible, since
at least one team is capable of processing it. Team capabilities over the
task set are illustrated in the Venn diagram in Figure 3.

Fig. 3. Processing capabilities and task set structure

2. Let X be a set of teams (which can be a single team or configuration as
in the previous definition). Define

nX(t) =

∣∣∣∣∣ ⋃
Ti∈X

G(Ti, t)

∣∣∣∣∣ , and

n̄X(t) =

∣∣∣∣∣∣
⋃

Ti∈X

G(Ti, t)−
⋃

Ti /∈X

G(Ti, t)

∣∣∣∣∣∣ . (2)

If X is a set with an index or time argument, such as C(k), C̄(t) or Ci,
the index or argument will be used as the subscript for n or n̄, to simplify
the notation.
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Dispatch Rules and Schedules
The scheduling process is driven by a dispatch rule that picks tasks from

the unscheduled set of tasks, and assigns them to free teams for execution.
The schedule therefore evolves forward in time. Note that this process does
not backtrack, hence assignments are irrevocable.

1. We define a dispatch rule to be a function d : T ×N→ G(t) that irrevocably
assigns a free team to a feasible unassigned task as follows,

d(T, t) = g ∈ G(T, t), (3)

where t ∈ {tid} the set of decision points, or the set of end times of the
most recently assigned tasks for the current configuration. d belongs to a
set of available dispatch rules D.

2. A dispatch rule is said to be complete with respect to the configuration
function C̄(t) and task set G(0) if it is guaranteed to eventually assign all
tasks in G(0) when invoked at all decision points generated starting from
t = 0 for all teams in C̄(t).

3. Since a configuration function and a dispatch rule generate a schedule, we
define a schedule3 to be the ordered pair (C̄(t), d), where C̄(t) ∈ C, and
d ∈ D is complete with respect to G(0) and C̄(t).

Cost Structure
Finally, we define the various cost functions of interest that will allow us

to state propositions about optimality properties.

1. Let the real-valued function c(g, t) : G(t)×N→ R be defined as the cost
incurred for assigning4 task g at time tg. We refer to c as the instantaneous
cost function. c is a random process in general. Let J (C̄(t), d) be the
partial cost function of a schedule (C̄(t), d). The two are related by:

J (C̄(t), d) =
∑

g∈G(0)

c(g, tg), (4)

where tg is the actual time at which g is assigned. This model of costs is
defined to model the specific instantaneous cost of slack time in processing
a task in [2], and the overall cost of makespan [1]. Other interpretations
are possible.

3 Strictly speaking, (C̄(t), d) is insufficient to uniquely define a schedule, but suf-
ficient to define a schedule up to interchangeable tasks, defined as tasks with
identical parameters. Sets of schedules that differ in positions of interchangeable
tasks constitute an equivalence class with respect to cost structure. These details
are in [3].

4 Task costs are functions of commitment times in general, not just the start times.
See [3] for details.
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2. Let a configuration function C(k) = Cik
∈ C have kmax stages. The total

cost function J T is defined as

J T (C̄(t), d) = J (C̄(t), d) +
kmax∑
k=1

JS(ik, ik−1), (5)

where JS(ik, ik+1) is the switching cost between configurations ik and
ik+1, and is finite. Define JS

min = min JS(i, j), JS
max = maxJS(i, j), i,

j ∈ 1, . . ., m,.

2.2 The General Team Dispatching (TD) Problem

We can now state the general team dispatching problem as follows:
General Team Dispatching Problem (TD) Let G(0) be a set of tasks that
must be processed by a finite set of agents A, which can be partitioned into
team configurations in C, comprising teams drawn from T . Find the schedule
(C̄∗(t), d∗) that achieves

(C̄∗(t), d∗) = argmin E(J T (C̄(t), d)), (6)

where C̄(t) ∈ C and d ∈ D.

3 Performance Under Oversubscription

In this section, we show that for the TD problem with a set of tasks G(0),
whose costs c(g, t) are bounded and randomly varying, and a static config-
uration comprising a single team, a greedy dispatch rule is asymptotically
optimal when the number of tasks tends to infinity. We use this result to
justify a simplified deterministic oversubscription model of the greedy cost
dynamics, which will be used in the next section.

Consider a system comprising a single, static team, T . Since there is only
a single team, C(t) = C = {T }, a constant. Let the value of the instantaneous
cost function c(g, t), for any g and t, be given by the random variable X , as
follows,

c(g, t) = X ∈ {cmin = c1, c2, . . . , ck = cmax},
P (X = ci) = 1/k, (7)

such that the finite set of equally likely outcomes, {cmin = c1, c2, . . . , ck =
cmax} satisfies ci < ci+1 for all i < k. The index values j = 1, 2, . . . k are
referred to as cost levels. Since there is no switching cost, the total cost of a
schedule is given by

J T (C̄(t), d) ≡ J (C̄(t), d) ≡
∑

g∈G(0)

c(g, tg), (8)
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where tg are the times tasks are assigned in the schedule.
Definition 1: We define the greedy dispatch rule, dm, as follows:

dm(T, t) = g∗ ∈ G(T, t),
c(g∗, t) ≤ c(g, t) ∀g ∈ G(T, t), g �= g∗. (9)

We define the random dispatch rule dr(T, t) as a function that returns a ran-
domly chosen element of G(T, t). Note that both greedy and random dispatch
rules are complete, since there is only one team, and any task can be done at
any time, for a finite cost.
Theorem 1: Let G(0) be a set of tasks such that (7) holds for all g ∈ G(0), for

all t > 0. Let jm be the lowest occupied cost level at time t > 0. Let n
�
= |G(t)|.

Then the following hold:

lim
n→∞E(c(dm(T, t), t)) = cmin, (10)

lim
n→∞E(jm) = 1, (11)

E(Jm) < E(Jr)for large n, (12)

lim
n→∞

E(Jm)− J ∗

J ∗ = 0, (13)

where Jm ≡ J T (C̄(t), dm) and Jr ≡ J T (C̄(t), dr) are the total costs of the
schedules (C̄(t), dm) and (C̄(t), dr) computed by the greedy and random dis-
patchers respectively, and J ∗ is the cost of an optimal schedule.
Remark 1: Theorem 1 essentially states that if a large enough number of
tasks with randomly varying costs are waiting, we can nearly always find one
that happens to be at cmin.5 All the claims proved in Theorem 1 depend on
the behavior of the probability distribution for the lowest occupied cost level
jm as n increases. Figure 4 shows the change in E(jm) with n, for k = 10, and
as can be seen, it drops very rapidly to the lowest level. Figure 5 shows the
actual probability distribution for jm with increasing n and the same rapid
skewing towards the lowest level can be seen. Theorem 1 can be interpreted
as a local optimality property that holds for a single execution thread between
switches (a single stage).

