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PREFACE

Many mechanical applications are associated to “generalized” con-
vexity conditions, e.g. the modeling of fracture and self contact, the
status of elasticity with respect to atomistic models, the understand-
ing of microstructure induced by phase transformations, the passage
from three-dimensional elasticity to models of rods and shells, appli-
cations in the field of biomechanics, carbon nanotube modeling, and
finite-element formulation of nematic liquid crystal elastomers.

Related to these problems are the conditions of polyconvezity (Ball
1977), quasiconvezity (Morrey 1952) and rank-one convexity (Legen-
dre-Hadamard ellipticity). In contrast to isotropic models the con-
struction of anisotropic polyconvex functions remains an open field
of research and has been treated in the course. Some well-known
material models do not fulfill the quasiconvexity inequality. In these
cases the construction of quasiconvexr hulls may be advisable. Appli-
cations have been discussed for the St. Venant-Kirchhoff model and
for nematic liquid crystals. Furthermore, focussing on material mod-
els satisfying the Legendre-Hadamard condition, the construction of
rank-one convex functions is another important strategy.

The CISM course on “Poly-, Quasi- and Rank-One Convexity in
Applied Mechanics”, held in Udine from September 24 to September
28, 2007, was adressed to master students, doctoral students, post
docs and experienced researchers in engineering, applied mathemat-
ics and science who wished to broaden their knowledge in generalized
convezxity conditions and their impact in applied mechanics, partic-
ularly with regard to the constitutive modeling of complexr material
behavior as well as on the consequences of “validity” (existence) of
solutions obtained within direct variational methods.

It is our pleasure to thank the lectures of the CISM course and
contributors to this CISM lecture notes Sir John Ball (Ozford), An-
tonio DeSimone (Trieste), Annie Raoult (Paris), Miroslav Silhavy
(Prague), David J. Steigmannn (Berkeley), as well as the additional
contributors Daniel Balzani (Essen) and Vera Ebbing (Essen). Fi-
nally, we thank the 59 participants from 18 countries who made the
course a success. We extend our thanks to the Rectors, the Board,
and the staff of CISM for the excellent support and kindful help.

Jorg Schrioder and Patrizio Neff
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Progress and puzzles in nonlinear elasticity

J.M. Ball

Oxford Centre for Nonlinear PDE,
Mathematical Institute, University of Oxford,
24-29 St. Giles’, Oxford OX1 3LB, U.K.

1 Introduction

These lectures are largely based on two previous survey articles Ball (2001),
Ball (2002), and cover a selection of open problems with some new remarks
and updates. But they also give an introduction to the convexity conditions
that are the objects of study of this course.

We begin by considering the usual set-up for nonlinear elastostatics, in
which an elastic body occupies in a reference configuration the bounded
domain (i.e. open and connected set) 2 C R3 having Lipschitz boundary
0f). We assume that the boundary can be decomposed as 992 = 9Q; U9 U
N, where 0€1, 005 are relatively open and disjoint, and where N has zero
area (that is, its two-dimensional Hausdorff measure H?(N) = 0).

For a deformation y : Q — R3, the deformation gradient

is required to belong to M$"?, where M™*" = {real m x n matrices}, and
M = {A € M™™ : det A > 0}. We suppose that y satisfies mixed
displacement zero-traction boundary conditions, so that

yloa, =¥(+),

where y : 9Q; — R3 is given.

We further assume that the body is comprised of homogeneous material,
that is the material response is the same at each point x € Q. (Note that
this is not the same as having the same material at each point; think, for
example, of two elastic bands stuck together, one stretched relative to the
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other, so that there is no stress-free reference configuration.) We also assume
that the temperature is constant. The total elastic energy is then given by

I(y) = / W (Dy(x)) dx, (1)

where the stored-energy function W : MiX?’ — R is assumed to be C*!
and bounded below (in fact we may and do assume that W > 0). The
Piola-Kirchhoff stress tensor is then given by Tr(A) = DaW (A).

Let ¢ : Q — R3 be smooth with ¢|pn, = 0. Formally computing

d
Il(y + 7—90)|T:O =0
-

we obtain the weak form of the FEuler-Lagrange equation
/ DAW(Dy) - Dodx =0 for all such p. (WEL)
Q

If y, 09, 09 are sufficiently regular then (WEL) is equivalent to

DivDaAW(Dy(x)) =0 forx e,
DaW(Dy(x))N(x) =0 for x € 9,

where N(x) is the unit outward normal to 03. (Thus the zero traction
boundary condition on 92y appears as a natural boundary condition.)

1.1 Function Spaces

To what function space should y belong? This is part of the mathe-
matical model, since examples show that the minimum (or infimum) of I in
different function spaces can be different. We will assume that y belongs to
the (largest) Sobolev space W11 = WL1(Q R3), where for 1 < p < oo

WP R = {z:Q—R3|z||1, < oo}

1

lzllip, = (/ (|z|” + IDz|p)dx) " <p<oo
Q

= esssup (|z(x)| + |Dz(x)|) if p = oo.
x€N

(For the formal definitions and basic facts see standard texts on Sobolev
spaces e.g. Adams and Fournier (2003).)

If y € Wh! then y is absolutely continuous along a.e. line parallel to the
coordinate axes (see Morrey (1966)). Hence deformations with planar cracks



Progress and Puzzles in Nonlinear Elasticity 3

are excluded, though discontinuities on sets S(y) C  with H2(S(y)) = 0
may be possible, as for example in cavitation (see Ball (1982) and Section
1.4 below). How should we decide on the ‘correct’ function space? We
could hope to do this by means of a passage from an atomistic/molecular
model to a continuum one. Such a ‘derivation’ of the continuum model
would certainly lead to a larger function space than W! (allowing fracture,
for example) and a modified energy functional. It would then be a task
to understand the status of minimizers of I in W' with respect to the
modified theory (e.g. as metastable states).

1.2 Properties of W
We make the following hypotheses on W. The first is frame-indifference:

W(RA) =W(A) forall R € SO(3),A € M3*%,
where SO(3) = {R € M3*® : RTR = 1}, which holds if and only if
W(A)=W(U), U= (ATA)2.
The second is material symmetry:
W(AQ) =W(A) for all Q € S,A € M3*3,

where S is the isotropy group of the material. The case S D SO(3) corre-
sponds to an isotropic material, for which we have the representation

W(A) = @(v17v27v3)7

where the v; are the principal stretches (that is, the eigenvalues of U) and
® is symmetric with respect to permutations of the v;.

The third condition says that infinite energy is required to compress the
material to zero volume:

W(A) — o0 as det A — 0+. (2)

We set W(A) = oo if det A < 0. Then I(y) € [0,00] is well defined for
y € Whi and if I(y) < oo then det Dy(x) > 0 a.e..

Are there any other conditions on W satisfied by ‘all materials’? In the
older literature there was a feeling that there should be such ‘constitutive
inequalities’ that would correspond to ‘stress increasing with strain’ (for a
comprehensive discussion see Truesdell and Noll (1965)). Two such candi-
dates were the strong ellipticity condition and the Coleman-Noll inequality.
The strong ellipticity condition is

D*W(A)(a® N,a®N) >0, for all nonzero a,N € R* |N| = 1.
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where (a ® N);, = a;N,, that is

&2 92 (A)
P WA+ tag Ny = A
WA+ ta® N0 = 5051,

dt2 aiNaajNﬁ > 0.

