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PREFACE

Interfacial pattern formation occurs in several natural, techno-
logical and medical contexts such as, e.g., water films and droplets
flowing along inclined surfaces, drying of paint films or coatings,
electro-deposition, semiconductor processing, micro-fluidics, mucus
flow in the lungs, dry eye syndrome... Modeling these processes re-
quires an understanding of their physics and the knowledge of length
and time scales that characterize them. Interfaces play a dominant
role at small scales, and their correct modeling is therefore also crucial
in the rapidly expanding field of nano-technology (e.g. self-organized
nano-particle deposition patterns, quantum dots, ...).

The need to compare various descriptions of the physics of multi-
scale interfacial phenomena and the desire to help newcomers in the
field in mastering their modeling and identifying modern scientific
and technological challenges, inspired the organization of the CISM
Advanced School ”Pattern Formation at Interfaces with Applications
to Materials Science, Biomedical and Physico-Chemical Processes”
which took place in Udine, Italy, October 16-20, 2006. Siz lecturers
from Belgium, Germany, Israel and the USA gave series of lectures
to an audience of graduate students, postdocs and young researchers.
The lectures have covered most modern methods allowing to treat in-
terfacial instabilities, such as multi-scale asymptotic expansions, lin-
ear stability, weakly nonlinear methods and bifurcation theory. An-
alytical and fully numerical techniques have been discussed, and ex-
perimental results have been presented either to confirm theory, or to
illustrate directions for further research.

The present book consists of six chapters inspired from the lec-
tures given during the CISM Advanced School. All contributions are
presented within the framework of continuous theories and transport
phenomena, i.e. mass, momentum and heat transfer. Yet, the inves-
tigation of phenomena taking place at interfaces and fronts of phase
transition needs the combination of two different kinds of models.
In the first approach, the interfaces or the fronts are considered as
objects of zero thickness, while the second approach recognizes the
internal "diffuse” structure of the transition zone.

The dynamics of interfaces and fronts are characterized by nu-
merous kinds of instabilities leading to nonlinear patterns and waves.



Several challenging physical problems such as phase transition in-
stabilities, front wvelocily selection and transitions to chaotic spatio-
temporal regimes, are discussed with a view of identifying the rele-
vant physico-chemical processes and taking into account multi-scale
couplings at theoretical and numerical level, in a rigorous manner.
Generic aspects of nonlinear phenomena are also emphasized and to
complete the picture, experimental evidence of pattern formation at
interfaces is provided to illustrate and validate modeling approaches.

The book is intended to graduate students, researchers and lectur-
ers in physics and engineering, interested in mastering the modern
methods of nonlinear stability theory applied to the problems of contin-
uous media mechanics in the presence of interfaces, with applications
to materials science, chemical engineering, heat transfer technolo-
gies, as well as in combustion and other reaction-diffusion systems.
The readers are expected to have followed a first level course in fluid
mechanics or transport phenomena and some background in linear
algebra, ordinary and partial differential equations. Other goals of
this volume are to allow the reader to identify key problems of sci-
entific value, the methods to resolve modeling issues, and to see the
similarity between a variety of seemingly different physical problems.
Reading the book and some of the references cited therein should al-
low the reader to quickly move into an area of physics and engineering
that is rich in phenomena and replete in applications.

The idea of carrying out this CISM Advanced School on pattern
formation at interfaces belongs to Professor Manuel G. Velarde, while
he was actually Rector of CISM. Its realization would not have been
possible without his encouragement and help. This book is dedicated
to him, and to his essential contributions to the field.

Tragically, one of the authors of the present book, Professor Alexan-
der (Sasha) Golovin, passed away in September 2008, while this book
was in preparation. This is a great loss for his friends and for the
whole “nonlinear science community”. Many of us benefited much
from scientific discussions and collaboration with this exceptional per-
son who never stopped smiling. According to the students and col-
leagues who followed the School, his lectures were an example of com-
bined rigor, great enthusiasm for Science, and pedagogy. We will
never forget him.

Alexander Nepomnyashchy and Pierre Colinet
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Interfacial patterns and waves
in liquid layers and thin films
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Laboratory TIPs (Transfers, Interfaces and Processes) — Fluid Physics Unit,
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Abstract This chapter describes the phenomenology and modeling
of Bénard-like patterns and waves in liquid layers, including the
case of thin films for which surface tension effects are dominant.
Attention is also paid to the (generalized) one-sided description of
instabilities in the presence of evaporation, with or without an inert
component in the gas phase. Then, the focus is on simplified models
of patterned structures, and on the role of symmetry properties of
the physical system considered.
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1 Introduction

Natural convective flows in fluid layers submitted to temperature and/or
concentration gradients can be induced either by density gradients and as-
sociated buoyancy, or by surface tension gradients. As most of this text is
devoted to the latter mechanism, and for readers unfamiliar with the topic,
it is worth describing first the origin of the so-called Marangoni effect in
greater details. Interfacial (or surface) tension at the boundary between
two different fluid phases originates from the long-range attractive forces
between molecules, i.e. the forces which are responsible for the cohesion of
a condensed phase (Israelachvili, 1992). In the case of a liquid-gas inter-
face for instance, molecules in the liquid bulk are attracted by neighboring
molecules in an isotropic way, while those located in the interfacial region
are globally attracted towards the liquid phase, as they practically do not
feel the presence of much more distant gas molecules. Consequently, surface
molecules are in an energetically unfavorable situation, which the liquid will
tend to avoid as far as possible, by adopting a spherical shape (in the ab-
sence of other forces such as gravity or adhesion forces with a solid). Surface
tension can be defined as the energy necessary to create a unit surface area,
indeed positive since it requires bringing molecules from the bulk to the
surface.