Theorem 1 shows that for a set of tasks with randomly varying costs, the
expected cost of performing a task picked with a greedy rule varies inversely
with the size of the set the task is chosen from. This leads to the conclusion
that the cost of a schedule generated with a greedy rule can be expected to
converge to the optimal cost in a relative sense, as the size of the initial task
set increases.
Remark 2: For the spacecraft scheduling domain discussed in [2], the se-
quence of cost values at decision times are well approximated by a random
sequence.
5 Theorem 1 is similar to the idea of ‘economy of scale’ in that more tasks are

cheaper to process on average, except that the economy comes from probability
rather than amortization of fixed costs.
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3.1 The Deterministic Oversubscription Model

Theorem 1 provides a relation between the degree of oversubscription of
an agent or team, and the performance of the greedy dispatching rule. This
relation is stochastic in nature and makes the analysis of optimal switching
policies extremely difficult. For the remainder of this chapter, therefore, we
will use the following model, in order to permit a deterministic analysis of the
switching process.
Deterministic Oversubscription Model: The costs c(g, t) of all tasks is
bounded above and below by cmax and cmin, and for any team T , if two
decision points t and t′ are such that nT (t) > nT (t′) then

c(dm(t), t) ≡ c(nT (t)) < c(dm(t′), t′) ≡ c(nT (t)). (14)

The model states that the cost of processing the task picked from G(T, t)
by dm is a deterministic function that depends only on the size of this set, and
decreases monotonically with this size. Further, this cost is bounded above and
below by the constants cmax and cmin for all tasks. This model may be regarded
as a deterministic approximation of the stochastic correlation between degree
of oversubscription and performance that was obtained in Theorem 1. We now
use this to define a restricted TD problem.
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Fig. 5. Change in distribution of jm with n. The distributions with the greatest
skewing towards j = 1 are the ones with the highest n

4 Optimally Greedy Dispatching

In this section, we present the main results of this chapter: necessary con-
ditions that optimal configuration functions must satisfy for a subclass, RTD,
of TD problems, under reasonable conditions of high switching costs and de-
centralization. We first state the restricted TD problem, and then present two
lemmas that demonstrate that under conditions of high switching costs and
information decentralization, the optimal configuration function must belong
to the well-defined one-switch, persist-till-empty (OSPTE) dominance class.
When Lemmas 1 and 2 hold, therefore, it is sufficient to search over the OS-
PTE class for the optimal switching function, and in the remaining results,
we consider RTD problems for which Lemmas 1 and 2 hold.
Restricted Team Dispatching Problem (RTD) Let G(0) be a feasible
set of tasks that must be processed by a finite set of agents A, which can be
partitioned into team configurations in C, comprising teams drawn from T .
Let there be a one to one map between the configuration and team spaces,
C ↔ T and Ci = {Ti}, i.e., each configuration comprises only one team. Find
the schedule (C̄∗(t), dm) that achieves
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(C̄∗(t), dm) = argmin J T (C̄(t), dm), (15)

where C̄(t) ∈ C, dm is the greedy dispatch rule, and the deterministic over-
subscription model holds.

RTD is a specialization of TD in three ways. First, it is a determinis-
tic optimization problem. Second, it has a single execution thread. For team
dispatching problems, such a situation can arise, for instance, when every
configuration consists of a team comprising a unique permutation of all the
agents in A. For such a system, only one task is processed at a time, by the
current configuration. Third, the dispatch function is fixed (d = dm) so that
we are only optimizing over configuration functions.

We now state two lemmas that show that under the reasonable condi-
tions of high switching cost (a realistic assumption for systems such as multi-
spacecraft interferometric telescopes) and decentralization, the optimal con-
figuration function for greedy dispatching must belong to OSPTE.
Definition 2: For a configuration space C with m elements, the class OS of
one-switch configuration functions comprises all configuration functions, with
exactly m stages, with each configuration instantiated exactly once.
Lemma 1: For an RTD problem, let

|G(0)| = n

Ḡ(Ci, 0) �= ∅, for all Ci ∈ C, (16)

and let
mJS

min − (m− 1)JS
max > n (cmax − cmin) . (17)

Under the above conditions, the optimal configuration function C̄∗(t) is in OS.
Lemma 1 provides conditions under which it is sufficient to search over

the class of schedules with configuration functions in OS. This is still a fairly
large class. We now define OSPTE defined as follows:
Definition 3: A one-switch persist-till-empty or OSPTE configuration func-
tion C̄(t) ∈ OS is such that every configuration in C̄(t), once instantiated,
persists until G(Ck, t) = ∅.
Constraint 1: (Decentralized Information) Define the local knowledge set
Ki(t) to be the set of truth values of the membership function g ∈ G(Ci, t)
over G(t) and the truth value of Equation 17. The switching time tk+1 is only
permitted to be a function of Ki(t).
Constraint 2: (Decentralized Control): Let C(k) = Ci where Ci comprises
the single team Ti. For stage k, the switching time tk+1 is only permitted to
take on values such that tk ≥ tC , where tC is the earliest time at which

Ki(t) ⇒ � ∃(t′ < ∞) : (G(Ti, t
′) = ∅) (18)

is true
Lemma 2: If Lemma 1 and constraints 1 and 2 hold, then the optimal con-
figuration function is OSPTE.
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Remark 3: Constraint 1 says that the switching time can only depend on
information concerning the capabilities of the current configuration. This cap-
tures the case when each configuration is a decision-making agent, and once
instantiated, determines its own dissolution time (the switching time tk+1)
based only on knowledge of its own capabilities, i.e., it does not know what
other configurations can do.6 Constraint 2 uses the modal operator � (“In
all possible future worlds”) [10] to express the statement that the switching
time cannot be earlier than the earliest time at which the knowledge set Ki

is sufficient to guarantee completion of all tasks in G(C(k)) at some future
time. This means a configuration will only dissolve itself when it knows that
there is a time t′, when all tasks within its range of capabilities will be done
(possibly by another configuration with overlapping capabilities). Lemma 2
essentially captures the intuitive idea that if an agent is required to be sure
that tasks will be done by some other agent in the future in order to stop
working, it must necessarily know something about what other agents can do.
In the absence of this knowledge, it must do everything it can possibly do, to
be safe.

