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Preface

The merging of the concept of introduction of asymmetry of the wave vector space
of the charge carriers in semiconductors with the modern techniques of fabricat-
ing nanostructured materials such as MBE, MOCVD, and FLL in one, two, and
three dimensions (such as ultrathin films, nipi structures, inversion and accumula-
tion layers, quantum well superlattices, carbon nanotubes, quantum wires, quantum
wire superlattices, quantum dots, magneto inversion and accumulation layers, quan-
tum dot superlattices, etc.) spawns not only useful quantum effect devices but also
unearth new concepts in the realm of nanostructured materials science and related
disciplines. It is worth remaking that these semiconductor nanostructures occupy a
paramount position in the entire arena of low-dimensional science and technology
by their own right and find extensive applications in quantum registers, resonant
tunneling diodes and transistors, quantum switches, quantum sensors, quantum
logic gates, heterojunction field-effect, quantum well and quantum wire transis-
tors, high-speed digital networks, high-frequency microwave circuits, quantum
cascade lasers, high-resolution terahertz spectroscopy, superlattice photo-oscillator,
advanced integrated circuits, superlattice photocathodes, thermoelectric devices,
superlattice coolers, thin film transistors, intermediate-band solar cells, microop-
tical systems, high-performance infrared imaging systems, bandpass filters, thermal
sensors, optical modulators, optical switching systems, single electron/molecule
electronics, nanotube based diodes, and other nanoelectronic devices. Mathemati-
cian Simmons rightfully tells us [1] that the mathematical knowledge is said to be
doubling in every 10 years, and in this context, we can also envision the extrap-
olation of the Moore’s law by projecting it in the perspective of the advancement
of new research and analyses, in turn, generating novel concepts particularly in the
area of nanoscience and technology [2].

With the advent of Seebeck effect in 1821 [3–6], it is evident that the investiga-
tions regarding the thermoelectric materials, the subset of the generalized set mate-
rials science have unfathomable proportions with respect to accumulated knowledge
and new research in multidimensional aspects of thermoelectrics in general [7–17].
The timeline of thermoelectric and related research during the 200 years spanning
from 1800 to 2000 is given in [18], and with great dismay, we admit that the citation
of even pertinent references in this context is placed permanently in the gallery of
impossibility theorems. It is rather amazing to observe from the detailed survey of
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almost the whole spectrum of the literature in this particular aspect that the avail-
able monographs, hand books, and review articles on thermoelectrics and related
topics have not included any detailed investigations on the thermoelectric power in
nanostructured materials under strong magnetic field (TPSM).

It is well known that the TPSM is a very important quantity [19], since the change
in entropy (a vital concept in thermodynamics) can be known from this relation by
determining the experimental values of the change of electron concentration. The
analysis of TPSM generates information regarding the effective mass of the carri-
ers in materials, which occupies a central position in the whole field of materials
science in general [20]. The classical TPSM (G0) equation is valid only under the
nondegenerate carrier concentration, and the magnitude of the TPSM is given by
(G0D .�2kB=3e/ (kB and e are Boltzmann’s constant and the magnitude of the
carrier charge, respectively; [21]). From this equation, it is readily inferred that
this conventional form is a function of three fundamental constants only, being
independent of the signature of the charge carriers in materials. The significant
work of Zawadzki [22–24] reflects the fact that the TPSM for materials having
degenerate electron concentration is independent of scattering mechanisms and is
exclusively determined by the dispersion laws of the respective carriers. It will,
therefore, assume different values for different systems and varies with the doping,
the magnitude of the reciprocal quantizing magnetic field under magnetic quantiza-
tion, the nano thickness in ultrathin films, quantum wires and dots, the quantizing
electric field as in inversion layers, the carrier statistics in various types of quantum-
confined superlattices having different carrier energy spectra, and other types of
low-dimensional field assisted systems.

This monograph, which is based on our 20 years of continuous and ongoing
research, is divided into four parts. The first part deals with the thermoelectric
power under large magnetic field in quantum-confined materials and it contains four
chapters. In Chap. 1, we have investigated the TPSM for quantum dots of nonlin-
ear optical, III–V, II–VI, n-GaP, n-Ge, Te, Graphite, PtSb2, zerogap, II–V, Gallium
Antimonide, stressed materials, Bismuth, IV–VI, lead germanium telluride, Zinc
and Cadmium diphosphides, Bi2Te3, and Antimony on the basis of respective car-
rier energy spectrum. In Chap. 2, the TPSM in ultrathin films and quantum wires of
nonlinear optical, Kane type III–V, II–VI, Bismuth, IV–VI, stressed materials, and
carbon nanotubes (a very important quantum material) have been investigated. In
Chap. 3, the TPSM in quantum dot III–V, II–VI, IV–VI, HgTe/CdTe superlattices
with graded interfaces and quantum dot effective mass superlattices of the afore-
mentioned materials have been investigated. In Chap. 4, the TPSM in quantum wire
superlattices of the said materials have been studied.