Surface tension is generally decreasing with temperature, for most liquids
like water or oils. Therefore, when a free surface! is non-isothermal, the
resulting inbalance of intermolecular forces leads to a macroscopic tangential
stress, which occurs from the warmer portions of the surface to the colder
parts, hence generating a flow. This thermocapillary (or Marangoni) flow
may be seen as a way for the system to reduce regions of high surface tension
by enlarging regions of low surface tension. Note that in case gradients
of surface tension result from concentration differences along the surface
of a liquid mixture, one rather speaks about a “solutal” Marangoni (or
solutocapillary) effect.

Marangoni flows are commonly observed in everyday life, e.g. via the
motion of dusts in the wax of a candle (see Fig. 1, left), the proximity of
the flame being at a much higher temperature than the periphery of the
candle. Another famous example is the phenomenon of “tears of wine” (see
Fig. 1, right) whose mechanism is however far more complicated, involv-
ing preferential evaporation of the alcohol, wetting properties with glass,
thermal and solutal Marangoni effects, and gravitational instability of fluid
rising along glass walls. A tentative explanation of this phenomenon was

We will generally use the term “free” surface for an interface between a liquid and a
gas, or a liquid and its vapor.
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given as early as in 1855 by James Thomson (Thomson, 1855), even though
the Marangoni effect was given its name following the later work of Carlo
Marangoni in the 1870’s.

Figure 1. Left : thermocapillary flow in candle wax. Right : tears of wine
in a glass viewed from above (Courtesy of John Bush and Anette Hosoi,
MIT).

In these lectures, we will mostly be concerned with the phenomenology
and modeling of thermal Marangoni flows generated in a liquid layer heated
from below (see Fig. 2) or from above. In the former case, hexagonal struc-
tures were first observed by Henri Bénard (Bénard, 1901) at the beginning
of the century (hence the name of Marangoni-Bénard flows), even though
their correct interpretation in terms of the Marangoni effect was given much
later (Block, 1956).

Figure 2. Left : hexagonal pattern observed by shadowgraphy, perpen-
dicularly to the free surface of a liquid layer heated from below (Eckert
et al., 1998), in a circular dish (Courtesy of Kerstin Eckert, Dresden Uni-
versity). Right : Theoretically calculated three-dimensional particle paths
within steady hexagonal convection cells.
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Generally speaking, several levels of modeling are possible : starting
from the smallest time and length scales, molecular dynamics simulations
can be undertaken, which certainly provide the most accurate description
of interface structure and microscopic kinetics, though the computational
cost of these techniques remains extremely high, especially for polyatomic
molecules and large system sizes. At an intermediate (mesoscopic) level,
methods based on the so-called diffuse-interface or phase-field theory have
proven quite flexible and adequate to numerically simulate problems involv-
ing complex interface shapes and dynamical events such as rupture and
coalescence. At the same level, lattice Boltzmann methods, proceeding
on the basis of discrete models of the celebrated Boltzmann equation and
its variants, also describe interfaces as non-zero thickness objects across
which fluid quantities (density, concentration, ...) undergo sharp variations.
Finally, at a macroscopic level, interfaces are modelled as zero-thickness
surfaces of discontinuity along which adequate interfacial (jump) boundary
conditions must be expressed. These lectures will exclusively be concerned
with the latter approach, not only because significant progresses have been
accomplished along these lines in the last decades (e.g., in connection with
Nonlinear Physics), but also because it is now commonly admitted that
macroscopic models may indeed be used down to very small scales, even in
the submicrometer range.

Importantly, there exists a formal analogy between the problems of heat
transfer involving thermocapillarity, and mass transfer associated with con-
centration gradients generating solutocapillary flows. Actually, the math-
ematical descriptions of such phenomena are quite similar, provided some
complications specific with mass transfer through an interface are ignored,
such as solute accumulation at the interface, adsorption kinetics, ... Conse-
quently, at least in the simplest descriptions, it will be formally equivalent to
say that a pure liquid layer is heated from below, or that a two-component
isothermal liquid layer undergoes desorption through its upper free surface
of the component which lowers the surface tension (hereafter called a sur-
factant). In the second situation considered in these lectures, a liquid layer
is heated from the top (or undergoes absorption of a soluble surfactant). In
these cases, one typically observes a self-organization of the system in the
form of propagating wave trains, e.g. azimuthally in an annular container
as in Fig. 3(left). Occasionally, simultaneous propagation of waves in both
azimuthal directions may also be observed, such as in Fig. 3(right). Such
wave trains have strong analogies with solitary waves, though their weak
dissipation on a large time scale can here be balanced by energy input from
an underlying instability. These interesting aspects have been studied in
details by Velarde and co-workers (see e.g. Christov and Velarde, 1995;
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Figure 3. Left : azimuthally-propagating wave trains visualized by a shad-
owgraph technique during absorption of pentane vapor into toluene (Cour-
tesy of Andreas Wierschem). Right : counter-propagating wave trains ob-
served in a heat transfer experiment with heating from the top (after Weh
and Linde, 1997).

Rednikov and Velarde, 2000).

Both cases of heating from above or below (absorbing or desorbing a sur-
factant) therefore lead to a spontaneous breaking of the natural symmetries
of the Bénard layer, either in the form or waves, or of steady convection
patterns. Indeed, in case a flux (either of heat or of matter) occurs per-
pendicularly to an interface, surface tension is expected to be uniform, i.e.
no flow is expected a priori. In mathematical terms, the system is invari-
ant with respect to translations along its interface (in the idealized case
of a laterally infinite layer), and enjoys isotropy as well, i.e. any rotation
with respect to an axis orthogonal to the layer leaves the latter unaffected.
Symmetry-breaking associated with the emergence of ordered structures
in non-equilibrium systems is typical of instability phenomena (see other
examples in the same volume), among which surface-tension-driven (and
buoyancy-driven) instabilities discussed in these lectures.

2 Phenomenology of Bénard instabilities

2.1 Physical mechanisms of patterns and waves

Let us first consider the so-called Rayleigh-Bénard instability (Fig. 4,
left), associated with buoyancy-driven (rather than surface-tension-driven)
convection. A layer of pure liquid (which will be considered as incompress-
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ible and Newtonian) is confined between two horizontal plates maintained
at controllable temperatures.

