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PREFACE

The course Generalized continua - from the theory to engineering ap-

plications brought together doctoral students, young researcher, senior
researchers, and practicing engineers. The need of generalized con-
tinua models is coming from the practice. Complex material behavior
sometimes cannot be presented by the classical Cauchy continua.

Generalized Continua are in the focus of scientists from the end of
the 19th century. A first summary was given in 1909 by the Cosserat
brothers. After World War II a true renaissance in this field oc-
curred with a publication of Ericksen & Truesdell in 1958. Further
developments were connected with the fundamental contributions of,
among others, Kröner (Germany), Aero and Palmov (Soviet Union),
Nowacki (Poland), Eringen (USA), and Maugin (France).

The Mechanics of Generalised Continua is an established research
topic since the end of the 50s - early 60s of the last century. The
starting point was the monograph of the Cosserat brothers from 1909
Théorie des corps déformables and some previous works of such fa-
mous scientists like Lord Kelvin. All these contributions were focussed
on the fact that in a continuum one has to define translations and ro-
tations independently (or in other words, one has to establish force
and moment actions as it was done by Euler).

The reason for the revival of generalized continua is that some
effects of the mechanical behavior of solids and fluids could not be
explained by the available classical models. Examples of this are the
turbulence of a fluid or the behavior of solids with a significant and
very complex microstructure. Since the suggested models satisfy all
requirements from Continuum Thermomechanics (the balance laws
were formulated and the general representations of the constitutive
equations were suggested) the scientific community accepted for a
while but missed real applicative developments.

Indeed, for practical applications the developed models were not
useful. The reason for this was a gap between the formulated consti-
tutive equations and the possibilities to identify the material parame-
ters. As often the case one had much more parameters compared to
classical models.

During the last ten years the situation has drastically changed.
More and more researches emerged, being kindled by the partly for-



gotten models since now one has available much more computational
possibilities and very complex problems can be simulated numerically.
In addition, with the increased attention paid to a large number of
materials with complex microstructure and a deeper understanding of
the meaning of the material parameters (scale effects) the identifica-
tion becomes much more well founded. We have thus contributions
describing the micro- and macrobehaviors, new existence and unique-
ness theorems, the formulation of multi-scale problems, etc, and now
it is time to ponder again the state of matter and to discuss new
trends and applications. In addition, generalized continua models are
not included in the actual BSc or MSc programs.

At present the attention of the scientists in this field is focussed
on the most recent research items
• new models,
• application of well-known models to new problems,
• micro-macro aspects,
• computational effort, and
• possibilities to identify the constitutive equations

The new research directions were discussed during the course from
the point of view of modeling and simulation, identification, and nu-
merical methods. The following lectures were presented:
• On the Roots of Continuum Mechanics in Differential Geometry

- A Review - by Paul Steinmann
• Cosserat Media by Holm Altenbach & Victor A. Eremeyev
• Cosserat-type Shells by Holm Altenbach & Victor A. Eremeyev
• Cosserat-type Rods by Holm Altenbach, Mircea Bı̂rsan & Victor

A. Eremeyev
• Micromorphic Media by Samuel Forest
• Electromagnetism and Generalized Continua by Gérard A. Mau-

gin
• Computational Methods for Generalised Continua by René de

Borst
Finally the lecturers should acknowledge the German Research

Foundation supporting the Course by the Grant No. AL 341/40-1.

Holm Altenbach and Victor A. Eremeyev
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On the Roots of Continuum Mechanics

in Differential Geometry

– A Review –

Paul Steinmann

Chair of Applied Mechanics, University of Erlangen-Nuremberg, Germany

E-mail: Paul.Steinmann@ltm.uni-erlangen.de

Abstract The aim of this contribution is to illustrate the roots of
the geometrically nonlinear kinematics of (generalized) continuum
mechanics in differential geometry. Firstly several relevant concepts
from differential geometry, such as connection, parallel transport,
torsion, curvature, and metric (in index notation) for holonomic
and anholonomic coordinate transformations are reiterated. The
notation and the selection of these topics are essentially motivated
by their relation to the geometrically nonlinear kinematics of con-
tinuum mechanics. Then, secondly, the kinematics are considered
from the point of view of nonlinear coordinate transformations and
nonlinear point transformations, respectively. Together with the
discussion on the integrability conditions for the (first-order) dis-
tortions, the concept of dislocation density tensors is introduced.
After touching on the possible interpretations of nonlinear elastic-
ity using concepts from differential geometry, a detailed discussion
of the kinematics of multiplicative elastoplasticity is given. The dis-
cussion culminates in a comprehensive set of twelve different types
of dislocation density tensors. Potentially, these can be used to
model densities of geometrically necessary dislocations and the ac-
companying hardening in crystalline materials. Continuum elasto-
plasticity formulations of this kind fall into the class of generalized
(gradient-type) plasticity models.

1 Introduction

The kinematics of geometrically nonlinear continuum mechanics is deeply
rooted in differential geometry. An appreciation thereof is thus particu-
larly illuminating. This is especially true for some generalized models of
continuum mechanics, for example, gradient crystal plasticity. Here, the

H. Altenbach, V. A. Eremeyev (Eds.), Generalized Continua from the Theory to  
Engineering Applications, DOI 10.1007/978-3-7091-1371-4_1, © CISM, Udine 2013



2 P. Steinmann

amount of accumulated dislocations (point defects in an otherwise perfect
crystalline lattice) is typically deemed responsible for the state of hardening
that the crystalline material displays. Thereby, the total amount of arrested
dislocations is decomposed into statistically stored dislocations (SSD) and
geometrically necessary dislocations (GND). The former are then assumed
responsible for isotropic hardening. The latter are necessary to support the
plastic part of the deformation and form an (additional) obstacle to further
dislocation flow. Geometrically necessary dislocations may be subdivided
further into dislocations responsible for a macroscopically stress free cur-
vature of the crystal lattice, and dislocations responsible for macroscopic
residual stresses, both after the removal of external loads. The illuminat-
ing relation between the stress free curvature of the crystal lattice and the
part of the dislocation density that is geometrically necessary to support
this curvature was establishes by Nye (1953). Both contributions to the
geometrically necessary dislocations, i.e. those resulting in a stress free cur-
vature of the crystal lattice and those resulting in residual stresses, consti-
tute additional contributions to the hardening of the crystalline material.
Thus, geometrically necessary dislocations obviously have to be taken into
account when modelling of plasticity to describe the hardening behaviour
more realistically and thus more accurately.

