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Preface

The merging of the concept of introduction of asymmetry of the wave vector space
of the charge carriers in semiconductors with the modern techniques of fabricating
nanostructured materials such as MBE, MOCVD, and FLL in one, two, and three
dimensions (such as UFs, nipi structures, inversion, and accumulation layers,
quantum wire superlattices, carbon nanotubes, nanowires, quantum dots, magneto
inversion and accumulation layers, quantum dot superlattices, etc.) spawns not
only useful quantum effect devices but also unearths new concepts in the realm of
low-dimensional materials science and related disciplines. It is worth remarking
that these semiconductor nanostructures occupy a paramount position in the entire
arena of nanoscience and technology by their own right and find extensive
applications in quantum registers, resonant tunneling diodes and transistors,
quantum switches, quantum sensors, quantum logic gates, hetero-junction field-
effect transistors, quantum well and nanowire transistors, high-speed digital
networks, high-frequency microwave circuits, quantum cascade lasers, high-res-
olution terahertz spectroscopy, superlattice photo-oscillator, advanced integrated
circuits, superlattice photocathodes, thermoelectric devices, superlattice coolers,
intermediate-band solar cells, micro-optical systems, high performance infrared
imaging systems, band-pass filters, thermal sensors, optical modulators, optical
switching systems, single electron/molecule electronics, nanotube-based diodes,
and other nano-electronic devices. Knowledge regarding these quantized structures
may be gained from original research contributions in scientific journals, pro-
ceedings of various international conferences, and different review articles
respectively. Mathematician Simmons rightfully tells us [1] that the mathematical
knowledge is said to be doubling in every 10 years and in this context we can also
envision the extrapolation of the Moore’s law by projecting it in the perspective of
the advancement of new research and analyses, in turn, generating novel concepts
particularly in the area of nanoscience and technology [2]. In this context, it may
be noted that the available books on solid-state and allied sciences cannot afford to
cover even an entire chapter excluding few pages on the Effective Electron Mass
(EEM) in Low-Dimensional Semiconductors.
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viii Preface

The effective mass of the carriers in semiconductors, being connected with the
mobility, is known to be one of the most important physical quantities, used for the
analysis of electron devices under different operating conditions [3]. The carrier
degeneracy in semiconductors influences the effective mass when it is energy
dependent. Under degenerate conditions, only the electrons at the Fermi surface of
n-type semiconductors participate in the conduction process and hence, the
effective mass of the electrons corresponding to the Fermi level would be of
interest in electron transport under such conditions. The Fermi energy is again
determined by the electron energy spectrum and the carrier statistics and therefore,
these two features would determine the dependence of the EEM in degenerate
n-type semiconductors under the degree of carrier degeneracy. In recent years,
various energy wave vector dispersion relations have been proposed [4—10] which
have created the interest in studying the effective mass in such materials under
external conditions. It has, therefore, different values in different materials and
varies with electron concentration, with the magnitude of the reciprocal quantising
magnetic field under magnetic quantization, with the quantizing electric field as in
inversion layers, with the nano-thickness as in UFs and nanowires and with
superlattice period as in the quantum confined superlattices of small gap semi-
conductors with graded interfaces having various carrier energy spectra [11-57].

This book, divided into three parts which contain nine chapters and three
Appendices, is partially based on our ongoing researches on the effective mass
from 1980 and an attempt has been made to present a cross section of the effective
mass for a wide range of low-dimensional semiconductors with varying carrier
energy spectra under various physical conditions. The first part deals with the
influence of quantum confinement on the EEM in non-parabolic semiconductors.
Chapter 1 investigates the EEM in UFs of nonlinear optical materials on the basis
of a generalized electron dispersion law introducing the anisotropies of the
effective electron masses and the spin orbit splitting constants respectively toge-
ther with the inclusion of the crystal field splitting within the framework of the k.p
formalism. The results of III-V (e.g. InAs, InSb, GaAs, etc.), ternary (e.g.
Hg,_Cd,Te), quaternary (e.g. In;_,Ga,As,_,P, lattice matched to InP) com-
pounds form a special case of our generalized analysis under certain limiting
conditions. The EEM in UFs of II-VI, Bi, IV-VI, stressed Kane-type semicon-
ductors, Te, GaP, PtSb, Bi,Te;, Ge and GaSb compounds have also been
investigated by using the appropriate energy band structures for these materials.
The importance of the aforementioned semiconductors has also been described in
the same chapter. It is well known that the semiconductor superlattices find
extensive applications in avalanche photodiodes, photo-detectors, electro-optic
modulators, etc. In Chap. 2 the EEM in nipi structures of nonlinear optical, III-V,
II-VI, IV-VI, and stressed Kane-type semiconductors has been studied.

In recent years, there has been considerable interest in the study of the inversion
layers which are formed at the surfaces of semiconductors in metal-oxide—semi-
conductor field-effect transistors (MOSFET) under the influence of a sufficiently
strong electric field applied perpendicular to the surface by means of a large gate
bias. In such layers, the carriers form a two-dimensional gas and are free to move


http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_2

Preface ix

parallel to the surface while their motion is quantized perpendicular to it leading to
the formation of electric subbands [58]. In Chap. 3, the EEM in n-channel
inversion layers of nonlinear optical, III-V, II-VI, IV-VI stressed Kane-type
semiconductors, Ge and GaSb has been investigated.

The effects of quantizing magnetic field on the band structures of compound
semiconductors are more striking than that of the parabolic one and are easily
observed in experiments. A number of interesting physical features originate from
the significant changes in the basic energy wave vector relation of the carriers
caused by the magnetic field. The valuable information could also be obtained
from experiments under magnetic quantization regarding the important physical
properties such as Fermi energy and effective masses of the carriers, which affect
almost all the transport properties of the electron devices [59-63] of various
materials having different carrier dispersion relations [64]. In Chap. 4, the EEM in
nonlinear optical, [II-V. II-VI, Bi. IV-VI, stressed Kane-type semiconductors, Te,
GaP, PtSb,, Bi,Te;, Ge, GaSb and II-V compounds have also been studied under
magnetic quantization. Since lijima’s discovery [65], carbon nanotubes (CNTs)
have been recognized as fascinating materials with nanometer dimensions
uncovering new phenomena in different areas of nanoscience and technology. The
remarkable physical properties of these quantum materials make them ideal can-
didates to reveal new phenomena in nano-electronics. Chapter 5 contains the study
of the EEM in nanowires of the nonlinear optical, III-V, II-VI, Bi, IV-VI, stressed
Kane-type semiconductors, Te, GaP, PtSb, Bi,Te;, Ge, GaSb and II-V semi-
conductors together with CNTs respectively.

With the advent of nanophotonics, there has been considerable interest in
studying the optical processes in semiconductors and their nanostructures [66-67].
It appears from the literature that investigations have been carried out on the
assumption that the carrier energy spectra are invariant quantities in the presence
of intense light waves, which is not fundamentally true. The physical properties of
semiconductors in the presence of light waves which change the basic dispersion
relation have been relatively less investigated in the literature [68, 69]. The second
part of this book studies the influence of light waves of the EEM in opto-electronic
semiconductors and Chap. 6 investigates the influence of light waves on the EEM
in quantum confined III-V, ternary, and quaternary semiconductors. Under
external photo excitation the electron dispersion relation changes profoundly and
the EEM has been studied by formulating a new electron dispersion law on the
basis of k.p formalism. In the same chapter the influence of magnetic quantization
on the EEM has been investigated. The same chapter also explores the effect of
light waves on the EEM for 2D systems (e.g. UFs, nipi structures, and inversion
layers), 1D systems (such as quantum wire effective mass superlattices, and
quantum wire superlattices with graded interfaces) and the influence of quantizing
magnetic field on the EEM for effective mass superlattices, and superlattices with
graded interfaces respectively.

With the advent of nanodevices, the inbuilt electric field becomes so large that the
electron energy spectrum changes fundamentally and the single Chap. 7 of the third
part investigates the influence of intense electric field on the EEM in II-V, ternary
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and quaternary semiconductors. The same chapter also explores the influence of
electric field on the 2D systems (e.g. UFs, nipi structures and inversion layers) and 1D
systems (such as, nano wire effective mass superlattices, and nano wire superlattices
with graded interfaces) in this context. Chapter 8 contains the applications and brief
review of experimental results. Chapter 9 contains the conclusion and the scope for
future research.