) o
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Figure 4. Sketches illustrating the mechanisms at the origin of the
Rayleigh-Bénard (left) and the Marangoni-Bénard (right) instabilities. In
both cases, the temperature of the bottom plate is Ty while that of the
upper surface (either solid or open to air) is 77 < Ty (the layer is heated
from below).

Assume for the moment that the dissipative effects of molecular trans-
port of heat and momentum are negligible (i.e. associated with very long
time scales, see §2.3). Then, when a localized fluctuation of temperature
(say, a hot spot) arises in a certain volume element, an upward force on this
fluid particle is induced by buoyancy, as its density is decreased compared
with its environment (differential buoyancy force). As molecular diffusion
is assumed to be mnegligible, the fluid particle will set into motion in the
upward direction, without friction, and will remain at the same tempera-
ture during this motion. The buoyancy force it will experience will then
increase, because the particle moves towards colder regions, such that the
velocity is increased, ... This is the origin of the amplification (instability)
phenomenon.

The Marangoni-Bénard mechanism may be explained similarly (Fig. 4,
right) : if a fluctuation of temperature (say, a hot spot) occurs at the free
surface (or interface), a local surface tension gradient is created, directed
radially away from the fluctuation. The associated tangential stresses then
induce radially divergent surface fluid motion (the interface may be seen as
an elastic membrane which relaxes at the point where the disturbance is
created). Now, continuity of the fluid requires a vertical ascending flow to
take place below the disturbance. If the layer of fluid is heated from below,
this uprising fluid, being hotter, will make the free surface temperature
increase at the initial location of the disturbance. Consequently, the surface
tension at that point decreases, thus increasing the tangential stresses.

Clearly, thermal diffusivity will act against these instability processes,
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by favoring thermalization of fluid particles with their environment, i.e.
damping of fluctuations. Viscosity will also generate stresses, preventing
macroscopic motions to develop within the fluid. As a result, the temper-
ature difference AT = T — T} has to exceed a threshold value for Bénard
instabilities to develop, in order for the destabilizing mechanisms to over-
come the dissipative effects. This will be quantified in terms of time scales
and dimensionless numbers in §2.3.

Note that contrary to the Marangoni-Bénard instability leading to hexa-
gons (see Fig. 2) when the instability threshold is exceeded, the Rayleigh-
Bénard instability typically yields roll patterns, the study of which has
motivated important progresses in the theory of pattern formation (see for
instance Cross and Hohenberg, 1993). Note that both rolls and hexagons
are very seldom perfectly regular, and various kinds of defects have in-
deed been observed, and studied extensively for their interesting universal
properties. For instance, hexagonal patterns very often display isolated
pentagon-heptagon defects, which can act as mediators in the transition
from hexagonal to square patterns observed at increasing temperature dif-
ference AT, via a process of nucleation of lines of pentagons (Eckert and
Thess, 1999).

Considering now the opposite case of a liquid layer heated from above,
first in the buoyancy-driven case, it is quite natural to expect an oscillatory
behavior of fluctuations, again in the case where the effect of dissipation
is not too strong. Indeed, during its upward motion, a fluid particle ini-
tially warmer than its environment will now move towards warmer regions.
This means that the upward buoyancy force it experiences will first decrease,
then eventually change sign when the particle overshoots its neutrally buoy-
ant position, due to inertia. The particle is then accelerated downwards,
towards colder regions, and may oscillate around its neutrally buoyant posi-
tion several times before dissipation eventually damps out any fluid motion.
This oscillatory mechanism is known in the literature as (Brunt—Vaisila)
internal waves, observed in situations of stable density stratification (e.g. in
the atmosphere or the ocean, see Turner, 1973).

Similarly, surface waves due to thermocapillarity in a layer heated from
above are also expected, and may be explained considering once again a
hot spot at the free surface. As usual the Marangoni effect drives a surface
flow away from the spot, which now brings colder liquid from the bulk.
Because of fluid inertia, the initially hot spot eventually becomes colder
than its neighborhood (overshoot), thus reversing the flow and leading to
oscillations. These waves involve motions essentially parallel to the free
surface, and may be called longitudinal waves for this reason.

Note that both internal and surface waves are usually damped, though
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it has been shown recently (Rednikov et al., 2000) that their interaction
near resonance may lead to amplification and mode-mixing (see section
3.4). Actually, internal waves excited by the Marangoni effect are indeed
thought (Wierschem et al., 2000) to be responsible for the propagating wave
trains shown in Fig. 3(left), i.e. in a situation where pentane is absorbed
in toluene. Given that pentane is lighter than toluene, absorption indeed
generates a stable density stratification prone to triggering of internal waves
by external disturbances, just as in the thermal case discussed above. As
pentane also lowers the surface tension of the mixture, longitudinal surface
waves may also occur and resonantly interact with (transverse) internal
waves.

Finally, the well-known capillary-gravity waves are yet another oscilla-
tory mode, which occurs whenever a free surface is perturbed by an ex-
ternal force. Ripples propagating along a free surface involve an essential
deformation orthogonal to the latter, and are transverse waves in this re-
spect. Interestingly, such capillary-gravity waves may also be excited in
layers heated from the top, via resonant interaction and mixing with the
surface longitudinal waves just discussed (Rednikov et al., 2001). A re-
view of experimental findings on waves generated by heat or mass transfer
through an interface, their interpretation in terms of internal, surface and
capillary-gravity waves, as well as their links with solitary waves, are given
in the book of Nepomnyashchy et al., 2002.