A consideration of the continuum version of geometrically necessary dis-
locations, i.e. the dislocation density tensor, in a thermodynamically con-
sistent modelling framework inevitably results in a form of gradient crystal
plasticity, see Steinmann (1996), Menzel and Steinmann (2000). The dis-
location density tensor, however, is intimately related to one of the key
concepts in non-Riemann differential geometry, i.e. the third-order torsion
tensor as introduced by Cartan (1922). For anholonomic coordinates, as
in the case of crystal plasticity, the Cartan torsion coincides moreover with
the so-called anholonomic object of differential geometry. The important
relation between the continuum description of dislocation density and a non-
Riemann geometry was discovered by Kondo (1952) and Bilby et al. (1955);
Bilby and Smith (1956). Prior to this, differential geometry was instrumen-
tal in the development of general relativity and the theory of gravitation,
see Misner et al. (1998). Important contributions to the elaboration of
differential geometry in this context have been made by Schouten (1954,
1989).

Kröner (1958) proposed a geometrically linear continuum theory of resid-
ual stresses based on the concept of dislocation densities. Motivated by
insights into differential geometry, the corresponding extension to the geo-
metrically nonlinear case was developed by Kröner and Seeger (1959) and
Kröner (1960). It turned out that the interplay between continuum mechan-
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ics and differential geometry is extremely helpful: firstly, rather involved
relations of the geometrically nonlinear kinematics of continuum mechanics
such as the connection between the dislocation density and the St. Venant
compatibility conditions for the strains could be clarified; and secondly, gen-
eralized continuum formulations that consider more general (point) defects
besides dislocations, such as the distribution of quasi-dislocations caused,
e.g., by inhomogeneous temperature distributions, electric or magnetic fields,
vacancies, interstitial atoms and the like in the crystal lattice, are motivated
by the existence of other, more involved, types of differential geometries,
see e.g. the contributions by Anthony (1970a,b, 1971). A comprehensive
account of the geometrically linearized version of the continuum theory of
general defects in crystal lattices is found in de Wit (1981). Further in-
teresting contributions to the continuum theory of dislocations are e.g. by
Kondo (1964), Noll (1967), and Kröner (1981).

After the prolific developments in the 1950’s to 1970’s the topic became
somewhat dormant, but since the 1990’s there has been a renewed interest.
This had to do with, on the one hand, the intense research on possibilities to
overcome the pathological dependencies on the discretization that compu-
tational solutions, mainly based on the finite element method, displayed for
the simulation of inelastic materials with a softening response. The incorpo-
ration (in one way or another) of gradients of the inelastic variables into the
modelling has a regularizing effect that results in discretization-independent
simulations, see e.g. Liebe and Steinmann (2001). On the other hand, the
continuing trend towards miniaturization made clear that the inelastic re-
sponse of a material especially is length scale (size) dependent. Again, size
dependence can be included into the modelling by incorporating gradients of
the inelastic variables. For an overview of a variety of possibilities to arrive
at a generalized model of plasticity see, e.g., Hirschberger and Steinmann
(2009); the micromorphic approach has recently been advocated strongly
by Forest (2009) and Grammenoudis and Tsakmakis (2010).

However, purely phenomenological approaches for generalized models of
continuum mechanics are somewhat unsatisfying if a clear link to the under-
lying physics is lacking. The plasticity of crystalline materials is a notable
exception, as the mechanisms of plasticity are well understood to depend on
the concepts of dislocations and dislocation flow. The flow of dislocations
causes the plastic deformation process while the accumulating arrest of sin-
gle dislocations represents an obstacle that has to be overcome if ongoing
flow of dislocations is to occur. To better capture the underlying physics of
crystalline material was the main motivation for the proposal in Steinmann
(1996) to include the dislocation density tensor as an additional argument in
the free energy density. As a consequence a gradient-type crystal plasticity
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formulation emerges. Subsequently, many more or less related formulations
considering specific versions of dislocation density tensors were pursued,
among them the important contributions by, e.g., Le and Stumpf (1996),
Acharya and Bassani (2000), Cermelli and Gurtin (2001), Gurtin (2002),
Svendsen (2002), Becker (2006), Reddy et al. (2008), Clayton et al. (2006)
(and many more). Other aspects such as the gauge theory of dislocations
as treated, e.g., by Lazar and Hehl (2010) or nonsingular stress and strain
fields of dislocations and disclinations embedded in gradient elasticity, see
Lazar and Maugin (2005) are exciting topics of current research activities.

It is the aim of this contribution to review and highlight the roots of
the kinematics of this type of generalized crystal plasticity using relevant
concepts of differential geometry. A comprehensive and as clear as possible
exposition of relevant concepts from differential geometry, alone an inter-
esting field in itself, serves as a strong guide for the sound formulation of
physically based continuum theories. The interplay between materials sci-
ence and mathematical underpinning results in a very powerful and fruitful
approach. It is the hope that in this fashion the way may be paved to more
complex continuum models that take into account, e.g., disclinations and
further types of distributed (point) defects.

This contribution is decomposed into two major sections: In Sect. 2,
the essential concepts from differential geometry are reviewed. Thereby, in
the spirit of deduction, the present exposition is clearly in reverse to the
historical developments in which, starting with the idea of an Euclidean
space, the complexity was increased step by step resulting eventually in
the treatment of general affine spaces. Thus, after giving an overview of
various geometries of spaces in Sect. 2.1, some aspects of general manifolds
are treated in Sect. 2.2. The linear connection, the concept of parallel
transport and the torsion are then touched upon in Sects. 2.3, 2.4 and
2.5. Section 2.6 highlights the general concept of curvature. The previous
concepts are equipped with more structure by introducing the metric in Sect.
2.7. The implications of the metric on the curvature are considered in Sect.
2.8. Section 3 applies the previously outlined concepts from differential
geometry to the kinematics of continuum mechanics. To this end, Sect.
3.1 recalls the underlying ideas of continuum kinematics while Sect. 3.2
investigates the formulation of the distortion. In Sect. 3.3 the integrability
of the distortion into a compatible vector field is analysed. The kinematics
of elasticity are studied subsequently in terms of concepts from differential
geometry in Sect. 3.4. Finally, in Sect. 3.5, as the main outcome of this
review, the case of (crystal) elastoplasticity is treated along the same lines,
and, in particular, a set of twelve different dislocation density tensors is
proposed.
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2 Differential Geometry

This section is intended to give a concise but self contained exposition of
the here relevant basics of differential geometry as needed in the following
section to discuss the kinematics of (generalized) continuum mechanics.