It may be noted that the influence of crossed electric and quantizing magnetic
fields on the transport properties of semiconductors having various band structures
are relatively less investigated as compared with the corresponding magnetic
quantization, although, the cross-fields are fundamental with respect to the addi-
tion of new physics and the related experimental findings. It is well known that in
the presence of electric field (E,) along x-axis and the quantizing magnetic field
(B) along z-axis, the dispersion relations of the conduction electrons in semi-
conductors become modified and for which the electron moves in both the z and y
directions. The motion along y-direction is purely due to the presence of E, along
x-axis and in the absence of electric field, the EEM along y-axis tends to infinity
which indicates the fact that the electron motion along y-axis is forbidden. The
EEM of the isotropic, bulk semiconductors having parabolic energy bands exhibits
mass anisotropy in the presence of cross fields and this anisotropy depends on the
electron energy, the magnetic quantum number, the electric and the magnetic
fields respectively, although, the EEM along z-axis is a constant quantity. In 1966,
Zawadzki and Lax [70] formulated the electron dispersion law for III-V semi-
conductors in accordance with the two-band model of Kane under cross fields
configuration which generates the interest to study this particular topic of solid
state science in general [71-77].

Appendix A investigates the EEM under cross field configuration in nonlinear
optical, III-V, II-VI, Bi, IV-VI, and stressed Kane-type semiconductors and ultra
thin films of the aforementioned materials. It is an amazing fact that though
heavily doped semiconductors have been deeply studied in the literature but the
study of the carrier transport in heavily doped materials through proper formula-
tion of the Boltzmann transport equation which needs in turn, the corresponding
heavily doped carrier energy spectra is still one of the open research problems
[78-81]. Appendix B attempts to touch the enormous field of active research with
respect to EEM of heavily doped compound semiconductors in a nutshell.
Appendix C deals with the EEM in III-V, II-VI, IV-VI, HgTe/CdTe, and strained
layer heavily doped superlattices with graded interfaces and effective mass
superlattices of the said constituent materials. In these appendices no graphs
together with results and discussions are being presented since we feel that the
readers will enjoy the complex computer algorithm to investigate the EEM in the
respective case generating new physics and thereby transforming each appendix
into a short monograph by considering various materials having different
dispersion relations. Since there is no existing book devoted totally to the EEM in
low-dimensional semiconductors to the best of our knowledge, we hope that this
book will be a useful reference source for the present and the next generation of
readers and researchers of materials and allied sciences in general. In spite of our
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joint efforts, the production of error-free first edition of any book from every point
of view enjoys permanently the domain of impossibility theorems and the same
stands very true for this monograph also. Various expressions of this book have
been appearing for the first time in printed form. The suggestions of the readers for
the development of this book will be highly appreciated for the purpose of future
edition, if any.

In this book, from Chap. 1 till the end, we have presented 250 open research
problems in this particular topic. The problems presented here are the integral part
of this book and will be useful for the readers to initiate their own contributions on
the effective mass. This aspect is also important for Ph.D. aspirants and
researchers. Each chapter ends with a table containing the main results excluding
the last two and the Appendices.

In this monograph, we have investigated various dispersion relations of
different quantized structures and the corresponding electron statistics to study
effective mass. Our theoretical formulation of the density-of-states effective mass
of tetragonal materials based on our generalized electron dispersion relation agrees
well with the available experimental data as given elsewhere [82]. Thus, in this
book, the readers will get a lot of information regarding quantum confined low-
dimensional materials having different band structures. Although the name of the
book is extremely specific, from the content, one can infer that it should be useful
in graduate courses on materials science, nanoscience and technology, solid-state
science, semiconductor physics, and nanostructured devices in many universities
and institutes. Last but not the least, we do hope that our humble effort will kindle
the desire to delve deeper into this fascinating topic by anyone engaged in
materials research and device development either in academics or in industries.
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Part I

Influence of Quantum Confinement on the
Effective Electron Mass (EEM) in
Non-Parabolic Semiconductors



Chapter 1
The EEM in Ultrathin Films (UFs)

of Nonparabolic Semiconductors

1.1 Introduction

The concept of the effective mass of the carriers in semiconductors is one of the basic
pillars in the realm of solid state and related sciences [1]. It must be noted that among
the various definitions of the effective electron mass (e.g effective acceleration mass,
density-of-state effective mass, concentration effective mass, conductivity effective
mass, Faraday rotation effective mass, etc) [2], it is the effective momentum mass that
should be regarded as the basic quantity [3]. This is due to the fact that it is this mass
which appears in the description of transport phenomena and all other properties
of the conduction electrons in a semiconductor with arbitrary band nonparabolicity
[3]. It can be shown that it is the effective momentum mass which enters in various
transport coefficients and plays the most dominantrole in explaining the experimental
results of different scattering mechanisms through Boltzmann’s transport equation
[4, 5]. The carrier degeneracy in semiconductors influences the effective mass when
it is energy dependent. Under degenerate conditions, only the electrons at the Fermi
surface of n-type semiconductors participate in the conduction process and hence,
the effective momentum mass of the electrons (EEM) corresponding to the Fermi
level would be of interest in electron transport under such conditions. The Fermi
energy is again determined by the carrier energy spectrum and the electron statistics
and therefore, these two features would determine the dependence of the EEM in
degenerate n-type semiconductors under the degree of carrier degeneracy. In recent
years, various energy wave vector dispersion relations have been proposed [6—38]
which have created the interest in studying the EEM in such materials under external
conditions. The nature of these variations has been investigated in the literature
[39-85]. Some of the significant features, which have emerged from these studies,
are:

(a) The EEM increases monotonically with electron concentration.
(b) The EEM increases with doping in heavily doped materials in the presence of
band tails.

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional 3
Semiconductors, Springer Series in Materials Science 167,
DOI: 10.1007/978-3-642-31248-9_1, © Springer-Verlag Berlin Heidelberg 2013
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(c) The nature of variations is significantly influenced by the energy band constants
of various materials having different band structures.

(d) The EEM oscillates with inverse quantizing magnetic field due to SdH effect. The
EEM in Bismuth under magnetic quantization depends both on the Fermi energy
and on the magnetic quantum number due to the presence of band nonparabolicity
only.

(e) The EEM increases with the magnitude of the quantizing electric field in n-
channel inversion layers of III-V semiconductors and depend on the subband
index for both low and high electric field limits.

(f) The EEM in ultrathin films of nonlinear optical materials depends on the Fermi
energy and size quantum numbers due to the specific dispersion relations.

(g) The EEM has significantly different values in superlattices and also in the pres-
ence of quantum confined superlattices of small gap semiconductors with graded
interfaces.

In recent years, with the advent of fine lithographical methods [86, 87] molecular
beam epitaxy [88], organometallic vapor-phase epitaxy [89], and other experimental
techniques, the restriction of the motion of the carriers of bulk materials in one (ultra-
thin films, NIPI structures, inversion, and accumulation layers), two (nanowires) and
three (quantum dots, magnetosize quantized systems, magneto accumulation lay-
ers, magneto inversion layers, quantum dot superlattices, magneto ultrathin film
superlattices, and magneto NIPI structures) dimensions have in the last few years,
attracted much attention not only for their potential in uncovering new phenomena
in nanoscience but also for their interesting quantum device applications [90-93].
In ultrathin films (UFs), the restriction of the motion of the carriers in the direction
normal to the film (say, the z direction) may be viewed as carrier confinement in
an infinitely deep 1D rectangular potential well, leading to quantization [known as
quantum size effect (QSE)] of the wave vector of the carrier along the direction of
the potential well, allowing 2D carrier transport parallel to the surface of the film
representing new physical features not exhibited in bulk semiconductors [94-98].
The low-dimensional heterostructures based on various materials are widely inves-
tigated because of the enhancement of carrier mobility [99].These properties make
such structures suitable for applications in ultrathin film lasers [100], heterojunction
FETs [101, 102], high-speed digital networks [103—106], high-frequency microwave
circuits [107], optical modulators [108], optical switching systems [109], and other
devices. The constant energy 3D wave-vector space of bulk semiconductors becomes
2D wave-vector surface in UFs due to dimensional quantization. Thus, the concept
of reduction of symmetry of the wave-vector space and its consequence can unlock
the physics of low-dimensional structures.