The second part of this monograph deals with the thermoelectric power under
magnetic quantization in macro and micro electronic materials. In Chap. 5, the ther-
moelectric power in nonlinear optical, Kane type III–V, II–VI, Bismuth, IV-VI, and
stressed materials has been investigated in the presence of quantizing magnetic field.
In Chap. 6, the thermoelectric power under magnetic quantization in III–V, II–VI,
IV–VI, HgTe/CdTe superlattices with graded interfaces and effective mass super-
lattices of the aforementioned materials together with the quantum wells of said
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superlattices have been investigated. In Chap. 7, the thermoelectric power under
magnetic quantization in ultrathin films of nonlinear optical, Kane type III–V, II–VI,
Bismuth, IV–VI, and stressed materials has been investigated.

The third part deals with the thermoelectric power under large magnetic field
in quantum-confined optoelectronic materials in the presence of light waves. In
Chap. 8, the influence of light on the thermoelectric power under large magnetic
field in ultrathin films and quantum wires of optoelectronic materials has been inves-
tigated. In Chap. 9, the thermoelectric power under large magnetic field in quantum
dots of optoelectronic materials has been studied in the presence of external light
waves. In Chap. 10, the same has been studied for III–V quantum wire and quantum
dot superlattices with graded interfaces and III–V quantum wire and quantum dot
effective mass superlattices, respectively.

The last part of this monograph deals with thermoelectric power under mag-
netic quantization in macro and micro optoelectronic materials in the presence of
light waves. In Chap. 11, the optothermoelectric power in macro optoelectronic
materials under magnetic quantization has been investigated. In Chap. 12, the opto-
thermoelectric power in ultrathin films of optoelectronic materials under magnetic
quantization has been studied. In Chap. 13, the magneto thermo power in III–V
quantum well superlattices with graded interfaces and III–V quantum well effective
mass superlattices have been studied. Chapter 14 discusses eight applications of our
results in the realm of quantum effect devices and also discusses very briefly the
experimental results, and additionally, we have proposed a single multidimensional
open research problem for experimentalists regarding the thermoelectric power in
nanostructured materials having various carrier energy spectra under different phys-
ical conditions. Chapter 15 contains the conclusion and scope of future research.
Appendix A contains the TPSM for bulk specimens of few technologically impor-
tant materials. Each chapter except the last two contains a table highlighting the
basic results pertaining to it in a summarized form.

It is well known that the errorless first edition of any book is virtually impos-
sible from the perspective of academic reality and the same stands very true for
this monograph in spite of the Herculean joint effort of not only the authors but
also the seasoned Editorial team of Springer. Naturally, we are open to accept con-
structive criticisms for the purpose of their inclusion in the future edition. From
Chap. 1 till end, this monograph presents to its esteemed readers 150 open research
problems, which will be useful in the real sense of the term for the researchers in
the fields of solid state sciences, materials science, computational and theoretical
nanoscience and technology, nanostructured thermodynamics and condensed mat-
ter physics in general in addition to the graduate courses on modern thermoelectric
materials in various academic departments of many institutes and universities. We
strongly hope that the alert readers of this monograph will not only solve the said
problems by removing all the mathematical approximations and establishing the
appropriate uniqueness conditions, but will also generate new research problems,
both theoretical and experimental and, thereby, transforming this monograph into a
monumental superstructure.
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It is needless to say that this monograph exposes only the tip of the iceberg, the
rest of which will be worked upon by the researchers of the appropriate fields whom
we would like to believe are creatively superior to us. It is an amazing fact to observe
that the experimental investigations of the thermoelectric power under strong mag-
netic field in nanostructured materials have been relatively less investigated in the
literature, although such studies will throw light on the understanding of the band
structures of nanostructured materials, which, in turn, control the transport phenom-
ena in such low-dimensional quantized systems. Various mathematical analyses and
few chapters of this monograph are appearing for the first time in printed form. We
hope that our esteemed readers will enjoy the investigations of TPSM in a wide
range of nanostructured materials having different energy-wave vector dispersion
relation of the carriers under various physical conditions as presented in this book.
Since a monograph on the thermoelectric power in nanostructured materials under
strong magnetic field is really nonexistent to the best of our knowledge even in the
field of nanostructured thermoelectric materials, we earnestly hope our continuous
effort of 20 years will be transformed into a standard reference source for creatively
enthusiastic readers and researchers engaged either in theoretical or applied research
in connection with low-dimensional thermal electronics in general to probe into the
in-depth investigation of this extremely potential and promising research area of
materials science.
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Chapter 1
Thermoelectric Power in Quantum Dots
Under Large Magnetic Field

1.1 Introduction

In recent years, with the advent of Quantum Hall Effect (QHE) [1,2], there has been
considerable interest in studying the thermoelectric power under strong magnetic
field (TPSM) in various types of nanostructured materials having quantum confine-
ment of their charge carriers in one, two, and three dimensions of the respective
wave-vector space leading to different carrier energy spectra [3–38]. The classical
TPSM equation as mentioned in the preface is valid only under the condition of
carrier nondegeneracy, is being independent of carrier concentration, and reflects
the fact that the signature of the band structure of any material is totally absent in
the same.