In particular this condition implies the reality of wave speeds in elastody-
namics.

We do not state the Coleman-Noll inequality here, but note that for an
isotropic material it implies that ® (v, va, v3) is convex. It is easily seen that
this is not satisfied for rubber because rubber is almost incompressible. For
example, for moderately large v the convexity inequality

P (;(v +o7h), %(v +o7h), 1> < % (@(v,v_l, 1)+ ®(v 1w, 1))

is not satisfied because the volume change i(v +v71)? is large and thus the
left-hand side large compared to the right-hand side. Thus the Coleman-
Noll inequality is not generally satisfied.

In fact ‘stress increases with strain’ should be regarded as a stability
condition. For example, in one dimension consider the minimizers y of

1
I(y) = / W (ys) dx, subject to y(0) = 0,y(1) = X > 0,
0

where y, = dy/dx. Suppose W € C'(0,00), W(p) — oo as p — 0+,
lim, 4 @ = oo. Let W** be the convexification of W (that is the
greatest convex function less than or equal to W). It is not difficult to
show that W** is C! (for a general result of this type see Kirchheim and
Kristensen (2001)). A Weierstrass point p is a point at which W(p) =
W**(p), so that the tangent at p to the graph of W does not lie above the
graph. Let

I**(y):/O W** (y,) dz.

We can think of W** as being the macroscopic stored-energy function cor-
responding to the mesoscopic stored-energy function W. In fact, setting
A={yewWhH(0,1) : y(0) = 0,y(1) = X,y > 0 a.e.} we have that

1
inf I(y) > inf I**(y) > inf W** e dz | = W*(N),
Inf I(y) = inf I™"(y) = inf (/Oy w) (A)

where the middle inequality follows from Jensen’s inequality. But any A > 0
can be written as A = up + (1 — u)g, where W(p) = W**(p),W(q) =
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W*(q),0 < p <1, where 0 < p < A < ¢ < oo and W**(r) is affine for
r € [p,q]. Thus

A px, 0
€Tr) =
y(@) {pu+q(x—u), 0

is such that
I(y*) = pW* (p) + (1 — W™ (q) = W**(N).

Hence y” is a minimizer, and inf4 I = inf 4 [**. For any minimizer y*
we have W(yk) = W**(yk) a.e., so that the only values of y} that can be
observed in minimizers (in fact even in strong local minimizers, i.e. local
minimizers in the C° metric) are Weierstrass points. Also we have that
Wy (ys) = Wy*(A) a.e., so that the stress is constant and a monotone func-
tion of the overall strain A\, even though no assumption has been made about
monotonicity of Wy,(p) = dW(p)/p in p (i.e. of convexity of W).

In higher dimensions the role played in one dimension by convexity is
played by quasiconvezity (in the sense of Morrey (1952)). Let f: M™*"™ —
R U {400} be Borel measurable and bounded below. We say that f is
quasiconver at A € M™>™ if

f(A+Do(x))dx = | f(A)dx
Q Q

for any ¢ € C°(; R™), and is quasiconvez if it is quasiconvex at every
A € M™*™ Here Q2 C R™ is any bounded open set whose boundary 0f)
has zero n-dimensional Lebesgue measure. A standard scaling argument
shows that these definitions do not depend on 2.

1.3 Roles of quasiconvexity in the calculus of variations

Existence of global minimizers (Morrey (1952, 1966), Acerbi and Fusco
(1984))
If f: M™*™ — R is quasiconvex and satisfies

C1|A]P = Co < f(A) < Co(JA[P + 1) for all A € M™™, (3)

where p > 1, Cy and C; > 0, Cy > 0 are constants, then

Fv) = [ (Dy)ax
attains a global minimum on

A={y e W'(R™) : yloa, =¥}
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Here we assume that € has Lipschitz boundary 09, 9Q; C 9Q is H" !
measurable, and y : 03 — R™ is given such that A is nonempty. The
proof is by the direct method of the calculus of variations, using the fact that
under the growth conditions (3) quasiconvexity is necessary and sufficient
for F to be sequentially weakly lower semicontinuous on WHP(Q; R™). A
result of Ball and Murat (1984) shows that if the minimum of F is attained
whenever suitable lower order terms ¢(y) are added to the integrand, then
W is quasiconvex. This shows that the direct method is the right method
for proving existence.

Relaxation (Dacorogna (1982))
Under similar hypotheses we have

inf F = inf F9°,
A A

where

F(y) = /Q f*(Dy) dx

and f9¢is the quasiconvex envelope of f,i.e the supremum of all quasiconvex
functions g < f. In elasticity this has the interpretation that for problems
(such as elastic crystals) for which the total elastic energy I does not attain
a minimum, the macroscopic stored-energy function corresponding to the
microscopic/mesoscopic stored-energy function W is W, In Ball et al.
(2000) it is shown that if f € C* then f9¢is C.

Partial regularity of energy minimizers (Evans (1986), Kristensen
and Taheri (2003))

Under similar hypotheses, with a slightly strengthened version of qua-
siconvexity, and assuming f smooth, any global (or W1P?-local) minimizer
is smooth on the complement of a closed set F of n-dimensional Lebesgue
measure zero. For Lipschitz minimizers the Hausdorff dimension of the
singular set is strictly less than n (see Kristensen and Mingione (2007)).

Necessary and sufficient conditions for local minimizers
Again consider

Fly) = /Q f(Dy) dx,

where f € C? is bounded below, and suppose that y € AN CH(Q; R™) is a
WP local minimizer of F in A, i.e. for some ¢ > 0 we have that

F(z) > F(y) for all z € A with ||z -y, <e.
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Then
(NC1) y satisfies (WEL):

/ Df(Dy) - Do dx = 0 for all smooth ¢ with ¢|sq, = 0.
Q

(NC2) (Positivity of the second variation)

For such ¢
2

d
ﬁ}"(y + 7'<,0)|-r:0 >0,

that is

/ D3 f(Dy)(Dy, Dp) dx > 0 for all smooth ¢ with ¢|sq, = 0.
Q

(NC3) (Interior quasiconvexity)
If xg € Q2 then f is quasiconvex at Dy(xg).

(NC4) (Quasiconvexity at the free boundary) (Ball and Marsden (1984))

Let x1 € 09y = 00\0Q1. We assume that 99 is ! with unit outward
normal N(x;) at x;. Let B~ (x1) be the half-ball {x € R" : |x] < 1,x-
N(x;) < 0}. Then

/ F(Dy(x1) + Dy(2)) dz > / f(Dy(x1)) dz
B~ (x1)

B~ (x1)

whenever ¢ € C*°(B~(x1); R™) with ¢|op- (x,)neB(0,1) = 0-

(NC3) and (NC4) are generalizations of the classical Weierstrass condi-
tion. It is natural to ask whether (NC1)-(NC4) can be slightly strengthened
to form a set of sufficient conditions for y to be a strong local or WP local
minimizer. For example, (NC2) can be strengthened to

(et [ DAADY)(De.Doyix = i [ |Dofix
Q Q

for all smooth ¢ with ¢|sq, = 0, for some > 0. This has been achieved
in very interesting recent work of Grabovsky and Mengesha (2009), in the
more general context of integrands f(x,y, Dy) satisfying suitable p** power
growth conditions, thus generalizing the classical Weierstrass sufficiency the-
orem to this case. The idea is to split an arbitrary variation into a ‘weak’
and a ‘strong’ part.