2.1 Overview

Differential geometry deals with the geometry of spaces, which may be
characterized essentially in terms of only a few fundamental objects that
will be discussed in detail in the following sections, i.e.:

• Connection LI
JK

→ Torsion T I
JK = LI

[JK]

• Curvature R I
JKL

• Metric MIJ

These objects then allow for the classification of (affine) geometries as out-
lined in Table 1. A geometry with vanishing torsion is called symmetric, a
geometry with vanishing curvature is called flat (or equivalently a geometry
with teleparallelism), and a geometry with vanishing covariant derivative of
the metric with respect to the connection is called metric, it thus possesses
a metric connection.

An Euclidean space is defined as a symmetric, flat and metric geometry;
a symmetric, non-flat but metric geometry defines a Riemann space; a non-
symmetric but flat and metric geometry defines a Cartan space, a Riemann-
Cartan space is defined as a non-symmetric and non-flat but metric geom-
etry; finally a general affine space may be defined as a non-symmetric,
non-flat and non-metric geometry.

It is interesting to note that all of these geometries have corresponding
counterparts in the kinematics of various continuum theories: the kine-
matics of elasticity may be considered a flat Riemann geometry, i.e. sim-
ply an Euclidean geometry; a Riemann geometry describes, e.g., the kine-
matics of (a somewhat exotic) continuum-disclination-based elastoplastic-
ity; a Cartan geometry describes, e.g., the kinematics of (well-accepted)
continuum-dislocation-based elastoplasticity; the kinematics of (an again
exotic) continuum-disclination- and continuum-dislocation-based elastoplas-
ticity may be regarded a Riemann-Cartan geometry; and the kinematics of
the continuum version of even more general (point) defects such as the dis-
tribution of quasi-dislocations caused, e.g., by inhomogeneous temperature
distributions, electric or magnetic fields, vacancies, interstitial atoms and
the like may finally be considered within a general affine geometry that is
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Table 1. Classification of affine geometries of spaces based on three funda-
mental attributes (symmetric, flat, and metric) from differential geometry.

Symmetric Flat Metric

Euclid yes yes yes
Riemann yes no yes
Cartan no yes yes

Riemann & Cartan no no yes
General Affine no no no

essentially characterized by a non-metric connection, see Anthony (1971)
and more recently Clayton (2011).

2.2 Manifolds

Central to the following discussions is the notion of a manifold. Thereby,
the key idea of a manifold is to allow for general coordinate systems and
corresponding transformations between these coordinate systems, see e.g.
the discussion in Marsden and Hughes (1994). Correspondingly and more
formal is the following

Definition:
A smooth ndm-dimensional manifold is a set M such that for each point
P ∈ M there is a subset U of M containing P, and a one-to-one mapping
called chart (coordinate system) {X I} from U onto an open set in IRndm .
Multiple charts may be needed to cover the manifold. Coordinate transfor-
mations {X I} → {x i} (on a region of M) are infinitely differentiable, i.e.
C∞. A collection of charts covering M is called an atlas. �

As a simple example for a manifold consider either a circle or a sphere
that can only be covered by at least two charts. Thus the corresponding
atlas also consists of at least two charts. Abstracting from of our usual idea
of a (Euclidean) space a manifold may also be considered as a generalized
space. Thus less formal is the alternative

Definition:
A system that is assigned to ndm variables X 1,X 2, · · · ,Xndm is a point P
of an ndm-dimensional manifold M. The ndm numbers X 1,X 2, · · · ,Xndm

are the coordinates of the point P. The set of all points P then defines the
manifold M. �
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To illuminate this viewpoint consider as specific examples: (i) a mechan-
ical system with ndm generalized coordinates X 1,X 2, · · · ,Xndm , (ii) the set
of ellipsoids with ndm = 3 half-axes X 1,X 2,X 3, or (iii) as the most basic
case simply the ordinary ndm-dimensional Euclidean space.

Differentials Let a chart (coordinate system) consist of ndm coordinates

X 1,X 2, · · · ,Xndm := {X I}. (1)

Then a coordinate transformation from the ndm coordinates {X I} to a new
ndm-dimensional set of coordinates {x i} is given by the (one-to-one) map-
ping

x i = yi({X J}) with X J = Y J({x i}). (2)

Consequently the chain rule allows to work out the transformation be-
haviour of coordinate differentials simply as

dx i =
∂yi

∂X J
dX J =: F i

J dX J and dX J =
∂Y J

∂x i
dx i =: f J

i dx i. (3)

Please note that it is by purpose that the notation for coordinate mappings
and their Jacobians resembles notation typically used in the kinematics of
continuum mechanics, see Sect. 3.1. Thus to unify terminology, coordi-
nates X I and x i will also be addressed as material and spatial coordinates,
respectively.

Gradients Consider next a (scalar-valued) field that depends on either of
the ndm-dimensional coordinate systems

ϑ = Θ({X J}) = θ({x i}) ◦ yi({X J}). (4)

Then the total differential involves the gradient of the field with respect to
the coordinates

dϑ =
∂Θ

∂X J
dX J =

∂θ

∂x i
dx i. (5)

Thus by either using the chain rule or by incorporating the coordinate dif-
ferentials as derived in Eq. (3) the transformation of gradients follows as

∂Θ

∂X J
=

∂θ

∂x i

∂yi

∂X J
=

∂θ

∂x i
F i

J ,

∂θ

∂x i
=

∂Θ

∂X J

∂Y J

∂x i
=

∂Θ

∂X J
f J

i.