In this chapter, we study the EEM in UFs of nonparabolic semiconductors having
different band structures. At first we shall investigate the EEM in UFs of nonlinear
optical compounds which are being used in nonlinear optics and light emitting diodes
[110]. The quasi-cubic model can be used to investigate the symmetric properties
of both the bands at the zone center of wave vector space of the same compound.
Including the anisotropic crystal potential in the Hamiltonian, and special features



1.1 Introduction 5

of the nonlinear optical compounds, Kildal [111] formulated the electron dispersion
law under the assumptions of isotropic momentum matrix element and the isotropic
spin-orbit splitting constant, respectively, although the anisotropies in the two afore-
mentioned band constants are the significant physical features of the said materials
[112-114]. In Sect. 1.2.1, the EEM in UFs of nonlinear optical semiconductors has
been investigated by considering the combined influence of the anisotropies of the
said energy band constants together with the inclusion of the crystal field splitting
respectively within the framework of k.p formalism. The III-V compounds find appli-
cations in infrared detectors [115], quantum dot light emitting diodes [116], quantum
cascade lasers [117], ultrathin film wires [118], optoelectronic sensors [119], high
electron mobility transistors [120], etc. The electron energy spectrum of III-V semi-
conductors can be described by the three- and two-band models of Kane [121, 122],
together with the models of Stillman et al. [123], Newson and Kurobe [124] and, Palik
etal. [125] respectively. In this context it may be noted that the ternary and quaternary
compounds enjoy the singular position in the entire spectrum of optoelectronic mate-
rials. The ternary alloy Hg_,Cd,Te is a classic narrow gap compound. The band
gap of this ternary alloy can be varied to cover the spectral range from 0.8 to over
30 wm [126] by adjusting the alloy composition. Hg; _Cd, Te finds extensive appli-
cations in infrared detector materials and photovoltaic detector arrays in the 8—12 um
wave bands [127]. The above uses have generated the Hg|_,Cd, Te technology for
the experimental realization of high mobility single crystal with specially prepared
surfaces. The same compound has emerged to be the optimum choice for illuminat-
ing the narrow subband physics because the relevant material constants can easily
be experimentally measured [128]. Besides, the quaternary alloy In;,Ga,As,Py_,
lattice matched to InP, also finds wide use in the fabrication of avalanche photode-
tectors [129], hetero-junction lasers [130], light emitting diodes [131] and avalanche
photodiodes[132], field effect transistors, detectors, switches, modulators, solar cells,
filters, and new types of integrated optical devices are made from the quaternary sys-
tems [133]. It may be noted that all types of band models as discussed for III-V semi-
conductors are also applicable for ternary and quaternary compounds. In Sect. 1.2.2,
the EEM in UFs of III-V, ternary and quaternary semiconductors has been studied in
accordance with the said band models and the simplified results for wide gap mate-
rials having parabolic energy bands under certain limiting conditions have further
been demonstrated as a special case and thus confirming the compatibility test.

The II-VI semiconductors are being used in nanoribbons, blue green diode lasers,
photosensitive thin films, infrared detectors, ultra high-speed bipolar transistors, fiber
optic communications, microwave devices, solar cells, semiconductor gamma-ray
detector arrays, semiconductor detector gamma camera and allow for a greater den-
sity of data storage on optically addressed compact discs [134—141]. The carrier
energy spectra in II-VI compounds are defined by the Hopfield model [142] where
the splitting of the two-spin states by the spin-orbit coupling and the crystalline field
has been taken into account. The Sect. 1.2.3 contains the investigation of the EEM
in UFs of II-VI compounds.

In recent years, Bismuth (Bi) nanolines have been fabricated and Bi also finds
use in array of antennas which leads to the interaction of electromagnetic waves
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with such Bi-nanowires [143, 144]. Several dispersion relations of the carriers have
been proposed for Bi. Shoenberg [145, 146] experimentally verified that the de Haas-
Van Alphen and cyclotron resonance experiments supported the ellipsoidal parabolic
model of Bi, although, the magnetic field dependence of many physical properties
of Bi supports the two-band model [147].The experimental investigations on the
magneto-optical and the ultrasonic quantum oscillations support the Lax ellipsoidal
nonparabolic model [ 147]. Kao [148], Dinger and Lawson [149] and Koch and Jensen
[150] demonstrated that the Cohen model [151] is in conformity with the experimen-
tal results in a better way. Besides, the hybrid model of bismuth, as developed by
Takoka et al., also finds use in the literature [152]. McClure and Choi [153] derived
a new model of Bi and they showed that it can explain the data for a large number
of magneto-oscillatory and resonance experiments.

In Sect. 1.2.4, the EEM in UFs of Bi has been formulated in accordance with the
aforementioned energy band models for the purpose of relative assessment. Besides,
under certain limiting conditions all the results for all the models of 2D systems are
reduced to the well-known result of the EEM in UFs of wide gap materials. This
above statement exhibits the compatibility test of our theoretical analysis.

Lead chalcogenides (PbTe, PbSe, and PbS) are IV-VI nonparabolic semiconduc-
tors whose studies over several decades have been motivated by their importance in
infrared IR detectors, lasers, light-emitting devices, photovoltaics, and high temper-
ature thermoelectrics [154—158]. PbTe, in particular, is the end compound of several
ternary and quaternary high performance high temperature thermoelectric materials
[159-163]. It has been used not only as bulk but also as films [164-167], ultrathin
films [168] superlattices [169, 170] nanowires [171] and colloidal and embedded
nanocrystals [172-175], and PbTe films doped with various impurities have also
been investigated [176—183] These studies revealed some of the interesting features
that had been seen in bulk PbTe, such as Fermi level pinning and, in the case of
superconductivity [184]. In Sect. 1.2.5, the EEM in UFs of IV-VI semiconductors
has been studied taking PbTe, PbSe, and PbS as examples.

The stressed semiconductors are being investigated for strained silicon transistors,
quantum cascade lasers, semiconductor strain gages, thermal detectors, and strained-
layer structures [185—-188]. The EEM in UF:s of stressed compounds (taking stressed
n-InSb as an example) has been investigated in Sect. 1.2.6 The vacuum deposited
Tellurium (Te) has been used as the semiconductor layer in thin-body transistors
(TFT) [189] which is being used in CO; laser detectors [190], electronic imaging,
strain sensitive devices [191, 192], and multichannel Bragg cell [193]. Section 1.2.7
contains the investigation of EEM in UFs of Tellurium.

The n-Gallium Phosphide (n-GaP) is being used in quantum dot light emitting
diode [194], high efficiency yellow solid state lamps, light sources, high peak cur-
rent pulse for high gain tubes. The green and yellow light emitting diodes made of
nitrogen-doped n-GaP possess a longer device life at high drive currents [195-197].
In Sect.1.2.8, the EEM in UFs of n-GaP has been studied. The Platinum Anti-
monide (PtSby) finds application in device miniaturization, colloidal nanoparticle
synthesis, sensors and detector materials and thermo-photovoltaic devices
[198-200]. Section1.2.9 explores the EEM in UFs of PtSb,.Bismuth telluride
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(BipTes) was first identified as a material for thermoelectric refrigeration in 1954
[201] and its physical properties were later improved by the addition of bismuth
selenide and antimony telluride to form solid solutions [202-206]. The alloys of
Bi,Tes are useful compounds for the thermoelectric industry and have been inves-
tigated in the literature [202-206]. In Sect. 1.2.10, the EEM in UFs of Bi,Te3 has
been considered.

The usefulness of elemental semiconductor Germanium is already well known
since the inception of transistor technology and, it is also being used in memory
circuits, single photon detectors, single photon avalanche diode, ultrafast optical
switch, THz lasers and THz spectrometers [207-210]. In Sect. 1.2.11, the EEM has
been studied in UFs of Ge. Gallium Antimonide (GaSb) finds applications in the fiber
optic transmission window, heterojunctions, and ultrathin films. A complementary
heterojunction field effect transistor in which the channels for the p-FET device
and the n-FET device forming the complementary FET are formed from GaSb. The
band gap energy of GaSb makes it suitable for low power operation [211-216]. In
Sect. 1.2.12, the EEM in UFs of GaSb has been studied. Section 1.3 contains the result
and discussions pertaining to this chapter. The last Sect. 1.4 contains open research
problems.