Unfortunately none of these results applies directly to elasticity, since the
growth conditions assumed are inconsistent with the condition (2). This is
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related to the lack of a tractable characterization of quasiconvexity, which
might lead to different proof techniques. It is known (Kristensen (1999))
that there is no local characterization. In general we have that for f taking
finite values

f polyconvex = f quasiconvex = f rank-one convex.

Here f polyconvex means that f(A) = g(J(A)) for some convex function
g of the list J(A) of all minors of A, while f rank-one convexr means that
t — f(A+ta®N) is convex for all a € R™,N € R". The converse
implications are false for m > 1,n > 1 except that when m = 2 it is not
known whether f rank-one convex implies f quasiconvex (for m > 2 this is
the famous counterexample of Sverak (1991)). Although there are examples
of quasiconvex f that are not polyconvex, no useful class of examples is
known. Existence theorems based on polyconvexity remain of interest both
because of this lack of examples and because they can handle the blow-up
of W(A) as det A — 0+. The following such result is due to Miiller et al.
(1994), following Ball (1977).

Theorem 1.1. Suppose that W satisfies

(H1) W is polyconver, i.e. W(A) = g(A,cof A,det A) for all A € M_?_X?’

and some convez ¢,

(H2) W(A) > co(|A|2 + [cof A|2) — ¢1, for all A € M3 where co > 0.
Then if A is nonempty, there exists a global minimizer y* of I in A.

1.4 Open problems in elastostatics

When is the minimizer y* smooth? No such result is known even in
the simplest special cases, such as

W(A) = |A> + |A|* + h(det A),
where h is smooth, convex, with h(d) — oo as & — 0+, @ — 00 as d — 0.
Although there are counterexamples to regularity for minimizers of

Fly) = /Q F(Dy) dx,

where f is strictly convex (see Necas (1977), Sverak and Yan (2000)), none
are known for the dimensions m =n =2 or 3.

Does y* satisfy (WEL)? The difficulty is that (WEL) requires that
DAW (Dy™*) be at least locally integrable, but I(y*) < co only tells us that
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W (Dy*) € L', and |DAW (A)| may be much bigger than W (A) when |A|
is large or det A is small, so that there is no obvious way to pass to the
limit ¢ — 0 in the difference quotient

/ W(Dy* +tDy) — W(Dy") dx
Q

t

In fact it need not be the case that det(Dy*(z) + Dy(x)) > 0.

There is no general such theorem even in the one-dimensional calculus
of variations. An example (see Ball and Mizel (1985)) is the problem of
minimizing

1) = [ 1@t =P + eud do (4)

subject to u(—1) = —1,u(l) = 1, where 0 < € < g9 << 1, which has a
global minimizer u* with
W (@) ~ Jaf e

as ¢ ~ 0. In one dimension (WEL) is equivalent to the integrated form

S 2/ fu ds + const.,
0

but here f, (z,u*, u}) is unbounded.

It is possible to derive two different forms of the Euler-Lagrange equation
for (1) by taking variations that are compositions, thus preserving the sign
of the determinant. For example, by considering the variation

yr (%) =y (%) + 7o(y" (x))

we can prove that Cauchy’s equilibrium equations hold in the weak form
/Q [DaAW (Dy*)Dy*" - Do(y*)] dx =0

for all ¢ € C'(R3; R?) with ¢, D uniformly bounded and such that ¢(y*)|sq, =
0, provided that W satisfies

|IDAW (A)AT| < K(W(A) +1) forall A € M3,

a condition that holds for many models of natural rubber (for the details
see Ball (2002)).
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Prove or disprove that under suitable growth conditions on W,
det Dy*(x) > ¢ > 0. For this we seem to need some variation that in-
creases det Dy™* where it is small. Perhaps related to this is the open prob-
lem

If y € WhP(Q,R?) is invertible, can y be approximated in W!?
by piecewise affine invertible maps? The difficulty can be seen even
in two dimensions, where a Lipschitz y can map three points A, B,C to
points A’, B’, C" in such a way that the orientation of the triangle ABC' is
opposite to that of A’B’C’. For some recent partial results see Bellido and
Mora-Corral (2008), Mora-Corral (2009).

If © is homeomorphic to a ball, 992 = 09, W strictly polycon-

vex, are minimizers (or sufficiently smooth equilibrium solutions)

unique? There are well-known counterexamples to uniqueness when 921 #
0% or if © has holes (see Ball (2002) Section 2.6). The answer to the prob-

lem as stated is probably no, as explained in Ball (2002). A recent paper

by Spadaro (2009) gives some counterexamples with y : 2 — R3,Q C R?,

with injective boundary values, using ideas from minimal surfaces. However

it is not clear how to extend these examplestoy : @ — R, n =2 orn = 3,

where 2 C R™ and the boundary values are injective.

Now consider the example

W(A) = |A]> + h(det A),
where h is convex, h(d) — oo as § — 0, %5) — 00 as § — oo. This W is

polyconvex, but does not satisfy the growth condition (H2). It is an example
of a function that is WP quasiconvex, i.e.

/ W(A + Dyp(x)) dx > / W(A)dx for all ¢ € W, P(R?)
Q Q

if p > 3, but not if p < 3. In fact if A = A1, with A > 0 sufficiently large,
we can find a radial deformation of the form
R
y(x) = —T(R)x
with 7(0) > 0,7(1) = A, and I(y) < I(A1). This is the phenomenon of
cavitation.

For such a W, is the minimum of / attained? Here is a strange
argument, perhaps suggesting that the answer is no. Let us suppose that
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the minimum is attained for the cube @ = (—1,1)® and linear boundary
data y|pg = Ax, and that the minimizer y* is C' up to the flat parts of
the boundary 9Q. We can deduce from this that Dy* is constant on each
face of the cube. To see this pick some point a in the interior of one face of
the cube, having normal e; say, and another point b in the interior of the
opposite face. Now for some small € > 0 consider the two cubes Q1 = Q)
and Q2 = ¢(Q + a — b). These cubes are disjoint, interior to @, and their
closures meet on part of the surface {x : x-e; = ca-e;} which has ca as an
interior point. Now let ¢; = 0,co = e(a—b), 1 = e = € and choose cubes
Q; =¢;Q +cj, j > 3 such that the {Q;};2, are disjoint with

meas (Q\ U Qi) =0,

i=1
which is possible by Vitali’s covering theorem. Define for x € Q

| Aci +ey” (ﬂ) if x € Qy,
y(x) = { Ax ) otherwise.