We now derive properties of solutions to RTD problems that satisfy Lem-
mas 1 and 2, which we have shown to be in OSPTE.

4.1 Optimal Solutions to RTD Problems

In this section, we first construct the optimal switching sequence for the
simplest RTD problems with two-stage configuration functions (Theorem 2),
and then use it to derive a necessary condition for optimal configuration func-
tions with an arbitrary number of stages (Theorem 3). We then show, in
Theorem 4, that if a dominance property holds for the configurations, Theo-
rem 3 can be used to construct the optimal switching sequence, which turns
out to be the most-oversubscribed-first (MOF) sequence.
Theorem 2 Consider a RTD problem for which Lemmas 1 and 2 hold. Let
C �

= {C1, C2}. Assume, without loss of generality, that |C1| ≥ |C2|. For this
system, the configuration function (C(0) = C1, C(1) = C2) is optimal, and
unique when |C1| > |C2|.

Theorem 2 simply states that if there are only two configurations, the one
that can do more should be instantiated first. Next, we use Theorem 2 to
derive a necessary condition for arbitrary numbers of configurations.
Theorem 3: Consider an RTD system with m configurations and task set
G(0). Let Lemmas 1 and 2 hold. Let C(k) = C(0), . . . , C(m − 1) be an op-
timal configuration function. Then any subsequence C(k), . . . , C(k′) must be
the optimal configuration function for the RTD with task set G(tk)−G(tk′+1).
Furthermore, for every pair of neighboring configurations C(j), C(j + 1)

nj(tj) > nj+1(tj). (19)
6 Parliaments are a familiar example of multiagent teams that dissolve themselves

and do not know what future parliaments will do.
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Theorem 3 is similar to the principle of optimality. Note that though it is
merely necessary, it provides a way of improving candidate OSPTE configu-
ration functions by applying Equation 19 locally and exchanging neighboring
configurations to achieve local improvements. This provides a local optimiza-
tion rule.
Definition 4: The most-oversubscribed first (MOF) sequence CD(k)

�
=

Ci0 . . . Cim−1 is a sequence of configurations such that ni0(0) ≥ ni1(0) ≥ . . . ≥
nim−1(0)
Definition 5: The dominance order relation 
 is defined as

Ci 
 Cj ⇐⇒ n̄i(0) > nj(0). (20)

Theorem 4: If every configuration in CD(k) dominates its successor, CD(k) 

CD(k + 1) , then the optimal configuration function is given by (CD(k), dm).

Theorem 3 is an analog of the principle of optimality, which provides the
validity for the procedure of dynamic programming. For such problems, solu-
tions usually have to be computed backwards from the terminal state. Theo-
rem 4 can be regarded as a tractable special case, where a property that can
be determined a priori (the MOF order) is sufficient to compute the optimal
switching sequence.
Remark 4: The relation 
 may be interpreted as follows. Since the relation
is stronger than size ordering, it implies either a strong convergence of task
set sizes for the configurations or weak overlap among task sets. If the number
of tasks that can be processed by the different configurations are of the same
order of magnitude, the only way the ordering property can hold is if the
intersections of different task sets (of the form G(Ci, t)

⋂
G(Cj , t) are all very

small. This can be interpreted qualitatively as the prescription: if capabilities
of teams overlap very little, instantiate generalist team configurations before
specialist team configurations.

Theorem 3 and Theorem 4 constitute a basic pair of analysis and synthesis
results for RTD problems. General TD problems and the systems in [2] are
much more complex, but in the next section, we summarize simulation results
from [2] that suggest that the provable properties in this section may be
preserved in more complex problems.

5 Applications

While the abstract problem formulation and main results presented in
this chapter capture the key features of the multi-spacecraft interferometric
telescope TD system in [2] (greedy dispatching and switching team configura-
tions), the simulation study had several additional features. The most impor-
tant ones are that the system in [2] had multiple parallel threads of execution,
arbitrary (instead of OSPTE) configuration functions and, most importantly,
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learning mechanisms for discovering good configuration functions automat-
ically. In the following, we describe the system and the simulation results
obtained. These demonstrate that the fundamental properties of greedy dis-
patching and optimal switching deduced analytically in this chapter are in
fact present in a much richer system.

The system considered in [2] was a constellation of 4 space telescopes that
operated in teams of 2. Using the notation in this chapter, the system can be
described by A = {a, b, c, d}, T = {T1, . . . , T6}

�
= {ab, ac, ad, bc, bd, cd} and

C = {C1, C2, C3}
�
= {ab−cd, ac−bd, ad−bc} (Figure 2). The goal set G(0) com-

prised 300 tasks in most simulations. The dispatch rule was greedy (dm). The
local cost cj was the slack introduced by scheduling job j, and the global cost
was the makespan (the sum of local costs plus a constant). The switching cost
was zero. The relation of oversubscription to dispatching cost observed em-
pirically is very well approximated by the relation derived in Theorem 1. For
this system, the greedy dispatching performed approximately 7 times better
than the random dispatching, even with a random configuration function. The
MixTeam algorithms permit several different exploration/exploitation learn-
ing strategies to be implemented, and the following were simulated:

1. Baseline Greedy: This method used greedy dispatching with random con-
figuration switching.

2. Two-Phase: This method uses reinforcement learning to identify the ef-
fectiveness of various team configurations during an exploration phase
comprising the first k percent of assignments, and preferentially creates
these configurations during an exploitation phase.

3. Two-Phase with rapid exploration: this method extends the previous
method by forcing rapid changes in the team configurations during ex-
ploration, to gather a larger amount of effectiveness data.

4. Adaptive: This method uses a continuous learning process instead of a
fixed demarcation of exploration and exploitation phases.