(6)
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In conclusion it shall be recognized carefully that differentials and gradients
obey different transformation behaviours upon a change of coordinates.1

Co- and Contravariant Transformations We may next attach ndm-
dimensional tupel V J({XK}) and VJ({XK}) to each point P of M. V J are
denoted the contravariant coefficients (of a vector) while VJ are the covari-
ant coefficients (of a covector), both evaluated at point P with coordinates
{XK}. Obviously these have to be distinguished by their transformation
behavior upon a change of coordinates:

Contravariant coefficients (of a vector) transform like differentials

v i = F i
JV J and V J = f J

iv
i, (7)

whereas covariant coefficients (of a covector) transform like gradients

VJ = viF i
J and vi = VJ f J

i. (8)

Tensors Sloppily speaking tensors are objects with multiple indices that
respect the following

Definition:
Coefficients of tensors change in a ’proper way’ with coordinate transforma-
tions. �

As an example the previously introduced vectors and covectors may be
regarded as first-order tensors with transformation properties

ui = F i
JUJ and ui = f J

iUJ . (9)

Consequently four different types2 of (simple) second-order tensors may be
constructed from dyadic products of first-order tensors and may be distin-

1Recall that the coordinate basis in a manifold corresponding to the coordinate system

{X I} is denoted by ∂XI , whereas the dual basis is denoted by dX I , see Marsden and

Hughes (1994). Then the coordinate representation of a vector reads V � = V I(∂XI ),

the coordinate representation of a covector (one-form) correspondingly follows as V � =

VIdX I . It is only in an Euclidean space parameterized by curvilinear coordinates {X I}
that the coordinate and dual basis coincide with the co- and contravariant base vectors

GI = ∂XI and GI = dX I that in turn may be related to the orthonormal Cartesian

base vectors EA and EA, respectively, see Sect. 3.1.
2Fully contravariant, fully covariant, contra-covariant, and co-contravariant, the latter

two collectively being referred to as mixedvariant, types of second-order tensors may

be distinguished.
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guished by their transformation behaviour

t ij := uivj = F i
KUKV LF j

L =: F i
KT KLF j

L,

tij := uivj = f K
iUKVLf L

j =: f K
iTKLf L

j ,

t ij := uivj = F i
KUKVLf L

j =: F i
KT K

Lf L
j ,

t j
i := uivj = f K

iUKV LF j
L =: f K

iT
L

K F j
L.

(10)

Clearly these transformations do also hold for general second-order tensors
that are constructed from a sum of simple second-order tensors. The exten-
sion to higher-order tensors follows the same pattern and is thus straight-
forward.

Affine Tangent Space In general no vectors are defined in a manifold
M. However a ndm-dimensional vector space (the tangent space TPM),
satisfying the axioms of an affine vector space3, may be attached to each
point P of an ndm-dimensional manifold M. It thus follows from the

Definition:
The tangent space TPM consists of all vectors V I emanating from P. �

Moreover at each point P a (covariant) basis of the affine tangent space
denoted by ∂X I with I = 1 · · ·ndm may be introduced.

As elementary but already specialized examples consider 1-dimensional
curves and 2-dimensional surfaces embedded into the Euclidean ambient
space: Then for a parameter curve XI = XI(t) the 1-dimensional tangent
space follows from the assignment dXI ↔ dX = dXIGI . Likewise the
2-dimensional tangent space of the surface is given by its tangent plane
spanned by G1 and G2. However, in general a manifold and its tangent
space do not necessitate the concept of an embedding Euclidean space.

2.3 Connection

Partial Derivatives Based on the transformation rule for contravariant
first-order tensors and the chain rule the partial derivatives (PD) of vectors
with respect to the coordinates are computed as

v i = F i
JV J → v i

,k = F i
JV J

,Lf L
k + F i

M,LV M f L
k,

V I = f I
jvj → V I

,K = f I
jvj

,lF
l
K + f I

m,lv
mF l

K .
(11)

3In an affine vector space addition of vectors and multiplication of vectors with scalars

are defined.
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Likewise, based on the transformation rule for covariant first-order tensors
and the chain rule the partial derivatives of covectors with respect to the
coordinates follow as

vi = f J
iVJ → vi,k = f J

iVJ,Lf L
k + VM f M

i,k,

VI = F j
Ivj → VI,K = F j

Ivj,lF l
K + vmF m

I,K .
(12)

It is obvious from the discussion in the preceding section and the representa-
tion in Eq. (10) that the underlined terms conflict with the transformation
rules for second-order tensors. As a result it may be stated that the partial
derivative of a vector or a covector does not result in a second-order tensor.

Covariant Derivatives Thus the challenge is to find a correction to the
partial derivative of a vector or a covector so as to reinstall the transforma-
tion behavior of second-order tensors. As a result an alternative derivative
with respect to the coordinates (indicated by a vertical bar |) is sought for
vectors that transforms as

v i
|k

.
= F i

JV J
|Lf L

k and V I
|K

.
= f I

jvj
|lF

l
K . (13)

Likewise a corresponding derivative for covectors is sought with the following
transformation behaviour

vi|k
.
= f J

iVJ|Lf L
k and VI|K

.
= F j

Ivj|lF l
K . (14)

If such derivatives may be found the resulting operation shall be called co-
variant derivative (CD). A suited ansatz to solve the above problem is to
introduce third-order objects LI

KL and l ijk, the so-called linear (or affine)
connection. Then the connection allows to reinstall the transformation be-
havior of the covariant derivatives of vectors and covectors provided the
connection satisfies the following non tensorial transformation properties4

F i
M,Lf L

k = F i
JLJ

MLf L
k − l inkF n

M ,

f I
m,lF

l
K = f I

j l jmlF
l
K − LI

NK f N
m.

(15)

4 A special case occurs whenever the covariant and the partial derivative coincide for a
particular coordinate system, which is only possible for a Cartesian coordinate system
in Euclidean space, i.e. in a flat manifold. Then the connection in the Cartesian
coordinates vanishes identically and the connection in the transformed coordinates
consequently reads

l ijk = F i
AfA

j,k and LI
JK = fI

aF
a
J,K .

Connections of this type are also denoted as integrable connections, the reason for this

terminology becoming clear only after the concept of curvature has been introduced.
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By rearrangement these non tensorial transformation properties of the con-
nection may also be stated equivalently as

f M
i,k = f M

nl nik − LM
JLf J

if
L
k,

F m
I,K = F m

NLN
IK − l mjlF

j
IF l

K .
(16)

By combining the transformation behaviour of the connection in Eq. (15)
with that of the partial derivative of a vector in Eq. (11) the covariant
derivative of a vector is eventually given by

v i
|j = v i

,j + l imjvm and V I
|J = V I

,J + LI
MJV M . (17)

Please observe that the position for the running index m or M , repectively,
and thus the precise arrangement of indices in all later expressions that
involve the connection varies in the literature, however once defined as in
the above it only matters to consequently stick to this convention in the
sequel. Likewise the covariant derivative of a covector follows from inserting
the transformation in Eq. (16) into Eq. (12) to render

vi|j = vi,j − vml mij and VI|J = VI,J − VMLM
IJ . (18)

Then the covariant derivatives of the four types of (simple) second-order
tensors follow from the product rule applied to their dyadic representation

T IJ
|K = T IJ

,K + LI
MKT MJ + LJ

MKT IM ,

T I
J|K = T I

J,K + LI
MKT M

J − LM
JKT I

M ,

TIJ|K = TIJ,K − LM
IKTMJ − LM

JKTIM ,

T J
I |K = T J

I ,K − LM
IKT J

M + LJ
MKT M

I .