Then y € Ax 4+ Wy ?(Q; R3) and

Ity) = 2/ w (Dy* (%)) dx = I(y").

Hence y is also a minimizer, and since y is piecewise C'' in the neigh-
bourhood of €a it follows that in this neighbourhood it satisfies (WEL).
Consequently the stress at ca across the surface {x : x-e; = ca e} is
continuous, i.e.

DW (Dy*(a))e; = DW(Dy* (b))e.

But since W is strictly polyconvex it is strictly rank-one convex, and hence
by a result in Ball (1980) (see also Knowles and Sternberg (1978)) we have
Dy*(a) = Dy*(b). Since a and b are arbitrary points on opposite faces of
Q the claim follows.

Can we incorporate cavitation into a more general theory of frac-
ture? The ‘free-discontinuity’ variational models of fracture (see e.g. Franc-
fort and Marigo (1998)) are based on minimization of an energy such as

I(Y)Z/QW(DY) dx+/3 g(yT =y vy) dH?,

Yy
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where y belongs to the space SBV(£2) of mappings of special bounded varia-
tion, i.e. those whose gradient is a bounded measure having no Cantor part.
Sy denotes the set of jump points of y, vy is the normal to Sy at y, and
y T,y are the traces of y from the positive and negative sides of Sy respec-
tively. It is tempting to think of a progression from zero-dimensional (cav-
itation) to one-dimensional (line singularities) to two-dimensional (cracks)
fracture singularities, and there is some evidence that, for example, cavities
can coalesce to form cracks. Thus a framework in which all these kinds
of singularities can energetically compete is desirable. Recent progress in
this direction, leading to a theory in which both cavitation and cracks are
possible, has been made by Henao and Mora-Corral (2009a,b).

1.5 Dynamics

We end with some brief remarks on dynamics. The balance laws of
linear momentum and energy lead to the pointwise forms of the governing
equations:

PRYtt — DivTgr —b= 0, (5)
(3prly:l* +U): = b -y; — Div (y:Tr) + Divqr — r =0,

where pr > 0 is the density in the reference configuration, b is the body
force, U is the internal energy density, and qp the reference heat flux vector.

The balance of angular momentum holds if and only if the Cauchy stress
tensor

T = (det Dy) ™ 'Tg(Dy)"

is symmetric.

For a thermoelastic material, we assume that Tgr, the entropy density
7, the Helmholtz free energy ¢ = U — 0n and qr depend on Dy, 60, and
Grad 6. Use of the Clausius-Duhem inequality then leads to

¢ :¢(Dy79)7 TR = DA¢7 n= _D9¢

and
—qg - Gradf > 0.

Frame-indifference is equivalent to
Y(RA,0) =¢(A,0) for all R € SO(3),

and this implies that T is symmetric. We need to solve (5) for the unknowns
y and 6.
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If we assume that 0(x,t) = 0y = constant then we obtain the equation
of motion

prYu — DivDAW (Dy) —b =0,

where W(A) = 9(A,0). This is a multi-dimensional system of conser-
vation laws about which very little is known. One might ask, however, if
polyconvexity or quasiconvexity play any role. Whereas nothing seems to
be known about their implications for existence of solutions, there are two
such results as regards uniqueness:

1. (Dafermos (2005)) If W is quasiconvex then Lipschitz solutions of uni-
formly small oscillation are unique within the class of weak solutions.

2. (Qin (1998)) If W is polyconvex, the hypothesis of uniform small oscil-
lation in the Dafermos result can be removed.

What if we add dissipation? The simplest situation is that of viscoelas-
ticity of rate type, for which the equation of motion is

prytt — Tr(Dy, Dy:) = 0.
Frame-indifference of Tx holds if and only if
Tr(Dy,Dy;) = Dy G(U, U,),

where G is symmetric. No large data existence theorem is known for this
case (though one would expect to have one that would cover even non-
quasiconvex elastic energies). With a good existence and uniqueness theory
we could study the questions of approach to equilibrium and address qual-
itative features of the dynamic evolution.
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Abstract We give several examples of modeling in nonlinear elasti-
city where a quasiconvexification procedure is needed. We first re-
call that the three-dimensional Saint Venant-Kirchhoff energy fails
to be quasiconvex and that its quasiconvex envelope can be ob-
tained by means of careful computations. Second, we turn to the
mathematical derivation of slender structure models: an asymptotic
procedure using I'-convergence tools leads to models whose energy is
quasiconvex by construction. Third, we construct an homogenized
quasiconvex energy for square lattices.

1 The Saint Venant-Kirchhoff stored energy function

1.1 Non quasiconvexity of the Saint Venant-Kirchhoff stored en-
ergy function

This section is based on Raoult (1986) from which it is immediately
derived that the Saint Venant-Kirchhoff stored energy function is not rank-
one convex, and as a consequence not polyconvex, nor quasiconver.

The internal energy of an elastic material reads J(¢) = [, W(V(x))dx
where Q C R? is a reference configuration (here assumed to be homoge-
neous), W : Msy3 — R is the stored energy function that is most of the
time assumed to be continuous and the deformation ¢ : Q +— R? is suf-
ficiently regular. This is the energy due to the deformation ¢. Actually,
the domain of W should be restricted to the set My, ; of matrices with
positive determinant and ¢ should satisfy in some sense detVe(z) > 0 in
order to express that orientation is preserved by realistic deformations and
to prevent matter interpenetration. This restriction leads to mathematical
difficulties and is quite often left aside. The total energy is the sum of the
internal energy and of the external energy which takes into account the ac-
tion of external loads (body forces such as gravity, surface forces such as
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pressure ...). The equilibrium problem in an energy form reads:

Find ¢ € ® such that I(¢) = mqi)n 1, (1)

where [ is the total energy and ® is a functional space that takes into ac-
count placement conditions. A basic hypothesis for proving the existence of
a minimizer of a given functional is that this functional be lower semicontin-
uous. We are dealing here with functionals defined on infinite dimensional
spaces, namely W1P(Q; R3) spaces (for simple growth conditions on W, J
is well defined on W1P(Q;R3)). Therefore, the appropriate lower semicon-
tinuity is lower semicontinuity with respect to the weak topology. Then, it
is classical (see Morrey (1995) and Dacorogna (2007) for a survey) that .J
is weakly lower semicontinuous if and only if W is quasiconvex. Recall that
the quasiconvexity condition reads

1
VE € Mays, Yo € Wy (4 R3), W(F) < ] W (F + Vo(x))dz. (2)
Q
Quasiconvexity is a nonlocal notion which makes it difficult to check or to
contradict. Two pointwise notions make a lower-upper frame for quasicon-
vexity. Indeed, the implications

polyconvexity = quasiconvexity = rank-one convexity (3)

are valid. This chain of implications can be easily remembered by noticing
that the three notions are listed in alphabetical order. The convexity notion
can even be added at the left extremity of the chain. But for applications in
nonlinear elasticity, this is not useful since convexity of the energy density
has to be ruled out for modeling reasons. Rank-one convexity is simply
convexity along the straight line generated by two matrices whose difference
is of rank 1. It reads

VF,G € M3 3 such that rank(F — G) < 1,

YA€ [0,1], WAF + (1 = XN)G) < AW(F) 4+ (1 = NW(G).  (4)
Let us mention that rank-one convexity does not imply quasiconvexity as
was proved by Sverak (1992). Polyconvexity is a more complex notion that

was introduced in Ball (1977): an energy is polyconvex if one can find a
convex function w such that

VF € My, W(F) = w(F,adjF, detF). (5)

The function w in the above equation is defined on M3y 3 x Mi3x3 x R. Note
that this definition may be restricted to matrices with positive determinant
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in which case w is defined on Mgy 3 x Msys x RT* which is the convex hull
of {(F,adjF,detF), detF" > 0}. From implications (3), it is obvious that a
way of proving that an energy is quasiconvex — the important notion — is to
prove that it is polyconvex. This is why the possible polyconvexity of the
Saint Venant-Kirchhoff energy was examined two decades ago. In fact, the
proof provided the non rank-one convexity.