Zawadzki [8] demonstrated that the TPSM for electronic materials having degen-
erate electron concentration is essentially determined by their respective energy
band structures. It has, therefore, different values in different materials and changes
with the doping; with the magnitude of the reciprocal quantizing magnetic field
under magnetic quantization, quantizing electric field as in inversion layers, and
nanothickness as in quantum wells, wires, and dots; and with the superlattice period
as in quantum-confined semiconductor superlattices with graded interfaces having
various carrier energy spectra and also in other types of field-assisted nanostructured
materials. Some of the significant features that have emerged from these studies are:

(a) The TPSM decreases with the increase in carrier concentration.
(b) The TPSM decreases with increasing doping in heavily doped semiconductors

forming band tails.
(c) The nature of variations is significantly influenced by the spectrum constants of

various materials having different band structures.
(d) The TPSM exhibits oscillatory dependence with inverse quantizing magnetic

field because of the Shubnikov–de Haas effect.
(e) The TPSM decreases with the magnitude of the quantizing electric field in

inversion layers.
(f) The TPSM exhibits composite oscillations with significantly different values in

superlattices and various other quantized field aided structures.

3
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In this chapter, an attempt is made to investigate the TPSM in quantum dots of
nonlinear optical, III–V, II–VI, GaP, Ge, Te, Graphite, PtSb2, zerogap, II–V, GaSb,
stressed materials, Bismuth, IV–VI, Lead Germanium Telluride, Zinc and Cadmium
diphosphides, Bi2Te3, and Antimony from Sects. 1.2.1 to 1.2.18, respectively. In
this context, it may be noted that with the advent of fine line lithography [39],
molecular beam epitaxy [40, 41], organometallic vapor-phase epitaxy [42], and
other experimental techniques, low-dimensional structures [43–55] having quan-
tum confinement of the charge carriers in one, two, and three dimensions [such as
ultrathin films (UFs), nipi structures, inversion and accumulation layers, quantum
well superlattices, carbon nanotubes, quantum wires (QWs), quantum wire super-
lattices, quantum dots (QDs), magnetoinversion and accumulation layers, quantum
dot superlattices, etc.] have, in the last few years, created tremendous passion among
the interdisciplinary researchers not only for the potential of these quantized struc-
tures in uncovering new phenomena in nanostructured science but also for their
new diverse technological applications. As the dimension of the UFs increases
from one dimension to three dimension, the degree of freedom of the free carriers
decreases drastically and the density-of-states function changes from the Heaviside
step function in UFs to the Dirac’s delta function in QDs [56, 57].

The QDs can be used for visualizing and tracking molecular processes in cells
using standard fluorescence microscopy [58–61]. They display minimal photo-
bleaching [62], thus allowing molecular tracking over prolonged periods, and con-
sequently, single molecule can be tracked by using optical fluorescence microscopy
[63,64]. The salient features of quantum dot lasers [65–67] include lower threshold
currents, higher power, and greater stability compared with that of the conventional
one, and the QDs find extensive applications in nanorobotics [68–71], neural net-
works [72–74], and high density memory or storage media [75]. The QDs are also
used in nanophotonics [76] because of their theoretically high quantum yield and
have been suggested as implementations of qubits for quantum information process-
ing [77]. The QDs also find applications in diode lasers [78], amplifiers [79, 80],
and optical sensors [81, 82]. High-quality QDs are well suited for optical encod-
ing [83, 84] because of their broad excitation profiles and narrow emission spectra.
The new generations of QDs have far-reaching potential for the accurate investiga-
tions of intracellular processes at the single-molecule level, high-resolution cellular
imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diag-
nostics [85,86]. The QD nanotechnology is one of the most promising candidates for
use in solid-state quantum computation [87, 88]. It may also be noted that the QDs
are being used in single electron transistors [89, 90], photovoltaic devices [91, 92],
photoelectrics [93], ultrafast all-optical switches and logic gates [94–97], organic
dyes [98–100], and in other types of nanodevices.

Section 1.2.1 investigates the TPSM in QDs of nonlinear optical materials (tak-
ing n-CdGeAs2 as an example), which find applications in nonlinear optics and
light-emitting diodes [101]. The quasicubic model can be used to investigate the
symmetric properties of both the bands at the zone center of wave-vector space of
the same compound [102]. Including the anisotropic crystal potential in the Hamil-
tonian and the special features of the nonlinear optical compounds, Kildal [103]
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formulated the electron dispersion law under the assumptions of isotropic momen-
tum matrix and the isotropic spin–orbit splitting constant, respectively, although the
anisotropies in the two aforementioned band constants are the significant physical
features of the said materials [104–106].

In this context, it may be noted that the III–V compounds find potential applica-
tions in infrared detectors [107], quantum dot light-emitting diodes [108], quantum
cascade lasers [109], quantum well wires [110], optoelectronic sensors [111], high
electron mobility transistors [112], etc. The III–V, ternary and quaternary materials
are called the Kane-type compounds, since their electron energy spectra are being
defined by the three-band model of Kane [113]. In Sect. 1.2.2, the TPSM from QDs
of III–V materials has been studied, and the simplified results for two-band model
of Kane and that of wide gap materials have further been demonstrated as special
cases. Besides Kane, the conduction electrons of III–V materials also obey another
six different types of electron dispersion laws as given in the literature. The TPSM
has also been investigated for all the cases for the purpose of complete presentation
and relative assessment among the energy band models of III–V compounds.