1.2 Theoretical Background

1.2.1 The EEM in UFs of Nonlinear Optical Semiconductors

The form of k.p matrix for nonlinear optical compounds can be expressed extending

Bodnar [112] as
_ | H1 H2
H = |:H2+ H1] (1.1)

where,
Eq 0 Pk, 0

0 (-221/3) (v2a1/3) 0

H =
Pyk; (ﬁAJ_/3) - (5+ %A”) 0
0 0 0 0
0 —f,0f_
s 0T
=170 00
f, 0 00

in which E is the band gap in the absence of any field, P| and P are the momentum
matrix elements parallel and perpendicular to the direction of crystal axis respectively,
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dis the crystal-field splitting constant, A and A | are the spin-orbit splitting constants
parallel and perpendicular to the C-axis respectively, f, = (P il /ﬁ) (kx + iky)

and i = 4/—1. Thus, neglecting the contribution of the higher bands and the free
electron term, the diagonalization of the above matrix leads to the dispersion relation
of the conduction electrons in bulk specimens of nonlinear optical semiconductors
as

V(E) = fiE)K2 + fr(E)K? (1.2)

where,

y(E) = E(E + Eg)) [(E + Eg)(E + Egy + Ap) + 8 (E + Eg, + %m)

2
+§<Aﬁ - Ai)} ,

E is the total energy of the electron as measured from the edge of the conduction band
in the vertically upward direction in the absence of any quantization, ks2 = k)% + ki,

h?Egy (Egy + A1)
2
2m’ (Egy + §AII)]

1 2 1
x [5 (E + Egy + gAH) +(E + Egy) (E + Egy + gAH) + §(Aﬁ -~ Aﬁ)]

Si(E) =
[

thgo (Ego + AH)
[2’"7{ (Ego +349)

f2(E) =

] [(E + Eg) (E + Egy + %A”)} , h=h/2nm,

his Planck’s constant and m} and m? are the longitudinal and transverse effective
electron masses at the edge of the conduction band respectively.

For dimensional quantization along z-direction, the dispersion relation of the 2D
electrons in this case can be written following (1.2) as

Y1(E) = Yo (E)K} + Y3(E) (n.m/d)? (1.3)

where Y1 (E) = y(E), y2(E) = fi(E), ¥3(E) = fo(E), ny(=1,2,3,...) and d,
are the size quantum number and the nano-thickness along the z-direction respec-
tively.
The EEM is defined as the ratio of the electron momentum to the group velocity.
The EEM at the Fermi level in the xy-plane can be written as

ok
m*(Ep,n;) = Wky — (1.4)
OE |p_pg,.
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where E r; is the Fermi energy in the presence of size quantization as measured from
the edge of the conduction band in the vertically upward direction in the absence of
any quantization. From (1.3) and (1.4), the EEM in this case can be written as

2

m*(Epg,n;) = L
Fs-.tz) = ) dz

2
)wz(Em]2 |:1//2(EFS) {{%(Em}/ — (Y3(Epy)Y (@) }

nem\? ,
—1V1(EFs) = ¥3(EFy) (7) {V2(EFs)}
Z
(1.5)

where, the primes denote the differentiation of the differentiable functions with
respect to Fermi energy. Thus, we observe that the EEM is the function of size
quantum number and the Fermi energy due to the combined influence of the crystal-
field splitting constant and the anisotropic spin-orbit splitting constants respectively.
To study the dependence of the EEM as a function of electron concentration per unit
area we have to formulate the corresponding density-of-states function (DOS).
The general expression of the total 2D DOS (Nzp7 (E))in this case is given by

2gy U YA(E, n,)
Napr (E) = 55 nZ::l o H(E~En) (1.6)

where, g, is the valley degeneracy, A(E, n;) is the area of the constant energy 2D
wave vector space for UFs, H(E — Ej_ )is the Heaviside step function and (E,,)
is the corresponding subband energy. Using (1.3) and (1.6), the expression of the
Nopr (E) for UFs of nonlinear optical semiconductors can be written as

N zmax

2
Napr(E) = (35) 3 wa(E)2 |:1/f2(E) [{wl (E)Y = {¥3(E)Y ("d—”) ]
n;=I1

4

n,mw

d;

2
- {Vfl (E) — y3(E) ( ) } {lﬂz(E)}/} H(E - Ep ) (1.7)

where, the subband energies (EnZl ) in this case is given by

Y1(En,) = Y2(En. ) (n;7/d)? (1.8)

Combining (1.7) with the Fermi-Dirac occupation probability factor, integrating
between E, to infinity and applying the generalized Somerfeld’s lemma, the 2D
carrier statistics in this case assumes the form

Mxmax

8
nap = i Z [T51 (EFs, n2) + T2 (EFs, n2)| (1.9)

ny=1
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where,

Yi(EFs) — 1ﬂ3(EFs)(nzT[/dz)2:|
T: E 5. Nz) = ’
31 (Ers,me) [ ¥2(Ery)
Tsy (Epg,nz) = D L(I[Ts1 (EFs, no)),

r=1

L) = 2(kgT)¥ (1 — 2“”)5(20%,@ is the Boltzmann constant, T is the
f

temperature, r is the set of real positive integers whose upper limit is s, £(2r) is the
Zeta function of order 2r [217].

1.2.2 The EEM in UFs of III-V Semiconductors

The dispersion relation of the conduction electrons of III-V compounds are described
by the models of Kane (both three and two bands) [121, 122], Stillman et al. [123],
Newson and Kurobe [124] and Palik et al. [125] respectively. For the purpose of
complete and coherent presentation, the EEM in UFs of III-V semiconductors have
also been investigated in accordance with the aforementioned different dispersion
relations for the purpose of relative comparison as follows:

(a) The three-band model of Kane
Under the conditions, § = 0, Ay = Ay = A (isotropic spin orbit splitting
constant) and m” = mj‘_ = m, (isotropic effective electron mass at the edge of
the conduction band), (1.2) gets simplified into the form

h2k2 E(E + Eg)(E + E,, + A)(E +ZA)
=11(E), I1(E) = 80 80 g; 3
e Eg (Egy + A)(E + Egy + 3A)

(1.10)

which is known as the three-band model of Kane [121, 122] and is often used
to study the electronic properties of III-V materials.
Thus, under the conditions § = 0, Ay = A} = A and mﬁ = m’j_ = me, (1.3)
assumes the form

h2k? N h?

2 _
m, 2mc(nz”/dz) = I11(E) (1.11)

Using (1.11) and (1.4), the EEM in x—y plane for this case can be written as
m*(Eps) = me{I11(EFs)Y (1.12)
It is worth noting that the EEM in this case is a function of Fermi energy alone

and is independent of size quantum number.
The total 2D DOS function can be written as
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Nzmax

Nopr(B) = (Z2) X {tmern (E-E,)) a3

7 h?

ny=l1
where, the subband energies E;,_ can be expressed as

h2
In(En,) = o —(n:7/d:)* (1.14)

The 2D carrier concentration assumes the form

Nzmax

m
B > T53(Erg, n2) + Tsa(Ery.ny)] (1.15)
n;=I1

7 h?

na2p =

where

W (n.m 2
Ts3(Epg,nz) = | I(EFs) — m— and
2m, \ d;

N
Tsy(Epg,n) = D L(MTs3(Ery, nz).
r=1

Under the inequalities A 3> Eg, or A < Eg, (1.10) can be expressed as

h2k?
E(l +«E) = >

(1.16)

me

where, o = 1/E, and is known as band nonparabolicity.

It may be noted that (1.16) is the well-known two-band model of Kane and is used
in the literature to study the physical properties of those III-V and optoelectronic
materials whose energy band structures obey the aforementioned inequalities.
Under the said inequalities (1.11) assumes the form

E(l + «E) Wk, B (nem ’ (1.17)
(0% = .
2m,  2m¢ \ d;

The EEM in this case can be written as
m*(Efps) = me(l + 20 EFy) (1.18)
Thus, we observe that the EEM in the present case is a function of Fermi energy

only due to the presence of band nonparabolicity.
The total 2D DOS function assumes the form
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Nzmax

> (1 +20E)H (E—E%) (1.19)

ny;=1

megy

N E) =
207 (E) )

where, the subband energy (£, ) can be expressed as

2

o (n.7/d)* = En, (1 4 aE,,ZS) (1.20)

The 2D electron statistics can be written as

B 00
pap = 8 ”i / (14 20E)dE

b T[hz 1+€x (E_EFS)
nZ=1EnZ3 P\ 1T

mckB Tg Nzmax

=T - [(1+201En23)F0(17n1)+2akBTF1(nn1)] (1.21)

n;=I1

where, 1,, = (Efpy — Enz;) /kpT and F;(n) is the one-parameter Fermi-Dirac
integral of order j which can be written [218, 219] as

F-()—( ! )/ x/dx P> 1 (1.22)
PEANGED) ) Trepe = '

or for all j, analytically continued as a complex contour integral around the
negative x-axis

+0 .
o rC'(—j) x/dx
Fitm = (271\/—_1)_4 1 +exp(—x —1n) (1.23)

where 7 is the dimensionless x independent variable.