(19)

Again these expressions do also hold for general second-order tensors that
are constructed from a sum of simple second-order tensors. The covariant
derivatives of higher-order tensors (and objects) follow likewise, e.g. for
third-order objects as occurring in the sequel one finds

T I
JL|K = T I

JL,K + LI
MKT M

JL − LM
JKT I

ML − LM
LKT I

JM , (20)

TIJL|K = TIJL,K − LM
IKTMJL − LM

JKTIML − LM
LKTIJM .

Based on its definition the covariant derivative obeys a number of important
rules, for example:

• The CD of scalars coincides with the PD of scalars,
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• The CD obeys the distribution rule,
• The CD obeys the Leibniz (product) rule.

Proof:
The first and second rule are obvious, the proof of the last rule is based on
the application of the partial derivative to the contraction of a vector and
a covector into a scalar (whereby opposite but otherwise identical indices
follow the Einstein summation rule)

[V IVI ],J = V I
,JVI + V IVI,J . (21)

Since based on the first rule the partial and the covariant derivatives of
scalars coincide it also holds that

[V IVI ]|J = [V I
,J + LI

MJV M ]VI + V I [VI,J − VMLM
IJ ]

.
= [V IVI ],J . (22)

Comparing the two results in Eqs. (21) and (22) and noting that LI
MJV MVI ≡

V IVMLM
IJ concludes the proof. �

2.4 Parallel Transport

It shall be observed that in general tangent spaces TPM and cotangent
spaces T ∗

PM at different points P of a manifold M are not connected.
However, if a covariant derivative of vectors V I |K = V I

,K + LI
JKV J and

covectors VJ |K = VJ,K − VILI
JK based on a linear connection LI

JK is
introduced, the notion of parallel transport may be defined. Thus the bundle
TM of tangent spaces TPM and the bundle T ∗M of cotangent spaces T ∗

PM
constitute affinely connected spaces.

Thereby the motivation for the notion of parallel transport pV I of a
vector V I is as follows: The comparison of two vectors V I({X J + dX J})
and V I({X J}) in two different (infinitesimal close) tangent spaces attached
to {X J} and {X J + dX J} necessitates first a parallel (back) transport of
V I({X J + dX J}) to {X J}. Thereby this parallel transport is assumed pro-
portional to V K and dX J , i.e. pV I := −LI

KJV K dX J , the minus sign (and
the sequence of indices) being convention. The argument holds likewise for
covectors. From these considerations we may derive the

Definition:
The transport along a parameter curve X J(t) of a vector V I that is attached
to a manifold is called parallel if the covariant derivative (or rather the
covariant differential DV I) of V I vanishes

V I
|J = V I

,J + LI
KJV K = 0 with DV I := V I

|J dX J = 0. (23)
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Thus for a parallel transport the change of the vector in the direction of the
parameter curve (directional derivative) follows as

dV I := V I
,J dX J ≡ −LI

KJV K dX J =: pV I . (24)

The notation pV I for the parallel transport of V I is motivated by simply
rotating the common notation for a differential dV I upside down. �

As a conclusion it may be stated that for a covariant derivative the
change of a vector V I due to its partial derivative with respect to the coor-
dinates, i.e.

dV I := V I
,J dX J = V I({X J + dX J})− V I({X J}) (25)

is corrected by the contribution of the parallel transport

pV I := −LI
KJV K dX J (26)

to render the covariant differential

DV I := dV I − pV I =
[
V I

,J + LI
KJV K

]
dX J . (27)

It shall be noted that the same arguments hold likewise for covectors to
render eventually

DVJ := dVJ − pVJ =
[
VJ,K − VILI

JK

]
dXK . (28)

2.5 Torsion

Transformation of Connection As a motivation for the introduction
of the torsion remember that the linear (or affine) connections LI

KL and
l ijk do not transform like a tensor, but according to Eqs. (15) and (16)
transforms rather like

l ijk = F i
I LI

JK f J
j f K

k + F i
I f I

j,k,

LI
JK = f I

i l ijk F j
J F k

K + f I
i F i

J,K .
(29)

Observe that it is the second term in each line that conflicts with a tenso-
rial transformation behaviour. By resorting to the following easy to proof
relations for the partial derivatives of the tangent maps

F i
I f I

j,k = −F i
J,K f J

jf K
k and f I

iF
i
J,K = −f I

j,kF j
JF k

K (30)



14 P. Steinmann

it is useful in the sequel to express the transformation of the connections
also alternatively as

l ijk = F i
I LI

JK f J
j f K

k − F i
J,K f J

j f K
k,

LI
JK = f I

i l ijk F j
J F k

K − f I
j,k F j

J F k
K .

(31)

It shall be observed carefully that these transformations of the connec-
tions are valid for holonomic as well as anholonomic coordinate transforma-
tions. Here holonomic and anholonomic refers to the integrability and non-
integrability of the tangent map F i

I (or likewise f I
i) into a map x i = yi(X I)

(or likewise X I = Y I(x i)).

Holonomic Transformation It is obvious from the previous discussion
that the connections LI

KL and l ijk do not transform like third-order tensors.
Under a holonomic change of coordinates, however, due to the symmetry of
the second partial derivatives contained in the second terms of Eq. (29) its
(right) skew symmetric contribution does

F i
[J,K] = 0 → l i[jk] = F i

I LI
[JK] f J

j f K
k,

f I
[j,k] = 0 → LI

[JK] = f I
i l i[jk] F j

J F k
K .