The II–VI compounds are being extensively used in nanoribbons, blue green
diode lasers, photosensitive thin films, infrared detectors, ultrahigh-speed bipo-
lar transistors, fiber-optic communications, microwave devices, photovoltaic and
solar cells, semiconductor gamma-ray detector arrays, and semiconductor detector
gamma camera and allow for a greater density of data storage on optically addressed
compact discs [114–121]. The carrier energy spectra in II–VI materials are defined
by the Hopfield model [122], where the splitting of the two-spin states by the spin–
orbit coupling and the crystalline field has been taken into account. Section 1.2.3
contains the investigation of the TPSM in QDs of II–VI compounds, taking p-CdS
as an example.

The n-Gallium Phosphide (n-GaP) is being used in quantum dot light-emitting
diode [123], high-efficiency yellow solid state lamps, light sources, and high peak
current pulse for high gain tubes. The green and yellow light-emitting diodes
made of nitrogen-doped n-GaP possess a longer device life at high drive currents
[124–126]. In Sect. 1.2.4, the TPSM in QDs of n-GaP is studied. The importance of
Germanium is already well known since the inception of transistor technology, and
in recent years, memory circuits, single photon detectors, single photon avalanche
diode, ultrafast all-optical switch, THz lasers, and THz spectrometers [127–130] are
made of Ge. In Sect. 1.2.5, the TPSM has been studied in QDs of Ge.

Tellurium (Te) is also an elemental semiconductor which has been used as
the semiconductor layer in thin-film transistors (TFT) [131]. Te also finds exten-
sive applications in CO2 laser detectors [132], electronic imaging, strain sensitive
devices [133, 134], and multichannel Bragg cell [135]. Section 1.2.6 contains the
investigation of TPSM in QDs of Tellurium. The importance of graphite is already
well known in the whole spectrum of materials science, and the low-dimensional
graphite is used instead of carbon wire in many practical applications. Graphite
intercalation compounds are often used as suitable model for investigation of
low-dimensional systems and, in particular, for investigation of phase transition
in such systems [136–139]. In Sect. 1.2.7, the TPSM in QDs of graphite has
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been explored. Platinum Antimonide (PtSb2/ finds applications in device minia-
turization, colloidal nanoparticle synthesis, sensors and detector materials, and
thermo-photovoltaic devices [140–142]. The TPSM in QDs of p-PtSb2 has been
investigated in Sect. 1.2.8.

Zerogap compounds are used in optical waveguide switch or modulators that can
be fabricated by using the electro-optic and thermo-optic effects for facilitating opti-
cal communications and signal processing. The gapless materials also find extensive
applications in infrared detectors and night vision cameras [143–147]. Section 1.2.9
contains the study of TPSM in QDs of the same taking p-HgTe as an example.

The II–V materials are used in photovoltaic cells constructed of single crystal
materials in contact with electrolyte solutions. Cadmium selenide shows an open-
circuit voltage of 0.8 V and power conservation coefficients of nearly 6% for 720-
nm light [148]. They are also used in ultrasonic amplification [149]. The thin film
transistor using cadmium selenide as the semiconductor has been developed [150,
151]. In Sect. 1.2.10, the TPSM in QDs of II–V materials has been studied taking
CdSb as an example. Gallium antimonide (GaSb) finds applications in the fiber-
optic transmission window, heterojunctions, and quantum wells. A complementary
heterojunction field effect transistor (CHFET) in which the channels for the p-FET
device and the n-FET device forming the complementary FET are formed from
GaSb. The band gap energy of GaSb makes it suitable for low power operation
[152–157]. In Sect. 1.2.11, the TPSM in QDs of GaSb has been studied.

It may be noted that the stressed materials are being widely investigated for
strained silicon transistors, quantum cascade lasers, semiconductor strain gages,
thermal detectors, and strained-layer structures [158–161]. The TPSM in QDs of
stressed materials (taking stressed n-InSb as an example) has been investigated in
Sect. 1.2.12. In recent years, Bismuth (Bi) nanolines are fabricated, and Bi also
finds use in array of antennas which leads to the interaction of electromagnetic
waves with such Bi nanowires [162,163]. Several dispersion relations of the carriers
have been proposed for Bi. Shoenberg [164,165] experimentally verified that the de
Haas–Van Alphen and cyclotron resonance experiments supported the ellipsoidal
parabolic model of Bi, although, the magnetic field dependence of many physical
properties of Bi supports the two-band model [166]. The experimental investiga-
tions on the magneto-optical [167] and the ultrasonic quantum oscillations [168]
support the Lax ellipsoidal nonparabolic model [166]. Kao [169], Dinger and Law-
son [170], and Koch and Jensen [171] demonstrated that the Cohen model [172]
is in conformity with the experimental results in a better way. Besides, the Hybrid
model of bismuth, as developed by Takoka et al., also finds use in the literature
[173]. McClure and Choi [174] devised a new model of Bi and they showed that it
can explain the data for a large number of magneto-oscillatory and resonance exper-
iments. In Sect. 1.2.13, we have formulated the TPSM in QDs of Bi in accordance
with the aforementioned energy band models for the purpose of relative assessment.