Under the condition o — 0, the expressions of total 2D DOS, for UFs whose
bulk electrons are defined by the isotropic parabolic energy bands can, be written
as

an(lX

me8y

Nor(E) =53 3 H (E - En,) (1.24)
n;=

The subband energy (E, n:p ), the EEM, and the n, p can respectively be expressed

as
g, -t (rm ’ (1.25)
" T 2me \ de ’
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m*(Efs) = me (1.26)
and
n-
mckb Tgv <max
nap === 3 Folim) (1.27)

ny;=1

where, 1, = kB;T |:Eps — % ("d”)
It may be noted that the results of this section are already well known in the
literature [220].

The model of Stillman et al.

In accordance with the model of Stillman et al. [123], the electron dispersion
law of III-V materials assumes the form

E =T11k* — T1ok? (1.28)

12 me\2 [ 1\
= ip=(1-—
i 2m, 12 ( mo) (ch)

2A?
X |:(3Eg0 +4A + 5 ) A(Egy + A)Q2A + 3Eg0)}1:|
80

where,

and my is the free electron mass.
Equation (1.28) can be expressed as

h2k?
2m,

= I12(E) (1.29)

21, 4t
where, I17(E) = ajq [1 —(1- ale)l/z], ajl = ( 1_1 ) and ajp = 12

dmct12 2

The 2D electron dispersion relation in this case assumes the form

Rk R
— 4

2 _
. ZmC(nz”/dz) = I2(E) (1.30)

Using (1.30) and (1.4), the EEM in x—y plane for this case can be written as

m*(Eps) = mc{li2(EFs)) (1.31)

It appears that the EEM in this case is a function of Fermi energy alone and is
independent of size quantum number.
The total 2D DOS function can be written as
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Nzmax

Noor(B) = (255) D e neE - B} a32)

wh?

ny;=1

where, the subband energies E,, . can be expressed as

h
I2(Ep) = o (n.7/d:)’ (1.33)

The 2D carrier concentration assumes the form

Nzmax

> [T55(Ers, n2) + Tso(Ers, n2)] (1.34)

n;=1

megy

nop = ——
7 h?

where

W (n.m 2
Tss(Eps,nz) = | Ii2(EFs) — and
2me \ d,

N
Tse(Erg, n) = ) L(1)Tss(Eps, n2)

r=1

Model of Palik et al.
The energy spectrum of the conduction electrons in III-V semiconductors up to
the fourth order in effective mass theory, taking into account the interactions of

heavy hole, light hole and the split-off holes can be expressed in accordance with
the model of Palik et al. [125] as

— By k* (1.35)

where

2
5 nt 1+ 2
B == 1 - )
11 [4Eg0(mc)2] T =y

AN
X1 = [1 + (—)} and yj; = Te
Eg() moy

The (1.35) gets simplified as

h2k?
2m,

= I13(E) (1.36)
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where

I3(E) = bi [alz — (@n)* - 4E1§11)1/2] ,

h? . 7
C_llz = ( ) and b12 = |: a_12 i|
2m, 2By

The 2D electron dispersion relation in this case assumes the form

h2k2 K2
o + —(n.7/d;)* = I13(E) (1.37)
me 2m,

Using (1.37) and (1.4), the EEM in x—y plane for this case can be written as
m*(Eps) = me{I13(EFrs)Y (1.38)

It appears that the EEM in this case is a function of Fermi energy alone and is
independent of size quantum number.
The total 2D DOS function can be written as

Nzmax

Neor(B) = (Z2) 3 {tha(BHE - E, D) (139)

wh?

ny=1

where, the subband energiesEnz4 can be expressed as

h
I3(En,) = o —(n.7/d:)’ (1.40)

The 2D carrier concentration assumes the form

Nzmax

> [T57(Ers, n2) + Tsg(Ery, n2)] (1.41)

ny=1

megy

7 h?

np =

where

W (n.w 2
Ts7(Eps,nz) = | I13(EFs) — and
2me \ d,

N
Tss(Epg, nz) = ) L(1)Ts7(Eps, n2)

r=1
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1.2.3 The EEM in UFs of II-VI Semiconductors

The carrier energy spectra in bulk specimens of II-VI compounds in accordance with
Hopfield model [142] can be written as

E = alk? + bk £ Aok (1.42)

where a), = h?/2m* , b, = h?/2m* , and X, represents the splitting of the two-spin
states by the spin-orbit coupling and the crystalline field.

The dispersion relation of the conduction electrons of UFs of II-VI materials for
dimensional quantization along z-direction can be written following (1.42) as

E—ak+0 (”;”

Z

2
) + Ak (1.43)

Using (1.43), the EEM in this case can be written as

(*o)

1 (1.44)
. /2
|:(A0)2 4alb, (”) +4a(’)EpS:|

m*(Efps,n;) =m’ | 1F

Thus, we can infer that the EEM in the UFs of II-VI compounds is a function
of both the size quantum number and the Fermi energy due to the presence of the
term A,.

The subband energy EnZS assumes the form

En., = b,(nem/d:)’ (1.45)

The area of constant energy 2D quantized surface in this case is given by

A+ (E,n;) = |:2 (”/)2 [(E)Z + 2aj (E - Enz5) i%[()\o)z +4a(, (E — Enzj)]l/zﬂ
a
0 (1.46)

The surface electron concentration under the condition of extreme carrier degen-
eracy can be expressed in this case as

Nz max

2gy
g Z[A+ Epgn.) +A_ (Epgn.)] (1.47)

22m)*

nap =
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Using (1.46) and (1.47) we get

% Tzmax

gvim |
T h?

Hap = (EFS — E + (X)zmjrﬁ) (1.48)

n =1

1.2.4 The EEM in UFs of Bismuth

(a) The McClure and Choi model
The dispersion relation of the carriers in Bi can be written, following the McClure
and Choi [153], as

2 2

2 2
px py pz py n»y
E(l E) = — Y aEll - (=
(1 +ak) 2m; +2m2+2m3+2m2a m)

4 2.2 2.2
dmom’,  4mymy  4mom3

(1.49)

where p; = hk;,i = x,y, z, m;, mp and m3 are the effective carrier masses at
the band-edge along x, y and z directions respectively and m/, is the effective-
mass tensor component at the top of the valence band (for electrons) or at the
bottom of the conduction band (for holes).

The dispersion relation of the conduction electrons in UFs of Bi for dimensional
quantization along k; direction can be written following (1.49) for this model as

2 2 2 2 2

Dx Dy he (n.m Dy my
E(1 Ey=""2 4+ — + — Y aEl1 (=
(I+ak) 2m1+2m2+2m3(dz)+ * !

p‘;a ap%pg B ap%hz n,m 2
d;

_ 1.50
dmom’y,  Amymay  4moms (1.50)

Equation (1.50) can, approximately, be expressed as
yi(E.n;) = pik; + qi(E)k; + Ri(E. n)k} (1.51)

where,

B2 (n.w 2 K2
Vi(E,n;) = E(1+aE)——( ) o=

2m3 \ d, 2my’

h2 n»y
QUE)=—|1+aE |l - — ) —aE(l +ak)
2my my
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and

RiE oy = | 2 o (L 2 rar (1-m2) 2 o ()
15 12) = 4mam), * 2my “ m), 2m3 \ d,

The area enclosed by (1.51) is defined by the following integral:

Rl (Ea nz)

1/2
] -J1 (E,ny) (1.52)
P1

A(E,nz)=4[

where,

uo(E,nz)

12
E E)k?
TW(E.n.) = / |:V1( ng)  qi(Eky k“,} dk,
0

Ri(E,n;) Ri((E,ny)

and

172

2
([ @® nEn
MO(E9nZ) = |:\/4R%(E,nz) + RI(E,nZ) CII(E)]

Thus, the area enclosed can be written as

4 [Rl(E,nZ) 172

12
AE.n) = 5 | = ] [az(E,nz)+b2(E,nz)]

[az(E, n,)F [% I(E, nz)] - [az(E, n.) — b*(E, nz)] E [% I(E, nz)]] (1.53)

where,

) 172
q1(E) 1[ g*(E) 4y1(E,nz>}

2
a*(E,n,) = ——" 4=
(. n:) 2Ri(E,n;) 2| R}E,n;) Ri(E,ny)