2.2 Application-oriented aspects

When a layer of fluid is heated from below, the state of pure conduction
prevailing at small AT is first replaced by a cellular convective structure at
a certain AT,, as explained in the previous section. Convective heat trans-
port now adding to the effect of heat conduction, the global heat transfer
through the layer is enhanced, which may be seen as an increase of the
apparent thermal conductance (or heat transfer coefficient) of the liquid
layer (defined, e.g., by ®/AT where ® is the mean heat flux crossing the
layer). Subsequent transitions, e.g. to time-dependent regimes, generally
result in further increases of the heat transfer coefficient. This has been
extensively studied for the case of Rayleigh-Bénard convection, even in the
regimes of so-called weak and strong thermal turbulence setting in at very
high AT/AT, (see for instance Guyon et al., 1991).

In surface-tension-driven situations, much less is known, even though
interfacial turbulence has been observed as early as in the 50’s, in the context
of Chemical Engineering. In many situations involving interfacial heat and
mass transfer (for instance in techniques such as liquid/liquid extraction,
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liquid/gas absorption or desorption, distillation, ...), order of magnitude
changes of transfer rates from one phase to another have been measured
and correlated with empirical relationships. An extensive review of such
phenomena and a rather complete bibliography are provided in the thesis
of T. Molenkamp (Molenkamp, 1998). Note also that in chemical reactors,
mass transfer through interfaces is often accompanied by chemical reactions,
and interesting couplings with surface-tension-driven convection can occur
(Eckert and Grahn, 1999; Eckert et al., 2004).

Marangoni-Bénard convection is also important in processes involving
evaporation, such as in the drying of paint films, in the coating industry,
and for heat transfer devices. In Fig. 5, a thin layer of ethyl alcohol is
evaporated under an inert gas (nitrogen) flow. Even though no external
heating is imposed in this experiment, cellular convection develops as soon
as the flow is imposed, due to the cooling of the free surface induced by
evaporation (consumption of latent heat). The fact that these convective
patterns are sustained by evaporation is further confirmed by their sudden
disappearance when vapor removal by the gas flow is interrupted (images
8 and 9). In turn, convective transport of heat reduces the overall thermal
resistance of the liquid layer, therefore contributing to an increase of the
evaporation rate.

In addition to the increase of the interfacial exchange coefficients (i.e.
per unit surface), Marangoni flows often induce significant interfacial de-
formation, leading to important variations of the total surface of exchange
itself. In the case of thin liquid films, specific instabilities (see §2.4) may
occur, leading in some cases to dry regions. While such dry spots are gener-
ally unfavorable (for instance, in thin-film evaporators, they lead to possible
overheating and destruction of the substrate), they also have a positive ef-
fect since the heat transfer resistance scales proportionally to the local film
thickness, as a first approximation. As a consequence, the local heat flux
can become locally very high in the transition region between the film and
the dry spot (i.e. at the contact line), as was quantified by P. Stephan in
the context of heat-transfer devices such as heat pipes and boilers (Stephan
and Busse, 1992).

Generally speaking, Marangoni effects and associated instabilities are
expected to be dominant at small length scales, where gravity and buoy-
ancy are ineffective (as will be seen from dimensionless groups in the next
section). There is therefore a renewed interest in recent years, especially
in connection with the rapidly developing fields of microfluidics and even
nanotechnologies. At such scales, self-organization phenomena such as the
surface-tension-driven Bénard instability could for instance be used as a
way to design special types of solid surfaces, by deposition of nanocrystals
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in the forms of polygonal arrays and rings (see e.g. Maillard et al., 2000).

| P
4
N,
— > {
| i
S i1\ -— 3
.
’ lrI‘J‘-y.l
| PR
o | TRER
A—— A — 64
S e — !
\,"':,tﬁi
!'I‘ 4
23
™M
o —— 71k.‘ —— 81k - 9.

Figure 5. Sequence of infrared camera images of the free surface of a thin
liquid layer of ethyl alcohol, forced to evaporate under a flux of nitrogen
(indicated by the arrow) at room temperature and atmospheric pressure.

2.3 Dimensionless numbers and time scales

Several time scales can be defined from physical properties of the fluid
and geometrical characteristics such as its depth d. We first have the ther-
mal time scale

d2
Tth — o (1)
i.e. the typical time scale it takes for temperature fluctuations to be damped
over a distance d (k is the thermal diffusivity?). Similarly, velocity (or

2In this section, we will generally refer to a pure fluid submitted to a temperature
difference AT. However, for an isothermal binary fluid, similar time scales and di-
mensionless numbers may be defined, replacing AT by AN (a typical mass fraction
difference between bottom and top), x by D (the isothermal diffusion coefficient), and
defining v = — (90 /ON) and o« = —(9p/ON)/p, where o and p are the surface tension
and the volumic mass, respectively.
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vorticity) fluctuations decay on a viscous time scale

d 2
Tvise = 2
Visc v ( )
where v is the kinematic viscosity.
Now, it is possible to construct two other time scales which do not depend

on any molecular diffusivity mechanism. The first one is the “buoyancy time

scale”
d
Thuoy — \/agAT (3>

which is roughly the time it takes for a fluid particle at the bottom of the
layer to be accelerated by buoyancy up to its upper surface (see Fig. 4), i.e.
the typical time scale of the instability leading to convective patterns. In
Eq. (3), a is the thermal expansion coefficient, g is the gravity acceleration,
and AT = Ty — T is the temperature drop across the layer.

Similarly, a typical time scale of the thermocapillary (or Marangoni)

instability can be defined as
pd?
Tma — \/’YAT (4)

where p is the liquid volumic mass, and v = —9do /9T is the coefficient of
variation of surface tension with temperature (positive for usual liquids).

Note that when the layer is heated from the top, |Thuoy| " and |7mal ™"
provide order of magnitude estimates of the frequencies of internal and
surface waves (see §2.1), respectively.