Theorem 1.1. The Saint Venant-Kirchhoff energy is not rank-one convez.
The following statements immediately follow.

Corollary 1.2. The Saint Venant-Kirchhoff energy is not polyconvez, nor
quasiconver.

Proof of Theorem 1.1. - The Saint Venant Kirchhoff energy reads

1 A
W(E) = BIFTF - 1P + 2P - 312 ©)
where || F||? = tr FTF. Letting C(F) = FTF, we have equivalently
I A 3>\+2u 9\ + 6
W(F) = Tte(C(F)* + ZIF|* — FP+—— @

The first term reads %(’ujl +v3 +v3) where v1, v2, v3 are the singular values
of F. Since g defined by g(v1,ve,v3) = (vi +v3 +0v3) is a convex, symmetric
function that is not decreasing with respect to each of its variable, it is
known that this first term is convex in F. Proofs of such results can be
found in Ball (1977), Ciarlet (1987), Le Dret (1990), Thompson and Freede
(1971). The second term is obviously convex in F. But, the minus sign
in the third term prevents the whole of the expression of being rank-one
convex as shown by the following counter-example which uses the fact that
for || F|| small, this term is greater than the two previous ones. Let F' = ¢ Id

F+G
and G = ediag(1, 1,3), so that & e diag(1,1,2). Notice that F' — G
is of rank 1. Matrices F' and GG are such that

F | F j F F
adi ( +G):adj +adJG,det( —l—G):det —|—detG.
2 2 2 2
F+G, 1
If W were rank-one convex, we would get W ( ) < E(W(F) +W(G)),
i.e.,
F+G A F+G F+G
pr(C(—5=))" + Sll=——II" = B+ 2p) | ——1I”
1
< Lut(C(F))? + §|IFH4 — A+ 20 1F

(@) + SIGI* — 33+ 2|12,
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Since terms tr(C(F))?, tr(C(G))?, tr(C(£££))? and terms || F|*, [|G[|*,
[ ££€(|* are of order 4 with respect to ¢ while the remaining ones are of
order 2, this amounts to

1 F+G, 1
_ <
Sl—=—IF<-5

1 1
ZIF 2 - 2 )
GIFI?+ 2161

The contradiction follows from the equalities ||F||? = 3¢2, ||G|* = 11&2,
12551 = 6e

1.2 The quasiconvex envelope of the Saint Venant-Kirchhoff stored
energy function

The quasiconvex envelope of the three-dimensional Saint Venant-Kirchhoff
stored energy function was first computed in Le Dret and Raoult (1995b).
Computations were made in a systematic but somewhat tedious way, and
inspired by a preliminary work by the authors in a 2dx 3d setting, see Le
Dret and Raoult (1995a). Extending some results by Pipkin allows to sim-
plify the proofs, see Pipkin (1994), Le Dret and Raoult (1995¢).

We denote by St

- the set of symmetric, positive semidefinite matrices.

Lemma 1.3. Letm <n andY : Myyxm — R be a left O(n)-invariant, rank-
one conver mapping. Then the mapping Y : S}, — R such that Y (F) =
Y(FTF) for all F in M,,x., satisfies

Y(C)<Y(C+S)foralC,SeS;. (8)

Remark 1.4. In the case when m < n, this result is due to Pipkin (1994).
However, the argument does not apply to square matrices. In Pipkin’s
terminology, Y is said to be increasing.

Proof - Following Pipkin (1993), we first remark that proving (8) amounts
to proving that
Y (C) <Y(C+pv®v) for all C € S,

m

and for all p >0, v € R™\{0}. (9)

Indeed, (8) clearly implies (9). Conversely, any S in S} admits a spectral
decomposition S = Z w;v; ® v; where p; > 0, and v;, ¢ = 1,--- ,m are
1=1m
orthonormal eigenvectors of S. Applying inequality (9) m times, we obtain
(8).
Let us now prove (9). Let C € S}, and v € R™ \ {0} be given. Without

loss of generality, we assume ||v]|? :=vTv = 1.
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We first consider the case when either m < n or m = n and C is
not invertible. In both cases, C' can be written as C = FTF where FT
is a nominjective m x n matrix. Therefore, there exists u in ker FT with
|lu|| = 1. From the rank-one convexity of Y, we know that the function
y:t€ER—y(t) =Y (F+tu®wv) €R is convex. Moreover, since FTu = 0,
y(t) = Y(C 4 t?v ® v). Therefore, y is even. It follows that y is monotone
increasing on RT; in particular, y(0) < y(t) for all t > 0. Choosing t = \/Ji,
we obtain (9).

We now turn to the case when m = n and C is invertible. For all
i > 0, the matrix C, = C 4 pv ® v is symmetric, positive definite. Hence,

F, = C,l/ % is invertible. We define a function & on R by
h:teRw— h(t)=Y(F,+tF;'v®u).
It follows from the rank-one convexity of Y that h is convex. Moreover,
h(t) =Y (CH (p+2t)v@ v+t @v(C + pv @ v) o @v).
An easy computation shows that the function
teER—2tv@v+t2v@v(C +puvev) lvew

is symmetric with respect to £ = —(v? (C+pv®@v)~tv)~1 < 0. The function
h, in turn, is symmetric with respect to t. Therefore, h attains its minimum
at t and is monotone increasing on [£, +0o[. Obviously, h(0) = Y (C+pv@wv).
If we can find ¢ such that £ <t < 0 and

h(t) =Y (C), (10)

then inequality (9) is proved. A sufficient condition for a real number ¢ to
solve (10) is
207 (C+ po@v) v+ 2t +p = 0. (11)

The discriminant of equation (11) is positive if and only if
T (C + pw @ v) to < 1. (12)

Let us check that this is indeed the case. Let z = p'/2C~'/2v. Then we
have
wl(C+mwev)v=2TI+202)712= ﬂ

Ltz =
hence the roots of equation (11) are real. Moreover, they are nonpositive
and symmetric with respect to . The largest root thus satisfies ¢ < ¢ < 0
and (10), which proves our claim.