Lead chalcogenides (PbTe, PbSe, and PbS) are IV–VI compounds whose stud-
ies over several decades have been motivated by their importance in infrared IR
detectors, lasers, light-emitting devices, photovoltaics, and high-temperature ther-
moelectric [175–179]. PbTe, in particular, is the end compound of several ternary
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and quaternary high-performance high-temperature thermoelectric materials [180–
184]. It has been used not only as bulk but also as films [185–188], quantum
wells [189], superlattices [190, 191], nanowires [192], and colloidal and embedded
nanocrystals [193–196]. PbTe films doped with various impurities have also been
investigated [197–200]. These studies revealed some of the interesting features that
have been observed in bulk PbTe, such as Fermi level pinning, and in the case of
superconductivity [201]. In Sects. 1.2.14 and 1.2.15, the TPSM in QDs of IV–VI
materials Pb1�xGexTe has been studied.

The diphosphides find prominent role in biochemistry where the folding
and structural stabilization of many important extracellular peptide and protein
molecules, including hormones, enzymes, growth factors, toxins, and immunoglob-
ulin, are concerned [202–204]. Besides, artificial introduction of extra diphosphides
into peptides or proteins can improve biological activity [205, 206] or confer
thermostability [207]. The asymmetric diphosphide bond formation in peptides con-
taining a free thiol group takes place over a wide pH range in aqueous buffers and
can be crucially monitored by spectrophotometric titration of the released 3-nitro-
2-pyridinethiol [208, 209]. In Sect. 1.2.16, the TPSM in QDs of zinc and cadmium
diphosphides has been investigated.

Bismuth telluride (Bi2Te3/ was first identified as a material for thermoelectric
refrigeration in 1954 [210] and its physical properties were later improved by the
addition of bismuth selenide and antimony telluride to form solid solutions [211–
215]. The alloys of Bi2Te3 are very important compounds for the thermoelectric
industry and have extensively been investigated in the literature [211–215]. In Sect.
1.2.17, the TPSM in QDs of Bi2Te3 has been considered. In recent years, antimony
has emerged to be very promising, since glasses made from antimony are being
extensively used in near infrared spectral range for third- or second-order nonlinear
processes. The chalcogenide glasses are in general associated with high nonlinear
properties for their Infrared transmission from 0.5–1 �m to 12–18 �m [216–221].
Alloys of Sb are used as ultrahigh-frequency indicators and in thin-film thermocou-
ple [216–221]. In Sect. 1.2.18, the TPSM in QDs of Sb has been studied. Section
1.3 contains results and discussion for this chapter. Section 1.4 contains the open
research problems pertinent to this chapter.

1.2 Theoretical Background

1.2.1 Magnetothermopower in Quantum Dots of Nonlinear
Optical Materials

The form of k.p matrix for nonlinear optical compounds can be expressed extending
Bodnar [222] as

H D
�
H1 H2

HC
2 H1

�
; (1.1)
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where

H1 �

2
66664
Eg0

0 Pkkz 0

0
��2�jjı3� �p

2�?
.
3
�
0

Pkkz

�p
2�?

.
3
�
� �ı C 1

3
�k
�
0

0 0 0 0

3
77775

and

H2 �

2
664
0 �f;C 0 f;�
f;C 0 0 0

0 0 0 0

f;C 0 0 0

3
775

in which Eg0
is the band gap in the absence of any field; Pk and P? the momen-

tum matrix elements parallel and perpendicular to the direction of crystal axis,
respectively; ı the crystal field splitting constant; and �jj and �? are the spin–
orbit splitting constants parallel and perpendicular to the C -axis, respectively,
f;˙ � .P?=

p
2/
�
kx ˙ iky

�
and i D p�1. Thus, neglecting the contribution of

the higher bands and the free electron term, the diagonalization of the above matrix
leads to the dispersion relation of the conduction electrons in bulk specimens of
nonlinear optical compounds [223] as

� .E/ D f1 .E/ k
2
s C f2 .E/ k

2
z ; (1.2)

where

�.E/ � E.E C Eg0
/

� �
E C Eg0

� �
E C Eg0

C�jj
�

C ı
�
E C Eg0

C 2

3
�jj
	
C 2

9

�
�2
jj ��2?

��
; k2

s D k2
x C k2

y ;

f1.E/ � „2Eg0

�
Eg0

C�?
�



2m�?

�
Eg0

C 2
3
�?

�� �ı�E C Eg0
C 1

3
�jj
	

C �E C Eg0

� �
E C Eg0

C 2

3
�jj
	
C 1

9

�
�2
jj ��2

jj
��
;

f2 .E/ � „2Eg0

�
Eg0

C�jj
�

h
2m�jj

�
Eg0

C 2
3
�jj
�i
��
E C Eg0

� �
E C Eg0

C 2

3
�jj
	�

and m�jj and m�? are the longitudinal and transverse effective electron masses at the
edge of the conduction band, respectively.