Table 1 shows the comparison results for the the three learning methods,
compared to the basic greedy dispatcher with a random configuration func-
tion. Overall, the most sophisticated scheduler reduced makespan by 21% rel-
ative to the least sophisticated controller. An interesting feature was that the
preference order of configurations learned by the learning dispatchers approx-
imately matched the MOF sequence that was proved to be optimal under the
conditions of Theorem 4. Since the preference order determines the time frac-
tion assigned to each configuration by the MixTeam schedulers, the dominant
configuration during the course of the scheduling approximately followed the
MOF sequence. This suggests that the MOF sequence may have optimality
or near-optimality properties under weaker conditions than those of Theorem
4.
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Table 1. Comparison of methods

Method Best Makespan Best Jm/J ∗ % change
(hours) (w.r.t greedy)

1. 54.41 0.592 0%
2. 48.42 0.665 -11%
3. 47.16 0.683 -13.3%
4. 42.67 0.755 -21.6%

6 Conclusions

In this chapter, we formulated an abstract team dispatching problem and
demonstrated several basic properties of optimal solutions. The analysis was
based on first showing, through a probabilistic argument, that the greedy
dispatch rule is asymptotically optimal, and then using this result to motivate
a simpler, deterministic model of the oversubscription-cost relationship. We
then derived properties of optimal switching sequences for a restricted version
of the general team dispatching problem. The main conclusions that can be
drawn from the analysis are that greed is asymptotically optimal and that a
most-oversubscribed-first (MOF) switching rule is the optimal greedy strategy
under conditions of small intersections of team capabilities. The results are
consistent with the results for much more complex systems that were studied
using simulation experiments in [2].

The results proved represent a first step towards a complete analysis of dis-
patching methods such as the MixTeam algorithms, using the greedy dispatch
rule. Directions for future work include the extension of the stochastic analysis
to the switching part of the problem, derivation of optimality properties for
multi-threaded execution, and demonstrating the learnability of near-optimal
switching sequences, which was observed in practice in simulations with Mix-
Team learning algorithms.
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A Proofs

In this appendix we present a sketch of the proof of Theorem 1, and briefly
outline the main arguments of the other proofs. Full proofs are available in
[3].
Proof of Theorem 1: To prove the first and second claims we first derive
expressions for E(c(dm(t), t)) and E(jm),

E(jm) =
j=k∑
j=1

jP (jm = j),

E(c(dm(t), t)) =
j=k∑
j=1

cjP (jm = j). (21)

Define the φ(j), the occupancy of cost-level j, as the number of waiting tasks
for which c(g, t) = cj . We write α = (j − 1)/k and β = (1− 1/(k− j + 1)). It
can be shown [3] that

E(jm) =
j=k∑
j=1

j (1− α)n (1− βn) , (22)

and similarly

E(c(dm(t), t)) =
j=k∑
j=1

cj (1− α)n (1− βn) . (23)

By taking limits on the term inside the summand

P (jm = j) = (1− α)n (1− βn) (24)

it can be shown that

lim
n→∞E(c(dm(t), t)) = cmin,

lim
n→∞E(jm) = 1, (25)
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which proves the first two claims. To prove 12, we first prove that the con-
vergence for 10 and 11 is monotonic after a sufficiently high n for each of
the summands. Specifically, we can show that for n > η∗

j , the jth summand
decreases monotonically, where η∗

j is given by

η∗
j = ln

(
λ

1 + λ

)
/ ln β

= ln
(

ln(1− α)/ ln β

1 + ln(1− α)/ ln β

)
/ lnβ. (26)

Picking n∗ > n∗
j for all j, we can show that the cost approaches cmin monoton-

ically for n > n∗. We can use this fact to bound the total cost of the schedule
by partitioning it into the cost of the last n∗ tasks and the first n− n∗ tasks
to show that for arbitrary ε:

E(Jm) < N(ε)(cmax − cmin − ε) + n(cmin + ε), (27)

which yields

E(Jr)− E(Jm) > 0 as n→∞. (28)

Finally, 13 follows immediately from the fact that the schedule cost is bounded
below by ncmin, which yields, for sufficiently large n

lim
n→∞

(E(Jm)− J ∗)
J ∗ ≤ O(ε/cmin). (29)

Since we can choose ε arbitrarily small, the right-hand side cannot be bounded
away from 0, therefore

lim
n→∞

(E(Jm)− J ∗)
J ∗ = 0. (30)

�

Proof of Lemma 1: This lemma is proved by showing that with high enough
switching costs, the worst case cost for a schedule with m− 1 switches is still
better than the best-case cost for a schedule with m switches. Details are in
[3] �

Proof of Lemma 2: Constraint 1 says that the switching time tk+1 out
of stage k can only depend on information Ki(t) about whether or not the
current configuration C(k) = Ci can do each of the remaining jobs. Constraint
2 specifies this dependence further, and says that the switching time cannot be
less than the earliest time at which Ki(t) is sufficient to guarantee that all jobs
in G(Ci, t) will eventually get done (in a finite time). Clearly, if G(Ci, tk+1)
is empty at the switching time tk+1, then it will continue to be empty in all
future worlds and constraints 1 and 2 are trivially satisfied.

To establish that C(k) is OSPTE, it is sufficient to show that G(Ci, t) must
be empty at t = tk. We show this by contradiction. Assume it is non-empty and
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let g ∈ G(C(k), tk+1). Then by constraint 2, it must be that Ki(tk) is sufficient
to establish the existence of t′ > tk+1 such that G(C(k), t′) = ∅. This implies it
is also sufficient to establish that there exists at least one configuration C′ to be
instantiated in the future, that can (and will) process g. Now, either C′ = Ci or
C′ �= Ci. By assumption it is known that Equation 15 holds, and by Constraint
1, this is part of Ki(t). Therefore Ki(tk) is sufficient information to conclude
that Ci will not be instantiated again in the future. Therefore C′ �= C. But
this means something is known about the truth value of membership relation
g ∈ G(C′, t′), for a C′ �= Ci, which is impossible by Constraint 1. Therefore,
by contradiction, G(C(k), tk+1) = ∅ and the configuration function must be
in OSPTE. �

Proof of Theorem 2: This theorem is a consequence of the deterministic
oversubscription model which leads to lower marginal costs for doing tasks
when they are assigned to the more capable configuration. See [3] for details.
Proof of Theorem 3: Theorem 3 is a straightforward generalization of The-
orem 2 and hinges on the fact that each task is done by the first configuration
that can process it, which implies that the tasks processed by a subsequence of
configurations do not depend on the ordering within that subsequence. There-
fore the state of the task sets before and after the subsequence are not changed
by changing the subsequence, implying that each subsequence must be the op-
timal permutation among all permutations of the constituent configurations.
This principle does not hold in general. For details see [3]. �

Proof of Theorem 4: This theorem hinges on the fact that the relation
Ci 
 Cj cannot be changed by any possible processing by configurations
instantiated before either Ci or Cj is instantiated, since the relation depends
on the number of tasks each is uniquely capable of processing. This relation,
a fortiori, allows us to use reasoning similar to Theorems 2 and 3 to recover
a construction of the optimal sequence. For details see [3]. �
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Summary. We describe a pursuer-evader game played on a grid in which the pur-
suers can move faster than the evaders, but the pursuers cannot determine an
evader’s location except when a pursuer occupies the same grid cell as that evader.
The pursuers’ object is to locate all evaders, while the evader’s object is to prevent
collocation with any pursuer indefinitely. The game is loosely based on autonomous
unmanned aerial vehicles (UAVs) with a limited field-of-view attempting to locate
enemy vehicles on the ground, where the idea is to control a fleet of UAVs to meet
the search objective. The requirement that the pursuers move without knowing the
evaders’ locations necessitates a model of the game that does not explicitly model
the evaders. This has the positive benefit that the model is independent of the num-
ber of evaders (indeed, the number of evaders need not be known); however, this
has the negative side-effect that the time and memory requirements to determine a
pursuer-winning strategy is exponential in the size of the grid. We report significant
improvements in the available heuristics to abstract the model further and reduce
the time and memory needed.

1 Introduction

The challenge of an airborne system locating an object on the ground is a
common problem for many applications, such as tracking, search and rescue,
and destroying enemy targets during hostilities. If the target is not facilitating
the search, or is even attempting to foil it by moving to avoid detection, the
difficulty of the search effort is greater than when the target aids the search.
Our research is intended to address a technical hurdle for locating moving
targets with certainty. We have abstracted this problem of controlling a fleet
of UAVs to meet some search objective into a pursuer-evader game played on

∗ The views expressed in this article are those of the author and do not necessarily
reflect the official policy of the Air Force, the Department of Defense, or the US
Government.
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a finite grid. The pursuers can move faster than the evaders, but the pursuers
cannot ascertain the evaders’ locations except by the collocation of a pursuer
and evader. Further, not only can the evaders determine the pursuers’ past
and current locations, they have an oracle providing them with the pursuers’
future moves. The pursuers’ objective is to locate all evaders eventually, while
the evaders’ objective is to prevent indefinitely collocation with any pursuer.

We previously [5] described how and why we modeled this game as a sys-
tem of concurrent finite automata, and the use of symbolic model checking
to extract pursuer-winning search strategies for games involving single- and
multiple-pursuers, games with rectilinear and hexagonal grids, games with
and without terrain features, and games with varying pursuer-sensor foot-
prints. We further outlined the state-space explosion problem essential to our
approach and suggested heuristics that may be suitable to cope with this
problem.

Here we present the results of our investigation into these heuristics. In
Section 2, we reiterate the technique of using model checking to discover
pursuer-winning search strategies. In Section 3, we describe our heuristics
and demonstrate their utility. In Section 4, we establish necessary pursuer
qualities for a pursuer-winning search strategy to exist. Finally, in Section 5
we consider directions for future work.

2 Background

We begin by describing model checking, an automatic technique to verify
properties of systems composed of concurrent finite automata. After examin-
ing model checking, we review the model of the pursuer-evader game and how
model checking can be used to discover pursuer-winning search strategies.

2.1 Model Checking

Model checking is a software engineering technique to establish or refute the
correctness of a finite-state concurrent system relative to a formal specifica-
tion expressed using a temporal logic. Originally, model checking involved the
explicit representation of an automaton’s states, which placed a considerable
constraint on the size of models that could be checked. With the advent of
symbolic model checking, checking models with greater state spaces was pos-
sible. Symbolic model checking differs from explicit-state model checking in
that the models are represented by reduced, ordered binary decision diagrams,
which are canonical representations of boolean formulas. Examples of symbolic
model checkers are SMV [2] and its re-implementation, NuSMV [1]; Spin [3]
is an examplar explicit-state model checker. Should a model fail to satisfy its
specification, SMV, NuSMV, and Spin all provide computation traces that
serve as witnesses to the falsehood of the specification; these counterexamples
are often used to identify and correct errors the model.
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The computational complexity of model checking is not unreasonable. For
example, consider a model M consisting of the set of states S and the transi-
tion relation R and the formula f . Let |S| and |R| be the cardinalities of S
and R, respectively. Then we define |M | = |S|+ |R|, and we further define |f |
as the number of atomic propositions and operators in f . The model-checking
complexity of Computation Tree Logic, a temporal logic used by SMV and
NuSMV, is O (|M | · |f |); that is, it is linear in the size of the model and in the
size of the specification. On the other hand, the model-checking complexity of
Linear Temporal Logic, a logic used by Spin and NuSMV, is O

(
|M | · 2O(|f |))

[7].

2.2 Modeling the Game

In our model, each pursuer is represented by a nondeterministic finite automa-
ton. If a pursuer can move speed times faster than the evaders, then in each
round of movement, the automaton modeling that pursuer will make speed
nondeterministic moves, each move being either a transition into an adjacent
grid cell or remaining in-place. While we directly model the pursuers, we do
not explicitly include evaders. Instead, each grid cell has a single boolean state
variable cleared that indicates whether it is possible for an undetected evader
to occupy that cell. Cleared is true if and only if no undetected evader can
occupy that cell, and cleared is false if it is possible for an undetected evader
to occupy that cell. Trivially, cells occupied by pursuers are cleared – either
there’s no evader occupying that cell, or it has been detected. A cell that is not
cleared becomes cleared when and only when a pursuer occupies it. A cleared
cell ceases to be cleared when and only when it is adjacent to an uncleared
cell during the evaders’ turn to move; if all its neighboring cells are cleared
then it remains cleared .