2 12
P(E.ny =L [ B n(E ) _( 01 (E) )
2 R{(E, nz) Ri(E, ny) 2R (E, n;)

I(E,n;) =

b(E,ny) F[

, Z,Z(E,nz)] andE[z,l(E,nz)]
Va*(E.n;) + b*(E. n) 2

2

are the complete elliptic integral of the first and second kinds respectively [217]
Using (1.53), the EEM can be written as
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2h2
37./pi

m*(EFps,nz) = ( ) [R3(E, n)llE=Ep, (1.54)

where,
R3(EFS9 nZ)
1 _
= > [RiEren)] ™ IR Eps ) 10 (B o) + p*(Epson)) 2
x [a(Eryen) F (3 0Ern)) = 10 (Ers.no)
— D (Eron)E (3 1(Ersno)
+ VRIE s, m) [ (Ersn) + B (Ery. )|
x [a(E g, n) @(Ere, n) + b(Ers, 1) (b(Ers, 1))
x [aX(Eren) F (5 1(Er 1)) = 162 (B, n2)
IF (3 , ,
DA (EpenE (3. 1Ern)) |
Ri(EFs. n)la*(Eps,n:) + b2 (Epy,no)]'?
x [2a(Ers n)@Ers n ) F (5 UE R n)

—1)2

@ Ersn) [F (51 n)) | = RatErs n)la(Er no

~2b(Ers n)b(Ergn)1E (3. 1Ers.n;)

~ [ Eren) =02 Eren0)] (B (5 1R, n)))}

Thus, the EEM in this case is a function of both the Fermi energy and the size
quantum number due to the presence of band nonparabolicity only.
The total 2D DOS function can be written following (1.53), as

2 Zmax
Napr(E) = (371;3_) Z R3(E.n)H(E — Ey) (155)

where, the subband energies E,_ assume the form

()
n6(1+aEiz 6) = 2m3 d (1.56)
z

Combining (1.55) with the Fermi-Dirac occupation probability factor, the 2D
electron statistics in UFs of Bi in accordance with the McClure and Choi model
can be expressed as
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Nzmax

28y
nyp = (m) Z [61(EFs,n;) + 62(EFg, nz) (1.57)

ny;=1
where,

01(Ersn2) = {VRIE s n)la* (Ersono) + B (Eryn o)1 2
x [ Ergn) F (5 1(Eren0)) = [0 By o)

— b (Eps nIF (3. 0Ers ) |}

N

and 02 (Epy,nz) = 2. L(r)[01(EFs, n2)].
r=1
The Hybrid Model
The dispersion relation of the carriers in bulk specimens of Bi in accordance
with the Hybrid model can be represented as [152]

2 474
ENR) a1 1

E(l+aE) =
( ) 2M»> 4M22 2m 2ms3

(1.58)

in which 6g(E) = [1 + ¢ E(1 — y9) + Sol. Yo = %—;,SO = % and the other
2

notations are defined in [152].
In the presence of size quantization along y-direction, the 2D electron dispersion
relation can be written as

T S 00 (E) > 2 h* 4
s K p pary - BN (T el (wny (1.59)
2my  2m3 2M,  \ d, am; \ d,
The 2D area is given by
27/
AE.ny) = T g (. ny) (1.60)
2
bo(E.my) = | EQ 4 iy — REN (ny Tt (!
,ny) = o — _ — —_
» ! 2M; dy aMy \ d,
The effective mass in the X—Z plane can be written as
m*(Epg, ny) = [/mim3ltsg(EFg, ny) (1.61)

Therefore, the effective mass in UFs of Bi in accordance with Hybrid model is
a function of Fermi energy and the size quantum number due to the presence of
band nonparabolicity only.
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The subband energy are given as

00(En,)h? (nny)z ayoh? (nny)4
E,1l+aE)— —— | — — ) =0 1.62
n,(1 +aE) M, 4, 4M2 , (1.62)

The total DOS function in this case can be written as

M ymax

Napr(E) = S22 3 g (Eany)} HE = E,) - (163)

ny=1

The use of (1.63) leads to the 2D electron statistics in UFs of Bi in this case as

n\m(z'c
gv/mim3
Nap =8 = 2 [0 ny) + 0B, ny)] (1.64)

ny=1

So
in which 130(E s, ny) = > L(r)[t20(EFs, ny)]

r=1
(¢) The Cohen model
In accordance with the Cohen model [151], the dispersion law of the carriers in
Bi is given by

2 2 «Ep: pi(l+4aE) ap?
Dx n Pz y Py i y

E(l E)=
(1 +aE) 2my  2m3 2m,2 2mo dmom’,

(1.65)

The 2D electron dispersion law in UFs of Bi in accordance with this model can
be written following (1.65) as

2 2 2 2 4 2

p; R (ngmw aEpy apy py
E(1 E — — 1 E) (1.66
(1+aE) = m, +2m3 ( . ) o, + pr— 2mz( +aE) (1.66)

The (1.66) can be written as

VI(E. n;) = piki + Bk + Roky (1.67)

_ aEﬁ alt
where, g2(E) = | 45:(1 + « E) = %E | and Ry = <4m2m,2 )
The EEM in this case can be written as

2

3n./p1

m*(Epg,n;) = ( ) [R4(E, n2)]lE=Ep, (1.68)

in which,
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R4(EFy, nz)
= VRola}(Epg, nz) + b (Epg, n)1” V2 ay(Epg, ny) (a1 (Epg, n2))

"l ,2 i
+ b1 (B n) (b1 (Eps.n)) ) [a} By n)F (3. 1(E Ry n2))
— 0} (Epy.nz) = b} (B n)E (511 (Epg.no) |
1/2
+ VR [a} (Epone) +03(Ers n) | a1 (B, n) (@1 (s, n2)
!
xF (31 (Epyonn)) +a} Epgn) {F (5.00(Ersn) |
x [2a1(Eps.n2) @ (Epg.n2) = 261 (E . n) (b1 (g n2 )1 E (511 (Ers.nc)

— [alz(EFS’ ng) — b%(EFs’ nz)] (E (%’ Ers, nZ)))/]] ’

12
2
2 @(Ers) 1| q5(Ers)  4y1(Efs,ny)
Epgn.) = 2220 4 ,
ai(Brps.n) = =5 =+ R2 + R,

b (E =l[
1 FSan—

5 12
GX(Ery) 41 (Efs. ng} (qz(EFs))
2 * 2R

R% R> 2R,
bl(EFsv nZ)

and i (Efs,n;) = .
Ja (Ers.n) + BAEpy.n)

which shows that the EEM in this present case is again a function of both the
size quantum number and the Fermi energy due to the presence of the band
nonparabolicity only.

The total DOS is given by
2g nzmax
v
Nopr(E) = (3”2— E) E R4y(E,n;)H(E — Eyz7) (1.69a)

ny=1

where, E,__ is the lowest positive root of the equation

m(E%,m)=0 (1.69b)

Combining (1.69a) with the Fermi-Dirac occupation probability factor, the 2D
electron statistics in UFs of Bi in accordance with the Cohen model can be
written as

N zmax

28y
nyp = (W) Z [QS(EFsv n;) + 04(EFrs, nz)] (1.70)

n;=1
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where,

172 T
03(Ers,nz) = {x/Rz @} Ersone) =0} Epsona) | @ Epgn) F (510 py.no)

—[a}(Epyn) =0} Epgn) | F (501 (Eryon) ]

and 04(Ey.n2) = 3 L) [03(Ers. n2)].

r=I1
(d) The Lax model
The electron energy spectra in bulk specimens of Bi in accordance with the Lax
model can be written as [147]

2 p? 2
E(l + «E) = 2”—* W)z 2%23 1.71)
The 2D electron dispersion law in this case can be written as
2
E(l +aE) = %"% % % (%) (1.72)
The EEM in this case assumes the form
m*(Eps) = /mimy(1 + 20 Epyg) (1.73)

Thus, we see that the EEM for the Lax model is a function of the Fermi energy
alone due to the band nonparabolicity.