With this lemma at hand, we can now state our main result.
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Theorem 1.5. Let m < n and let W : F € My, x,, — R be a left O(n)-
invariant, bounded from below, stored energy function such that the associ-
ated function W : C — W(C') is convex on S},. Then,

QW (F) = inf W(FTF+8S). (13)
Sest

Proof - Since W is bounded from below, we can define, with Pipkin’s
notation, a function W, on S}, by W,.(C) = inf+ W(C+S). It is easy to
SeSm,

check that W,.(C) is convex. Indeed, given C, and Cy € S}, and an arbitrary
€ > 0, there exists Sy and Sy in S}, such that W,.(C;) < W(C; + ;) and
W(C;+8;) < W, (C;)+efori=1,2. Let t € [0,1] and S =51+ (1 —1)S5.
Then,

< WECL+(1—1t)Cy+5)
< tW(CL+81) + (1 —t) W(Ca+ Ss)
< tWR(Ch) 4 (1 — )W, (Cy) +¢.

W, (tCL + (1 —1)Cy)

The convexity of W, follows at once. } B
Let us now remark that W,. obviously satisfies W,.(C') < W,.(C + S) for
all C"and S in S}. This implies that the function Z := F € My, %, —
W, (FTF) is convex. Indeed, for all F' and G in M, ., and for all ¢ € [0, 1],
tF+(1-t)O)TtF+(1-t)G) = tFTF+(1-t)G'G
t(1—t)(F - G)'(F - Q).

Therefore, since t(1 — t)(F — G)T(F — G) is positive semidefinite,
ZAF+(1-1)G) <W,tFTF+ (1 -t)GTG) <t Z(F)+ (1 -t)Z(G),

by the convexity of W,. Consequently, since Z is convex and below W, we
see that Z < QW.

The reverse inequality is obtained as follows. From Le Dret and Raoult
(1995a), we know that QW is also left O(n)-invariant. Applying Lemma 1
to Y = QW, which is rank-one convex, we obtain

QW(F) = QW (FTF) <QW(FTF +S)=QW ((FTF + 5)1/2)
<W(FTF +8)

for all S € S}, Therefore, QW (F) < Z(F) and the proof is complete.
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Remark 1.6. i) It follows clearly from the proof that the quasiconvex
envelope is also in this case the convex and rank-one convex envelope of the
stored energy function.

ii) We now proceed to show by means of a simple counterexample that
Pipkin’s formula fails for m > n. Let m = 2, n = 1. Consider the function
W My — R, W(F) = ||[FTF —I||?. We thus let W(C) = ||C' — I||>. This
function is clearly convex with respect to C. If we denote F' = (21, z2) with
z; € R, then we have

W(F) = (22— 1>+ (22 = 1)> + 22222 = (|FP = 1)* + 1.
Therefore, QW (F) = CW(F) and QW(F) = W(F) if |F|| > 1, 1 if
IF|| < 1, see Dacorogna (2007). Let us now take F' = (1,—1) so that

(1 -1 S (11
C(—l 1 >andW(C) 2. With the choice S 5(1 1),We

obtain W,.(C) < W(C +S)=1<2=W(C)=W(F)=QW(F).

Application to an explicit computation: The Saint Venant-Kirchhoff
stored energy function defined in (6) can equivalently be written under the
form W(F) = W(FTF) where

w(C) = HC I1*+ /\(trC 3)? (14)

for all C' in S7. The mapping W is clearly convex with respect to C.
Therefore, Theorem 1.5 applies. Let us briefly show how computations

can be organized. For any C in SJ, let Jo : S € S§ +— W(C +5) € R.

This is a strictly convex, coercive mapping. Consequently, Jo admits one

and only one minimizer on S;. By (13), we have to evaluate inf Jo(S) =
sesT

rnlr}r Jo(S). Assume first that C is diagonal. We deduce from (14) that
Ses}
Jo(S) > Jo(diag (s11, S22, $33)). Minimizing Jo(S) among semidefinite pos-
itive matrices thus amounts to minimizing Jo(S) among diagonal positive
matrices. Equivalently, we have to minimize on (R*)? the mapping jc such
that
3 N8

Z ci —1+s)*+ = 3 (Z(Cm‘ —1+si))>

i=1 i=1

u>|z:

Jo(s1, 82, 83)
Without loss of generality, we assume that ¢y < cos < c33. The optimality
conditions for jo on (RT)3 read

ch(81,82,83)(t1,t2,t3) >0 for all (tl,tz,t3) S (R+)3,

ch(81782783)(81782783) = 07 (81782783) S (IR#E)‘3
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They are equivalent to

aijC(51752753) > 0 for ¢= 172737
8ijC(51752753) Si = Oa s; >0 for 1= 172737

that is to say

@2p+ M) (e —1+8) + A3 (e —1+sK) 20,
((2p+ N (ci *1+5i)+>\2k¢i(0kk —14+sk))si=0, s >0.

We distinguish four different cases:
1) If ¢33 < 1, then we can choose s; = 1 — ¢;; and (m+il)13 joc = 0.
R

2) If cz3 > 1 and 2(A+ p) caa + Aess < 3A + 2 p, then we can choose

3A+2u .
— 0.8 = —cii — >0,j=1,2and
S3 , 85 Cj; 2(>\+H)C33+ SO0+ ) ) J ) 4 an
, p(3A +2p) 2
= — —1 .
e = S5y (=D

3) If 2(>\+/L) 022+>\ C33 Z 3 >\+2 1% and ()\+2,LL) Cll+)\ (022+033) S 3>\+2/L,
A

A+ 2
then sp = 83 =0, 51 = —c11 — m(cm + c33) + ()\‘f'i?:) > 0 and
min j :H((c ~1)% 4 (c 71)2)+>\7H(c + ¢33 — 2)?
o jo = ez 33 101270 22 + €33 .

4) If (A +2p) e11 + >\~(C22 +c33) > 3A+ 2y, then we can choose s; = s9 =
sg =0 and min jo = W(C).
(RT)?

So far, we have determined QW (F) when C = FTF is diagonal. To ex-
tend the result to arbitrary matrices C' in S3, we make use of the right
O(3)-invariance of the Saint Venant-Kirchhoff density W which is inherited
by QW. Therefore, QW (F') only depends on the singular values of F'. We
denote by v1(F) < va(F) < v3(F) the singular values arranged in increasing
order. It suffices to replace ¢;; by v;(F )2 in the above formulas to obtain an
explicit expression for QW (F).

The expressions thus obtained are the same as those obtained in Le Dret
and Raoult (1995a) that we recall below. First, for making comparisons
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between the energy and its quasiconvex envelop easier, we express the Saint
Venant-Kirchhoff energy in terms of the singular values and we obtain

E < Ev & 2
W(F)=—— i(F)?2 —1)2 —( iF273>
(F) 8(1+u)i:1(v( A ) ;”( ) ’
(15)
where the Young modulus and the Poisson ratio are given by
E = M and v = #
A+ p 2(A + 1)

Let T = {v € R? 0 < v; <wy < w3} be the convex tetrahedral cone of Ri
delimited by the planes v1 = 0, v1 = v2 and vo = v3. We define a mapping
q on T by

m[v% + o3 — (14 V)E_

+ (1 —v)vf +v(vs +0v3) — (1+ 1/)]1, (16)

8(1—12)(1-2v)
where [z]3 = 2% if 2 > 0, [z]3 = 0 if 2 < 0. Previous computations allow

to write the following theorem.