Consider Figure 1. In this hypothetical scenario, the pursuer has cleared a
region of the southwest corner of the grid, as shown by the shaded portion of
Figure 1(a), and can conclude that all the evaders must be outside that region.
The pursuer moves four spaces north and west in Figure 1(b), increasing the
cleared region by three cells (one of the visited cells was already cleared).
Since the pursuer does not know where the evaders are located, the cleared
region must shrink in accordance with the union of all possible moves by the
evaders. A move by the evader south from the northeastern-most corner would
not cause the evader to enter a previously-cleared cell, but Figure 1(c) shows
there are six ways evaders could move from an uncleared cell into a cleared
cell, and the five cleared cells that could now be occupied by evaders may no
longer be considered cleared .

We now check whether, in the resulting system, invariably at least one
cell is not cleared . If this specification holds, then there is no pursuer-winning
search strategy: no matter what the pursuers do, the evaders will always be
able to avoid detection. On the other hand, if the specification does not hold,
then the model checker will provide a counterexample: a sequence of states
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Fig. 1. Examples of changes in the possible locations for the evader. Evader is
known to be in unshaded region.

that lead to a state in which every cell is cleared . If every cell is cleared ,
then there is no cell that contains an undetected evader; ergo, every evader
has been detected. By examining the counterexample trace, we can infer the
moves the pursuers made and use this as a pursuer-winning search strategy.

3 Heuristics

While the technique we have described works, the time and memory require-
ments grow exponentially with the size of the grid. Consider a game on an
m×n grid with p pursuers moving at speed spaces/turn. The number of states,
then, is:

(mn)p︸ ︷︷ ︸
pursuers’

locations

· 2mn︸︷︷︸
cells

cleared?

· (speed +1)︸ ︷︷ ︸
scheduling

counter

(1)

That model checking can be accomplished in time that is linear is the number
of states is of little comfort when the number of states grows exponentially in
the size of the problem. This exponential growth is shown in Figure 2.

3.1 Heuristic Descriptions

To overcome this complexity, we turned to heuristics, three of which we de-
scribe here.

Clear-Column

The Clear-Column heuristic involves breaking the problem of clearing the grid
into the smaller problem of clearing one column and ending up positioned to
clear the next column, without permitting any undetected evaders to pass
into previously-cleared columns; see Figure 3. If it is ever possible for the
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Fig. 2. Total mean execution times to generate winning search strategies for pursuer.
Where no time is listed, the model checker exceeded available memory. Error bars
indicate minimum and maximum values from the test data.

evader to enter the westernmost region, then the technique of clearing columns
will not compose. However, if it is possible to accomplish this feat, repeated
applications of this Clear-Column procedure can be composed to clear the
whole grid by sweeping from one side of the grid to the other. Now we only
need to model w × n cells explicitly (where w is the width of the subgrid we
model; 2 ≤ w � m), which can be a significant reduction in the size of the
state space.

w

n 

(a) Before column is
cleared

w

n 

(b) After column is
cleared

Fig. 3. Abstraction of grid unbounded along the horizontal axis.

The general approach is inductive on the columns: assume the western
region has been cleared ; that is, any evaders to the west have already been
detected. If the pursuer is in the westernmost column of the actual grid, then
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this condition is vacuously true. With the pursuer at one of the ends of the
westernmost uncleared column, the pursuer executes some search substrategy
that will cause every cell in that column to be cleared without permitting
any cell to the west to become uncleared and terminates with the pursuer at
one of the ends of the column immediately to the east (the exception being
the easternmost column, for which the terminating position is irrelevant). By
applying the substrategy at each column in turn, the pursuer will eventually
clear the entire grid.

The benefit of the Clear-Column heuristic is that, while checking the model
is still exponential in the size of the grid being modeled, it is a much smaller
grid that we are explicitly modeling. Specifically, the number of states is now:

(wn)︸ ︷︷ ︸
pursuers’

locations

· 2wn+1︸ ︷︷ ︸
cells

cleared?

· (speed +1)︸ ︷︷ ︸
“clock”

artifact

(2)

The property to check is no longer an invariant; rather, we check whether
the region to the west of column c remains cleared until all cells in column c
and the region to the west are cleared when the pursuer is positioned to clear
column c+1. The obvious downside to the Clear-Column heuristic is that if it
is possible for a pursuer to win by a strategy that does not involve clearing the
columns in sequence, and no comparable strategy exists which does involve
column-clearing, then this heuristic would not reveal that pursuer-winning
strategy.

Cleared-Bars

Besides composing subsolutions, we also consider changes to the manner in
which we model the game. The alternate models we present here reflect our
belief that when pursuer-winning solutions exist, there are pursuer-winning
monotonic solutions; that is, solutions in which the number of cleared cells
does not decrease. The goal in these new models is to eliminate many possible
states that, intuitively, move the pursuer further from winning the game.

So instead of considering whether each cell is cleared , we instead can define
sets of contiguous cleared cells. For example, under the belief that if a pursuer-
winning strategy exists, one exists that “grows” the cleared area as a set of
contiguous bars, we can define the endpoints of cleared cells in each row (or
column) and require that the cleared cells in each row be contiguous from one
endpoint to the other (Figure 4(a)).

The number of states in the Cleared-Bars model is:

(mn)2p︸ ︷︷ ︸
pursuers’

locations

· (m + 1)2n︸ ︷︷ ︸
endpoints

of bars

· (speed +1)︸ ︷︷ ︸
“clock”

artifact

(3)
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gions.

Fig. 4. Alternate ways to describe the configuration of Figure 1(a).

The first term is raised to the power of 2p instead of p because, as we described
above, there are conditions in which the pursuers’ current and last locations
are needed to update the bars correctly. The middle term is m + 1 instead of
m to provide for “endpoints” when there are no cleared cells in a given row.
The property to check is that invariantly there is a row whose left endpoint
is not in the leftmost column or whose right endpoint is not in the rightmost
column.

We earlier reported our preliminary performance results of the Cleared-
Bars heuristic using the SMV model checker [5]. Unfortunately, that was the
extent of our success with the SMV (or NuSMV) model checker. Describing
the Cleared-Bars model with the SMV model description language is overly
complex and difficult to reason about. The result was that generating each
model was an error-prone process for even the simplest models, and the ten-
dency toward insidious errors rapidly increased as the problem size grew. For
this reason we re-implemented the model to be checked with Spin. Spin’s
model description language, Promela, uses guarded commands that made for
a far simpler model description that was less amenable to implementation
errors. The performance of Cleared-Bars using Spin is reported in Figure 6
along with our other results.