(32)

Here, skew symmetry in an index pair is denoted by square brackets, i.e.
for example F i

[J,K] := [F i
J,K − F i

K,J ]/2.
Now as a new object, the skew symmetric part of the connection is called

the (Cartan) torsion or rather the torsion tensor

T I
JK := LI

[JK] and t ijk := l i[jk]. (33)

The meaning of the torsion can be highlighted by considering the situation
sketched in Fig. 1, compare also to Schouten (1989). The parallel transport
of two coordinate differentials dX I and dY I along each other results in a
pentagon formed by dX I and dY I together with the parallel transported
coordinate differentials

dX I
(◦)→(◦◦) = dX I − LI

JK dX J dY K (34)

and
dY I

(•)→(••) = dY I − LI
JK dY J dXK . (35)

From the situation sketched in Fig. 1 it is thus clear that torsion measures
the closure gap

dX I + dY I
(•)→(••) − dY I − dX I

(◦)→(◦◦) = (36)
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�
dX I

(•) �
�
�
�
�
�
�
�
��

dY I
(•)→(••)

(••)�

dY I

(◦)
����������dX I

(◦)→(◦◦)
(◦◦)

�
�	

Figure 1. In a space with torsion parallel transport of coordinate differen-
tials along each other results in a pentagon.

LI
JK dX J dY K − LI

JK dY J dXK = 2T I
JK dX J dY K .

As a result infinitesimal parallelograms constructed from coordinate differ-
entials do only exist in spaces with vanishing torsion.

Anholonomic Transformation Recall that the connections LI
KL and

l ijk do not transform like third-order tensors. Under an anholonomic change
of coordinates its (right) skew symmetric contribution thus transforms as

F i
[J,K] �= 0 → l i[jk] + aijk = F i

I T I
JK f J

j f K
k,

f I
[j,k] �= 0 → LI

[JK] + AI
JK = f I

i t ijk F j
J F k

K ,
(37)

whereby the torsion in the holonomic coordinates follows the standard def-
inition

T I
JK = LI

[JK] and t ijk = l i[jk]. (38)

The additional contribution appearing in the transformation due to the lack
of integrability is called the anholonomic object :

aijk := F i
[J,K]f

J
jf K

k and AI
JK := f I

[j,k]F
j
JF k

K . (39)

It shall be noted that in the above expressions either the coordinates x i in
the first row of Eq. (37) or the coordinates X I in the second row of Eq. (37)
are anholonomic. Based on the anholonomic object and the representation
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in Eq. (37) the torsion in a space that is equipped with anholonomic coor-
dinates follows from the

Definition:
The torsion in an anholonomic space with either anholonomic coordinate x i

or anholonomic coordinates X I , respectively, is given as

t ijk := l i[jk] + aijk and T I
JK := LI

[JK] + AI
JK . (40)

The situation is highlighted in Fig. 2. �

It will be shown in the sequel, that the anholonomic objects may be asso-
ciated with dislocation density tensors. Thereby, quite like in the definition
of the various stress measures in nonlinear continuum mechanics, Piola-type
anholonomic objects corresponding to two-point description dislocation den-
sity tensors together with Cauchy-type anholonomic objects follow from the

Definition:
The Piola-type anholonomic object corresponding to the two-point descrip-
tion dislocation density tensor is given by

Di
JK := F i

[J,K] and d I
jk := f I

[j,k]. (41)

Consequently the anholonomic object introduced previously is of Cauchy-
type and results from a convection (push-forward/pull-back) by the corre-

�

�

�

�

�
X I aijk

F i
[J,K]




�

�

�

�
AI

JK x i

f I
[j,k]

Figure 2. The anholonomic object characterizes the non-integrability of
the tangent map, i.e. the transformation of coordinate differentials. In the
top figure x i are anholonomic while X I are holonomic; in the bottom figure
the situation is reversed, i.e. X I are anholonomic and x i are holonomic.
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�

�

�

�

�
−AI

JK
aijk

Di
JK




�

�

�

�
AI

JK
−aijk

d I
jk

Figure 3. The anholonomic object characterizes the non-integrability of
the tangent map, i.e. the transformation of coordinate differentials. In the
top figure x i are anholonomic while X I are holonomic; in the bottom figure
the situation is reversed, i.e. X I are anholonomic and x i are holonomic.

sponding tangent map

aijk := Di
JK f J

jf K
k and AI

JK := d I
jkF j

JF k
K . (42)

The situation is highlighted in Fig. 3. �

Finally, Piola-Kirchhoff-type anholonomic objects may be regarded ei-
ther as the pull-back/push-forward of the Piola-type or the Cauchy-type
anholonomic objects due to the

Definition:
The Piola-Kirchhoff-type anholonomic object follows from the convection
(pull-back/push-forward) of the Piola-type anholonomic object by the cor-
responding tangent map

−AI
JK = f I

iD
i
JK and − aijk = F i

Id I
jk. (43)

It coincides with the definition of the previously introduced Cauchy-type
anholonomic object if the following anholonomic partial derivatives are de-
fined

f I
iF

i
[J,K] =: −f I

[j,k]F
j
JF k

K and F i
I f I

[j,k] =: −F i
[J,K]f

J
jf K

k. (44)

Recall that in the above expressions either the coordinates x i or the coor-
dinates X I are anholonomic. The situation is highlighted in Fig. 3. �
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From the above definitions it is clear that the terminology Cauchy-type
and Piola-Kirchhoff-type is used interchangeably if instead of the tangent
map F i

I : dX I �→ dx i the (inverse) tangent map f I
i : dx i �→ dX I is

considered.

2.6 Curvature

The notion of curvature or rather the curvature tensor is central to the
differential geometry of manifolds. Formally the curvature tensor is intro-
duced by the following

Definition:
Based on the linear connection a fourth-order object, the curvature tensor,
is defined as:

R I
JKL := LI

JL,K − LI
JK,L + LI

MKLM
JL − LI

MLLM
JK . (45)

The tensorial transformation properties of the curvature tensor will be
demonstrated later. �

From its definition the curvature tensor obeys the following skew sym-
metries:

R I
JKL = 2LI

J[L,K] + 2LI
M [KLM

JL] = R I
J[KL]. (46)

Note carefully that here, in contrast to most of the literature on differential
geometry, the notation for skew symmetrization of the two indices in the
term quadratic in the connection is used in the following format

2LI
M [KLM

JL] := LI
MKLM

JL − LI
MLLM

JK . (47)

This somewhat less heavy notation is here preferred over the traditional
LI

M [KLM
|J|L]. Less formal and more operational is the alternative

Definition:
The curvature tensor determines the change of a vector V I for a parallel
transport along infinitesimal closed curves as

ΔV I = R I
JKLV J dXK dY L. (48)

Thus, upon transporting a vector V I parallel along infinitesimal closed
curves if suffers a change ΔV I that depends on the curvature tensor, i.e. on
the curvature of the manifold.