Let Eni
.i D x; y and z/ be the quantized energy levels due to infinitely deep

potential well along i th axis with ni D 1; 2; 3 : : : as the size quantum numbers.
Therefore, from (1.2), one can write
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� .Enx
/ D f1 .Enx

/

�
�nx

dx

	2

(1.3)

�
�
Eny

� D f1

�
Eny

� ��ny

dy

	2

(1.4)

�
�
Enz

� D f2

�
Enz

� ��nz

dz

	2

(1.5)

From (1.2), the totally quantized energy
�
EQD1

�
in this case can be expressed as

�
�
EQD1

� D f1

�
EQD1

� "��nx

dx

	2

C
�
�ny

dy

	2
#
C f2

�
EQD1

� "��nz

dz

	2
#

(1.6)

The total electron concentration per unit volume in this case assumes the form

n0 D 2gv

dxdydz

nxmaxX
nxD1

nymaxX
nyD1

nzmaxX
nzD1

L11

M11

; (1.7)

where gv is the valley degeneracy,

L11 D Œ1C A1 cos H1
 (1.8)

M11 D 1C A2
1 C 2A1 cos H1 (1.9)

in which

A1 D exp

�
EQD1 � EFQD

kBT

�
;

EFQD is the Fermi energy in the presence of three-dimensional quantization as mea-
sured from the edge of the conduction band in the vertically upward direction in
the absence of any quantization; T the temperature; H1 D �1=kBT ; and �1 is the
broadening parameter in this case.

The TPSM (G0/ can, in general, be expressed as [3]

G0 D 1

e

 
@S0

@n0

!
EF ;T

; (1.10)

where EF is the Fermi energy corresponding to the electron concentration n0 and
S0 is the entropy per unit volume which can be written as

S0 D � @


@T

ˇ̌̌
ˇ
EDEF

(1.11)

in which 
 is the thermodynamic potential which, in turn, can be expressed in
accordance with the Fermi–Dirac statistics as
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 D �kBT
X

ln

ˇ̌̌
ˇ1C exp

�
EF � Eı0

kBT

�ˇ̌̌
ˇ; (1.12)

where the summation is carried out over all the possible ı0 states.
Thus, combining (1.10)–(1.12), the magnitude of the TPSM can be written in a

simplified form as [10]

G0 D
�
�2k2

BT
ı
3en0

� � @n0

@EF

	
(1.13)

It should be noted that being a thermodynamic relation and temperature-induced
phenomena, the TPSM as expressed by (1.13), in general, is valid for electronic
materials having arbitrary dispersion relations and their nanostructures. In addition
to bulk materials in the presence of strong magnetic field, (1.13) is valid under one-,
two-, and three-dimensional quantum confinement of the charge carriers (such as
quantum wells in ultrathin films, nipi structures, inversion and accumulation lay-
ers, quantum well superlattices, carbon nanotubes, quantum wires, quantum wire
superlattices, quantum dots, magnetoinversion and accumulation layers, quantum
dot superlattices, magneto nipis, quantum well superlattices under magnetic quan-
tization, ultrathin films under magnetic quantization, etc.). The formulation of G0

requires the relation between the electron statistics and the corresponding Fermi
energy which is basically the band-structure-dependent quantity and changes under
different physical conditions. It is worth remarking to note that the number

�
�2
ı
3
�

has occurred as a consequence of mathematical analysis and is not connected with
the well-known Lorenz number. For quantum wells in ultrathin films, nipi structures,
inversion and accumulation layers, quantum well superlattices, magnetoinversion
and accumulation layers, magneto nipis, quantum well superlattices under magnetic
quantization and magnetosize quantization, the carrier concentration is measured
per unit area, whereas, for quantum wires, quantum wires under magnetic field,
quantum wire superlattices, and such allied systems, the same can be measured per
unit length. Besides, for bulk materials under strong magnetic field, quantum dots,
quantum dots under magnetic field, quantum dot superlattices, and quantum dot
superlattices under magnetic field, the carrier concentration is expressed per unit
volume.

The TPSM in this case using (1.7) and (1.13) can be written as

G0 D �2kB

3e

2
4nxmaxX

nxD1

nymaxX
nyD1

nzmaxX
nzD1

L11

M11

3
5
�12
4nxmaxX

nxD1

nymaxX
nyD1

nzmaxX
nzD1

Q11

.M11/
2

3
5 ; (1.14)

where
Q11 D A1


�
1C A2

1

�
cos H1 C 2A1

�
: (1.15)
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1.2.2 Magnetothermopower in Quantum Dots of III–V Materials

The dispersion relation of the conduction electrons of III–V compounds are
described by the models of Kane (both three and two bands) [224, 225], Stillman
et al. [226], Newson and Kurobe [227], Rossler [228], Palik et al. [229], Johnson and
Dickey [230], and Agafonov et al. [231], respectively. For the purpose of complete
and coherent presentation, the TPSM in QDs of III–V compounds has also been
investigated in accordance with the aforementioned different dispersion relations
for the purpose of relative comparison as follows.