Cleared-Regions

Alternatively, we might instead define the cleared regions geometrically by
possibly-overlapping convex polygons: for rectilinear grids, rectangles. Fig-
ure 4(b) shows how the cleared area in Figure 1(a) can be described using
three rectangles. While this will dramatically increase the complexity of the
model description, it will also dramatically decrease the number of states in
the model because each rectangle can be fully characterized by two opposing
corners.

We believe that when a pursuer-winning search strategy exists, it will have
contiguous regions of cleared cells throughout the game, as opposed to iso-
lated cleared cells scattered across the grid. Moreover, when a pursuer-winning
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search strategy exists, at least one exists for which these regions of cleared
cells can be grouped into a small number of possibly-overlapping rectangles.
In essence, the “Cleared Bars” heuristic detailed above is a special case of
the “Cleared Regions” heuristic: there are potentially as many rectangles as
there are rows. Our claim for the “Cleared Regions” heuristic is stronger than
our claim for the “Cleared Bars” heuristic. We believe that the number of
rectangles needed is independent of the size of the board, that it is in fact a
small constant: for example, pursuer-winning search strategies on a rectangu-
lar rectilinear grid require at most three rectangles.

While we have proposed this heuristic before, we have now implemented
the Cleared-Regions heuristic and can report its performance.

The critical issue to be addressed is how to determine the positions and
dimensions of the rectangles. While we could take a brute-force approach and
try to fit each possible selection of rectangles until all cleared cells and only
cleared cells are enclosed by a rectangle, the time to do this would tend to
offset any gain achieved by model checking the smaller state space. Instead,
we shall use a fast and satisficing approach.

We define a total ordering on the grid cells in row-major order starting in
the lower-left corner. Starting in the first cell, we examine the cells in order
until we locate a cleared cell. This is the lower-left corner of a rectangle. We
then continue searching the cells in order until we reach the right edge of the
grid or until we encounter an uncleared cell; we now have the breadth of the
rectangle. Now we examine all the cells in the next row within the columns
touched by the rectangle; for example, if we begin the rectangle in row 2 and
it stretches from column 5 to column 8, then we examine the cells in row 3,
columns 5–8. If all those cells are cleared , then the rectangle’s height grows
by one. We continue to grow the rectangle’s height until we reach a row in
which at least one of the cells within the rectangle’s breadth is not cleared .

Construction of the next rectangle begins by resuming the examination
of the cells where we had stopped to adjust the previous rectangle’s height.
Again, we examine the cells in order until we locate a cleared cell that is not
already in a previously-constructed rectangle. Once we have located such a
cell, the rectangle is constructed as before. This process continues until all
cells have been examined.

The algorithm we have described is suboptimal in that it may require more
rectangles than are necessary for a particular arrangement of cleared cells. For
example, consider the arrangement in Figure 5(a). The method presented here
would require the three rectangles shown in Figure 5(b). The cleared region
could in fact be covered by two rectangles, as shown in Figure 5(c). Indeed,
the problem of covering the cleared cells is an instance of the the Minimal
Set Cover Problem, which is known to be NP-complete [8]. This algorithm,
though, runs in linear time: if we allow up to some constant k rectangles, then
each cell will be examined at most k times. We are willing to accept using
three rectangles to cover a configuration that could be covered with two, as
we know of no pursuer-winning strategies for grids larger than 2×2 for which
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two rectangles are sufficient for all confingurations in the general case nor in
the specific instances that we checked.
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(a) Hypothetical
configuration of
cleared cells.
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method in Sec-
tion 3.1
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(c) Optimal cover-
ing by rectangles.

Fig. 5. Example game configuration demonstrating suboptimality of cell-covering
algorithm.

With p pursuers moving speed spaces/turn and k rectangles describing the
cleared regions, the size of the state space is:

(mn)p︸ ︷︷ ︸
pursuers’

locations

· ((m + 1)(n + 1))2k︸ ︷︷ ︸
diagonal

corners of

rectangles

· (speed +1)︸ ︷︷ ︸
“clock”

artifact

(4)

And the property to check is that invariantly at least one grid cell is not
covered by a rectangle. If this property does not hold, then a pursuer-winning
search strategy exists and can be extracted from the counterexample witness.

3.2 Performance

The first question to be answered is whether the heuristics fail to find pursuer-
winning search strategies for games which are known to have pursuer-winning
search strategies. The answer is no. For every problem we checked using the
basic approach, the heuristics’ solutions did not require faster pursuers. More-
over, we have proven that there are no pursuer-winning search strategies per-
mitting slower pursuers than those produced by our technique here; this proof
is in Section 4.

We have demonstrated three heuristics that can be used to reduce the time
to determine if and how the pursuers can locate the evaders. Clear-Columns
was based on composing solutions to subproblems, whereas Cleared-Bars and
Cleared-Regions were based on alternate ways to describe the arrangement of
cleared and uncleared cells on the grid. Each of the three was able to provide a
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pursuer-winning search strategy for a single pursuer travelling at the slowest
speed possible for it to win in the full model. This suggests the heuristics are
effective. As Figure 6 shows, for sufficiently large grids — by the 4×4 grid for
all three — the heuristics also provided solutions faster than the full model.
This suggests the heuristics are efficient.

Fig. 6. Mean execution times to generate winning search strategies for pursuer, for
the full model checked with NuSMV and with Spin, for the Clear-Columns model
checked with NuSMV, and for the Cleared-Bars and Cleared-Regions models checked
with Spin.

On a 933 MHz Pentium III workstation with 1 GB main memory, the
Clear-Column heuristic is efficient enough to permit games with up to 15×∞
grids. The Cleared-Bars and Cleared-Regions permitted no larger than 4× 6
and 5 × 5 grids, respectively, given the memory requirements for Spin. This
is larger than possible with the full model with Spin, but no larger than is
possible with the full model with NuSMV – though checking these models
with Spin is faster than checking the full model with NuSMV. Should we
implement these heuristics with a symbolic model checker, much larger grids
should be manageable.