Comparing the different time scales given by Eqs (1-4), it may be ex-
pected that instability will develop if the time for a fluid particle to travel
over a distance of order d is shorter than the times necessary for the parti-
cle either to be slowed down by viscosity, or thermally equilibrated with its
environment. Thus, buoyancy-driven instability would occur typically if

gO[ATdS TviscTth

R = 1 5
“ VK Tguoy > (5)

while surface-tension-driven instability will occur when

_ ’YATd o TviscTth

Ma >1 (6)

pre TR,
These equations define both the Rayleigh number Ra and the Marangoni
number Ma, which are the usual measures for the relative importance of
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destabilizing and stabilizing effects. Typically, the critical value of the
Rayleigh number above which instability sets in is of order 103, while the
critical Marangoni number is of order 102, Their actual values depend on
the nature of upper and lower plates (e.g. rigid and heat-conducting, or
free and poorly-conducting, ...), and must be determined by linear stability
analysis (see §3.4).

Note that other usual dimensionless parameters are the Prandtl number
Pr =v/k = Ttn/Tvisc and the Galileo number Ga = gd? /vk = TthTVisc/ngrav
where Tgay = (d/g)'/2, i.e. the typical time scale for a body to be acceler-
ated over a distance d under the action of gravity.

Finally, in case the liquid layer presents an upper free surface, it is com-
mon to describe heat transfer through the latter using a constant heat
transfer coefficient h (or a constant Biot number Bi = hd/A in dimen-
sionless form, where A is the liquid thermal conductivity). Even though
this is a crude approximation since the heat transfer coefficient generally
depends on convective motions in the gas phase, and therefore on the tem-
perature of the interface itself, it does provide the correct tendency for the
influence of heat transfer at the upper surface (namely an increase of the
critical Marangoni number with increasing Biot number). A more rigorous
definition of a “generalized Biot number” will be presented in §3.

2.4 Other instability mechanisms in very thin liquid films

Yet another instability mode can occur, specifically for thin liquid films
of viscous liquids. This is illustrated in Fig. 6 : consider that an initially
flat heated liquid film (top figure) is perturbed, resulting in a non-uniform
liquid depth (middle figure). At the thinner parts of the film, the free
surface is warmer (since it is closer to the heated plate) than at thicker
regions. A surface tension gradient therefore arises, and generates a flow
dragging fluid away from the depression, hence depleting the thinner parts
even more. This may result in the formation of dry spots (bottom figure),
even though the correct description of the film evolution near rupture should
involve intermolecular forces between the fluid and the substrate, typically
when the local thickness decreases below 100 nm (Israelachvili, 1992; Oron
et al., 1997).

Note that the horizontal length scale of convective motions (and of sur-
face deformations) generated by this mechanism is generally much larger
than the fluid depth, hence the name long-wave deformational mode for
this instability mechanism. In contrast, polygonal convection cells typi-
cal of Marangoni-Bénard convection turn out to scale proportionally to the
depth of the liquid layer (see Fig. 2) in case the rigid bottom plate is a
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good thermal conductor (such as a metal). In case the bottom plate has a
low heat transfer coefficient, just as the upper free surface, the Marangoni-
Bénard convection cells become large-scale as well, which offers a way to
describe them in terms of long-wave asymptotic theories.

Vo Vo

Figure 6. Long-wave deformational instability of heated thin liquid film.

The long-wave deformational mode occurs typically for Ma > Mag ~
Ga, for a purely insulating upper free surface (a good approximation for lig-
uids in contact with a gas phase). As introduced in the previous section, the
Galileo number Ga = gd®/vk measures the stabilizing influence of gravity
on surface deformations, and is usually extremely large (~ 108!) for usual
fluids with depths in the centimeter range. In these cases, cellular convection
mechanisms will always occur first, since their critical Marangoni number is
typically 10% (actually, for depths larger than about 1 cm, buoyancy-driven
convection dominates, while surface-tension-driven convection is most effec-
tive at depths below some millimeters).

For very thin layers of highly viscous liquids however, long-wave deforma-
tional modes may become active, and a fortiori the primary instability mode
when the long-wave threshold Mag ~ Ga becomes lower than the usual
threshold Ma. ~ 10% for cellular Marangoni-Bénard convection. While for
water this corresponds to unusually thin liquid films (d ~ 100 pm or less),
this becomes experimentally accessible with highly viscous liquids such as
silicone oils [e.g. for a 200 ¢St oil, Mag ~ Ga ~ 102 for d ~ 0.6 mm]. Recent
experimental results of VanHook et al. (VanHook et al., 1997) have indi-
cated that the cross-over between the two modes may indeed be observed,
possibly resulting in coexistence of large-scale dry spots with depth-scaled
convection cells such as sketched in Fig. 6 (bottom). VanHook et al. have
further observed and explained that the long-wave deformational mode in-
deed generally leads to film rupture (see also Oron et al., 1997), but more
complex situations may occur (surface elevations or “high spots”, cascades
of structures, ...). Note that situations involving essential surface deforma-
tion will not be considered further in these notes, as they will be described
in details in the lectures of M. Bestehorn and L. Pismen, including the de-
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scription of rupture of ultrathin films due to molecular interactions with the
substrate, droplets, ...

3 Basic equations and boundary conditions

Even though the description of Bénard instabilities in layers with a free sur-
face generally involves fluid motions and temperature fluctuations in both
liquid and gas phases (two-layer system), it is often possible to make some
simplifying assumptions (given hereafter) in order to describe them in terms
of liquid quantities alone (one-sided model), with suitable boundary condi-
tions. Using the thermal time scale 75, = d?/k, the length scale d, the
pressure scale ur/d?, and a yet undefined temperature range 6, the basic
dimensionless equations generally used to describe thermally-driven Bénard
instabilities of a liquid layer are

V-V=0 (7)
Lo . . LV L o
AV —Vp —Gal,[l — (T —Ty)] = Pr Py +((V-V)V (8)
T . -
AT::%t+(V-vnﬂ (9)

where V = (U, V,W), T, and p are respectively the dimensionless fields
of velocity, temperature and pressure, 1. is the unit vector directed ver-
tically upwards, T, = (Tp + T1)/20 is the dimensionless reference (mean)
temperature at which the physical properties are evaluated (note that their
possible variation is neglected, in the temperature range € considered), and
other dimensionless quantities have been defined earlier. Equations (7-9) re-
spectively express the conservation of mass (for incompressible liquids), of
momentum (in the presence of a buoyancy force), and of energy (neglecting
viscous heating).