1.2.2.1 The Three Band Model of Kane

Under the conditions, ı D 0; �k D �? D � (isotropic spin–orbit splitting con-
stant), and m�k D m�? D m� (isotropic effective electron mass at the edge of the
conduction band), (1.2) gets simplified into the form

„2k2

2m�
D I.E/; I.E/ � E

�
E C Eg0

� �
E C Eg0

C�� �Eg0
C 2

3
�
�

Eg0

�
Eg0

C�� �E C Eg0
C 2

3
�
� (1.16)

which is known as the three band model of Kane [224, 225] and is often used to
study the electronic properties of III–V materials.

The totally quantized energy
�
EQD2

�
in this case assumes the form

I
�
EQD2

� D „2�2

2m�

"�
nx

dx

	2

C
�
ny

dy

	2

C
�
nz

dz

	2
#
: (1.17)

The electron concentration is given by

n0 D 2gv

dxdydz

nxmaxX
nxD1

nymaxX
nyD1

nzmaxX
nzD1

L12

M12

; (1.18)

where L12 D Œ1C A2 cos H2
, A2 D expŒEQD2 � EFQD=kBT 
, H2 D �2=kBT ,
�2 is the broadening parameter in this case, and M12 D 1C A2

2 C 2A2 cos H2.
The TPSM in this case, using (1.13) and (1.18), can be expressed as

G0 D �2kB

3e

2
4nxmaxX

nxD1

nymaxX
nyD1

nzmaxX
nzD1

L12

M12

3
5
�12
4nxmaxX

nxD1

nymaxX
nyD1

nzmaxX
nzD1

Q12

.M12/
2

3
5; (1.19)

where Q12 D A2


�
1C A2

2

�
cos H2 C 2A2

�
.



12 1 Thermoelectric Power in Quantum Dots Under Large Magnetic Field

1.2.2.2 The Two Band Model of Kane

Under the inequalities�� Eg0
or �� Eg0

, (1.16) assumes the form

E.1C ˛E/ D �„2k2
ı
2m�

�
; ˛ � 1

ı
Eg0

: (1.20)

Equation (1.20) is known as the two-band model of Kane and should be as such for
studying the electronic properties of the materials whose band structures obey the
above inequalities [224, 225].

The totally quantized energy EQD3 in this case is given by

EQD3

�
1C ˛EQD3

� D „2�2

2m�

"�
nx

dx

	2

C
�
ny

dy

	2

C
�
nz

dz

	2
#
: (1.21)

The electron concentration can be written as

n0 D 2gv

dxdydz

nxmaxX
nxD1

nymaxX
nyD1

nzmaxX
nzD1

L13

M13

; (1.22)

where L13 D Œ1C A3 cos H3
, A3 D expŒEQD3 � EFQD=kBT 
, H3 D �3=kBT ,
�3 is the broadening parameter in this case, and M13 D 1C A2

3 C 2A3 cos H3.
The TPSM in this case, using (1.13) and (1.22), can be expressed as

G0 D �2kB

3e

2
4nxmaxX

nxD1

nymaxX
nyD1

nzmaxX
nzD1

L13

M13

3
5
�12
4nxmaxX

nxD1

nymaxX
nyD1

nzmaxX
nzD1

Q13

.M13/
2

3
5 ; (1.23)

where Q13 D A3


�
1C A2

3

�
cos H3 C 2A3

�
.

1.2.2.3 The Model of Stillman et al.

In accordance with the model of Stillman et al. [226], the electron dispersion law of
III–V materials assumes the form

E D t11k
2 � t12k

4 (1.24)

where t11 � „2=2m� and

t12 �
�
1 � m

�

m0

	2 � „2

2m�

	2

�
��
3Eg0

C 4�C 2�2

Eg0

	
:
˚�
Eg0

C�� �2�C 3Eg0

���1
�
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Equation (1.24) can be expressed as

„2k2

2m�
D I11 .E/ ; (1.25)

where

I11.E/ � a11

h
1 � .1 � a12E/

1=2
i
;

a11 �
� „2t11

4m�t12

	
; a12 � 4t12

t211

:

The EQD4 in this case can be defined as

I11

�
EQD4

� D „2�2

2m�

"�
nx

dx

	2

C
�
ny

dy

	2

C
�
nz

dz

	2
#
: (1.26)

The electron concentration is given by

n0 D 2gv

dxdydz

nxmaxX
nxD1

nymaxX
nyD1

nzmaxX
nzD1

L14

M14

; (1.27)

where L14 D Œ1C A4 cos H4
, A4 D expŒEQD4 � EFQD=kBT 
, H4 D �4=kBT ,
�4 is the broadening parameter in this case, and M14 D 1C A2

4 C 2A4 cos H4.
The TPSM in this case, using (1.13) and (1.27), can be expressed as

G0 D �2kB

3e

2
4nxmaxX

nxD1

nymaxX
nyD1

nzmaxX
nzD1

L14

M14

3
5
�12
4nxmaxX

nxD1

nymaxX
nyD1

nzmaxX
nzD1

Q14

.M14/
2

3
5 ; (1.28)

where Q14 D A4


�
1C A2

4

�
cos H4 C 2A4

�
.