For the problem sizes we checked, despite its lower big-O complexity,
Cleared-Regions did not provide a clear benefit over Cleared-Bars, other than
permitting a 5 × 5 grid. This is can be explained in part by their constant
factors; further, as shown in Figure 7, for these problem sizes, the Cleared-
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Regions model has a larger state space than the Cleared-Bars model. For grids
at least as large as 6× 6, though, the ranking of the number of states among
the four models is as we would expect, except that the size of the statespace
of Clear-Columns will overtake that of Cleared-Regions at 32× 32.

Fig. 7. Number of states for the four models as a function of grid size.

4 Necessary Pursuer Qualities for Simple Game Variants

We previously reported the sufficient pursuer qualities for a pursuer win the
game [5, 6], though we were unable to prove the necessary conditions in gen-
eral. We showed that a single pursuer moving at a rate of n spaces/turn is
sufficient to detect all evaders on an m × n board (where n is the shorter
dimension) when the evaders do not move diagonally, regardless of whether
the pursuer moves diagonally. We also showed that when the evaders do move
diagonally, a pursuer speed of n + 1 spaces/turn is sufficient for the pursuer
to win. We now prove that, under a reasonable assumption, these speeds are
also necessary; that is, a pursuer moving n − 1 spaces/turn cannot win the
game, nor can a pursuer moving n spaces per turn when the evaders move
diagonally. We begin with a lemma whose proof should be obvious; in the
interest of space we do not reproduce the proof for Lemma 1 here, though can
be found elsewhere [4].
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Lemma 1. Let s be a speed for which there is a pursuer-winning search strat-
egy for a single pursuer on an m× n board. Then s is also a speed for which
there is a pursuer-winning search strategy for a single pursuer on an (m−1)×n
board.

The relevance of Lemma 1 may not be immediately obvious, but consider
its contrapositive:

Corollary 1. Let s be a speed for which there is not a pursuer-winning search
strategy for a single pursuer on an m× n board. Then s is a speed for which
there is not a pursuer-winning search strategy for a single pursuer on an
(m + 1)× n board.

Recall that the upper bounds on the minimum puruser-winning speed are
defined in terms of the shorter dimension of the board. That does not mean,
however, that we can ignore the longer dimension when establishing the lower
bounds. We shall use Corollary 1 to demonstrate that an insufficient speed
does not become sufficient as the longer dimension grows. But first, we turn
our attention to the assumption we alluded to earlier. Let us define a class of
search strategies that have a property we believe to be universal:

Definition 1. Let S be the set of all possible single-pursuer pursuer-winning
search strategies. A ⊆ S is the set of search strategies such that: if a search
strategy S ∈ A is a pursuer-winning search strategy for a single pursuer moving
s spaces per turn on an m × n board, then there is a pursuer-winning search
strategy for a single pursuer moving s spaces per turn on an m×n board such
that the pursuer visits each row at least once in each of its turns.

The most immediate consequence of Definition 1 is that no strategy in A
has a pursuer speed less than n− 1, where n is the shorter dimension of the
board. This does not, however, provide us with the tight bounds we seek.

Definition 2. Let S be the set of all possible single-pursuer pursuer-winning
search strategies. B ⊆ S is the set of search strategies such that: if a search
strategy S ∈ B is a pursuer-winning search strategy for a single pursuer moving
s spaces per turn on an m × n board, then there is a pursuer-winning search
strategy for a single pursuer moving s spaces per turn on an m×n board such
that the number of cells in which an undetected evader may be present never
decreases when counted at the end of each round of movement. That is, there
is a pursuer-winning search strategy such that the number of cleared cells is
non-strictly monotonically increasing.

For the proof of our next lemma, we require one more definition.

Definition 3. The frontier is the set of cells from which an evader can enter
a cell that is known not to contain an evader.

Lemma 2. B ⊆ A
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Proof. Consider an arbitrary pursuer-winning search strategy with speed s:
Ss ∈ B.

Ignoring for the moment the edges of the grid, then for any given number
of cleared cells, the smallest frontier is realized by forming a contiguous region
of cleared cells that is square. The frontier can be halved by placing this square
in a corner such that only two sides of the square are exposed to the frontier.
When the square is n

2 ×
n
2 , the frontier will consist of n cells (n + 1 if the

evader can move diagonally), and the pursuer must be able to cover at least
this distance each turn to preserve monotonicity. Since s ≥ n (s ≥ n + 1 if
the evader can move diagonally), the pursuer has enough speed to execute
the algorithms we used to prove the sufficient pursuer qualities [5], which
are elements of B since thay are monotonic, but more importantly, are also
elements of A since in each turn the pursuer visits each row at least once.

Alternatively, the cleared cells may be grown as a contiguous region con-
tacting three edges of the board; in such a configuration, the frontier can never
be fewer than n− 1 cells, and to preserve monotonicity, the pursuer must be
able to visit each row in each turn; thus Ss ∈ A. (Note that when there are
more than n2

4 cleared cells, a smaller frontier is realized by growing the cleared
region contacting three edges than by growing the region as a square.)

As arbitrary strategy Ss ∈ B is also in A, we conclude that B ⊆ A.

Conjecture 1. A is the set of all single-pursuer pursuer-winning search strate-
gies; that is, A = S.

It is worth noting that it may not be possible to prove the correctness of
any pursuer-winning search strategies which are not in B. This, in part, is
why we believe Conjecture 1.

Lemma 3. Let s be a speed for which there is a pursuer-winning search strat-
egy S1 ∈ A for a single pursuer on an m × n board, where n is the shorter
dimension. Then s− 1 is a speed for which there is a pursuer-winning search
strategy S2 ∈ A for a single pursuer on an (m− 1)× (n− 1) board.

The proof of Lemma 3 may not be as obvious as that of Lemma 1; however,
the intuition is that we have been defining pursuer-winning speeds in terms
of the shorter dimension of the board; if the shorter dimension of the board
is decreased by 1, then the pursuer’s speed can also be decreased by 1. The
full proof is available elsewhere [4]. Again, we consider the contrapositive of
this lemma:

Corollary 2. Let s be a speed for which there is not a pursuer-winning search
strategy for a single pursuer on an m×n board, where n is the shorter dimen-
sion. Then s + 1 is not a speed for which there is a pursuer-winning search
strategy for a single pursuer on an (m + 1)× (n + 1) board.

We now intend to use an inductive argument. Before we do so, we need
our base cases.