Moreover, the curvature tensor also determines the skew symmetric con-
tribution to the second covariant derivatives of a vector

2V I
|[KL] = −R I

JKLV J − 2V I
|MT M

KL. (49)
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Figure 4. Parallel transport of a vector V I along an infinitesimal closed
curve. Due to the curvature V I suffers a change ΔV I . The closed curve
consists of the coordinate differentials dX I and dY I together with their par-
allel transport along each other dY I

(•)→(••) and dX I
(◦)→(◦◦) and the resulting

closure gap, compare Fig. 1.

Observe that the second covariant derivatives of a vector involves in partic-
ular the torsion. �

Note that similar operational definitions of the curvature tensor hold in
terms of covectors. The concrete representation and a proof are however
left to the reader.

In the sequel both, the change of a vector V I for a parallel transport
along infinitesimal closed curves and the skew symmetric contribution to
the second covariant derivatives of a vector shall be investigated.

Parallel Transport Along Infinitesimal Closed Curves By referring
to Fig. 4 the proof of ΔV I = R I

JKLV J dXK dY L may be sketched in nine
steps:

1. Parallel transport of V I to (•) and connection LI
JK• at (•),

2. Parallel transport of V I
• to (••),
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3. Retain terms up to quadratic order,
4. Parallel transport of V I to (◦) and connection LI

JK◦ at (◦),
5. Parallel transport of V I

◦ to (◦◦),
6. Retain terms up to quadratic order,
7. Parallel transport from (◦◦) to (••),

retain terms up to quadratic order,
8. Substract,
9. Express Result in terms of the curvature tensor.

Proof:
These steps shall now be outlined in more detail:

1. Parallel transport of V I to (•) and connection LI
JK• at (•):

V I
• = V I − LI

JKV J dXK and LI
JK• = LI

JK + LI
JK,L dXL.

2. Parallel transport of V I
• to (••):

V I
•• = V I

• − LI
JK•V J

•
[
dY K − LK

OP dY O dXP
]
=[

V I − LI
JKV J dXK

]− [
LI

JK + LI
JK,L dXL

]×[
V J − LJ

MNV M dXN
]× [

dY K − LK
OP dY O dXP

]
.

3. Retain terms up to quadratic order in the coordinate differentials:

V I
•• = V I − LI

JKV J dXK − LI
JKV J dY K − LI

JK,L dXLV J dY K

+LI
JKLJ

MNV M dXN dY K + LI
JKLK

OP V J dY O dXP .

4. Parallel transport of V I to (◦) and connection LI
JK◦ at (◦):

V I
◦ = V I − LI

JKV J dY K and LI
JK◦ = LI

JK + LI
JK,L dY L.

5. Parallel transport of V I
◦ to (◦◦):

V I
◦◦ = V I

◦ − LI
JK◦V J

◦
[
dXK − LK

OP dXO dY P
]
=[

V I − LI
JKV J dY K

]− [
LI

JK + LI
JK,L dY L

]×[
V J − LJ

MNV M dY N
]× [

dXK − LK
OP dXO dY P

]
.

6. Retain terms up to quadratic order in the coordinate differentials:

V I
◦◦ = V I − LI

JKV J dY K − LI
JKV J dXK − LI

JK,L dY LV J dXK
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+LI
JKLJ

MNV M dY N dXK + LI
JKLK

OP V J dXO dY P .

7. Subtract:

V I
◦◦ − V I

•• = −2LI
J[K,L] dY LV J dXK

+2LI
J[KLJ

MN ]V
M dY N dXK + 2LI

JKLK
[OP ]V

J dXO dY P .

8. Parallel transport from (◦◦) to (••), retain terms up to quadratic order
in the coordinate differentials:

V I
•′•′ = V I

◦◦ − LI
JKV J

[
2LK

[OP ] dXO dY P
]
.

9. Subtract:

V I
•′•′ − V I

•• = −2LI
J[K,L] dY LV J dXK + 2LI

J[KLJ
MN ]V

M dY N dXK .

Thus, in summary the change of the vector V I may be expressed in terms
of the curvature tensor as defined in Eq. (46)

ΔV I := V I
•′•′ − V I

•• =: R I
JKLV J dXK dY L. (50)

Clearly, from the above derivation and in accordance with the definition in
Eq. (46) the curvature tensor is eventually recognized as

1

2
R I

JKL = LI
J[L,K] + LI

M [KLM
JL]. (51)

This concludes the proof. �

Skew Symmetric Contribution to Second Covariant Derivatives
The second covariant derivative of a vector is computed as the covariant
derivative of the (mixedvariant) second-order tensor represented by V I

|J ,
see the definition in Eq. (19).2

V I
|JK = V I

|J,K + LI
MKV M

|J − LM
JKV I

|M . (52)

Involving next the covariant derivative of a vector in Eq. (17) inflates the
above expression to

V I
|JK = V I

,JK + LI
MJV M

,K + LI
MJ,KV M (53)

+ LI
MKV M

,J + LI
MKLM

NJV N

− LM
JKV I

|M .
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Likewise, changing the sequence of the indices JK renders the corresponding
result

V I
|KJ = V I

,KJ + LI
MKV M

,J + LI
MK,JV M (54)

+ LI
MJV M

,K + LI
MJLM

NKV N

− LM
KJV I

|M .

Finally, substracting the two results in Eqs. (53) and (54) and taking into
account the symmetry of the second partial derivatives renders the skew
symmetric contribution to the second covariant derivative of a vector in
terms of the curvature and the torsion

V I
|[JK] =

[
LI

N [J,K] + LI
M [KLM

NJ]

]
︸ ︷︷ ︸

−R I
NJK/2

V N − T M
JKV I

|M . (55)

A similar result may be derived for the second covariant derivative of a
covector.

Transformation of the Curvature Tensor Due to the tensor prop-
erty of the curvature the following convection or rather pull-back (Y )/push-
forward (y) relations hold in the case of holonomic coordinate transforma-
tions:

Curvature(Y (connection))=Y (curvature(connection))

curvature(y(Connection))=y(Curvature(Connection))

As an example the pull-back of the spatial curvature expressed in terms of
the spatial connection equals the material curvature expressed in terms of
the pull-back of the spatial connection. The corresponding relation holds
if spatial and material objects are exchanged. However, in the case of an-
holonomic coordinate transformations extra contributions in terms of the
anholonomic object arise.