1.2.2.4 The Model of Newson and Kurobe

In accordance with the model of Newson and Kurobe, the electron dispersion law in
this case assumes the form as [227]

E D a13k
4
z C

� „2

2m�
C a14k

2
s

�
k2

z C
„2

2m�
k2

s C a14k
2
xk

2
y C a13

�
k4

x C k4
y

�
;

(1.29)

where a13 is the nonparabolicity constant, a14 .� 2a13C a15/ and a15 is known as
the warping parameter.
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The totally quantized energy EQD5 in this case can be written as

EQD5 D a13

�
�nz

dz

	4

C
"
„2

2m�
C a14

 �
�nx

dx

	2

C
�
�ny

dy

	2
!#

:

�
�nz

dz

	2

C „2

2m�

"�
�nx

dx

	2

C
�
�ny

dy

	2
#
C a14�

4

�
nxny

dxdy

	2

C a13�
4

"�
nx

dx

	4

C
�
ny

dy

	4
#
: (1.30)

The electron concentration is given by

n0 D 2gv

dxdydz

nxmaxX
nxD1

nymaxX
nyD1

nzmaxX
nzD1

L15

M15

; (1.31)

where L15D Œ1C A5 cos H5
, A5D expŒEQD5 �EFQD=kBT 
, H5D�5=kBT , �5

is the broadening parameter in this case, and M15D 1C A2
5 C 2A5 cos H5.

The TPSM in this case, using (1.13) and (1.31), can be expressed as

G0 D �2kB

3e

2
4nxmaxX

nxD1

nymaxX
nyD1

nzmaxX
nzD1

L15

M15

3
5
�12
4nxmaxX

nxD1

nymaxX
nyD1

nzmaxX
nzD1

Q15

.M15/
2

3
5 ; (1.32)

where Q15 D A5


�
1C A2

5

�
cos H5 C 2A5

�
.

1.2.2.5 The Model of Rossler

The dispersion relation of the conduction electrons in accordance with the model of
Rossler can be written as [228]

E D „2k2

2m�
C Œ˛11 C ˛12k
 k

4 C .ˇ11 C ˇ12k/


k2

xk
2
y C k2

yk
2
z C k2

z k
2
x

�
˙ Œ�11 C �12k




k2
�
k2

xk
2
y C k2

yk
2
z Ck2

z k
2
x

� � 9k2
xk

2
yk

2
z

�1=2
; (1.33)

where ˛11, ˛12, ˇ11, ˇ12, �11, and �12 are energy-band constants.
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EQD6;˙ in this case assumes the form

EQD6;˙ � „2�2

2m�

"�
nx

dx

	2

C
�
ny

dy

	2

C
�
nz

dz

	2
#

C
2
4˛11 C ˛12

"�
�nx

dx

	2

C
�
�ny

dy

	2

C
�
�nz

dz

	2
#1=2

3
5

�
"�

�nx

dx

	2

C
�
�ny

dy

	2

C
�
�nz

dz

	2
#2

C
2
4ˇ11 C ˇ12

"�
�nx

dx

	2

C
�
�ny

dy

	2

C
�
�nz

dz

	2
#1=2

3
5

�
"
�4

�
nxny

dxdy

	2

C �4

�
nynz

dydz

	2

C �4

�
nznx

dzdx

	2
#

˙
2
4�11 C �12

"�
�nx

dx

	2

C
�
�ny

dy

	2

C
�
�nz

dz

	2
#1=2

3
5

�
""�

�nx

dx

	2

C
�
�ny

dy

	2

C
�
�nz

dz

	2
#

�
"
�4

�
nxny

dxdy

	2

C �4

�
nynz

dydz

	2

C �4

�
nznx

dzdx

	2
#

� 9�6
�
nxnynz=dxdydz

�6 #
(1.34)

The electron concentration is given by

n0 D gv

dxdydz

nxmaxX
nxD1

nymaxX
nyD1

nzmaxX
nzD1

L16;˙
M16;˙

; (1.35)

where L16;˙ D


1C A6;˙ cos H6

�
, A6;˙ D expŒEQD6;˙ � EFQD=kBT 
, H6D

�6=kBT , �6 is the broadening parameter in this case, and M16;˙ D 1 C A2
6;˙ C

2A6;˙ cos H6.
The TPSM in this case, using (1.13) and (1.35), can be expressed as

G0 D �2kB

3e

2
4nxmaxX

nxD1

nymaxX
nyD1

nzmaxX
nzD1

L16;˙
M16;˙

3
5
�12
4nxmaxX

nxD1

nymaxX
nyD1

nzmaxX
nzD1

Q16;˙�
M16;˙

�2
3
5 ; (1.36)

where Q16;˙ D A6;˙

h�
1C A2

6;˙

�
cos H6 C 2A6;˙

i
.