Importantly, this form of the equations makes use of the Boussinesq
approximation, i.e. |af| < 1. This means that the variations of density
may be neglected everywhere, unless when multiplied by large quantities
such as the Galileo number Ga, as it indeed occurs for the body force term
of the Navier-Stokes equations (8). Actually, the Rayleigh number (defined
using the temperature range 6) is the product Ra = afGa, i.e. the product
of a small and a large number, and can therefore be sufficient to trigger
instability of the Bénard layer.

Boundary conditions on the bottom plate z = 0 are usually taken as the
no-slip and constant temperature conditions

V=T-Thy=0 atz=0 (10)
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where Tyt = ' Ty, while those at the upper free surface should in principle
be written at a unknown position, which should be found as a solution of
the full problem. However, we will not deal with such deformable free
surfaces here (the reader is referred to the book of Colinet et al., 2001, for
general interfacial conditions) and assume the free surface to be located
at z = 1, i.e. disregarding the case of very thin liquid films (the effect of
gravity, quantified by the Galileo number, is sufficiently strong to prevent
free surface deformations).

In addition, as mentioned above, a coupling of liquid and gas phases
is expected at z = 1. We now underline the main hypotheses necessary to
reach a one-sided description, i.e. to write the correct number of free surface
boundary conditions, though in terms of liquid quantities alone.

First, the liquid velocity orthogonal to the interface is zero, since it is
assumed motionless. Hence,

W=0 atz=1 (11)

Second, in view of the fact that the dynamic viscosity of the gas is generally
much lower than that of the liquid, we may neglect gas viscous stresses in
the tangential momentum balance at z = 1. Taking into account surface
tension gradients and in dimensionless form, this reads

0,U+ Ma0, T =0.V+Mad, =0 atz=1 (12)

where Ma = v0d/pvk is the Marangoni number. Note that an equivalent
form is obtained by differentiating the first of these boundary conditions
with respect to x, the second with respect to y, adding the results and
using the incompressibility condition (7). This yields

822W =MaAT atz=1 (13)

where A}, = §%/02? + 0%/9y? is the horizontal Laplacian operator.

A straightforward way to close the problem would be to neglect the ther-
mal conductivity of the gas, and therefore to assume 0.7 = 0 at the free sur-
face (zero heat transfer coefficient). Under some assumptions mentionned
in section 3.2, evaporation can also be included in the energy conservation
at the interface, which yields

0.T=—-EJ atz=1 (14)

where E = L/c,0 is an evaporation number, comparing the latent heat of
evaporation L to c,f, i.e. the heat needed to warm up the liquid over the
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selected temperature range 0. Note that Eq. (14) introduces the evaporation
rate J (here scaled by pr/d), which is often written as

0d
Tsa
J = ﬂ\/27TRTéatpeq t)pﬁ;

i.e. one of the possible forms of the Hertz-Knudsen kinetic law (see also
Burelbach et al., 1988), in which ( is the accomodation coefficient, M is the
liquid molecular mass, R is the universal gas constant, pe,(T") is the equilib-
rium pressure at temperature 7' (e.g. the Clausius-Clapeyron coexistence
curve), and T4 is the (dimensional) saturation pressure at the local vapor
pressure p,, i.e.

(T — 0 " Ty0) (15)

peq(Tsat) = Pv (16)

Hence, for a pure vapor phase where the vapor pressure p, may be assumed
constant, Tyt is a constant and Eqgs (14) and (15) combine to give a mixed
thermal condition

0. T + Bigyp(T — 0 "Tst) = 0 (17)

where the effective heat transfer coefficient (i.e. the Biot number, in dimen-
sionless form) reads

Ld
B ev Tsa 1
tevip = ﬂ\/szTm Peq(Trat) "y (18)

and the index p stands for “pure vapor phase”. Note that the values cal-
culated for Bi., , are generally very high apart for very thin liquid films or
very small accomodation coefficient?, such that the interfacial temperature
remains everywhere very close to Ty, (local thermodynamic equilibrium
between the vapor and the liquid), and the Marangoni effect is very weak.

Hence, the problem is now closed, either for the case where the liquid
is non-volatile and the vapor phase has very small thermal conductivity
(Biey,p has to be set to zero in Eq. (17)), or when the liquid can evaporate
into its own vapor (in which case Bic, )y is a very large quantity). However,
there are cases where one or both of these assuptions fail, and a more general
approach is needed.

3As also discussed by Colinet et al., 2001, the cross-over between the reaction-limited
regime Biey,p < 1 and the heat transfer-limited regime Biey,p > 1 occurs for a depth
d =0(100 nm), for water near the normal boiling point and an accomodation coefficient
B = 1. This depth increases when [ decreases, however.
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3.1 Non-negligible gas thermal conductivity

As the assumption of vanishing gas thermal conductivity may not be
justified in all cases (e.g. helium is equally conducting as a silicone oil), it
seems preferable to generalize the rough approach of the previous section,
though first in the non-volatile case.

In general, the thermal diffusivity x4 of a gas is about one hundred times
larger than that of a liquid. Therefore, the time scale of thermal fluctuations
in the gas, i.e. d?/ky (where dy is the gas depth), is much smaller than the
liquid thermal time scale 74, = d? /k. In addition, we may also expect the
energy transport due to gas flows to be negligible compared with thermal
diffusion (small Péclet number assumption?), and the energy equation in
the gas may be written in the quasi-steady approximation

AT, =0 (19)

which may in principle be solved using boundary conditions Ty, = T'(z,y, 2 =
1,t)at z=1and T, = Ty at z = 1 + H (where H = d,;/d). Given such
a formal solution T,[T'(z = 1)], we may then express the continuity of heat
flux as

0. T =0, T,[T(z=1)] atz=1 (20)

where \ = Ag/A is the ratio of gas and liquid thermal conductivities.