Theorem 1.7. The quasiconvexr envelope of the Saint Venant-Kirchhoff
stored energy function W is given by

VE eMs,  QW(F)=q(vi(F), va(F), vs(F)). (17)

Let us examine more deeply the values taken by QW. We introduce
three subsets of 7:

H:{’UGT; ’U3§1},
C={veT;vi+wvvs—(1+v)<0},
E={veT;(1-v)W?+v:+v3)—(1+v) <0},
which correspond to the various positive parts that appear in formula (16).
It is easily checked that H C C C £ and that

i) if v € H, then ¢(v) =0,
i) if v € C\ 'H, then g(v) = £(v3 — 1),
iii) if v € £\ C, then

3

E FEv ° 2
q(v) = WZ(U?—1)2+W<;U?—2) ;

1=2
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iv) if v € &, then

3

0 =+ s (o 3)

3
=1 i=1

FE
q(v) = m

K2

For singular values outside of £, the energy and its quasiconvex envelope
coincide. At the other end of the scale, for sufficiently small singular values,
the quasiconvex energy is equal to 0. It is indeed a general fact that the qua-
siconvex envelope of a material indifferent and isotropic material vanishes
on the set of singular values less than 1, see Le Dret and Raoult (1994).

2 Quasiconvexity in the derivation of slender
structure models

In this section, we turn to the rigorous derivation of models for bidimen-
sional structures from three-dimensional models. The idea of deriving sim-
plified models from complete models goes back at least to the 50s with the
works by R.D. Mindlin and by E.Reissner among others. In the linear case,
correct bidimensional models can be obtained by quick, but mathematically
frightening ways: assuming for instance that the 33 component of the lin-
earized strain tensor is equal to O in some equations of the three-dimensional
model, but not in other ones. Later on, came the idea of considering a se-
quence of structures with thickness 2e, of writing elasticity models for each
of these structures and of studying the asymptotic behavior of the solutions
of the models. Many researchers in applied mathematics worked on this sub-
ject and most of them consider that this procedure was first formalized by
Ciarlet and Destuynder (1979).

The first result obtained by this method was of no surprise: the usual
linear plate model is recovered. In the linear case, this line of work was
pursued by identifying more precise models (i.e. not only identifying the
limit of the three-dimensional solutions, but identifying a higher-order term
as well), studying dynamical cases, or considering more general materials
such that piezo-electric materials, visco-elastic materials. Things get trick-
ter when dealing with nonlinear models: existence results are not always
available and convergence proofs are much harder when products of terms
have to be considered. Identifying limit models was first obtained by formal
asymptotic methods on the system of partial differential equations describ-
ing finite elasticity written under variational form. Then came the realm of
rigorous I'-convergence arguments and their escort of quasiconvezification
tools. The work we present here is taken from Le Dret and Raoult (1995a).
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We mention that a previous work by Acerbi et al. (1991) existed and, al-
though in a one-dimesional setting that only requires convexity arguments,
gave a path to follow.

2.1 The three-dimensional and rescaled problems

For all e > 0, let Q. = {z € R3;(x1,22) € w,|x3] < €}, where w is
an open, bounded subset of R? with Lipschitz boundary. For all z; € R3?,
i=1,2,3, we note (z1]22]23) the 3 x 3 matrix whose i-th column is z;. Let
W: Msxs3 +— R be a continuous function that satisfies the following growth
and coercivity hypotheses:

3C > 0,3p € |1, +0o[, VF € Mizus, |[W(F)| < C(1+[|F|P),  (18)
Ja > 0,38 > 0,VF € Myys, W(F) > a|| F||P — 5. (19)

We assume that €. is the reference configuration of a hyperelastic ho-
mogeneous three-dimensional body whose stored energy function is W. We
assume for simplicity that the bodies are submitted to the action of dead
loading body force densities f¢ € L(.;R?) and surface traction densities
g° € L"(S;;R3) on S. = w x {*e}, the top and bottom surfaces of (..
For the sake of definiteness, we assume that ¢ = r and 1/p+ 1/¢ = 1, but
other choices are indeed possible at no extra cost. Let I'c = dw x |—¢,¢[ be
the lateral surface of €2.. We assume that the deformations of the bodies
satisfy a boundary condition of place on I'.. The equilibrium problem may
be formulated as a minimization problem:

Find ¢° € ®. such that I.(¢°) = ¢iéqu> I.(¥), (20)
where the total energy I, is
Lw) = [ wende= [ vt [ Fovdn )

and the set of admissible deformations is
o, = {d) € Wl’p(st?RS)ﬂ/}(l‘) = on Fe}' (22)

We do not assume that W is quasiconvex and problem (20) may well not
possess any solutions. Naturally, if it does have solutions which are thus
actual equilibrium deformations of the bodies, our results apply to these
deformations.

Let us thus be given a diagonal minimizing sequence ¢ for the sequence
of energies I. over the sets ®.. More specifically, we assume that

o € B L(6°) < inf 1.() +s(e). (23)
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where s is a positive function such that s(¢) — 0 when ¢ — 0. Such a
sequence always exists and if the minimization problems have solutions, ¢*
may be chosen to be such a solution.

In order to obtain a membrane model in the limit, it is of crucial impor-
tance to specify the order of magnitude of the applied loads. In effect, it is
always possible to stretch all thin cylinders €2, into the same block, say 1,
by applying sufficiently large forces. For such forces, the limit behavior is
obviously not that of a membrane.

It turns out that the right order of magnitude is given by || f*|| La(q. ;rs) <
Ce'/9 and ||g|| pa(s.;r+) < Ce where the constant C' does not depend on e.
For example, the weight of the material, f¢(x) = (0,0, —pg)?, is allowed.

In order to rescale the problem, we let Q@ = Q,, I' =Ty and S = S and
define a rescaling operator O, by (O:.)(x1,x2,23) = ¥(r1,22,£23). Let
d(e) = O.¢° and ¢o(e)(z) = (z1,72,ex3)T. Note that all components are
treated in the same way: we only transport ¢° on the fixed domain Q. This
is the same rescaling as that used in Fox et al. (1993). The rescaled dis-
placement u(e) = ¢(e) — do(e) belongs to V = WP (2, R?). We accordingly
rescale the energies by setting I(e)(v)) = e 1I.(O7 1), i.e.,

16w = [ w((ofows|2))do~ [ fie)vio— [ ge) vao
or in terms of the rescaled displacements 2y
J(e)(v) = /QW(<61 + 810’62 + 821)’63 + %)) dx
- [ 56 @ule) + vy o~ [ £g(e) - (Gu(e) + ) o
Q s
where f(e) = ©.f¢ and g(¢) = O.¢°. It is immediate that
J(e)(u(e)) < inf J()(v) + s(e). (25)

veV

For simplicity, we assume that f(¢) = f and e 'g(e) = g are independent
of e.