The tensorial transformation of the curvature tensor upon changing the
coordinate system between holonomic coordinates X I and anholonomic co-
ordinates x i is stated as

R I
JKL = f I

ir
i
jklF

j
JF k

KF l
L. (56)
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Figure 5. Transformation of the curvature tensor for the case of holonomic
X I and anholonomic x i.

Thereby, for holonomic X I and anholonomic x i the curvature tensor R I
JKL

follows the standard definition in Eqs. (45) and (46) whereas the curvature
tensor r ijkl involves extra contributions in terms of the connection and the
anholonomic object

r ijkl = 2l ij[l,k] + 2l im[kl mjl] + 2l ijmamlk. (57)

The situation is depicted in Fig. 5.
Likewise, the tensorial transformation of the curvature tensor upon chang-

ing the coordinate system between holonomic coordinates x i and anholo-
nomic coordinates X I is stated as

r ijkl = F i
IR I

JKLf J
jf K

kf L
l. (58)

Then, for holonomic x i and anholonomic X I the curvature tensor r ijkl fol-
lows the standard definition corresponding to Eqs. (45) and (46) whereas
the curvature tensor R I

JKL involves extra contributions in terms of the
connection and the anholonomic object

R I
JKL = 2LI

J[L,K] + 2LI
M [KLM

JL] + 2LI
JMAM

LK . (59)

The situation is depicted in Fig. 6.
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Figure 6. Transformation of the curvature tensor for the case of holonomic
x i and anholonomic X I .
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Proof:
To proof the above assertions in Eqs. (57) and (59) the transformation of
the connection according to Eq. (29) has to be inserted into the standard
definition of the curvature tensor in Eq. (45) or (46).

As an example the case of holonomic X I and anholonomic x i shall be
considered in detail. To start with, the transformation of the connection
reads as

LI
JL = f I

il
i
jlF

j
JF l

L + f I
iF

i
J,L.

Computing the partial derivative of the connection as needed in the defini-
tion of the curvature renders the lengthy expression

LI
JL,K = f I

i,K l ijlF
j
JF l

L

+ f I
il

i
jl,kF j

JF k
KF l

L

+ f I
il

i
jlF

j
J,KF l

L

+ f I
il

i
jlF

j
JF l

L,K

+ f I
i,KF i

J,L

+ f I
iF

i
J,LK .

Unfortunately, upon skew symmetrization in L and K only one term drops
out so far

LI
J[L,K] = f I

i,[K l ijlF
j
JF l

L]

+ f I
il

i
j[l,k]F

j
JF k

KF l
L

+ f I
il

i
jlF

j
J,[KF l

L]

+ f I
il

i
jlF

j
JF l

[L,K]

+ f I
i,[KF i

J,L].

Observe that the underlined term is already part of the sought for curvature
tensor r ijkl. Next the term of the curvature quadratic in the connection shall
be computed. To this end the transformation of the connection is recalled
once again with the right set of indices

LI
MK = f I

il
i
mkF m

MF k
K + f I

iF
i
M,K ,

LM
JL = f M

ml mjlF
j
JF l

L + f M
mF m

J,L.
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Then multiplication of the two representations of the connection in the
above results in the multi-term expression

LI
MKLM

JL

= f I
il

i
mkF m

MF k
K f M

nl njlF
j
JF l

L

+ f I
il

i
mkF m

MF k
K f M

nF n
J,L

+ f I
iF

i
M,K f M

ml mjlF
j
JF l

L

+ f I
iF

i
M,K f M

mF m
J,L.

Here many terms may be simplified by taking out multiplications of the
tangent map by its inverse and by substituting partial derivatives of the
tangent map by those of its inverse in the spirit of Eq. (44):

LI
MKLM

JL

= f I
il

i
mkl mjlF

j
JF k

KF l
L

+ f I
il

i
jlF

j
J,LF l

K

− f I
i,K l ijlF

j
JF l

L

− f I
i,KF i

J,L.

Observe that the underlined term will be another part of the sought for
curvature tensor r ijkl. Upon skew symmetrization in L and K no term
drops out:

LI
M [KLM

JL] = f I
il

i
m[kl mjl]F

j
JF k

KF l
L

− f I
il

i
jlF

j
J,[KF l

L]

− f I
i,[K l ijlF

j
JF l

L]

− f I
i,[KF i

J,L].

However, if we combine the above results so as to produce the curvature
tensor R I

JKL many terms drop out and the resulting expression reads as

1

2
R I

JKL := LI
J[L,K] + LI

M [KLM
JL]
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= f I
i

[
l ij[l,k] + l im[kl mjl] + l ijmF m

[L,K]f
L
lf

K
k

]
F j

JF k
KF l

L.

Inserting finally the definition of the anholonomic object

amlk := F m
[L,K]f

L
lf

K
k

into the above result concludes the proof. �

2.7 Metric

The metric is an important object that introduces more structure into
a (differential) manifold as may be seen from the

Definition:
If a ndm-dimensional (differentiable) manifold M is equipped with a sym-
metric field of metric coefficients MIJ(X 1,X 2, · · · ,Xndm) such that the arc-
length of a parameter curve X I = X I(t) between parameter values ta and tb
is given by

S(tb)− S(ta) =

∫ tb

ta

√
Ẋ IMIJ Ẋ J dt (60)

the manifold M is a metric space. Its tangent space TPM at P is an Eu-
clidean (tangent) space. �

Thereby the metric shall obey the following properties:

• MIJ = MJI = M(IJ) with M[IJ] = 0 symmetric
• V IMIJV J > 0 ∀{V K} �= {0} positive definite
• MIJ transforms as 2nd-order tensor, i.e. mkl = f I

kMIJ f J
l

The first property is obvious since any skew symmetric contributions
would not contribute to a quadratic form as needed for the determination
of the length. The second property is specific to the later application to
(three-dimensional) continuum mechanics, relativity and general relativity
allow also for indefinite metrics, see, e.g., Misner et al. (1998). Finally
the proof of the third property is straightforward from the transformation
behaviour of the coordinate differentials, see Eq. (3):

dS2 = dX IMIJ dX J = dx kf I
kMIJ f J

l dx l = dx kmkl dx l. (61)

Metric Connection As an immediate consequence the introduction of a
metric allows to formulate the


