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Supervisor’s Foreword

Materials that can mold the flow of elastic waves of certain energy in certain
directions are called phononic materials. The present thesis deals essentially with
such phononic systems, which are structured in the mesoscale (\1 lm), and with
their individual components. Such systems show interesting phononic properties in
the hypersonic region, i.e., at frequencies in the GHz range. It is shown that
colloidal systems are excellent model systems for the realization of such phononic
materials. Therefore, different structures and particle architectures are investigated
by Brillouin light scattering, the inelastic scattering of light by phonons.

Both the mechanical properties of the individual colloidal particles, which
manifest in their resonance vibrations (eigenmodes), as well as the acoustic
propagation in colloidal structures have been investigated. The measurement of the
eigenmodes allows for new insights into physical properties at the mesoscale, e.g.,
confinement effects, copolymer behavior, or the non-destructive determination of
nanomechanical properties of core–shell particles, supporting the working groups
aim to achieve a deeper understanding of ‘soft mechanics’ at small length scales.
Another novel contribution assigned to this thesis is the first experimental reali-
zation of a phononic band gap arising from the interaction of these particle ei-
genmodes with the effective medium band (hybridization gap). This finding
already gave new impulses to the whole field of phononics.

The thesis was performed between 03/2007 and 08/2009 at Max Planck Institute
for Polymer Research, leading to several publications and presentations in inter-
national conferences, and was honored summa cum laude by the University
of Mainz.

Mainz, March 2010 Prof. Dr. H.-J. Butt
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2D Two-dimensional
3D Three-dimensional
a Angle incident laser/sample
ag Mark–Houwink parameter
b(T,S) (Isothermal, adiabatic) compressibility
� Dielectric constant
� Extinction coefficient
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u, w, v Scalar functions
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k Wave length
k Lamé coefficient
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l Lamé coefficient
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BG Bragg gap
cF Coefficient of finesse
cl/t/eff (Longitudinal/transverse/effective) sound velocity
Cp/T Specific heat (at constant p/T)
Cik Components of the stiffness matrix
CCD Charge-coupled device
d Diameter
d1/2 FP mirror distances
D Diffusion coefficient
DOS Density of states
DSC Differential scanning calorimetry
DTA Differential thermo analysis
DVB Divenyl benzene
E Young’s modulus
E Electric field
E0 Field amplitude
EMT Effective medium theory
f Frequency
F Finesse
F Force
flm(r, h, /) Solution of the scalar Helmholtz equation
fcc Face centered cubic
FP Fabry–Pérot interferometer
FSR Free spectral range
G Green’s function
G Reciprocal space vector
G(q, s) Time–correlation function
g2(q, s) Second order autocorrelation
GPC Gel permeation chromatography
h, �h Planck quantum (/2p)
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HG Hybridization gap
I (Scattering) intensity
I Unit tensor
IMC Indomethacin
kB Boltzmann’s constant
KPS Potassium persulfate
K Gordon–Taylor parameter
K Bulk modulus
Kg Mark–Houwink parameter
k(i/sc) (Incident/scattered) Wave vector
l Longitudinal
L Distinct point in reciprocal fcc lattice
L Shear modulus
l, m, n Three independent vectors
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LMS Layer multiple scattering method
M Distinct point in reciprocal fcc lattice
MMA Methyl methacrylate
MPIP Max Planck Institute for Polymer Research
MS Multiple scattering method
m Mass
me Electron mass
Mn Number averaged molecular weight
Mw Weight averaged molecular weight
n Refractive index
ni Unit vector
NaPSS Sodium sulfonated polystyrene
Nd:YAG Neodym doped yttrium aluminium garnet (laser)
OG Ordinary glass
p Pressure
p Momentum
PnBA Poly (n-butyl acrylate)
PCS Photon correlation spectroscopy
PDI Polydispersity
PS Polystyrene
PW Plane wave method
PMMA Poly (methyl methacrylate)
q Scattering wave vector
q Absolute value of q
qpara q Parallel to the sample plane
qperp q Perpendicular to the sample plane
Q Heat
r Radius
r Space vector
R Reflectivity
R Rigidity
R Position vector
R Absolute value of R
Rh Hydrodynamic radius
Rl(k, r) Spherical Bessel functions
Rn Bloch’s vector
RS Raman scattering
S Entropy
SCC Supercooled liquid
SEM Scanning electron microscope
SG Stable glass
T T-Matrix
t Time
t Transverse
T Temperature
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