2.2 Computation of the I'-limit of the rescaled energies

We use I'-convergence theory to determine the asymptotic behavior of
the rescaled displacements wu(e) when ¢ — 0. In the sequel, the thickness
parameter ¢ will take its values in a sequence €, — 0. Since the results
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do not depend on the sequence in question, and for notational brevity, we
will simply use the notation €. Let us recall that a sequence of functions
G. from a metric space X into R is said to I'-converge toward Gy for the
topology of X if the following two conditions are satisfied for all x € X:

Ve, — x,liminf Ge (z.) > Go(z),
Fye — x,G:(y:) — Go(x).

If the sequence G. I'-converges, its I'-limit is lower semicontinuous and is
alternatively given by

Go(x) = min{liminf G¢ (z.); xe — z}.

In addition, the set of functions from X into R has a sequential compact-
ness property with respect to I'-convergence in the sense that any sequence
G. : X — R admits a I'-convergent subsequence. The main interest of
I'-convergence is that if the minimizers of G¢ stay in a compact set of X
for all €, then their limit points are minimizers of Gy, see De Giorgi and
Franzoni (1975), Attouch (1984), Dal Maso (1993).

We do not use J(e) directly, since this would imply working with the
weak topology of W1P(Q;R3), which is non metrizable. Instead, we extend
the energies to LP(2;R?) by setting

Vo € LP(Q;R?), J(e)(v) = J(e)(v) ifv € V, o0 otherwise. (26)

This is a classical trick used in the applications of I'-convergence: obviously,
this does not change the minimization problem. It has the additional virtue
of incorporating the boundary conditions in the energy functional.

Let us now proceed to compute the T-limit of the sequence .J (e) for
the strong topology of LP(€2;R?). Let M3y be the space of 3 x 2 real
matrices endowed with the usual Euclidean norm || F|| = \/tr (FTF). We
note (z1]z2) the matrix of M3zyxs whose a-th column is z, € R3. For all
F = (21]22) € M3x2 and z € R?, we also note (F|z) the matrix whose first
two columns are z; and zo and whose third column is z.

As in Acerbi et al. (1991) for elastic strings, we define Wy: Msyxo — R
by

Wo(F) = inf W((Fl2)). (27)

Due to the coercivity assumption on W, it is clear that this function is well
defined. Besides, since W is continuous, the infimum is attained.
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Proposition 2.1. The function Wy is continuous and satisfies the growth
and coercivity estimates:

3C" > 0,VF € Mixa, [Wo(F)| < C'(1 + || F||?), (28)
VE € Myyo, Wo(F) > a|| F|l? — B. (29)

Proof - Since Wy is an infimum of continuous functions, it is upper
semicontinuous. Let F € Msyo and consider a sequence F" € M3y such
that F* — F as n — 4o00. Because of the coercivity assumption on W,
there exists a compact set K such that for all F™ the infimum in definition
(27) is attained at a point 2" € K. Consider a subsequence, still denoted
n, such that Wy(F™) converges when n — +o0o. We extract a further
subsequence such that z" — 2 € K. By continuity of W, Wy(F") =
W((F™|z")) — W((F|z)) > Wo(F). As this is true for all subsequences
such that Wy (F™) converges, it follows that lim inf Wy (F™) > Wy (F), hence
Wy is lower semicontinuous.

For all F' € M3ya, let 29 be a point where the infimum in definition (27)
is attained. Thus, Wo(F) = W((F|z0)) > a|(F|z0)||P? — 8 > «| F||P — 8.
Hence Wy is coercive. Therefore, W} is nonnegative outside of a compact
set K'. Since |Wy| is continuous, it is bounded on K’ and for F' ¢ K',
Wo(F)] = Wo(F) < W((F|0)) < C(L+ |(FI0)[[?) = C(1 + | F|]?), which
proves the growth estimate.

Let QWy = sup{Z: M3x2 — R, Z quasiconvex, Z < Wy} be the quasi-
convex envelope of Wy. Let us introduce the space

Vi ={v € V;05v = 0}, (30)

which we call the space of membrane displacements. It is canonically iso-
morphic to Wy ?(w; R?) and we let # denote the element of W, ¥ (w; R?) that
is associated with v € Vs through this isomorphism. The expression of the
I-limit of the sequence .J(¢) is given in the following theorem.

Theorem 2.2. The sequence j(s) T'-converges for the strong topology of
LP(Q;R3) when e — 0. Let J(0) be its T'-limit. For allv € LP(Q;R3) NV,

j(O)(’U) = 2/ QWo((€1+81’17|€2+82’17)) dridry — / F - ((]50(0)4—’17) dxidzy
where F(x1,22) = f_ll flxy, o, w3) das + g(x1,22,1) + g(a1, 22, —1), and
J(0)(v) = 400 if v € LP(QR3) \ Vi
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For clarity, we break the proof of Theorem 2.2 into a series of lemmas
and propositions.

We begin by extracting a I'-convergent subsequence and call J (0) its -
limit. The uniqueness of J(0) will make the extraction of this subsequence
superfluous a posteriori.

Lemma 2.3. Let v(e) € LP(;R?) be a sequence such that J(e)(v(e)) <
C' < +oo where C' does not depend on . Then v(e) is uniformly bounded
in'V and its limit points for the weak topology of V' belong to V.

Proof- Let v(e) € LP(€%;R?) be such that J(g)(v(e)) < C < 400. Then,
the definition (26) of the function J(¢) implies first of all that v(e) € V
for all € > 0. Let us call ¢(g) = v(e) + ¢o(e) the deformation that is
associated with the displacement v(e). The coercivity of the function W
and the assumed uniform bound for the energies imply that

Oé/QH(81¢(€)|82¢(€)|€’153¢(6))Hp dr < C"(1+ [l (e)llwrrams)  (32)

where C’ does not depend on . It is clear that for alle < 1, ||(21]22|e " 23)|| >
|[(21]z2|23)||. Therefore, (32) implies that

VI ) < C (1 + () wrr@zs), (33)

which, together with the boundary condition of place ¥(g) = ¢g(e) on T,
yields the desired uniform bound for v(g) in W1P(Q;R?) by Poincaré’s
inequality. Since ¢g(e) is obviously uniformly bounded in W17 (2;R?), the
same holds true for v(e).

On the other hand, since ||(z1|22]e723)|| > 7|23/, where | - | denotes
the Euclidean norm into R3, upon using the bound just established above in
inequality (33) we obtain that [[03¢(e)||Lr(q;rs) < C"¢, so that dzip(e) — 0
strongly in LP(£2;R?). If we let ¢ denote any limit point of the sequence
(e) for the weak topology of W1P(2;R?), it follows at once that 931 = 0.
If v denotes the corresponding limit point of the sequence v(e), since v =
1 — ¢o(0) and d5¢0(0) = 0, we obtain that v belongs to V.

Corollary 2.4. If v € LP(Q;R?) but v & Vas, then J(0)(v) = +o0.

Proof - Indeed, if J(0)(v) < +oo, there exists a sequence v(e) that
converges strongly to v in LP(Q;R?) and such that J(g)(v(e)) — J(0)(v).
Therefore, by Lemma 2.3, v € V.

We thus only have to compute the value of the I'-limit for displacements
in VM .