We have now reached a generalized one-sided description of the problem,
i.e. the system of equations (7-9) with boundary conditions (10, 11, 12, 20)
is closed. However, such a problem is non-local, since the heat flux (20)
depends on the instantaneous temperature distribution T'(z = 1) at the free
surface (and not only on its local value).

Fortunately, this problem may easily be handled in Fourier space. De-
noting the horizontal average by (-), the horizontal Fourier transforms by
tilded quantities, and realizing that from Eq. (19), (T,) must vary linearly
from (T'(z = 1)) at z = 1 to Ty, at z = 1+ H, the horizontal average of Eq.
(20) yields

0, (T) = H *N (T, —(T)) atz=1 (21)

which shows that the increase of heat transfer due to possible convection in
the liquid is directly linked with the increase of the mean surface tempera-
ture.

Now, for Fourier components with wavenumber k # 0, Eq. (19) yields
(82 — k*)T, = 0, which has to be solved with boundary conditions T, = T

4Note that for this development to hold, it is necessary to assume that the gas phase
is confined, i.e. its depth dgy must not be taken much larger than the liquid depth d.
Moreover, the case of externally imposed fast gas flows is also excluded.
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at z =1 and Tg =0 at z =1+ H. Then, using this result in the Fourier
transform of Eq. (20), we get

0.T = —Bi (k)T atz=1 (22)

where Bi.(k) = Mk coth(kH) is a generalized, wavenumber-dependent Biot
number (i.e. dimensionless heat transfer coefficient, see end of §2.3). Non-
locality therefore manifests itself here through the fact that the different
Fourier components of the temperature field evolve with different heat trans-
fer coeflicients at the upper free surface.

3.2 Generalized one-sided modeling of evaporation

When the liquid is volatile and evaporates into an inert gas such as air,
the boundary condition (17) cannot be applied anymore, because the partial
pressure of vapor cannot be assumed constant in general. Assuming the gas
mixture to be perfect, we have p, = pyNy/(r + (1 —)Ny) where p, is the
total gas pressure (assumed constant here, as can be justified a posteriori),
r = M/M; is the ratio of molecular masses of the vapor and of the inert
gas, and NV, is the vapor mass fraction for which a mass diffusion equation
should be solved. The latter will here be written

AN, =0 (23)

i.e. in the quasi-steady approximation, just as for the temperature field in
the previous section (these assumptions are coherent since the Lewis number
Le = D/k, where D is the isothermal diffusion coefficient, is of order unity
for a gaseous mixture — hence the relaxation times in the gas are generally
much smaller than those in the liquid, provided the depth of the gas is not
too large).

In order to understand the basic role of an inert gas without entering
into detailed descriptions of the gas phase dynamics, we will here consider
that the mass fraction, just as the temperature, is imposed at the upper
boundary, i.e.

Ny=N, atz=1+4+H (24)

while at the interface, it will be assumed that the inert gas is not absorbed
by the liquid, yielding

(1= Ngyg)J+prLed;Nyg =0 atz=1 (25)

where p = p,/p and & = k4/k are the ratios of densities and of thermal dif-
fusivities, respectively. Again, a Hertz-Knudsen kinetic equation is needed
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for the evaporation rate J, which will here be written under the form

N;

(1—=7)N; (26)

QJ = ps(T3) — .

where T; = T'(z = 1) is the dimensionless interfacial temperature, N; =
Ny(z = 1) is the mass fraction of vapor at the interface, p(T5) = peq(T30)/pg
is the scaled saturation pressure, and the kinetic resistance to evaporation
is quantified by
Q- PR 2T RT (27)
Bdpg M
i.e. inversely proportional to the usual accomodation coefficient (.

Note that in the present treatment of evaporation, either for a pure
vapor or for a gas mixture, possible motions of the interface are neglected,
i.e. z = h(t) ~ 1. This quasi-steady assumption is valid provided its relative
motion during a typical relaxation time d?/k is small, i.e. |0;h] < 1 in our
choice of length and time scales. Actually, the total (jump) mass balance
at the interface reads

J=W —dh=p(W, —dh) atz=h(t) (28)

where W and W, are vertical velocities of the liquid and of the gas mixture,
respectively. Averaging in the horizontal direction and taking into account
that (W) = 0 because of Eqs (7) and (10), we get d;h = — (J). Hence, the
quasi-static approach will be valid provided the mean evaporation rate (.J)
is small enough compared to unity.

Another assumption is that the vertical velocity of the liquid at the inter-
face is neglected, i.e. Eq. (11) is assumed, even though we should actually
have W(z = 1) = J —(J). This assumption, which may be checked a poste-
riori, should be valid provided typical velocities induced by the Marangoni
(or Rayleigh) effect are much higher than the liquid velocity induced by
evaporation®.

In order to avoid nonlinearities in the mass transfer boundary conditions,
and to remain coherent with the assumption of a small evaporation rate J, it

°In fact, in our choice of scales, |J| is a typical Péclet number based on the liquid velocity
induced by evaporation, and we assume it to be small in the present analysis. In turn,
the Marangoni number Ma = U,d/k is another Péclet number based on the typical
thermocapillary velocity U, = v0/pv. As Ma is of order unity (or more), the ratio of
thermocapillary and evaporation velocities is of order Ma/|J| > 1, which justifies Eq.
(11), since the bulk value of W will always be much larger than W (z = 1). Note that
the reasoning also holds for buoyancy-driven convection.
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is convenient to assume the system to be close to a global equilibrium state
defined by the overall gas pressure p, (e.g., atmospheric) and the externally
imposed vapor mass fraction IV,,. At equilibrium, J = 0 and the mass
fraction is equal to N, everywhere in the gas, while both the liquid and
the gas are at a temperature T* determined by Eq. (26), i.e.