The subband energy, the total DOS function and the 2D electron statistics for
this model can, respectively, be expressed as

h2
Ens(1+aE, ) = %(nzn/dzf (1.74)
mlm ~max
Nopr(E) = 2= >" (1 + 20 E)H(E — Ey ) (1.75)
n,=1
JmimakgT "2
nap = SRS N (1 + 20 By ) Folnya) + 20ks T Fi(0,)] - (176)
n;=1
EFS - Emg
h s — Z
where, n,, T

(e) The ellipsoidal parabolic model
The 2D dispersion relation, the EEM, the subband energy (E_,), the total DOS,
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and the 2D electron statistics for this model can respectively be written as

e (TR h*k; R\ (n.m\> -
_(2m1)+ 2my +(%)(dz) (77

m*(Eps) = (y/mimy) (1.78)
Nopr(E) = W ff H(E — Ep) (1.79)
ny,=1
Epy = (;Lz ) ("1”)2 (1.80)
ms ) \d.
Nap = [W} S Fotny) (1.81)
=1

where, 1,3 = (kpT)™! [EFS — E,,zg]

1.2.5 The EEM in UFs of IV-VI Semiconductors

The dispersion relation of the conduction electrons in IV-VI semiconductors can be
expressed in accordance with Dimmock [221] as

Eq 12k 1Pk Eq  W2k2 | h°k?
[5——5’0——5— e =0 I g = PYk; + P2
(1 82)
Where € is the energy as measured from the center of the band gap Ego, mt and
mE ; represent the contributions to the transverse and longitudinal effective masses

of the external L+ and Lg bands arising from the k.p p perturbations with the other

2
bands taken to the second order. Using e = E + (E 0 /2) , Pf = 03 Ego PH2 52’550
1

(m} and m;“ are the transverse and longitudinal effective electron masses atk = 0)
in (1.82), we can write

[ O R2k? Rz | Rk Rk
E — ——||l+aE+a+ +o+ = +

2 2m,  2m;

2m; 2m 2m;" 2m; 2my  2mf
(1.83)
The 2D dispersion relation of the conduction electrons in I'V-VI materials in UFs for
the dimensional quantization along z direction can be expressed as



1.2 Theoretical Background

m2k2
E(1 +aFE)+«aE s
2x4
2,2 27,2
Y n2k2 N Rk \ [ Rk N hky W R2k?
2x1 2x2 2x4 2x5 2x1
(1 +aE) W (n.m 2 B (n.m 2 thf
_ aE)—— —a—
2x3 \ d; 2x3 \ d;

2x4

hzkf E W (n.m\? 1 E R2k2
+ 2 ) +eE— (=) -+ +

2x5 ¢ 2x¢ ( d, ) ( @E) 2x1

R\ 7 (nor)2
I NG (i

2xy ) 2x¢ ( d; )

25

s
2x)

h2k§ B (n.r\> "2 n,mw 2
+—)—a— = — =
2xs5 2x3 d, ) 2x6 \ d; )

h2k2 hzkz FLZ R 2
=% L Ty il (1.84)
2m 2my 2m3 \ d;
where
n my + Zm;r 3m;rml+ _ m; +2m,
X4 =my; , X5 = » X6 = y XL =1y, X2 = )
! 3 2m;" +mf ! 3
3m; m; m +2mj} 3mimy
X3 = ,mp =m;,,my = andmg— ¥ ol
2m; +m; 3 mf + 2mj

Substituting k, = rCos6 and ky, = rSinf (where r and 6 are 2D polar coordinates

in 2D wave vector space) in (1.84), we can write

[ 1 (h2C0s20
rg|la +
4 X1

X5

n W (n.m 2 (2 Cos?0 "
o
2x3 d, X4

R2Sin%0\ [ K2Cos?6 N K2 Sin%0
X2 X4

2] h*Cos?0 N h%Sin%0
P22
2 m mo

X5 X1

) Cos?0  Sin%0 N Cos?6
+R(1 + aE) +—— ) -raE|——+
X1 X2 X4

. Eh2 n.m\? U4 k) R (n.r\? I
ok — - aE)— -«
2x6 \ d; 2x3 \ d

Z

thinZB) N (h2C0x29
o

4x3x6

+h2Sin29 R (n.m\?
X2 2x6 \ d,

xs

()]

Sinze)]
—[E(1 +E)

(1.85)

The area A(E, n;) of the 2D wave vector space can be expressed as

AE.n))=J1— T

where

and

in which 0

(1.86)

(1.87)

(1.88)
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B\ (Cos?0  Sin0\ (Cos?0  Sin26
al— + + ,
4 X1 X2 X4 X3
R2 Cos?0  Sin%0 B2\ (nam\? [ Cos%0  Sin%0
b=+ + +oafl— +
2 m my 2x3 d, X4 X5
B2\ (nan\? (Cos?0  Sin%0 Cos?0  Sin%0
+a | — + + (1 +akE) +
2x6 d; mi my X1 X2

(Cos29 Sin20)]
—aFE +
X4 X5

o

and
E(l +aE) + «E LAYEEAY (1 +«E) LAYLEAY
c= o aE | — — o —
2x¢ d, 2x3 d,
nt n,m4
—a il
4x3x6 d;
/2 13(E,n;)d
T Nz —
(1.87)canbeexpressedas J| = 2 E)f A1(E,nZ)C03329+Bl(E,n,)SinZG where, :3(E, n;) =

2
¢, Ai(E, n;) = 411 (E, nz),
1 ah* (n.m 2 an? n,mw 2 1l4aE «FE
HEn) = | 14+m | —5— + + -—
X4 2)63 dz 2x1x6 dz X1 X4

h2
Bi(E,n;) = %IQ(E, n;) and

(E.n.) - al* (n.m 2 N al* (n.m 2 n l4+aE oF
SNy = m — -—— 1.
2 ¢ 2 2x3x5 \ d; 2x2x6 \ d; d; X5

Performing the integration, we get

T1 = nt3(E, ny)[A1(E, ny)Bi(E, n)]~ /2 (1.89)

From (1.88) we can write
- ozt32(E, n.)h*

© 2B}(E,ny) (190)

where
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o0
(a1 + a2z (a3 + asz?)dz

I = — (1.91)
[@)? + 221
0
in which a; = xll,az = xiz,z = tanf, 6 is a new variable, a3 = ﬁ,ag, =
xis and (@)? = (g:ggzg) The use of the Residue theorem leads to the evalua-

tion of the integral in (1.91) as
[a1as + 3araq] (1.92)

Therefore, the 2D area of the 2D wave vector space can be written as

7t3(E, ny) 1 (1 3\ an(E, n)k
A(E,n;) = l———+ =) == (1.93
(E. n2) JAL(E, n)B\(E, n,) { X5 (x1 * xz) 8B} (E, n;) } (159

The EEM for the UFs of IV-VI materials can thus be written as

2

I
m*(E, n;) = 7 105(E, n2)] (1.94)

EZEFS

where,

6(E.n2) = 1— 3)""3<E”’Z)h4[A(E VBY(E.n)]”!
s(Bn) = 8IBI(E.np? | 1 P

\/AI(E n2)B1(E, n){t3(E, ny)Y — t3(E, n;)

B E, 172 TANE, n)]7 /2
{ [AL(E, ny)Y M] +3BI(E.n) [M] H

—

2 A1(E, ny) B(E,n;)

1 t3(E, ny)ah? 1 /1 3 _
e T —(=+=)BiEno
8 JAI(E,n;)Bi(E, ny) X5 \x1 X2

x [(BUE, n )13 (B, no)) = 2B1(E, n) (B (B, o)) 13(E. )|
Thus, the EEM is a function of Fermi energy and the quantum number due to the

band nonparabolicity.
The total DOS function can be written as

zmax

Nar(E) = (5= )Z%(En)H(E Eno) (1.95)

where the subband energy (E,,,,) in this case can be written as
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R (n.m 2 R (n.m 2
En (l + O‘Enzlo) + aE"“O_ng J —(1+ aE"le)_2x3 R
Zz Zz

DOV A N . S R .2 ol B (1.96)
2x3 \ d, 2x6 \ d; 2m3 \ d;
The use of (1.95) leads to the expression of 2D electron statistics as

n
v

8
map == > [Tso(Ers, n2) + Teo(Ers, n2)] (1.97)

ny=1

Zmax

s
where Tso(EFy, n;) = 2EE1) and Tgo(Epy, n) = > L(r)Tso(EFs, ny).