Then, assuming small deviations around this equilibrium state, boundary
conditions (25) and (26) can be linearized, leading to

(1 = Nyp)J + prLed,N; =0 at z=1 (30)

and
r

(r+ (1 =7)Nup)?

where @ is evaluated at the saturation temperature T, = 07T,

Now, separating the horizontal average from the Fourier components
with wavenumber k, as in section 3.1, we have to solve 8% (N,) = 0 and
(02— kz)Ng = 0 subject to corresponding boundary conditions. After some
algebra, and taking into account that the complete interfacial energy balance
reads 0,1 = X@ZTg — EJ and that the thermal problem in the gas can be
solved as before, we again get a mixed boundary condition

QJ =p(T")(Ti = T7) - (Ni = Nup) (31)

0. T+ Bi(k)T =0 atz=1 (32)

for the Fourier components with wavenumber k& # 0, where the effective
Biot number is now given by

Ep(T7)
H(1—Nuyp) r(kH)~! tanh(kH)
Q+ " ire” i (1=r)Nuy)?

Bi(k) = Bi.(k) + Biey,(k) = Mk coth(kH) +

(33)
and the Fourier components of the evaporation rate are
J = E-\Bioy(k)T; — kH coth(kH)  P*L¢ R, (34)
- ev 1 T H(l _ Nup) 1

In addition, the horizontal average of the interfacial energy balance gives
the boundary condition for (7T'), i.e.

0. (T) + Bico((T) — Tup) + Biewo((T) = T*) =0 atz=1  (35)
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where Bico = Bic(k — 0) and Biey o = Biey(k — 0), while the averaged
evaporation rate reads

pkLe

<J> - EilBiev,0(<Ti> - T*) - H(l - Nup)

((Ni) = Nup) — (36)
To summarize, this section has demonstrated that, in some vicinity of a
global equilibrium state defined by the total gas pressure p, and the vapor
mass fraction IV, at some distance from the interface, convective evapora-
tion of a pure liquid into an inert gas may be described by the system of
equations (7-9), together with boundary conditions (10-12), (32) and (35).
Note that additional reasonable assumptions are i) negligible gas viscosity;
ii) sufficiently large gas thermal diffusivity; iii) not too large gas to liquid
depth ratio H. This problem is not only nonlinear, but also non-local, as
could be realized by applying an inverse Fourier transform to Eqgs (32), lead-
ing to a convolution product. However, it is most convenient to write (and
solve) it in Fourier space.

3.3 Reference states

Due to its symmetries, the full system of equations and boundary con-
ditions always admits a horizontally homogeneous solution. On a long time
scale, this solution evolves because of the decrease of the layer thickness in
time. However, in the quasi-steady approximation described in the previous
section, the free surface may be fixed at z = 1, and a steady solution exists,
namely

—

Vref =0 5 Tref =Tpot — 2 y Pref = Pbot — Gaz + Raz (37)

(1-2)
2
where the dimensionless temperature drop across the layer has been set to

unity, by a suitable choice of the (yet undetermined) temperature scale

_ Bic,O(TO - TH) + Bie’u,O(TO - Tsat)

0
1+ Bico+ Bieyyo

(38)
as can be seen by solving Eq. (35) with Tpor = T0/0, Tup = Tu/6 and
T* = Tsq:/0. Note that Ty, depends on p, and N, according to our
definition of the global equilibrium state. Now, using Eq. (36) and after
some algebra, the evaporation rate in the non-equilibrium reference state
(37) may be written as

Tio—T*

Jre :E71
! Bizly + (1 + Bico)~!

(39)
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where ) -
T, = 1ot T BleoTup _ Hlbot H Mup (40)
1+ BZC70 H + A
is the interfacial temperature in a (fictive) purely conducting state, where
evaporation is prevented (i.e. by assuming a vanishing accomodation coef-
ficient leading to Biey,0 = 0).
It will be useful in the following to define

H(1— Nyp) T Ep (T*)H
Ri = 5 Ry = P ) RC = ° N 41
@ ¢ piLe (14 (1 —7)Nyp)? Hey Y
and to recast Eq. (39) in the form
(Ri+ Ra+ Re)Jres = ps(T")(Ti.e = T7) (42)

which clearly shows (see also Haut and Colinet, 2005) that the evaporation
flux is limited by three resistances “in series”, namely the interfacial (ki-
netic) resistance R;, the resistance R, to diffusion in the gas mixture, and
the resistance R, to heat conduction towards the interface from both liquid
and gas phases.

Other useful expressions for the reference evaporation rate can be found
from Eqgs (31), (36) and (42) :

(Rz + Rd)Jref - p/s (T*)(Ti,ref - T*) (43)
T

R +Rc Jre - ;T* Ec_nre +
(Rat Bo)res =0T T =Tore) o

(Nires = Nup)
(44)

r
o (Nijrer = Nup) (45)

(r+ (1 —=7)Nuyp)
from which various limiting cases can be identified : i) when R. < Ry or
R, < R;, comparing Eqs (42) and (43) readily shows that T} ey = Ti.,
i.e. the interfacial temperature is not affected by evaporation and reaches
its value in the purely conducting state; ii) when R; < Ry or R; < R.,
Eqgs (42) and (44) lead to pl,(T*)(Tiref —T%) = 7(Niyrer — Nup)/(r+ (1 —
7)Nup)?, which means that local thermodynamic equilibrium prevails at the
interface, according to Eq. (31); iii) when Ry < R, or Rq < R;, Eqs (42)
and (45) readily yield N; ey = Nyp, and the gas composition is uniform.
Clearly, two of these three situations may be realized simultaneously. For
instance, in the case R; > R4 and R; > R., the evaporation rate J,..; =
QL (T*)(T;,.—T*) is reaction-limitedS, even though this case should only

(Rz + Rc)Jref - p;(T*)(Tz,c - T*) -

SEven though a phase transition is not a reaction, this term is used here to mean that
the limitating step is linked to kinetic effects, i.e. the interface is not at equilibrium.