r=1

1.2.6 The EEM in UFs of Stressed Semiconductors

The electron energy spectrum in stressed Kane-type semiconductors can be written
[222-225] as

ke \? ky \? ko \°
o)) Gy o
ao(E) bo(E) co(E)
where
- 2.2 /
_ KoE) - 2C3e3, | ((3E
[do(E))* = = = Ko(E)= | E - Cie — =22 | =2 ),
Ao(E) + 3Do(E) 3B, [\2B;
C is the conduction band deformation potential, ¢ is the trace of the strain tensor &
Exx Exy 0
which can be written as € = | &y, €y, 0 |, C2 is a constant which describes the
0 0 e

strain interaction between the conduction and valance bands, E é =E, + E—Cs,
B5 is the momentum matrix element,

— a0+ C 3b b

Ao(E) = [1 _ (ao-i-/ 1) Og/xx _ of ,
E, 2E, 2E,

a 1(3 +2m), b 1(7 m), d 21

apg = —— m), =—-(U—m), = —,

0 370 °=3 =3

I,m,n are the matrix elements of the strain perturbation operator, Do(E) =

M, ar
(doﬁ)E—g,
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_ Ko(E) _ Ko(E)

bo(E)]? = — — , E)? == ,

[bo(E)] Ao(E) — 1Do(E) [co(E)] To(E)
— _ (@ +C1)  3bos,.  boe

and Lo(E) = |:1 — Eg, Eg, — 2Eg,:|

The 2D electron energy spectrum in UFs of stressed materials assumes the form

K2 K} 1
_ e
[do(E)1>  [bo(E)?  [co(E)]

S(n.m/d;) = 1 (1.99)

The area of 2D wave vector space enclosed by (1.99) can be written as
A(E, n;) = 1 PX(E, n;)ao(E)bo(E) (1.100)

where P2(E, n;) = [1 — [n 7 /d,Co(E)]*].
The expression of the surface EEM in this case can be written as

2

1)
m*(Eps,nz) = 7[96(15,'%)] (1.101)

E=EF;
in which,

O6(E, o) = [2P(E.no) (P(E, n)Y ao(EYbo(E) + (P(E, n)) (o (E)Y bo(E)
+P(E,n) Y bo(E)Y ao(E) |

The EEM in this case is the function of Fermi energy and the size quantization
number due to the presence of stress only.
Thus, the total 2D DOS function can be expressed as

Nzmax

) > O6(E.n)H(E — Eyy,) (1.102)

n;=1

v

Nar(E) = (5=

The subband energies (Ej,,,,) are given by
co(En,,,) =n;m/d, (1.103)

The 2D surface electron concentration per unit area for UFs of stressed Kane-type
compounds can be written as

Nzmax
v

nap = 3= 3 [Tsi (Ers.n) + TexErs. ;)] (1.104)

ny=1
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where
Te1(Ery, n2) = [P*(EFs, n)ao(Ers)bo(EFs)]

N
and Tey(Epy, nz) = L) To1(EFs, n2).
r=1

In the absence of stress together with the substitution, 322 = 342 (Eg/4m.), (1.98)
assumes the same form as given by (1.16).

1.2.7 The EEM in UFs of Tellurium

The dispersion relation of the conduction electrons in Te can be expressed as [226]
E = ynk? + yok? £ [Y3K2 + 3k (1.105)
where, ] = 6.7x 1071 mev.m?, Y =4.2x 10710 mev.m?, Y3 = 6X 1078, mev.m

and Y4 = 3.6 x 1078 mev.m
The 2D electron energy spectrum in ultrathin films of Te assumes the form

2 . Tn, 2 2 _ ng 2 %
ks = ¥s(E) — Ve p Y7 | Yg(E) 7 (1.106)

FAEY Y2 +4
Where’ '(ﬁs (E) = |: lez] w() == ;7 w7 w4«/7 1& (E) = 111/4 4312://:;p4 "//2 1//3
‘//z

The EEM in this case is given by

2

* h /
m*(Epg,n;) = > [t30(E. )] (1.107)

E=Ep;

,71/27Y
where,mo(E,nz):{ws(E) %(”") iw7[w§<E>—(”d—'f)] }

It appears that the EEM in UFs of Te is a function of Fermi energy and size
quantum number which are the characteristics of such systems.
Thus, the total 2D DOS function can be expressed as

Nzmax

Napr(E) = (%) > lo(E.n) H(E — Ey ) (1.108)

ny;=1

The subband energies (E,,,) are given by
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En., = V1(n,m/dy)? £ y3(n,m/dy) (1.109)

The 2D surface electron concentration per unit area for UFs of Te can be written

as

Nzmax

nap = i—v Z [t20(EFs, n2) + t41(E g, n2)] (1.110)

ny=l1

N
where 41 (EFg, n2) = > L(r)tao(EFs. nz).

r=1

1.2.8 The EEM in UFs of Gallium Phosphide

The energy spectrum of the conduction electrons in n-GaP can be written as [227]

h2k2 2

E =
2m* 2 *

1/2
2 2 h4k(2) 2 2 !
[A'k2 4 k2] — g 2 k2 + Vel + Vgl (1.111)

where, K¢ and | V| are constants of the energy spectrum and A =1
The 2D electron dispersion relation in size quantized n-GaP can be expressed as

2 2 2 2 2 172
E = ak?® + C(n.m/d)* + |Vg| — [Dks 4 VG |? + D(n,m/d,) ] (1.112)

in which, a = 2m* + 2’”\*’ C= 2 \T and D = (hzko/m?“)2

The subband energy (Ej, ;) are given by

172

Enay = Cne/d)? + Vo = [IVol* + Dan. /do)? (1.113)
Equation (1.112) can be expressed as

k2 = t4p(E, ny) (1.114)

in which, t42(E, n.) = [{2a(E — t1) + D} — {[2a(E — 1)) + D? — 4a*[(E — 11)?
—nl}'/2], 1 = |Vg| + C(mn;/d)* and 1 = |VG|* + D(wn;/d;)*
The EEM can be expressed from (1.114) as

hZ
m*(Eps,n;) = th/tz(Ethz) (1.115)
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It appears that the EEM in UFs of GaP is a function of Fermi energy and size
quantum number due to the presence of the system constant & .
The total DOS function is given by

N zmax

Napr(E) = 45# > [thh(E.n)| HE — Ey ) (1.116)
ny=1

The electron statistics in UFs in n-GaP assumes the form

Nzmax

> [2(Ers no) + 133(Eps, )] (1.117)

n;=I1

ny 8v
D =
41 a?

)
where, 143(Eps. n;) = > L(r) [ta2(EFs. 1) ]
r=1

1.2.9 The EEM in UFs of Platinum Antimonide

The dispersion relation for the n-type PtSby can be written as [228]

=\2 =\2 =2 =0 =4
(52050~ G (- m— v G =7 ) = 1

=, =, =, _ zn -,

where w; = (Ao%—l("%),wz = Ao("T),wg = ((ﬁ)%—l—v(%),am =
:2 :2 2 —_ -

v%, L =1 (%) , Ao, 1, 80, v and n are the band constants and a is the lattice

constant.
The (1.118) can be expressed as

[E+ okl + 02| [E+ 80— 03k? — wuk?| = G2 +K)? (1.119)

The use of (1.119) leads to the expression of the 2D dispersion law in UFs of
n-PtSb; as

k2 = ty4(E, ny) (1.120)

where,

ta4(E, n;) = [2A9]7" [—Alo(E, nz) + \/A%O(E, nz) +4A9An(E, ”z):| (1.121)

Ag = [I1 + wiw3], A1o(E, ny)
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2 2 2
= [wsE + w; [E + 80 — w4 (&) ] + wrw3 (%) + 21 (nnz) }
d; d; d;
and
mn 2
A11(E,HZ)E[E[E+80—0)4( Z) }
d;
n T, 2 E+s T, 2 I T, 4
w — w. —
2 dz 0 4 dz 1 dz

The area of kg space can be expressed as

T
A(E, n;) = EDM(E,nz) (1.122)
The EEM can be written as
* h2 /
m*(Efg,n;) = —— 44(EF57 nz) (1.123)
4A9

It appears that the EEM in UFs of P¢Sb; is a function of Fermi energy and size
quantum number which is the characteristic features of such systems.
The total DOS function assumes the form

Nzmax

P D (B (E — Ey) (1.124)
ny=1

Nopr(E) = o

where the quantized levels E,_, can be expressed through the equation
E 2! Tn, 2 48 Tn, 2
= — | W — .
nz14 2 dz 0 4 dz
2
n n; 2 4 Tn; 2
w _
2 d. 0 — w4 .
4 4 27 /2
n; Tn; n;
411 — w26 1.125
+[l(dz)+w2w4(dz) w20(dz):H ( )

The electron statistics can be written as




